JP2020074703A - Green algal mutants with reduced lipid decomposition ability and enhanced lipid productivity and uses thereof - Google Patents

Green algal mutants with reduced lipid decomposition ability and enhanced lipid productivity and uses thereof Download PDF

Info

Publication number
JP2020074703A
JP2020074703A JP2018209336A JP2018209336A JP2020074703A JP 2020074703 A JP2020074703 A JP 2020074703A JP 2018209336 A JP2018209336 A JP 2018209336A JP 2018209336 A JP2018209336 A JP 2018209336A JP 2020074703 A JP2020074703 A JP 2020074703A
Authority
JP
Japan
Prior art keywords
protein
oil
strain
ldp1
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018209336A
Other languages
Japanese (ja)
Other versions
JP7269580B2 (en
Inventor
原山 重明
Shigeaki Harayama
重明 原山
准平 早川
Junpei Hayakawa
准平 早川
曜子 井出
Yoko Ide
曜子 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Chuo University
Original Assignee
Denso Corp
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Chuo University filed Critical Denso Corp
Priority to JP2018209336A priority Critical patent/JP7269580B2/en
Publication of JP2020074703A publication Critical patent/JP2020074703A/en
Application granted granted Critical
Publication of JP7269580B2 publication Critical patent/JP7269580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

To provide eukaryotic microalgae with increased lipid productivity.SOLUTION: Disclosed is a eukaryotic microalgae mutant containing an amino acid sequence which is at least 50% identical to a specific amino acid sequence of the conserved region of a lipid droplet protein, in which a function of a protein localized on the membrane surface of a lipid droplet is reduced, and the amount of intracellular lipid accumulation and lipid productivity are increased and lipid decomposition ability is reduced as compared with the parent strain thereof.SELECTED DRAWING: Figure 1

Description

本発明は、油滴タンパク質遺伝子の変異によって油脂分解能が減少し、油脂蓄積量及び油脂生産性が増加した緑藻変異体及びその利用に関する。   TECHNICAL FIELD The present invention relates to a green alga mutant in which oil and fat degrading ability is decreased due to a mutation in an oil droplet protein gene, and thus an oil and fat accumulation amount and an oil and fat productivity are increased, and use thereof.

単細胞性の真核光合成生物(以下、「真核微細藻類」と呼ぶ)が生産するトリアシルグリセロール(以下「TAG」と呼ぶ)等を原料として、バイオディーゼル・バイオジェット燃料等の製品を生産する研究が、広く世界的に行われているが、現状では生産コストが高く、商業ベースでの生産は困難である(非特許文献1)。そのため更なる技術開発が続けられており、その1つに藻類の油脂生産性の改良がある。   Products such as biodiesel and biojet fuel are produced from raw materials such as triacylglycerol (hereinafter referred to as "TAG") produced by unicellular eukaryotic photosynthetic organisms (hereinafter referred to as "eukaryotic microalgae"). Although researches have been widely conducted worldwide, production costs are high at present and production on a commercial basis is difficult (Non-Patent Document 1). Therefore, further technological development is being continued, and one of them is the improvement of oil and fat productivity of algae.

真核微細藻類は、窒素、リン、あるいは硫黄欠乏等のストレス条件下で、細胞内に炭水化物や脂質を蓄積することが知られている。蓄積された油脂(主にTAG)は、油滴(Lipid droplet)と呼ばれるリン脂質一重膜に包まれた細胞内小器官に蓄積される。細胞内の油滴のリン脂質一重膜には油滴タンパク質(Lipid droplet protein:以下、「LDP」と称する)と呼ばれるタンパク質が多数存在する。動物や菌類、植物等、生物種によって様々なタイプのLDPが存在し、油滴の形成や脂質の代謝に関連した機能を持つことが明らかとなりつつあるが、藻類のLDPについては未解明の部分が多い(非特許文献2)。   It is known that eukaryotic microalgae accumulate carbohydrates and lipids in cells under stress conditions such as nitrogen, phosphorus, or sulfur deficiency. Accumulated oils and fats (mainly TAG) are accumulated in intracellular organelles surrounded by phospholipid monolayers called lipid droplets. A large number of proteins called oil droplet proteins (hereinafter referred to as “LDP”) are present in the phospholipid monolayer of oil droplets in cells. Various types of LDP exist depending on species such as animals, fungi, and plants, and it is becoming clear that they have functions related to the formation of oil droplets and lipid metabolism, but the LDP of algae remains unknown. There are many cases (Non-Patent Document 2).

藻類では、緑色植物亜界(Viridiplantae)・緑藻植物門(Chlorophyta)・緑藻綱(Chlorophyceae)に属する、クラミドモナス(Chlamydomonas)やドナリエラ(Dunaliella)、ヘマトコッカス(Haematococcus)で、Major lipid droplet protein(MLDP)や、Oil globule protein(OGP)等と呼ばれるLDPが見つかっている(非特許文献3、4、5)。これら緑藻のLDPは配列相同性があり、窒素欠乏時に油脂の蓄積が増加するのと同時に遺伝子発現が増加し、油滴の膜に局在することが示されている(非特許文献3、4、5)。クラミドモナスで同定されたMLDP(CHLREDRAFT_192823; NCBI accession number XP_001697668)の遺伝子発現を抑制すると油滴径が大きくなることが示されたが、油脂の蓄積量に変化はなかった(非特許文献3)。   Among algae, Chlamydomonas, Dunaliella, Haematococcus, and Major lipid droplet protein (MLDP) belong to the green subdivisions (Viridiplantae), Chlorophyta, and Chlorophyceae. Alternatively, LDP called Oil globule protein (OGP) and the like has been found (Non-patent Documents 3, 4, and 5). It has been shown that LDPs of these green algae have sequence homology and that the expression of genes increases at the same time as the accumulation of oils and fats at the time of nitrogen deficiency, and is localized in the oil droplet membrane (Non-patent Documents 3 and 4). 5). It was shown that suppressing the gene expression of MLDP (CHLREDRAFT_192823; NCBI accession number XP_001697668) identified in Chlamydomonas increased the oil droplet diameter, but the amount of accumulated fats and oils did not change (Non-Patent Document 3).

緑色植物亜界(Viridiplantae)・緑藻植物門(Chlorophyta)・トレボキシア藻綱(Trebouxiophyceae)・コッコミクサ属(Coccomyxa)に属する株として、Coccomyxa sp. Obi株、及びCoccomyxa sp. KJ株(以下Obi株及びKJ株と呼ぶ)が知られている。同じトレボキシア藻綱(Trebouxiophyceae)に属する藻類ロボスファエラ(Lobosphaera)においても、油滴タンパク質としてMLDPに配列類似性のあるタンパク質(Oil globule protein)が見つかっている(非特許文献6)。   As a strain belonging to the subdivision of green plants (Viridiplantae), Chlorophyta, Chlorophyta, Trebuxiophyceae, and Coccomyxa, Coccomyxa sp.Obi strain, and Coccomyxa sp.KJ strain (hereinafter Obi strain and KJ strain) (Known as stock). A protein (Oil globule protein) having sequence similarity to MLDP has been found as an oil droplet protein in the alga Lobosphaera, which belongs to the same Treborgiaphyceae (Trebouxiophyceae) (Non-Patent Document 6).

Obi株は、特許文献1に記載された単細胞性緑藻Pseudochoricystis ellipsoidea MBIC11204株と同一の株で、受託番号FERM BP-10484として寄託されている。KJ株は、Obi株に近縁であるがObi株の約2倍の油脂生産性(培養液容量当たりの油脂生産速度)を有し、特許文献2にシュードココミクサ(Pseudococcomyxa)属KJ株として記載されている。この株は、受託番号FERM BP-22254として寄託されている。Obi株及びKJ株は、pH3.5以下の培地でも生育がよく、特許文献3に示された開放系培養システムで培養でき、特許文献4に示された方法で連続的に屋外において油脂生産を行うことができる。   The Obi strain is the same strain as the unicellular green alga Pseudochoricystis ellipsoidea MBIC11204 strain described in Patent Document 1, and has been deposited under accession number FERM BP-10484. KJ strain, which is closely related to Obi strain, has about twice as much oil productivity as Obi strain (oil fat production rate per culture solution volume), and is described in Patent Document 2 as a Pseudococcomyxa genus KJ strain. Have been described. This strain has been deposited under accession number FERM BP-22254. The Obi strain and the KJ strain grow well even in a medium having a pH of 3.5 or less, can be cultivated by the open culture system shown in Patent Document 3, and can continuously produce oil and fat outdoors by the method shown in Patent Document 4. It can be carried out.

本発明者等は、Obi株及びKJ株のゲノム配列を解読し、これらの育種と培養技術の改良に取り組んできた。油脂生産性が向上した株の育種のためには、例えば光合成の光利用効率を向上させる方法(特許文献5)、油脂生産に関わる酵素の活性を促進させる方法(特許文献6)、あるいは、油脂分解を抑制する方法(特許文献7)等が考えられる。これまで、突然変異誘起剤の処理により、高等植物のSugar-dependent 1(SDP1)に配列類似性を持つTAGリパーゼ遺伝子に変異を持つ株が、Obi株及びKJ株から複数単離されている(特許文献7)。KJ株におけるSDP1変異体では、油脂の分解は抑制されたが、窒素欠乏時における油脂生産性の増加は見られなかった。   The present inventors have deciphered the genome sequences of the Obi strain and the KJ strain, and have been working on improving their breeding and culture techniques. For breeding a strain having improved fat and oil productivity, for example, a method for improving the photoutilization efficiency of photosynthesis (Patent Document 5), a method for promoting the activity of an enzyme involved in fat and oil production (Patent Document 6), or a fat and oil A method of suppressing decomposition (Patent Document 7) and the like can be considered. So far, by treatment with a mutagenic agent, a strain having a mutation in the TAG lipase gene having sequence similarity to Sugar-dependent 1 (SDP1) of higher plants has been isolated from Obi strain and KJ strain. Patent Document 7). The SDP1 mutant in the KJ strain suppressed the decomposition of fats and oils, but did not show the increase in fat and oil productivity at the time of nitrogen deficiency.

特許第4748154号公報Japanese Patent No. 4748154 特許第6088375号公報Japanese Patent No. 6088375 特許第6235210号公報Japanese Patent No. 6235210 特許第5810831号公報Japanese Patent No. 5810831 特開2013-102715号公報JP 2013-102715 JP 特開2017-046643号公報JP 2017-046643 JP 特開2017-046645号公報JP 2017-046645 JP

Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201-214.Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201-214. Huang AHC. (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 176: 1894-1918.Huang AHC. (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 176: 1894-1918. Moellering ER, Benning C. (2010) RNA Interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 9: 97-106.Moellering ER, Benning C. (2010) RNA Interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 9: 97-106. Davidi L, Katz A, Pick U. (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta. 236: 19-33.Davidi L, Katz A, Pick U. (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta. 236: 19-33. Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids. 46: 851-861.Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids. 46: 851-861 . Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol. 17: 98.Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa.BMC Plant Biol. 17 : 98.

バイオ燃料生産の実用化に必要なコスト削減の有力な手段として真核微細藻類の油脂生産性の増加が考えられる。細胞内では油脂の合成と同時に分解も起こるが、油脂を分解する能力(油脂分解能)が低下した真核微細藻類変異体では、油脂蓄積量(藻体乾燥重量あたりの油脂重量)が増加し、その結果油脂生産性が増大する可能性がある。また、そのような真核微細藻類変異体を培養することにより、バイオ燃料等に供する油脂生産コストを削減することが可能となる。   Increasing the oil and fat productivity of eukaryotic microalgae can be considered as a powerful means of cost reduction necessary for the practical application of biofuel production. In the cells, decomposition of fats and oils occurs simultaneously with the synthesis of fats and oils, but in eukaryotic microalgae mutants in which the ability to decompose fats and oils (oil and fat decomposition ability) is reduced, the amount of fats and oils accumulated (weight of fats and oils per algal dry weight) increases, As a result, oil and fat productivity may increase. Further, by culturing such a eukaryotic microalgal mutant, it becomes possible to reduce the production cost of fats and oils to be supplied to biofuel and the like.

そこで、本発明は、油脂分解能が低下し、油脂蓄積量及び油脂生産性が向上した真核微細藻類を提供することを目的とする。   Therefore, an object of the present invention is to provide eukaryotic microalgae in which the ability to decompose fats and oils is reduced, and the amount of fats and oils accumulated and the productivity of fats and oils are improved.

上記課題を解決するため鋭意研究を行った結果、特定のLDP(LDP1)をコードする遺伝子が変異した真核微細藻類では、油脂分解能が低下し、油脂蓄積量及び油脂生産性が向上することを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above problems, in eukaryotic microalgae in which a gene encoding a specific LDP (LDP1) is mutated, fat and oil degradability is decreased, and fat and oil accumulation and fat and fat productivity are improved. Heading out, the present invention has been completed.

すなわち、本発明は以下を包含する。
(1)配列番号7又は配列番号8に示すLDPの保存領域と少なくとも50%の配列同一性を有するアミノ酸配列を有し、且つ油滴の膜表面に局在するタンパク質の機能が低下した真核微細藻類変異体であって、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した、前記真核微細藻類変異体。
(2)前記タンパク質をコードする遺伝子を破壊した、(1)記載の真核微細藻類変異体。
(3)前記タンパク質をコードする遺伝子の発現を低下させた、(1)記載の真核微細藻類変異体。
(4)前記タンパク質をコードする遺伝子の翻訳効率を低下させた、(1)記載の真核微細藻類変異体。
(5)緑藻植物門(Chlorophyta)に属する、(1)〜(4)のいずれか1記載の真核微細藻類変異体。
(6)トレボキシア藻網(Trebouxiophyceae)に属する、(5)記載の真核微細藻類変異体。
(7)コッコミクサ属(Coccomyxa)に属する、(6)記載の真核微細藻類変異体。
(8)(1)〜(7)のいずれか1記載の真核微細藻類変異体を培養する工程を含む、油脂生産方法。
That is, the present invention includes the following.
(1) A eukaryote having an amino acid sequence having at least 50% sequence identity with the conserved region of LDP shown in SEQ ID NO: 7 or SEQ ID NO: 8 and having a reduced function of a protein localized on the oil droplet membrane surface. The eukaryotic microalgae mutant, which is a microalgae mutant, in which the amount of accumulated oils and fats in the cells and the productivity of oils and fats are reduced and the ability to decompose fats and oils is decreased as compared with the parent strain.
(2) The eukaryotic microalgae mutant according to (1), wherein the gene encoding the protein is disrupted.
(3) The eukaryotic microalgal mutant according to (1), which has reduced expression of a gene encoding the protein.
(4) The eukaryotic microalgae mutant according to (1), wherein the translation efficiency of the gene encoding the protein is reduced.
(5) The eukaryotic microalgae mutant according to any one of (1) to (4), which belongs to Chlorophyta.
(6) The eukaryotic microalgae mutant according to (5), which belongs to the Trebouxiophyceae.
(7) The eukaryotic microalgal mutant according to (6), which belongs to the genus Coccomyxa.
(8) A method for producing fats and oils, which comprises a step of culturing the eukaryotic microalgae mutant according to any one of (1) to (7).

本発明によれば、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した真核微細藻類変異体を作出することが可能となる。また、本発明に係る真核微細藻類変異体を培養することにより、バイオ燃料等に供する油脂の生産コストを削減することが可能となる。   According to the present invention, it is possible to produce a eukaryotic microalgae mutant in which the amount of accumulated fats and oils in cells and the productivity of fats and oils are increased, and the degradability of fats and oils is decreased. Further, by culturing the eukaryotic microalgae mutant according to the present invention, it becomes possible to reduce the production cost of oils and fats used for biofuel and the like.

Obi株由来のアンテナクロロフィル減少変異体(5P株)と、5P株由来のLDP1遺伝子突然変異体(ldp1-1)を窒素欠乏(1/2A7)培地、連続光条件下、試験管で14日間培養後、窒素十分(MA5)培地に移して暗所で3日間培養し、油脂蓄積量を24時間ごとに測定した結果を示す。グラフにおいて、縦軸は油脂蓄積量を示し、横軸は窒素十分培地に移し、暗所で移してからの時間を示す。The antenna chlorophyll-decreasing mutant (5P strain) derived from the Obi strain and the LDP1 gene mutant (ldp1-1) derived from the 5P strain were cultured for 14 days in a test tube under nitrogen-deficient (1 / 2A7) medium, continuous light conditions. Then, the results are shown in which the amount of accumulated fats and oils was measured every 24 hours by transferring to a nitrogen-sufficient (MA5) medium and culturing for 3 days in the dark. In the graph, the vertical axis represents the amount of accumulated fats and oils, and the horizontal axis represents the time after transferring to a nitrogen-sufficient medium and transferring in a dark place. 配列の一覧を示す。A list of sequences is shown. 図2−1の続きである。It is a continuation of FIG. 図2−2の続きである。It is a continuation of FIG. 2-2. 図2−3の続きである。It is a continuation of FIG. 2-3. 図2−4の続きである。It is a continuation of FIG. 2-4. 図2−5の続きである。It is a continuation of FIG. 2-5.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、LDP1と命名したLDPタンパク質の機能を低化させることにより、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した真核微細藻類変異体に関する。   The present invention, by lowering the function of the LDP protein named LDP1, compared with the parent strain, the intracellular fat accumulation amount and fat productivity increased, and fat degrading eukaryotic microalgae mutation Regarding the body

突然変異誘起剤であるN-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)を処理して得られたObi株由来の変異体は、配列番号2に示すLDP1遺伝子(ゲノム配列)に変異を有していた。   The Obi strain-derived mutant obtained by treating the mutagenizing agent N-methyl-N'-nitro-N-nitrosoguanidine (NTG) was mutated to the LDP1 gene (genomic sequence) shown in SEQ ID NO: 2. Had.

クラミドモナスのLDPで油滴の大きさに関わることが示されているmajor lipid droplet protein(MLDP)(非特許文献3)や、同じく緑藻綱のドナリエラ(非特許文献4)、ヘマトコッカス(非特許文献5)のLDPとアミノ酸配列において約20〜30%の同一性を持つタンパク質が、Obi株及びKJ株においてそれぞれ2つ見出されており、それらをLDP1タンパク質及びLDP2タンパク質と命名した。KJ株のLDP1タンパク質及びLDP2タンパク質のアミノ酸配列をそれぞれ配列番号5及び配列番号9に示す。また、Obi株のLDP1タンパク質及びLDP2タンパク質のアミノ酸配列をそれぞれ配列番号6及び配列番号10に示す。   Major lipid droplet protein (MLDP), which has been shown to be involved in the size of oil droplets in LDP of Chlamydomonas (non-patent document 3), Donaliella (Non-patent document 4), which is also a green alga, and Hematococcus (non-patent document) Two proteins each having an amino acid sequence identity with LDP of 5) of about 20 to 30% were found in the Obi strain and the KJ strain, respectively, and they were named LDP1 protein and LDP2 protein. The amino acid sequences of the LDP1 protein and the LDP2 protein of the KJ strain are shown in SEQ ID NO: 5 and SEQ ID NO: 9, respectively. The amino acid sequences of the LDP1 protein and LDP2 protein of the Obi strain are shown in SEQ ID NO: 6 and SEQ ID NO: 10, respectively.

一方、KJ株のLDP1遺伝子(ゲノム配列)及びそのCDSの塩基配列をそれぞれ配列番号1及び配列番号3に示す。また、Obi株のLDP1遺伝子(ゲノム配列)及びそのCDSの塩基配列をそれぞれ配列番号2及び配列番号4に示す。   On the other hand, the nucleotide sequences of the LDP1 gene (genomic sequence) of the KJ strain and its CDS are shown in SEQ ID NO: 1 and SEQ ID NO: 3, respectively. The nucleotide sequences of the LDP1 gene (genomic sequence) of the Obi strain and its CDS are shown in SEQ ID NO: 2 and SEQ ID NO: 4, respectively.

Obi株とKJ株のLDP1のアミノ酸配列は、お互いに約98%の配列同一性を示す。KJ株及びObi株のLDP1タンパク質のN末端9アミノ酸残基及びC末端24アミノ酸残基は、他のLDPのアミノ酸配列との類似性が全く認められない。そこで、これらN末端及びC末端部分を除いた中央部分を、LDP1タンパク質の保存領域と定義する。KJ株及びObi株のLDP1タンパク質の保存領域のアミノ酸配列を、それぞれ配列番号7及び配列番号8に示す。配列番号7及び配列番号8に示すアミノ酸配列とObi株又はKJ株のLDP2のアミノ酸配列とでは、約44%(119/268)の同一性を示す。トレボキシア藻綱に属する藻類ロボスファエラのLDPであるOil globule protein(非特許文献6)と比較して、LDP2タンパク質の保存領域は約52%(139/266)、LDP1タンパク質の保存領域は約45%(121/268)の配列同一性を示す。   The amino acid sequences of LDP1 of Obi strain and KJ strain show about 98% sequence identity with each other. The N-terminal 9 amino acid residues and the C-terminal 24 amino acid residues of the LDP1 proteins of the KJ strain and the Obi strain show no similarity to the amino acid sequences of other LDPs. Therefore, the central portion excluding these N-terminal and C-terminal portions is defined as the conserved region of the LDP1 protein. The amino acid sequences of the conserved regions of the LDP1 protein of the KJ strain and the Obi strain are shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively. The amino acid sequences shown in SEQ ID NO: 7 and SEQ ID NO: 8 and the amino acid sequence of LDP2 of Obi strain or KJ strain show approximately 44% (119/268) identity. Compared to Oil globule protein (non-patent document 6), which is LDP of the alga Lobos faera belonging to the genus Trevoxia, the conserved region of LDP2 protein is about 52% (139/266), and the conserved region of LDP1 protein is about 45% ( 121/268).

クラミドモナス、ドナリエラ及びロボスファエラのLDP遺伝子は、油脂の蓄積時に発現量が増加することが示されていた(非特許文献3〜6)。これら既知のLDP遺伝子と同様にLDP2遺伝子は窒素欠乏時に発現が増加したが、LDP1遺伝子は窒素欠乏時に発現の増加が見られなかった。   It has been shown that the LDP genes of Chlamydomonas, Donaliella, and Lobosphaera increase in expression level when oil and fat are accumulated (Non-patent Documents 3 to 6). Similar to these known LDP genes, LDP2 gene was upregulated when nitrogen was deficient, but LDP1 gene was not upregulated when nitrogen was deficient.

上記Obi株由来の変異株及びLDP1遺伝子を破壊したKJ株由来の遺伝子破壊株は、親株と比較して細胞内の油脂蓄積量が増加し、また油脂生産性が増加した。さらに、これらのLDP1遺伝子破壊株では油脂分解が抑制されることを見出し、本発明を完成するに至った。   The mutant strain derived from the Obi strain and the gene-disrupted strain derived from the KJ strain in which the LDP1 gene was disrupted had increased intracellular fat and oil accumulation amount and increased fat and oil productivity. Furthermore, they have found that these LDP1 gene-disrupted strains suppress oil and fat decomposition, and completed the present invention.

本発明において、真核微細藻類としては、緑藻、珪藻(diatomあるいはBacillariophyceae)、真正眼点藻綱(Eustigmatophyceae)等に属する真核微細藻類を挙げることができる。   In the present invention, examples of the eukaryotic microalgae include green algae, diatoms (diatom or Bacillariophyceae), and eukaryotic microalgae belonging to the class Eustigmatophyceae.

緑藻としては、例えばトレボキシア藻網に属する緑藻が挙げられる。トレボキシア藻網に属する緑藻としては、例えば、トレボキシア(Trebouxia)属、クロレラ(Chlorella)属、ボトリオコッカス(Botryococcus)属、コリシスチス(Choricystis)属、コッコミクサ(Coccomyxa)属、シュードコッコミクサ(Pseudococcomyxa)属に属する緑藻が挙げられる。トレボキシア藻網に属する具体的な株としては、Obi株(受託番号FERM BP-10484)及びその変異株P. ellipsoidea 5P株(受託番号FERM BP-22179;以下、「5P株」と呼ぶ場合がある)並びにKJ株(受託番号FERM BP-22254)が挙げられる。Obi株は、平成17年(2005年)2月15日付で独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に受託番号FERM P-20401として寄託され、さらに受託番号FERM BP-10484としてブダペスト条約に基づく国際寄託へ移管されている。Obi株は、独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)から入手可能である。5P株は、平成23年(2011年)10月21日付で独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に受託番号FERM P-22179として寄託され、さらに独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-22179としてブダペスト条約に基づく国際寄託へ移管されている。KJ株は、平成25年(2013年)6月4日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-22254として寄託され、さらに受託番号FERM BP-22254としてブダペスト条約に基づく国際寄託へ移管されている。なお、Obi株と5P株とは、同一のLDP1タンパク質をコードする遺伝子(ゲノムDNA塩基配列:配列番号2、CDS塩基配列:配列番号4、全長アミノ酸配列:配列番号6、保存領域のアミノ酸配列:配列番号8)を有する。   Examples of green algae include green algae belonging to the Treboxya algal network. Examples of green algae belonging to the Trevoxya algal web include, for example, the genus Trebouxia, the genus Chlorella, the genus Chlorella, the genus Botryococcus, the genus Coricystis, the genus Coccomyxa, and the genus Pseudodococ. Green algae belonging to. Specific strains belonging to the Trevoxya alga net include the Obi strain (accession number FERM BP-10484) and its mutant P. ellipsoidea 5P strain (accession number FERM BP-22179; hereinafter sometimes referred to as "5P strain"). ) And KJ strain (accession number FERM BP-22254). Obi stock was entrusted to National Institute of Advanced Industrial Science and Technology, Patent Biological Depository Center (February 15, 2005, 1-chome, 1-chome, 1-chome, 1-chome, Tsukuba, Ibaraki, 305-8566, Japan) It has been deposited under the number FERM P-20401 and has been transferred to the international deposit under the Budapest Treaty under the deposit number FERM BP-10484. The Obi strain is available from the Japan Patent Evaluation Organism Depositary (NITE-IPOD) (Institute for Product Evaluation Technology, National Institute for Product Evaluation (NITE-IPOD) (Room 2-5-8, Kazusa, Kamasa, Kisarazu, Chiba Prefecture, 292-0818, Japan)). The 5P shares were entrusted to the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1st, 1st, 1st, 1st, 1st, East Tsukuba, 305-8566, Japan) as of October 21, 2011. No. FERM P-22179, and at the Japan Institute for Product Evaluation Technology, Japan Patent Organism Depositary (NITE-IPOD) (Room 2-5-8 Kazusa, Kamasa, Kisarazu, Chiba Prefecture, 292-0818, Japan) It has been transferred to an international deposit under the Budapest Treaty under accession number FERM BP-22179. KJ Co., Ltd. was established on June 4, 2013 as the Japan Institute for Product Evaluation Technology, Japan Patent Organism Depositary (NITE-IPOD) (2-5 Kazusa Kamafoot, Kisarazu City, Chiba Prefecture, 292-0818 Japan). -8 room 120) with the deposit number FERM P-22254, and with the deposit number FERM BP-22254 has been transferred to the international deposit under the Budapest Treaty. In addition, the Obi strain and the 5P strain have the same gene encoding the LDP1 protein (genomic DNA base sequence: SEQ ID NO: 2, CDS base sequence: SEQ ID NO: 4, full-length amino acid sequence: SEQ ID NO: 6, conserved region amino acid sequence: SEQ ID NO: 8).

トレボキシア藻網に属する緑藻以外の緑藻としては、例えばテトラセルミス(Tetraselmis)属、アンキストロデスムス(Ankistrodesmus)属、ドラニエラ(Dunalliella)属、ネオクロリス(Neochloris)属、クラミドモナス属、イカダモ(=セネデスムス:Scenedesmus)属等に属する緑藻が挙げられる。   Examples of green algae other than the green algae belonging to the Trevoxya algae net include, for example, Tetraselmis genus, Ankistrodesmus genus, Daniella (Dunalliella) genus, Neochloris genus, Chlamydomonas genus, Ikedamo (= Senedesmus: Scenedesmus). Examples include green algae belonging to the genus and the like.

更に珪藻としては、フィストゥリフェラ(Fistulifera)属、フェオダクチラム属、タラシオシラ(Thalassiosira)属、シクロテラ(Cyclotella)属、シリンドロティカ(Cylindrotheca)属、スケレトネマ(Skeletonema)属等に属する真核微細藻類を挙げることができる。また、真正眼点藻綱としては、ナンノクロロプシス属が挙げられる。   Further, examples of diatoms include eukaryotic microalgae belonging to the genus Fistulifera, the genus Pheoductilum, the genus Thalassiosira, the genus Cyclotella, the genus Cylindrotheca, the genus Skeletonema, and the like. be able to. In addition, examples of the true eye spot algae include the genus Nannochloropsis.

本発明に係る真核微細藻類変異体は、上述の真核微細藻類を親株として、LDP1タンパク質の機能を低下させる方法に供することで得られた真核微細藻類変異体である。ここで、LDP1タンパク質の機能とは、油滴の膜表面に局在し、例えば油滴同士の結合を防ぐこと、及び/又はSDP1リパーゼ(特許文献7)等の脂質分解酵素による油滴中のTAG分解を促進することを意味する。   The eukaryotic microalgae mutant according to the present invention is a eukaryotic microalgae mutant obtained by subjecting the above-described eukaryotic microalgae as a parent strain to a method for reducing the function of LDP1 protein. Here, the function of the LDP1 protein is localized on the membrane surface of oil droplets, for example, preventing the binding of oil droplets to each other, and / or in the oil droplets by lipolytic enzymes such as SDP1 lipase (Patent Document 7) Means to promote TAG degradation.

本発明において、LDP1タンパク質としては、配列番号7又は配列番号8に示すアミノ酸配列(すなわち、LDP1タンパク質の保存領域のアミノ酸配列)と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列を有し、且つ油滴の膜表面に局在するタンパク質が挙げられる。   In the present invention, the LDP1 protein has at least 50%, preferably at least 65%, and particularly preferably at least 80% of the amino acid sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8 (that is, the amino acid sequence of the conserved region of the LDP1 protein). %, Most preferably at least 85%, at least 90%, at least 95%, proteins having an amino acid sequence with 100% sequence identity and localized on the membrane surface of the oil droplet.

また、LDP1タンパク質としては、配列番号5又は配列番号6に示すアミノ酸配列と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列から成り、且つ油滴の膜表面に局在するタンパク質が挙げられる。   The LDP1 protein has at least 50%, preferably at least 65%, particularly preferably at least 80%, most preferably at least 85%, at least 90% of the amino acid sequence shown in SEQ ID NO: 5 or SEQ ID NO: 6. A protein consisting of an amino acid sequence having at least 95% and 100% sequence identity and localized on the membrane surface of oil droplets can be mentioned.

LDP1遺伝子としては、上記LDP1タンパク質をコードする遺伝子が挙げられる。また、LDP1遺伝子としては、配列番号3又は配列番号4に示すmRNAのコーディング領域と少なくとも50%、好ましくは、少なくとも58%、特に好ましくは、少なくとも65%、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有する塩基配列から成り、且つ油滴の膜表面に局在するタンパク質をコードする遺伝子が挙げられる。   Examples of the LDP1 gene include genes encoding the above LDP1 protein. The LDP1 gene has at least 50%, preferably at least 58%, particularly preferably at least 65%, at least 80%, and most preferably at least 85% of the coding region of the mRNA shown in SEQ ID NO: 3 or SEQ ID NO: 4. %, At least 90%, at least 95%, 100% sequence identity, and a gene encoding a protein localized on the membrane surface of oil droplets.

多くの真核微細藻類においては、複数のLDP1遺伝子、例えば対立遺伝子、同義遺伝子等が存在する場合があるが、本発明においては、これらのうち少なくとも1つ又は複数のLDP1遺伝子を意味する。   In many eukaryotic microalgae, there may be a plurality of LDP1 genes, such as alleles, synonymous genes, etc., but in the present invention, at least one or more of these LDP1 genes is meant.

本発明においては、以上に説明したLDP1遺伝子を有する真核微細藻類に対して、LDP1タンパク質の機能を低下させる方法に供することで、本発明に係る真核微細藻類変異体を得ることができる。   In the present invention, the eukaryotic microalgae mutant of the present invention can be obtained by subjecting the eukaryotic microalgae having the LDP1 gene described above to a method of reducing the function of the LDP1 protein.

具体的に、本発明に係るLDP1タンパク質の機能を低下させる方法としては、薬剤や放射線、紫外線等でランダムに変異を導入し、LDP1遺伝子に変異を持つ株を表現型で選抜する方法等が挙げられる。またLDP1遺伝子を選択的に破壊する方法としては、ゲノム編集による遺伝子破壊法等が挙げられる。   Specifically, examples of the method for decreasing the function of the LDP1 protein according to the present invention include a method in which a mutation is randomly introduced with a drug, radiation, ultraviolet ray, or the like, and a strain having a mutation in the LDP1 gene is phenotypically selected. Be done. Examples of the method for selectively destroying the LDP1 gene include a gene disruption method by genome editing.

さらに、LDP1タンパク質の機能を低下させる方法としては、例えば
(1) LDP1遺伝子をターゲットとして変異を導入し、当該遺伝子を破壊する;
(2) LDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる;
(3) LDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる;
方法が挙げられる。
Furthermore, as a method for reducing the function of the LDP1 protein, for example,
(1) A mutation is introduced by targeting the LDP1 gene to destroy the gene;
(2) suppresses transcription of the LDP1 gene and reduces expression of the gene;
(3) suppresses the translation of the LDP1 gene and reduces the translation efficiency of the gene;
There is a method.

(1) LDP1遺伝子をターゲットとして変異を導入する方法
LDP1遺伝子をターゲットとして変異を導入する方法としては、ZFN、TALENあるいはCRISPR/Casと呼ばれる遺伝子ノックアウト法(Gaj T, Gersbach CA, Barbas CF 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397-405.)を用いることにより、その遺伝子が欠損した変異体を作出できる。
(1) Method of introducing mutation with LDP1 gene as a target
As a method for introducing a mutation targeting the LDP1 gene, a gene knockout method called ZFN, TALEN or CRISPR / Cas (Gaj T, Gersbach CA, Barbas CF 3rd. (2013) ZFN, TALEN, and CRISPR / Cas-based methods. For genome engineering. Trends Biotechnol. 31: 397-405.), a mutant lacking the gene can be produced.

(2) LDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる方法
LDP1遺伝子の転写を抑制する方法としては、対象となる真核微細藻類における該遺伝子のプロモーター領域に変異を導入する方法が挙げられる。
(2) Method of suppressing transcription of LDP1 gene and decreasing expression of the gene
Examples of the method for suppressing the transcription of the LDP1 gene include a method for introducing a mutation into the promoter region of the target eukaryotic microalgae.

また、該遺伝子の正の発現制御に関わる遺伝子に変異を導入し、それらの機能を低下させる方法が挙げられる。   In addition, there is a method of introducing a mutation into a gene involved in positive expression control of the gene to reduce the function thereof.

あるいは、該遺伝子の負の発現制御に関わる遺伝子に変異を導入し、負の発現制御が常時働くようにする方法が挙げられる。   Alternatively, there may be mentioned a method in which a mutation is introduced into a gene involved in the negative expression control of the gene so that the negative expression control always works.

(3) LDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる方法
LDP1遺伝子の翻訳を抑制する方法としては、いわゆるRNA干渉法(Cerutti H et al., 2011, Eukaryot Cell, 10, 1164)やアンチセンス法が挙げられる。
(3) Method of suppressing translation of LDP1 gene and decreasing translation efficiency of the gene
Examples of methods for suppressing translation of the LDP1 gene include so-called RNA interference method (Cerutti H et al., 2011, Eukaryot Cell, 10, 1164) and antisense method.

さらに、本発明は、以上に説明した本発明に係る真核微細藻類変異体を大量培養し、TAGを含む油脂を生産する方法を含む。大量培養法としては、特許文献3に示された開放系培養システムや、特許文献4に示された連続的な培養方法等が挙げられる。培養後、例えば培養物からヘキサン抽出等によって、TAGを含む油脂を得ることができる。   Furthermore, the present invention includes a method for producing fats and oils containing TAG by mass-culturing the eukaryotic microalgae mutant according to the present invention described above. Examples of the large-scale culturing method include an open culturing system shown in Patent Document 3 and a continuous culturing method shown in Patent Document 4. After the culturing, the TAG-containing fats and oils can be obtained by, for example, extracting with hexane from the culture.

なお、配列表と共に、配列の一覧を図2に示す。   A list of sequences is shown in FIG. 2 together with the sequence listing.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited to these examples.

〔実施例1〕LDP1遺伝子変異株の単離と油脂生産性評価
Obi株由来のアンテナクロロフィル量が減少した突然変異体である5P株(特許文献5、受託番号FERM BP-22179)を親株にして、N-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)による突然変異誘起処理を行い、窒素欠乏時の油脂蓄積量を指標としたスクリーニングにより油脂蓄積量が増加した変異体を複数取得した。このスクリーニングでは、Nile RedまたはBODIPYを用いて細胞内に蓄積した油脂を蛍光染色し、セルソーターを用いて蛍光強度が高い細胞を選抜した。そのうち油脂生産性が高かった株のゲノム配列を親株である5P株と比較解析した結果、LDP1遺伝子(ゲノム配列:配列番号2、CDS配列:配列番号4、全長アミノ酸配列:配列番号6、保存領域のアミノ酸配列:配列番号8)前半に一塩基欠損があり、15番目のフェニルアラニン残基以降にフレームシフト変異が起こることから、この変異をldp1-1と名付けた。また、当該変異を有する株をldp1-1変異体と名付けた。
[Example 1] Isolation of LDP1 gene mutant and evaluation of fat and oil productivity
N-Methyl-N'-nitro-N-nitrosoguanidine (NTG) using the 5P strain (Patent Document 5, Accession No. FERM BP-22179), which is a mutant with a reduced amount of antenna chlorophyll derived from the Obi strain, as a parent strain Mutagenesis treatment was carried out, and multiple mutants with increased oil and fat accumulation were obtained by screening using the oil and fat accumulation at the time of nitrogen deficiency as an index. In this screening, oils and fats accumulated in cells were fluorescently stained with Nile Red or BODIPY, and cells with high fluorescence intensity were selected using a cell sorter. As a result of comparative analysis of the genomic sequence of the strain with high oil and fat productivity with the parent strain 5P, the LDP1 gene (genomic sequence: SEQ ID NO: 2, CDS sequence: SEQ ID NO: 4, full-length amino acid sequence: SEQ ID NO: 6, conserved region) Amino acid sequence of: SEQ ID NO: 8) There is a single base deletion in the first half, and a frameshift mutation occurs after the 15th phenylalanine residue. Therefore, this mutation was named ldp1-1. In addition, the strain having the mutation was named as ldp1-1 mutant.

5P株とldp1-1変異体を、試験管で連続光条件下、酸性(pH3.5)の窒素欠乏培地(1/2A7: Takahashi et al., 2017, Algal Res, 32, 300)で13日間培養し、油脂生産性を比較したところ、表1に示すように、ldp1-1変異体において油脂蓄積量が親株の約1.3倍に増加し、培養13日間での油脂生産性は親株の約1.6倍に増加した。   5P strain and ldp1-1 mutant in a test tube under continuous light conditions in acidic (pH 3.5) nitrogen-deficient medium (1 / 2A7: Takahashi et al., 2017, Algal Res, 32, 300) for 13 days. Upon culturing and comparing the oil and fat productivity, as shown in Table 1, the amount of oil and fat accumulation in the ldp1-1 mutant increased to about 1.3 times that of the parent strain, and the oil and fat productivity in 13 days of culture was about 1.6 times that of the parent strain. Doubled.

ldp1-1変異体において油脂生産性が増加した理由をさらに探るため、両株での油脂分解能を調べた。まず、窒素欠乏培地で生育させることで油脂を蓄積させた。この株を窒素十分培地に移し暗所に置くと、光合成によるエネルギー獲得が出来ないため、野生株では蓄積された油脂が分解される。そこで5P株とldp1-1変異体とを窒素十分培地(MA5: Imamura et al., 2012, J Gen Appl Microbiol, 58, 1)に移して暗所で3日間連続培養を行ったところ、5P株では速やかな油脂分解が観察されたが、ldp1-1変異体では油脂分解が抑制されていた(図1)。この結果から、LDP1タンパク質は暗所での油脂の分解に必要であり、これが欠損することにより油脂の分解が抑制されることによって、油脂生産性が向上すると推察した。   In order to further investigate the reason why the oil productivity was increased in the ldp1-1 mutant, the oil decomposition ability of both strains was examined. First, fats and oils were accumulated by growing in a nitrogen-deficient medium. When this strain is transferred to a nitrogen-sufficient medium and placed in a dark place, energy cannot be obtained by photosynthesis, and thus the accumulated fats and oils are degraded in the wild strain. Therefore, the 5P strain and the ldp1-1 mutant were transferred to a nitrogen-sufficient medium (MA5: Imamura et al., 2012, J Gen Appl Microbiol, 58, 1) and continuously cultured in the dark for 3 days. In the ldp1-1 mutant, fat decomposition was suppressed (Fig. 1). From this result, it was inferred that LDP1 protein is required for the decomposition of fats and oils in the dark, and the lack of LDP1 protein suppresses the decomposition of fats and oils, thereby improving the productivity of fats and oils.

Figure 2020074703
Figure 2020074703

〔実施例2〕LDP1遺伝子破壊株の単離と油脂生産性評価
実施例1に示したldp1-1変異体はldp1-1変異以外にも約35個の遺伝子に変異が存在したため、その変異体が示す表現型の原因遺伝子変異がldp1-1であることを確定できなかった。そこで、ゲノム編集技術の一つであるCRISPR/Cas9システムを用いて、LDP1遺伝子の破壊を試みた。
[Example 2] Isolation of LDP1 gene-disrupted strain and evaluation of oil / fat productivity The ldp1-1 mutant shown in Example 1 had mutations in about 35 genes in addition to the ldp1-1 mutation. It was not possible to confirm that the causative gene mutation of the phenotype indicated by is ldp1-1. Therefore, we attempted to disrupt the LDP1 gene using the CRISPR / Cas9 system, which is one of the genome editing technologies.

先ず、KJ株(受託番号FERM BP-22254)のLDP1遺伝子(ゲノム配列:配列番号1、CDS配列:配列番号3、全長アミノ酸配列:配列番号5、保存領域のアミノ酸配列:配列番号7)を特異的に切断するためのgRNA標的配列を設計し、gRNAを合成した。このgRNAと精製したCas9タンパク質との複合体を形成させた後、この複合体をエレクトロポレーション法で親株の細胞に導入した。次にエレクトロポレーション処理を受けた細胞群を窒素欠乏培地で生育させ、細胞内に油脂を蓄積させた。その後、油脂を蓄積した細胞群を窒素十分培地に移して暗所で培養した。暗所で培養することによって親株では油脂分解が速やかに起こるが、LDP1遺伝子破壊株では油脂分解が起こらないことが実施例1の結果から予想された。このことから、暗所培養後においても油脂蓄積量が高い細胞を、暗所で培養された上記細胞群よりセルソーターで選抜し、選抜された細胞をプレートに播種し、コロニーを多数得た。   First, the LDP1 gene (genome sequence: SEQ ID NO: 1, CDS sequence: SEQ ID NO: 3, full-length amino acid sequence: SEQ ID NO: 5, conserved region amino acid sequence: SEQ ID NO: 7) of the KJ strain (accession number FERM BP-22254) is specific. We designed a gRNA target sequence for efficient cleavage and synthesized gRNA. After forming a complex between this gRNA and purified Cas9 protein, this complex was introduced into cells of the parent strain by electroporation. Next, the cell group subjected to the electroporation treatment was grown in a nitrogen-deficient medium to accumulate oil and fat in the cells. After that, the cell group accumulating oil and fat was transferred to a nitrogen-sufficient medium and cultured in a dark place. It was expected from the results of Example 1 that fat and oil decomposition rapidly occur in the parent strain by culturing in the dark, but fat and oil decomposition does not occur in the LDP1 gene-disrupted strain. From this, cells having a high oil and fat accumulation amount even after dark culture were selected from the above cell group cultured in the dark by a cell sorter, and the selected cells were seeded on a plate to obtain a large number of colonies.

これらのコロニーから由来した株それぞれについてDNA抽出を行い、gRNA標的配列を含む遺伝子領域をPCR増幅した。表2に示すように、gRNA標的配列内には、PAM配列から1塩基離れた位置から制限酵素HinfIの認識配列が存在する。そこで、得られたPCR断片を制限酵素HinfIで処理後に電気泳動を行い、PCR断片が切断されない変異型DNAを持つコロニーを選抜した。その結果、LDP1遺伝子の標的配列中に変異を持つ株(kjldp1-1〜1-4)が複数得られ、その変異の種類は4種類だった(表2)。これらの株は全てLDP1遺伝子にフレームシフト変異が起こっていた。   DNA was extracted from each of the strains derived from these colonies, and the gene region containing the gRNA target sequence was amplified by PCR. As shown in Table 2, in the gRNA target sequence, a recognition sequence for the restriction enzyme HinfI is present at a position one base away from the PAM sequence. Therefore, the obtained PCR fragment was treated with restriction enzyme HinfI and then electrophoresed to select colonies having mutant DNA in which the PCR fragment was not cleaved. As a result, a plurality of strains (kjldp1-1 to 1-4) having mutations in the target sequence of the LDP1 gene were obtained, and there were 4 kinds of mutations (Table 2). All of these strains had a frameshift mutation in the LDP1 gene.

これらの株を試験管で連続光条件下、酸性の窒素欠乏培地で14日間培養し、油脂生産性を比較したところ、表3に示すように、全てのLDP1遺伝子破壊株において油脂蓄積量及び油脂生産性が親株より増加した。さらに窒素十分培地に移して暗所で4日間連続培養を行ったところ、KJ株(KJ-WT)では油脂蓄積量が52.6%から28.4%にまで減少したが、LDP1遺伝子破壊株では4日後の油脂蓄積量が約60%となり、油脂分解が抑制されていた(表3)。   These strains were cultured in a test tube in an acidic nitrogen-deficient medium under continuous light conditions for 14 days, and the fat and oil productivity was compared. As shown in Table 3, the accumulated amount of fat and oil and fat and oil in all LDP1 gene-disrupted strains were shown. Productivity increased from the parent strain. When transferred to a nitrogen-rich medium and continuously cultured in the dark for 4 days, the amount of accumulated fats and oils in the KJ strain (KJ-WT) decreased from 52.6% to 28.4%, but after 4 days in the LDP1 gene-disrupted strain. The amount of accumulated fats and oils was about 60%, and the decomposition of fats and oils was suppressed (Table 3).

Figure 2020074703
Figure 2020074703

Figure 2020074703
Figure 2020074703

FERM BP-10484
FERM BP-22179
FERM BP-22254
FERM BP-10484
FERM BP-22179
FERM BP-22254

Claims (8)

配列番号7又は配列番号8に示す油滴タンパク質の保存領域と少なくとも50%の配列同一性を有するアミノ酸配列を有し、且つ油滴の膜表面に局在するタンパク質の機能が低下した真核微細藻類変異体であって、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した、前記真核微細藻類変異体。   A eukaryotic microparticle having an amino acid sequence having at least 50% sequence identity with the conserved region of the oil droplet protein shown in SEQ ID NO: 7 or SEQ ID NO: 8 and having a reduced function of the protein localized on the oil droplet membrane surface. The eukaryotic microalgae mutant, which is an algae mutant, in which the amount of accumulated oil and fat in the cell and the productivity of oil and fat are increased and the ability to decompose oil and fat is decreased, as compared with the parent strain. 前記タンパク質をコードする遺伝子を破壊した、請求項1記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 1, wherein the gene encoding the protein is disrupted. 前記タンパク質をコードする遺伝子の発現を低下させた、請求項1記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 1, which has reduced expression of a gene encoding the protein. 前記タンパク質をコードする遺伝子の翻訳効率を低下させた、請求項1記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 1, which has reduced translation efficiency of a gene encoding the protein. 緑藻植物門(Chlorophyta)に属する、請求項1〜4のいずれか1項記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to any one of claims 1 to 4, which belongs to Chlorophyta. トレボキシア藻網(Trebouxiophyceae)に属する、請求項5記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 5, which belongs to the Trebouxiophyceae. コッコミクサ属(Coccomyxa)に属する、請求項6記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 6, which belongs to the genus Coccomyxa. 請求項1〜7のいずれか1項記載の真核微細藻類変異体を培養する工程を含む、油脂生産方法。
A method for producing fats and oils, comprising a step of culturing the eukaryotic microalgae mutant according to any one of claims 1 to 7.
JP2018209336A 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof Active JP7269580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018209336A JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209336A JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Publications (2)

Publication Number Publication Date
JP2020074703A true JP2020074703A (en) 2020-05-21
JP7269580B2 JP7269580B2 (en) 2023-05-09

Family

ID=70722981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209336A Active JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Country Status (1)

Country Link
JP (1) JP7269580B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046645A (en) * 2015-09-02 2017-03-09 学校法人 中央大学 Lipase mutant of eukaryotic microalgae

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046645A (en) * 2015-09-02 2017-03-09 学校法人 中央大学 Lipase mutant of eukaryotic microalgae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Accession No. EIE27302, Definition: hypothetical protein COCSUDRAFT_52125 [Coccomyxa subellipsoidea", DATABASE GENBANK [ONLINE], JPN6022046156, 13 April 2012 (2012-04-13), ISSN: 0004909215 *
MOELLERING, ERIC R, ET AL., EUKARYOTIC CELL, vol. 9, no. 1, JPN6022046155, 2010, pages 97 - 106, ISSN: 0004909214 *

Also Published As

Publication number Publication date
JP7269580B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US10160989B2 (en) System and method of co-cultivating microalgae with fungus
US8227216B2 (en) Methods of using Nannochloropsis algal strains to produce hydrocarbons and fatty acids
Prasad et al. Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species)
JP2020503051A5 (en)
KR101929239B1 (en) Method for gene editing in microalgae using RGEN RNP
El-Bondkly Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5
Muñoz et al. Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation
US10837032B2 (en) Candida infanticola strain, mutant strain and transformant strain thereof, and method for producing dioic acids using same
Echeverri et al. Microalgae protoplasts isolation and fusion for biotechnology research
Dautor et al. Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis
Kashiyama et al. Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production
US10597631B2 (en) Green algae mutant exhibiting resistance to intense light, and use thereof
Song et al. Isolation and genome analysis of Winogradskyella algicola sp. nov., the dominant bacterial species associated with the green alga Dunaliella tertiolecta
JP7269580B2 (en) Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof
US9102972B2 (en) Microorganism Rhizobium sp. KB10 having properties of promoting growth of Botryococcus braunii and increasing fatty acid content
KR102163257B1 (en) Novel microalgae having high productivity for violaxanthin
JP7397437B2 (en) Green algae mutant with reduced chlorophyll content and increased oil and fat productivity and its use
WO2017038995A1 (en) Lipase mutant of eukaryotic microalga
Iftikhar et al. Isolation, identification of an axenic fungal isolate of aspergillus sp.(mbl-1511) and its subsequent improvement for enhanced extracellular lipolytic potential through monoculture fermentation
JP7397438B2 (en) Green algae mutant with increased oil and fat productivity and its use
Choi et al. The evaluation of UV-induced mutation of the Microalgae, Chlorella vulgaris in mass production systems
CN110643520A (en) Antarctic fungus Geomyyces sp
Guo et al. Boosting lipid production in the diatom Phaeodactylum tricornutum by knockdown of the Enoyl CoA hydratase using CRISPR interference
Fang et al. Algae-bacteria consortia promotes the cell growth of marine microalgae Phaeodactylum tricornutum and Chrysotila roscoffensis
Sunipa et al. CRISPR mediated Lipid Enhancement in Microalgae

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7269580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150