JP6627336B2 - Eukaryotic microalgal lipase mutants - Google Patents

Eukaryotic microalgal lipase mutants Download PDF

Info

Publication number
JP6627336B2
JP6627336B2 JP2015173188A JP2015173188A JP6627336B2 JP 6627336 B2 JP6627336 B2 JP 6627336B2 JP 2015173188 A JP2015173188 A JP 2015173188A JP 2015173188 A JP2015173188 A JP 2015173188A JP 6627336 B2 JP6627336 B2 JP 6627336B2
Authority
JP
Japan
Prior art keywords
tag
strain
eukaryotic
sdp1
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173188A
Other languages
Japanese (ja)
Other versions
JP2017046645A (en
Inventor
原山 重明
重明 原山
准平 早川
准平 早川
曜子 井出
曜子 井出
倉田 稔
稔 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015173188A priority Critical patent/JP6627336B2/en
Priority to PCT/JP2016/075879 priority patent/WO2017038995A1/en
Publication of JP2017046645A publication Critical patent/JP2017046645A/en
Application granted granted Critical
Publication of JP6627336B2 publication Critical patent/JP6627336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Landscapes

  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、トリアシルグリセロール・リパーゼ活性が減少した結果、野生型又は親株に比べてトリアシルグリセロール蓄積量が向上し、日長が短い条件下でも増殖できる真核微細藻類突然変異体及びその利用に関する。   The present invention provides a mutant eukaryotic microalgae capable of increasing triacylglycerol accumulation as compared with a wild-type or parent strain as a result of a decrease in triacylglycerol lipase activity and growing under conditions with a short day length, and uses thereof. About.

単細胞性の光合成生物(以下、「微細藻類」と呼ぶ)が生産する脂肪酸、あるいは加水分解により脂肪酸を遊離するトリアシルグリセロール(以下、「TAG」と呼ぶ)等の化合物を原料として、バイオディーゼル燃料をはじめとする工業・食品製品を生産する研究が、世界的に行われている。しかしながら、現状ではTAG生産コストが高く、商業ベースでのバイオディーゼル燃料等の生産は困難である(非特許文献1)。そのため、バイオディーゼル燃料等の生産コスト削減のための更なる技術開発が続けられており、その1つに、微細藻類のTAG生産性の改良研究がある。TAG生産性を向上させるための研究の大多数は、TAGの生合成の強化を目指したものである。一方、合成されたTAGの分解を抑制することにより、TAGの蓄積量を上昇させることができると考えられる。   Biodiesel fuel produced from fatty acids produced by unicellular photosynthetic organisms (hereinafter referred to as "microalgae") or compounds such as triacylglycerol (hereinafter referred to as "TAG") that releases fatty acids by hydrolysis Research on the production of industrial and food products, including, is being conducted worldwide. However, at present, TAG production costs are high, and it is difficult to produce biodiesel fuel and the like on a commercial basis (Non-Patent Document 1). For this reason, further technological development for reducing the production cost of biodiesel fuel and the like has been continued, and one of them is research on improving TAG productivity of microalgae. Much of the work to improve TAG productivity has focused on enhancing TAG biosynthesis. On the other hand, it is considered that the amount of accumulated TAG can be increased by suppressing the decomposition of the synthesized TAG.

実際、植物においては、リパーゼ活性を低下させることにより、以下に示すように、TAGの蓄積量を上昇させることに成功している。ナタネはパームや大豆と並び重要な植物油の原料である。ナタネの種にはTAGを主成分とする油脂が蓄積されるが、種の成熟時にTAG含量が約10%減少する。この減少は、TAGに特異的なリパーゼによるものであろうと考えられ、このリパーゼ活性を抑制することにより、ナタネの油脂含量を増加させる試みがなされた。Arabidopsis thalianaにおいては、SUGAR-DEPENDENT1(SDP1)と呼ばれる、TAGに特異的なリパーゼが存在することが知られているが、ナタネにもSDP1と相同性の高い遺伝子が複数存在する。これらの遺伝子からの発現を抑圧するため、ナタネのSDP1で良く保存されている塩基配列をターゲットとしたRNAi配列が設計された。そして、このRNAi配列を種子で特異的に発現するプロモーターの下流にクローン化した後、ナタネに導入したところ、導入株では、種子のTAG含量が有意に上昇した(非特許文献2)。類似の手法で、ヤトロファ(Jatropha)の種子のTAG含量を増やすことにも成功している(非特許文献3)。   In fact, in plants, the amount of TAG accumulated has been successfully increased as shown below by reducing lipase activity. Rapeseed is an important source of vegetable oil along with palm and soy. Although oil and fat mainly composed of TAG accumulate in rapeseed seeds, the TAG content decreases by about 10% when the seeds mature. This reduction was thought to be due to lipase specific to TAG, and attempts were made to increase the oil content of rapeseed by suppressing this lipase activity. It is known that Arabidopsis thaliana has a TAG-specific lipase called SUGAR-DEPENDENT1 (SDP1), but rape also has a plurality of genes highly homologous to SDP1. In order to suppress the expression from these genes, an RNAi sequence targeting a nucleotide sequence well conserved in rape SDP1 was designed. Then, when this RNAi sequence was cloned downstream of a promoter specifically expressed in seeds and then introduced into rapeseed, the TAG content of the seeds was significantly increased in the introduced strain (Non-Patent Document 2). By a similar method, the TAG content of Jatropha seeds has also been successfully increased (Non-Patent Document 3).

一方、真核微細藻類においては、リパーゼ活性を低下させることによってTAG蓄積量を増加させたという報告が唯一存在する。珪藻の一種であるThalassiosira pseudonanaは窒素欠乏条件下でTAGを蓄積するが、この培養条件下で転写が減少する遺伝子の中で、リパーゼをコードしている可能性を持つものを捜したところ、Thaps3_264297と名付けられた遺伝子を見出した。そこで、このThaps3_264297の発現を抑制するアンチセンスRNAを発現させたところ、TAG蓄積量が3倍程度増加した(非特許文献4)。Thaps3_264297タンパク質を大腸菌内で発現させ、生化学的解析を行ったところ、Thaps3_264297タンパク質はTAGリパーゼ活性、フォスフォリパーゼ活性、リソフォスファチジルアシル転移酵素(lysophosphatidic acid acyltransferase)活性を持つことが分かった。Thaps3_264297タンパク質と前述のSDP1との類似性は限定的である。   On the other hand, in eukaryotic microalgae, there is only one report that TAG accumulation was increased by decreasing lipase activity. Thalassiosira pseudonana, a type of diatom, accumulates TAG under nitrogen-deficient conditions, and among genes whose transcription is reduced under these culture conditions, one that has the possibility of encoding lipase was searched. Found a gene named. Thus, when an antisense RNA that suppresses the expression of Thaps3_264297 was expressed, the amount of accumulated TAG increased about three-fold (Non-Patent Document 4). Thaps3_264297 protein was expressed in Escherichia coli and biochemical analysis revealed that Thaps3_264297 protein had TAG lipase activity, phospholipase activity, and lysophosphatidic acid acyltransferase activity. The similarity between the Thaps3_264297 protein and the aforementioned SDP1 is limited.

単細胞性緑藻「シュードコリシスチス・エリプソイディア(Pseudochoricystis ellipsoidea)Obi株」(以降、「Obi株」と呼ぶ場合がある)は、佐藤ら(非特許文献5;特許文献1)によって分離・解析された。この株の属及び種名は、国際藻類・菌類・植物命名規約に則り命名されたものではなく、仮称である。その後の遺伝子を用いた系統解析により、これらはCoccomyxa属及びPseudococcomyxa属に近縁であることが示されている。この株は、他の微細藻類と同様に、培地中の窒素源が枯渇すると細胞内にTAGを蓄積する(非特許文献6)。Obi株は、培地pHが3.5以下でも増殖できるので(特許文献2)、微細藻類を捕食する原生動物の増殖を最小限にした状態での屋外での大量培養が可能である。本発明者等は、Obi株の育種と大量培養技術の改良に取り組んできた。   The unicellular green alga “Pseudochoricystis ellipsoidea Obi strain” (hereinafter sometimes referred to as “Obi strain”) is separated and analyzed by Sato et al. (Non-Patent Document 5; Patent Document 1). Was. The genus and species name of this strain are not named according to the International Algae, Fungi, and Plant Naming Convention, but are tentative names. Subsequent phylogenetic analysis using the gene indicates that they are closely related to the genera Coccomyxa and Pseudococcomyxa. This strain, like other microalgae, accumulates TAG in cells when the nitrogen source in the medium is depleted (Non-Patent Document 6). Since the Obi strain can grow even at a medium pH of 3.5 or less (Patent Document 2), large-scale cultivation outdoors can be performed while minimizing the growth of protozoa that prey on microalgae. The present inventors have been working on breeding of Obi strains and improvement of large-scale culture technology.

特許第4748154号公報Patent No. 4748154 特開2014-117202号公報JP 2014-117202 A

Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167:201-214.Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201-214. Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ.(2013) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J. 11:355-361.Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ. (2013) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J. 11: 355 -361. Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH.(2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels. 7:36. doi: 10.1186/1754-6834-7-36.Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH. (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas.Biotechnol Biofuels .7: 36.doi: 10.1186 / 1754-6834-7-36. Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH. (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A. 110:19748-19753.Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH. (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth.Proc Natl Acad Sci U S A. 110: 19748-19753. Satoh A, Kato M, Yamato T, Ikegami Y, Sekiguchi H, Kurano, N, Miyachi S. (2010) Characterization of the lipid accumulation in a new microalgal species, Pseudochoricystis ellipsoidea (Trebouxiophyceae). 2010, J. Jap. Inst. Energy 89, 909-913.Satoh A, Kato M, Yamato T, Ikegami Y, Sekiguchi H, Kurano, N, Miyachi S. (2010) Characterization of the lipid accumulation in a new microalgal species, Pseudochoricystis ellipsoidea (Trebouxiophyceae). 2010, J. Jap. Inst. Energy 89, 909-913. Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M. (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics. 9:178-187.Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M. (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions.Metabolomics. 9: 178-187 .

真核微生物の増殖及びTAG生産性を改良し、TAG生産コストを削減することが望まれている。本発明は、TAGの細胞内蓄積量が増加し、日長が短い条件でも増殖可能な真核微細藻類を分離し、該微細藻類を利用したTAG生産方法を提供することを目的とする。   It is desirable to improve eukaryotic microbial growth and TAG productivity and reduce TAG production costs. An object of the present invention is to separate eukaryotic microalgae capable of increasing the amount of TAG accumulated in cells and proliferating even under a short day length, and to provide a TAG production method using the microalgae.

上記課題を解決するため鋭意研究を行った結果、シロイヌナズナのTAGリパーゼであるSugar dependent 1(AtSDP1)と相同性を持つタンパク質(以下、「SDP1タンパク質」と呼ぶ)をコードする遺伝子が変異したObi株の突然変異体では、TAGの細胞内蓄積量が増加し、また、日長が短い条件での増殖が可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the Obi strain in which the gene encoding a protein homologous to Arabidopsis TAG lipase Sugar dependent 1 (AtSDP1) (hereinafter referred to as `` SDP1 protein '') has been mutated In the mutant of the present invention, it was found that the amount of TAG accumulated in the cell was increased, and it was possible to proliferate under conditions with a short day length, thereby completing the present invention.

すなわち、本発明は以下を包含する。
(1)SDP1タンパク質のTAGリパーゼ活性を低下させた真核微細藻類変異体であって、親株と比較して、細胞内TAG蓄積量が増加するか、及び/又は短日培養条件下での増殖が向上しており、前記SDP1タンパク質が配列番号4に示すアミノ酸配列と少なくとも50%の配列同一性を有するアミノ酸配列を有し、且つTAGリパーゼ活性を有するタンパク質である、前記真核微細藻類変異体。
(2)SDP1タンパク質をコードする遺伝子を破壊した、(1)記載の真核微細藻類変異体。
(3)SDP1タンパク質をコードする遺伝子の発現を低下させた、(1)記載の真核微細藻類変異体。
(4)SDP1タンパク質をコードする遺伝子の翻訳効率を低下させた、(1)記載の真核微細藻類変異体。
(5)緑藻植物門に属する、(1)〜(4)のいずれか1記載の真核微細藻類変異体。
(6)トレボキシア藻網に属する、(5)記載の真核微細藻類変異体。
(7)コッコミクサ(Coccomyxa)属又はシュードコッコミクサ(Pseudococcomyxa)属に属する、(6)記載の真核微細藻類変異体。
(8)(1)〜(7)のいずれか1記載の真核微細藻類変異体を培養する工程を含む、TAG生産方法。
That is, the present invention includes the following.
(1) A mutant eukaryotic microalgae in which the TAG lipase activity of the SDP1 protein is reduced, and the amount of intracellular TAG accumulation is increased as compared to the parent strain, and / or growth under short-day culture conditions The eukaryotic microalgal variant, wherein the SDP1 protein is a protein having an amino acid sequence having at least 50% sequence identity with the amino acid sequence shown in SEQ ID NO: 4 and having TAG lipase activity .
(2) The eukaryotic microalgal variant according to (1), wherein the gene encoding the SDP1 protein is disrupted.
(3) The eukaryotic microalgal mutant according to (1), wherein the expression of the gene encoding the SDP1 protein is reduced.
(4) The eukaryotic microalgal variant according to (1), wherein the translation efficiency of the gene encoding the SDP1 protein is reduced.
(5) The eukaryotic microalgal variant according to any one of (1) to (4), which belongs to the phylum Algae.
(6) The eukaryotic microalgal variant according to (5), which belongs to the treboxia algae web.
(7) The eukaryotic microalgal variant according to (6), which belongs to the genus Coccomyxa or the genus Pseudococcomyxa.
(8) A TAG production method, comprising a step of culturing the eukaryotic microalgae mutant according to any one of (1) to (7).

本発明により、細胞内のTAG蓄積量が向上し、あるいは日長が短い培養条件での増殖が改良された真核微細藻類変異体を作出することが可能となる。また、本発明に係る真核微細藻類変異体を培養することにより、バイオ燃料等に供するTAGの生産コストを削減することが可能となる。   According to the present invention, it is possible to produce a eukaryotic microalgae mutant in which the amount of accumulated TAG in a cell is improved or the growth in a culture condition with a short day length is improved. Further, by culturing the eukaryotic microalgae mutant according to the present invention, it is possible to reduce the production cost of TAG used for biofuels and the like.

Obi株とObi株由来の突然変異体を暗黒下培養した際の乾燥重量(A)とTAG含有量(B)の変化を示すグラフである。It is a graph which shows a change in dry weight (A) and TAG content (B) when Obi strain and a mutant derived from Obi strain are cultured in the dark. Obi株とObi株由来の突然変異体を光合成条件下培養した際のOD750(A)とTAG含有量(B)の変化を示すグラフである。The mutants derived from Obi strains and Obi strain and photosynthetic conditions cultured OD 750 when (A) is a graph showing changes in the TAG content (B). Obi株とObi株由来の突然変異体の増殖を示すグラフである。Obi株とObi株由来の突然変異体を連続光下(A)又は明期8時間及び暗期16時間の光条件下(B)で培養し、その増殖をOD750で測定した。図中の矢印の時間でサンプリングを行った。It is a graph which shows the growth of the Obi strain and the mutant derived from the Obi strain. Cultivating a mutant derived Obi strains and Obi strain under continuous light (A) or light conditions light period 8 hours and 16 hours darkness (B), to measure its growth at OD 750. Sampling was performed at the time indicated by the arrow in the figure.

本発明は、シロイヌナズナの種子の発芽時に働くTAGリパーゼであるSugar dependent 1(AtSDP1)と相同性を持つSDP1タンパク質の担うTAGリパーゼ活性を低下させることにより、親株(又は野生株)と比較して、細胞内TAG蓄積量が増加し、及び/又は短日培養条件下(すなわち、日長が短い(例えば、明期8時間及び暗期16時間)培養条件下)での増殖が向上した真核微細藻類変異体に関する。   The present invention, by reducing the TAG lipase activity carried by SDP1 protein having homology to Sugar dependent 1 (AtSDP1) is a TAG lipase that acts at the time of germination of Arabidopsis seeds, compared to the parent strain (or wild strain), Eukaryotic microspheres with increased intracellular TAG accumulation and / or improved growth under short-day culture conditions (i.e., culture conditions with short photoperiods (e.g., 8 hours light and 16 hours dark)) Algal variants.

微細藻類由来のTAGを原料としたバイオ燃料等の生産コストを削減するための最重要課題の一つは、微細藻類のTAG生産性の大幅向上である。本発明者等は、緑色植物亜界・緑藻植物門(以下、「緑藻」と記す)に属するシュードコリシスチス・エリプソイディア(Pseudochoricystis ellipsoidea; P. ellipsoidea)(仮称)Obi株[受託番号FERM BP-10484;特許文献1(当該特許では、「シュードコリシスチス エリプソイディア セキグチ エト クラノ ジェン エト エスピー ノブ(Pseudochoricystis ellipsoidea Sekiguchi et Kurano gen. et sp. nov.) MBIC11204株」と称される)]由来の配列番号3で示されるアミノ酸配列から成るSDP1タンパク質(DNA塩基配列:配列番号1、mRNA塩基配列:配列番号2)を欠損させることにより、この緑藻の細胞内のTAG蓄積量が増加し、また日長が短い条件での増殖が改良されることを見出し、本発明を完成するに至った。   One of the most important issues for reducing the production cost of biofuels and the like using microalgae-derived TAG as a raw material is to significantly improve the microalgae TAG productivity. The present inventors have proposed Pseudochoricystis ellipsoidea (P. ellipsoidea; P. ellipsoidea) (tentative name) belonging to the Chlorophyceae / Chlorophyta (hereinafter referred to as "green algae") (provisional name) Obi strain [Accession number FERM BP -10484; Patent Document 1 (referred to as "Pseudochoricystis ellipsoidea Sekiguchi et Kurano gen. Et sp. Nov.) MBIC11204 strain" in the patent). Deletion of the SDP1 protein consisting of the amino acid sequence represented by SEQ ID NO: 3 (DNA nucleotide sequence: SEQ ID NO: 1, mRNA nucleotide sequence: SEQ ID NO: 2) increases the amount of TAG accumulated in the cells of this green algae, The present inventors have found that growth under short conditions is improved, and have completed the present invention.

SDP1タンパク質は、植物に広く存在するTAGリパーゼであり、特に油糧種子の発芽時に、貯蔵TAGの分解と転流とに関わっていることで知られている。具体的には、TAGリパーゼ活性とは、グリセロールに3分子の脂肪酸がエステル結合しているトリアシルグリセロールの中の1つのエステル結合を加水分解し、ジアシルグリセロールと脂肪酸とを生成する酵素活性を意味する。人工的な遺伝子操作を用いてSDP1の担うTAGリパーゼ活性を低減させることによって真核微細藻類の細胞内TAG含有量を向上させること、及び、TAGリパーゼ活性低減株を培養することにより、バイオ燃料等に供するTAGの生産コストを大幅削減することが可能となる。   The SDP1 protein is a TAG lipase widely present in plants, and is known to be involved in the degradation and translocation of stored TAG, especially during oil seed germination. Specifically, the TAG lipase activity refers to an enzyme activity that hydrolyzes one ester bond in triacylglycerol in which three fatty acids are ester-bonded to glycerol to produce diacylglycerol and a fatty acid. I do. Improving the intracellular TAG content of eukaryotic microalgae by reducing the TAG lipase activity carried by SDP1 using artificial genetic manipulation, and culturing a TAG lipase activity-reduced strain, It is possible to significantly reduce the production cost of TAGs to be provided.

本発明において、真核微細藻類としては、緑藻、珪藻(diatomあるいはBacillariophyceae)、真正眼点藻綱(Eustigmatophyceae)等に属する真核微細藻類を挙げることができる。   In the present invention, examples of eukaryotic microalgae include eukaryotic microalgae belonging to green algae, diatoms (diatom or Bacillariophyceae), Eustigmatophyceae, and the like.

緑藻としては、例えばトレボキシア藻網に属する緑藻が挙げられる。トレボキシア藻網に属する緑藻としては、例えば、トレボキシア(Trebouxia)属、クロレラ(Chlorella)属、ボトリオコッカス(Botryococcus)属、コリシスチス(Choricystis)属、コッコミクサ(Coccomyxa)属、シュードコッコミクサ(Pseudococcomyxa)属に属する緑藻が挙げられる。トレボキシア藻網に属する具体的な株としては、P. ellipsoidea Obi株(受託番号FERM BP-10484;特許文献1)及びその変異株P. ellipsoidea 5P株(受託番号FERM BP-22179;特開2013-102715号公報;以下、「5P株」と呼ぶ場合がある)が挙げられる。なお、P. ellipsoidea Obi株とP. ellipsoidea 5P株とは、同一のSDP1タンパク質をコードする遺伝子(ゲノムDNA塩基配列:配列番号1、mRNA塩基配列:配列番号2、アミノ酸配列:配列番号3)を有する。トレボキシア藻網に属する緑藻以外の緑藻としては、例えばテトラセルミス(Tetraselmis)属、アンキストロデスムス(Ankistrodesmus)属、ドラニエラ(Dunalliella)属、ネオクロリス(Neochloris)属、クラミドモナス属、イカダモ(=セネデスムス:Scenedesmus)属等に属する緑藻が挙げられる。 Examples of the green algae include green algae belonging to the treboxia algae web. Examples of the green algae belonging to the treboxia algae network include, for example, the genus Treboxia (Trebouxia), the genus Chlorella (Chlorella), the genus Botryococcus (Botryococcus), the genus Corycystis (Choricystis), the genus Coccomyxa, the genus Pseudocoma (Pseudococ) Green algae belonging to Specific strains belonging to the treboxia algae network include P. ellipsoidea Obi strain (Accession No. FERM BP-10484; Patent Document 1) and its mutant P. ellipsoidea 5P strain ( Accession No. FERM BP-22179 ; No. 102715; hereinafter, sometimes referred to as “5P strain”). In addition, the P. ellipsoidea Obi strain and the P. ellipsoidea 5P strain share the same gene encoding the SDP1 protein (genomic DNA base sequence: SEQ ID NO: 1, mRNA base sequence: SEQ ID NO: 2, amino acid sequence: SEQ ID NO: 3). Have. Examples of green algae other than the green algae belonging to the treboxia algae network include, for example, the genus Tetraselmis, the genus Ankistrodesmus, the genus Dunalliella, the genus Neochloris, the genus Chlamydomonas, and the Ikedamo (= Scenedesmus). Green algae belonging to the genus and the like are included.

更に珪藻としては、フィストゥリフェラ(Fistulifera)属、フェオダクチラム属、タラシオシラ(Thalassiosira)属、シクロテラ(Cyclotella)属、シリンドロティカ(Cylindrotheca)属、スケレトネマ(Skeletonema)属等に属する真核微細藻類を挙げることができる。さらに、真正眼点藻綱としては、ナンノクロロプシス属が挙げられる。   Further, examples of diatoms include eukaryotic microalgae belonging to the genus Fistulifera, the genus Pheodactylum, the genus Thalassiosira, the genus Cyclotella, the genus Cylindrothica, the genus Skelletonema, and the like. be able to. Furthermore, as the euphoria alga, there may be mentioned the genus Nannochloropsis.

本発明に係る真核微細藻類変異体は、上述の真核微細藻類を親株として、TAGリパーゼ活性を低下させる方法に供することで得られた真核微細藻類変異体である。   The eukaryotic microalgae mutant according to the present invention is a eukaryotic microalgae mutant obtained by subjecting the above eukaryotic microalgae to a parent strain and subjecting it to a method for reducing TAG lipase activity.

本発明において、SDP1タンパク質としては、配列番号4に示すアミノ酸配列(すなわち、配列番号3における172番目〜625番目のアミノ酸配列に相当する保存性の高いアミノ酸配列)と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列を有し、且つTAGリパーゼ活性を有するタンパク質が挙げられる。   In the present invention, the SDP1 protein has at least 50%, preferably at least 50%, the amino acid sequence shown in SEQ ID NO: 4 (that is, a highly conserved amino acid sequence corresponding to the amino acid sequence at positions 172 to 625 in SEQ ID NO: 3). Proteins having an amino acid sequence with 65%, particularly preferably at least 80%, most preferably at least 85%, at least 90%, at least 95%, 100% sequence identity and having TAG lipase activity Can be

また、SDP1タンパク質としては、配列番号3に示すアミノ酸配列と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列から成り、且つTAGリパーゼ活性を有するタンパク質が挙げられる。   In addition, the SDP1 protein has at least 50%, preferably at least 65%, particularly preferably at least 80%, most preferably at least 85%, at least 90%, at least 95%, the amino acid sequence shown in SEQ ID NO: 3. A protein consisting of an amino acid sequence having 100% sequence identity and having TAG lipase activity is exemplified.

SDP1遺伝子としては、配列番号2における131番目〜2419番目の塩基配列で示されたmRNAのコーディング領域と少なくとも50%、好ましくは、少なくとも58%、特に好ましくは、少なくとも65%、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するmRNAをコードし、且つTAGリパーゼ活性を有するタンパク質をコードする遺伝子、又は上記mRNA塩基配列に対して1〜数か所(例えば10か所以下、好ましくは5か所以下、より好ましくは3か所以下、さらに好ましくは2か所以下)の部分塩基配列が欠失、置換、付加又は挿入された塩基配列から成るmRNA塩基配列をコードし、且つTAGリパーゼ活性を有するタンパク質をコードする遺伝子が挙げられる。   The SDP1 gene has at least 50%, preferably at least 58%, particularly preferably at least 65%, at least 80%, and most preferably the coding region of the mRNA represented by the nucleotide sequence from nucleotides 131 to 2419 in SEQ ID NO: 2. Preferably, a gene encoding an mRNA having at least 85%, at least 90%, at least 95%, 100% sequence identity and encoding a protein having TAG lipase activity, or 1 to 1 with respect to the mRNA base sequence A base sequence in which a partial base sequence of several places (for example, 10 places or less, preferably 5 places or less, more preferably 3 places or less, and still more preferably 2 places or less) is deleted, substituted, added or inserted. And a gene encoding a protein having a TAG lipase activity.

また、SDP1遺伝子としては、例えば配列番号3に示すアミノ酸配列と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列から成り、且つTAGリパーゼ活性を有するタンパク質をコードする遺伝子、又は上記タンパク質のアミノ酸配列に対して1〜数か所(例えば10か所以下、好ましくは5か所以下、より好ましくは3か所以下、さらに好ましくは2か所以下)のアミノ酸部分配列が欠失、置換、付加又は挿入されたアミノ酸配列から成り、且つTAGリパーゼ活性を有するタンパク質をコードする遺伝子が挙げられる。   The SDP1 gene may be, for example, at least 50%, preferably at least 65%, particularly preferably at least 80%, most preferably at least 85%, at least 90%, at least 95% the amino acid sequence shown in SEQ ID NO: 3. A gene consisting of an amino acid sequence having 100% sequence identity and encoding a protein having TAG lipase activity, or one to several (for example, 10 or less, preferably 5 Or less, more preferably 3 or less, and even more preferably 2 or less) amino acid subsequences comprising a deleted, substituted, added or inserted amino acid sequence and encoding a protein having TAG lipase activity Genes.

多くの真核微細藻類においては、複数のSDP1遺伝子、例えば対立遺伝子、同義遺伝子等が存在する場合があるが、本発明においては、これらのうち少なくとも1つ又は複数のSDP1遺伝子を意味する。   In many eukaryotic microalgae, a plurality of SDP1 genes, such as alleles and synonyms, may be present. In the present invention, at least one or a plurality of SDP1 genes are meant.

本発明においては、以上に説明したSDP1遺伝子を有する真核微細藻類に対して、SDP1遺伝子によりコードされるSDP1タンパク質が担うTAGリパーゼ活性を低下させる方法に供することで、本発明に係る真核微細藻類変異体を得ることができる。   In the present invention, the eukaryotic microalgae according to the present invention is subjected to a method for reducing the TAG lipase activity carried by the SDP1 protein encoded by the SDP1 gene for eukaryotic microalgae having the SDP1 gene described above. Algal variants can be obtained.

具体的に、本発明に係るSDP1タンパク質の担うTAGリパーゼ活性を低減した真核微細藻類変異体は、実施例に示した手順に従って作出できる。すなわち、親株の真核微細藻類に突然変異誘起物質を作用させた後、TAG含量が上昇した変異体をスクリーニングし、得られた変異体においてSDP1遺伝子に変異が起こっていることを確認することによって作出できる。これによって、SDP1遺伝子領域のDNAに塩基の置換、欠失、挿入及び/又は付加を伴う変異を導入することができる。   Specifically, a mutant eukaryotic microalgae having a reduced TAG lipase activity carried by the SDP1 protein according to the present invention can be produced according to the procedure described in Examples. That is, after applying a mutagen to the eukaryotic microalgae of the parent strain, screening mutants having an increased TAG content and confirming that a mutation has occurred in the SDP1 gene in the obtained mutant. Can produce. As a result, mutation involving base substitution, deletion, insertion and / or addition can be introduced into the DNA of the SDP1 gene region.

SDP1タンパク質の担うTAGリパーゼ活性を低下させるそれ以外の方法としては、例えば
(1) SDP1遺伝子をターゲットとして変異を導入し、当該遺伝子を破壊する;
(2) SDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる;
(3) SDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる;
方法が挙げられる。
Other methods for reducing the TAG lipase activity carried by the SDP1 protein include, for example,
(1) introducing a mutation targeting the SDP1 gene and disrupting the gene;
(2) suppresses transcription of the SDP1 gene and reduces the expression of the gene;
(3) suppress the translation of the SDP1 gene, reduce the translation efficiency of the gene;
Method.

(1) SDP1遺伝子をターゲットとして変異を導入する方法
SDP1遺伝子をターゲットとして変異を導入する方法としては、該遺伝子の塩基配列が知られている場合、ZFN、TALENあるいはCRISPR/Casと呼ばれる遺伝子ノックアウト法(Gaj T, Gersbach CA, Barbas CF 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397-405.)を用いることにより、その遺伝子が欠損した変異体を作出できる。
(1) Method for introducing a mutation targeting the SDP1 gene
As a method of introducing a mutation targeting the SDP1 gene, when the nucleotide sequence of the gene is known, ZFN, TALEN or a gene knockout method called CRISPR / Cas (Gaj T, Gersbach CA, Barbas CF 3rd. (2013 Using ZFN, TALEN, and CRISPR / Cas-based methods for genome engineering. Trends Biotechnol. 31: 397-405.), A mutant deficient in that gene can be created.

該遺伝子の塩基配列が知られていない場合、以下に示す方法で、該遺伝子の塩基配列を決定できる。真核微細藻類及び植物に存在するSDP1タンパク質には非常に良く保存されたアミノ酸配列が存在するので、そのアミノ酸配列を元に設計されたPCRプライマーを用いて、対象とする真核微細藻類のゲノムDNAを鋳型としたPCR増幅反応を行い、増幅されたDNA断片を大腸菌にクローン化した後、そのDNA断片の塩基配列を決定する。この方法によって、該遺伝子の部分塩基配列を知ることができ、上記遺伝子ノックアウト法を適用できるようになる。   When the nucleotide sequence of the gene is not known, the nucleotide sequence of the gene can be determined by the following method. Since eukaryotic microalgae and SDP1 protein present in plants have a very well-conserved amino acid sequence, the genome of the target eukaryotic microalgae can be analyzed using PCR primers designed based on that amino acid sequence. A PCR amplification reaction is performed using DNA as a template, and the amplified DNA fragment is cloned into Escherichia coli, and then the nucleotide sequence of the DNA fragment is determined. According to this method, the partial nucleotide sequence of the gene can be known, and the gene knockout method can be applied.

一つの生物に複数のSDP1遺伝子が含まれている場合があり、PCR増幅されたDNA断片を直接シーケンシング反応に供することは避けるべきである。このようにして得られたSDP1遺伝子部分配列をさらに拡張したい場合は、インバースPCR法(Huang SH. (1994) Inverse polymerase chain reaction. An efficient approach to cloning cDNA ends. Mol Biotechnol. 12:15-22.)等を用いれば良い。   One organism may contain more than one SDP1 gene, and the PCR-amplified DNA fragment should not be directly subjected to a sequencing reaction. If it is desired to further extend the SDP1 gene partial sequence obtained in this way, the inverse PCR method (Huang SH. (1994) Inverse polymerase chain reaction.An efficient approach to cloning cDNA ends.Mol Biotechnol. 12: 15-22. ) May be used.

また、近年、所謂次世代シーケンシング技術が発達し、ゲノム全塩基配列の決定が非常に容易になった。そこで、対象真核微細藻類のゲノム全塩基配列を先ず決定し、その中から、SDP1タンパク質をコードする遺伝子配列を抽出すれば良い。   In recent years, the so-called next-generation sequencing technology has been developed, and it has become very easy to determine the entire nucleotide sequence of the genome. Therefore, the entire genome sequence of the target eukaryotic microalgae is determined first, and the gene sequence encoding the SDP1 protein may be extracted from the sequence.

(2) SDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる方法
SDP1遺伝子の転写を抑制する方法としては、対象となる真核微細藻類における該遺伝子のプロモーター領域に変異を導入する方法が挙げられる。
(2) A method for suppressing transcription of the SDP1 gene and reducing the expression of the gene
Examples of a method for suppressing the transcription of the SDP1 gene include a method of introducing a mutation into the promoter region of the target eukaryotic microalgae.

また、該遺伝子の正の発現制御に関わる遺伝子に変異を導入し、それらの機能を低下させる方法が挙げられる。   In addition, there is a method in which a mutation is introduced into a gene involved in the regulation of positive expression of the gene to reduce the function thereof.

あるいは、該遺伝子の負の発現制御に関わる遺伝子に変異を導入し、負の発現制御が常時働くようにする方法が挙げられる。   Alternatively, there is a method in which a mutation is introduced into a gene involved in negative expression control of the gene so that the negative expression control always operates.

(3) SDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる方法
SDP1遺伝子の翻訳を抑制する方法としては、いわゆるRNA干渉法(Cerutti H et al., 2011, Eukaryot Cell, 10, 1164)が挙げられる。
(3) A method for suppressing the translation of the SDP1 gene and reducing the translation efficiency of the gene
As a method for suppressing the translation of the SDP1 gene, a so-called RNA interference method (Cerutti H et al., 2011, Eukaryot Cell, 10, 1164) can be mentioned.

以上のようにして得られた真核微細藻類変異体のTAG蓄積量と日長が短い培養条件での増殖とを、実施例1に説明する方法等によって測定し、TAGの細胞内蓄積量の増加あるいは日長が短い培養条件での増殖改善が確認できれば、本発明に係るSDP1タンパク質の担うTAGリパーゼ活性を減少させた真核微細藻類変異体の作出が完成する。   The amount of TAG accumulation of the eukaryotic microalgae mutant obtained as described above and the growth under culture conditions with a short day length were measured by the method described in Example 1 and the like, and the amount of TAG accumulation in cells was measured. If the increase or the improvement in the growth under culture conditions with a short day length can be confirmed, the production of the eukaryotic microalgal mutant having reduced TAG lipase activity carried by the SDP1 protein according to the present invention is completed.

なお、本発明に係る真核微細藻類変異体の例として、実施例に示すObi株に由来するTAGリパーゼ突然変異体Obi-LOD68株が、平成27年(2015年)8月27日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-22293として寄託され、さらに受託番号FERM BP-22293としてブダペスト条約に基づく国際寄託へ移管されている。 As an example of the eukaryotic microalgae mutant according to the present invention, a TAG lipase mutant Obi-LOD68 strain derived from the Obi strain shown in the Examples is an independent administration on August 27, 2015 (2015). Deposited under the accession number FERM P-22293 at the Patent Organism Depositary Center (NITE-IPOD) (Room No. 2-5-8 Kazusa -Kamashita , Kisarazu-shi, Chiba) and further deposited under accession number FERM BP-22293 It has been transferred to an international deposit under the Budapest Treaty.

さらに、本発明は、以上に説明した本発明に係る真核微細藻類変異体を大量培養し、TAGを生産する方法を含む。大量培養法としては、既に確立されている非特許文献6に記載の培養法等を用いることができる。具体的には、尿素を窒素源とし、pHが4以下である培地を用いて、微細藻類を培養する方法である(特許文献2)。この培養方法によれば、窒素源を尿素とすることで、窒素分消費によるpHの変動は最小限となる。また、pH4以下の培養液中にCO2を導入しても重炭酸イオンがほとんど生じないので、培養液のpHが変動しにくい特徴もある。このように培養液のpHを安定的に4以下に保つことが出来るので、他の微細藻類や原生生物の増殖を抑制することができる。
培養後、例えば培養物からヘキサン抽出等によって、TAGを含む脂質を得ることができる。
Further, the present invention includes a method for producing TAG by culturing the eukaryotic microalgae mutant according to the present invention described above in large quantities. As the mass culture method, a culture method or the like described in Non-Patent Document 6 which has already been established can be used. Specifically, there is a method of culturing microalgae using a medium having urea as a nitrogen source and a pH of 4 or less (Patent Document 2). According to this culturing method, by using urea as the nitrogen source, fluctuation of pH due to consumption of nitrogen is minimized. In addition, even when CO 2 is introduced into a culture solution having a pH of 4 or less, bicarbonate ions are hardly generated, so that the pH of the culture solution does not easily fluctuate. As described above, the pH of the culture solution can be stably maintained at 4 or less, so that the growth of other microalgae and protists can be suppressed.
After the culture, lipids containing TAG can be obtained from the culture by, for example, extracting with hexane.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.

〔実施例1〕TAGリパーゼ突然変異体の分離
Obi株あるいはObi株由来の低クロロフィル突然変異体である5P株(特開2013-102715号公報)を、突然変異誘起剤であるNTG(1-methyl-3-nitro-1-nitrosoguanidine)で処理した後、1/3 DENSO培地[0.29 mM (NH4)2SO4, 0.79 mM Urea, 130 μM MgSO4, 90 μM KH2PO4, 90 μM K2HPO4, 20 μM CaCl2, 1.2 μM CuSO4, 0.38 μM H3BO3, 0.35 μM ZnSO4, 0.2 μM MnSO4, 0.1 μM CoCl2, 4 nM Na2MoO4, 0.1% (v/v) Fe solution (3 g/L citric acid, 4.9 g/L ammonium ferric citrate, 0.5 g/L EDTA-2Na)]で1週間培養した。この時点で培養液には窒素分が枯渇し、細胞内にTAGが蓄積された。その後、この細胞をMA5培地(Imamura et al., 2012, J Gen Appl Microbiol, 58, 1)に移した後、暗黒中に4日間置いた。細胞をこの状態、すなわち窒素分があるが光合成できない状態に置くと、蓄積したTAGは(野生株においては)次第に分解された(図1B参照)。4日後に、細胞内のTAGをBODIPY 501/515で蛍光染色し、蛍光の強い(TAG蓄積量が多い)細胞をFACS(fluorescence activated cell sorting)を用いて濃縮した。FACS濃縮を受けた細胞を再度1/3 DENSO培地で培養しTAGを蓄積させた後、MA5培地に移し、暗黒中で4日間培養した。その後、再度FACS濃縮を行った。このFACS濃縮を計3回行ったところ、暗黒中で4日間置いた後でも、TAGをほとんど分解しない細胞集団が得られた。この集団を適当に希釈し、MA5寒天培地にまいてコロニーを作らせた。
[Example 1] Isolation of TAG lipase mutant
The Obi strain or the 5P strain, which is a low chlorophyll mutant derived from the Obi strain (JP-A-2013-102715), was treated with a mutagenic agent, NTG (1-methyl-3-nitro-1-nitrosoguanidine). Then, 1/3 DENSO medium (0.29 mM (NH 4 ) 2 SO 4 , 0.79 mM Urea, 130 μM MgSO 4 , 90 μM KH 2 PO 4 , 90 μM K 2 HPO 4 , 20 μM CaCl 2 , 1.2 μM CuSO 4 , 0.38 μM H 3 BO 3 , 0.35 μM ZnSO 4 , 0.2 μM MnSO 4 , 0.1 μM CoCl 2 , 4 nM Na 2 MoO 4 , 0.1% (v / v) Fe solution (3 g / L citric acid, 4.9 g / L ammonium ferric citrate, 0.5 g / L EDTA-2Na)] for 1 week. At this time, the culture solution was depleted of nitrogen, and TAG was accumulated in the cells. Thereafter, the cells were transferred to MA5 medium (Imamura et al., 2012, J Gen Appl Microbiol, 58, 1) and then placed in the dark for 4 days. When cells were placed in this state, i.e., in a state with nitrogen but not photosynthesis, the accumulated TAG was progressively degraded (in wild-type strains) (see FIG. 1B). Four days later, intracellular TAG was fluorescently stained with BODIPY 501/515, and cells with strong fluorescence (a large amount of accumulated TAG) were concentrated using FACS (fluorescence activated cell sorting). The cells subjected to FACS concentration were cultured again in 1/3 DENSO medium to accumulate TAG, then transferred to MA5 medium, and cultured in the dark for 4 days. Thereafter, FACS concentration was performed again. When this FACS concentration was performed a total of three times, a cell population that hardly decomposed TAG was obtained even after being placed in the dark for 4 days. This population was appropriately diluted and plated on MA5 agar to form colonies.

前述のように、Obi株を窒素欠乏条件下で培養するとTAGが細胞内に蓄積されるが、それと同時に細胞のクロロフィル含有量が減少した。高いTAG且つ低クロロフィルとなった細胞を新鮮なMA5培地に移し、暗黒中に数日置くと、細胞のTAG含有量が減少し、クロロフィル含有量が増加する事を見出した。これは、TAGの分解で得られたエネルギーと炭素分とを用いて、クロロフィルが新規に合成されるためと考えられた。   As described above, when the Obi strain was cultured under nitrogen-deficient conditions, TAG was accumulated in the cells, but at the same time, the chlorophyll content of the cells was reduced. When cells with high TAG and low chlorophyll were transferred to fresh MA5 medium and placed in the dark for several days, it was found that the TAG content of the cells decreased and the chlorophyll content increased. This was thought to be because chlorophyll was newly synthesized using the energy and carbon content obtained by the decomposition of TAG.

そこで、FACS濃縮後に得られたObi株のコロニーを、窒素分を抜いたMA5培地(MA5-N)で作った寒天培地の上に置いたニトロセルロース膜上に広げるように塗布し、蛍光灯下で一週間培養した。すると、ニトロセルロース膜上で黄色の細胞が増殖した。この細胞では、TAG含有量が高く、クロロフィル含有量は低いと考えらえる。次に、この黄色細胞をニトロセルロース膜ごと、MA5寒天培地上に移し、暗所で培養した。野生株であるObi株では、暗所に移されてから4日間以内に、細胞の色が緑色に変わった。一方、FACS濃縮後に分離されたコロニー由来のクローンの多くでは、MA5寒天培地に移された後でも、細胞の色は黄色のままであった。後述のように、これらのクローンでは、暗黒中でのTAG分解能力が欠損していた。   Therefore, the colonies of the Obi strain obtained after the FACS concentration were spread on a nitrocellulose membrane placed on an agar medium made of a nitrogen-free MA5 medium (MA5-N), and spread under a fluorescent lamp. For one week. Then, the yellow cells grew on the nitrocellulose membrane. In these cells, the TAG content is thought to be high and the chlorophyll content low. Next, the yellow cells together with the nitrocellulose membrane were transferred onto MA5 agar medium and cultured in the dark. The cell color of the wild Obi strain turned green within 4 days after being transferred to the dark. On the other hand, in many clones derived from colonies separated after FACS concentration, the color of the cells remained yellow even after being transferred to MA5 agar medium. As described below, these clones lacked the ability to degrade TAG in the dark.

〔実施例2〕TAGリパーゼ突然変異体のTAG分解
実施例1に示した方法を用いて、TAG分解が欠損していると思われる突然変異体をObi株より2株(Obi-LOD68及びObi-LOD69)、5P株より2株(5P-LOD11、5P-LOD18)分離した。
[Example 2] TAG degradation of TAG lipase mutant Using the method described in Example 1, two mutants (Obi-LOD68 and Obi- LOD69) and 2 strains (5P-LOD11, 5P-LOD18) were isolated from the 5P strain.

これらの突然変異体とそれらの親株であるObi株及び5P株を、1/3 DENSO培地で1週間培養した。そして、TAGを蓄積した細胞を回収し、MA5培地に再懸濁した後、4日間暗黒下で培養した。   These mutants and their parent strains, Obi strain and 5P strain, were cultured for 1 week in 1/3 DENSO medium. Then, the cells having accumulated TAG were collected, resuspended in MA5 medium, and cultured in the dark for 4 days.

図1には、Obi株、5P株、Obi-LOD68株、5P-LOD11株及び5P-LOD18株を暗黒下培養した際の乾燥重量とTAG含有量の変化結果を示す。暗所に置かれたそれぞれの株の乾燥重量は、最初の1日にわずかに減少したものの、2日目以降ではほとんど変化はなかった(図1A)。一方、TAG含有量については、Obi株及び5P株において、最初の2日間で大きく減少した。これに対して、突然変異体はいずれも、TAG含有量の減少は少ない(5P-LOD11株)か、減少しなかった(図1B)。図には示していないが、Obi-LOD69株においても同条件下でTAG含有量は減少しなかった。   FIG. 1 shows the results of changes in dry weight and TAG content when the Obi strain, 5P strain, Obi-LOD68 strain, 5P-LOD11 strain, and 5P-LOD18 strain were cultured in the dark. The dry weight of each strain placed in the dark was slightly reduced on the first day, but hardly changed after day 2 (FIG. 1A). On the other hand, the TAG content significantly decreased in the Obi strain and the 5P strain in the first two days. In contrast, none of the mutants reduced TAG content slightly (5P-LOD11 strain) or did not (FIG. 1B). Although not shown in the figure, the TAG content did not decrease in the Obi-LOD69 strain under the same conditions.

Obi株、5P株及び2つの突然変異体(Obi-LOD68、5P-LOD18)を、1/3 DENSO培地で1週間培養し、細胞内にTAGを蓄積させた後、これらの細胞をMA5培地に移し、その後7日間蛍光灯下で培養した。蛍光灯下で育てられたこれらの株は、いずれも同じように増殖した(図2A)。増殖開始に伴って、野生株(Obi株と5P株)のTAGは速やかに減少した。一方、突然変異体においては、TAGは、野生株よりもやや遅く減少した(図2B)。この結果から、少なくとも2つのTAGリパーゼがObi株に存在することが予想された。1つは、光合成条件下でのみ活性が誘導されるTAGリパーゼであり、もう1つは、暗黒下でも活性を持つTAGリパーゼである。今回分離された突然変異体では、この暗黒下でも活性を持つTAGリパーゼが欠損していると思われた。   After culturing Obi strain, 5P strain and two mutants (Obi-LOD68, 5P-LOD18) in 1/3 DENSO medium for one week and accumulating TAG in the cells, these cells were transferred to MA5 medium. After transfer, the cells were cultured under fluorescent light for 7 days. All of these strains grown under fluorescent light grew similarly (FIG. 2A). TAG of wild strains (Obi strain and 5P strain) rapidly decreased with the start of growth. On the other hand, in the mutant, TAG decreased slightly more slowly than in the wild type (FIG. 2B). From this result, it was expected that at least two TAG lipases were present in the Obi strain. One is a TAG lipase whose activity is induced only under photosynthetic conditions, and the other is a TAG lipase that is active even in the dark. The mutants isolated this time seem to lack TAG lipase, which is active even in this darkness.

〔実施例3〕TAGリパーゼ突然変異体の増殖とTAG蓄積
2つのTAGリパーゼ突然変異体であるObi-LOD68株及び5P-LOD18株とそれらの親株であるObi株及び5P株を、1/3 DENSO培地中、2つの光条件下で培養した。一つは連続光下での培養であり、もう一つは、8時間明期、16時間暗期の光条件下での培養である。
Example 3 Growth of TAG Lipase Mutant and TAG Accumulation
Two TAG lipase mutants, Obi-LOD68 strain and 5P-LOD18 strain, and their parent strains, Obi strain and 5P strain, were cultured in 1/3 DENSO medium under two light conditions. One is culture under continuous light, and the other is culture under light conditions of 8 hours light period and 16 hours dark period.

連続光培養では、親株とリパーゼ突然変異体との間で、顕著な増殖速度及び増殖収量の差は認められなかった(図3A)。しかしながら、17日後のTAG蓄積量を調べると、リパーゼ突然変異体のTAG蓄積量が野生株のそれを大きく上回っていた(表1)。   In continuous light culture, no significant difference in growth rate and growth yield was observed between the parent strain and the lipase mutant (FIG. 3A). However, when the amount of accumulated TAG after 17 days was examined, the amount of accumulated TAG of the lipase mutant was much higher than that of the wild-type strain (Table 1).

同じ株を、1/3 DENSO培地を用いて8時間明期、16時間暗期の光条件下で培養した場合、Obi株と5P株では、OD750が3付近で増殖が停止した。これに対して、TAGリパーゼ変異体では、OD750が3を越えて増殖が続いていた(図3B)。 When the same strain was cultured in 1/3 DENSO medium under light conditions of 8 hours light period and 16 hours dark period, the growth of the Obi strain and the 5P strain stopped at around OD 750 of 3. In contrast, the TAG lipase mutant had an OD 750 exceeding 3 and continued to grow (FIG. 3B).

培養液の細胞密度が高くなると、各細胞が利用できる光の量が減少してくる。恐らくOD750が3であるObi株及び5P株においては、8時間の明期に得るエネルギー量と明期及び暗期を通して細胞を維持するのに必要なエネルギー量とがほぼ等しいのであろうと考えられた。 As the cell density of the culture increases, the amount of light available to each cell decreases. Probably, in the Obi and 5P strains with an OD 750 of 3, the amount of energy obtained during the 8-hour light period is approximately equal to the amount of energy required to maintain the cells throughout the light and dark periods. Was.

一方、同じ光条件下で育てられたTAGリパーゼ突然変異体の増殖収率は、野生株よりも高かった。このことから、暗期にTAGをエネルギーとして利用できないこれらの突然変異体では、光合成で獲得するエネルギー効率が上昇しているか、細胞を維持するエネルギーが減少しているか、その両者であるかのいずれかであろうと考えられた。これらの変化がTAGリパーゼの変異と直接関係しているとは考えにくく、TAGリパーゼの欠損によって引き起こされた代謝物プロファイルの変化がシグナルとなって、様々な代謝酵素の発現が変化した結果起こったものであろうと考えられた。このように、TAGリパーゼ突然変異体は、乏しい条件での増殖に有利であるという、予想しなかった結果が得られた。   On the other hand, the growth yield of the TAG lipase mutant grown under the same light conditions was higher than the wild type. This suggests that those mutants that cannot use TAG as energy in the dark have either increased energy efficiency gained in photosynthesis, reduced energy to maintain cells, or both. I thought it would be. These changes are unlikely to be directly related to TAG lipase mutations, and alterations in the expression of various metabolic enzymes were signaled by changes in metabolite profiles caused by TAG lipase deficiency It was thought to be something. Thus, the unexpected result was obtained that the TAG lipase mutant was advantageous for growth in poor conditions.

TAGリパーゼ変異体、特に、Obi-LOD68株においては、この光条件においても、TAG含有量は44%を維持していた(表1)。   In the TAG lipase mutant, particularly the Obi-LOD68 strain, the TAG content maintained 44% even under this light condition (Table 1).

以上、本研究によって、TAGリパーゼ変異体は、乏しい光条件においての増殖とTAG蓄積能力が野生株よりも優れていることが示された。よって、朝、夕あるいは日長が短い条件において、TAGリパーゼ変異体は野生株より優れたTAG生産性を示し、年間でのTAG生産量を増加させることが期待できる。   As described above, this study showed that the TAG lipase mutant has better growth and TAG accumulation ability under poor light conditions than the wild type. Therefore, under conditions of short morning, evening or day length, the TAG lipase mutant exhibits higher TAG productivity than the wild type, and can be expected to increase the annual TAG production.

Figure 0006627336
[Obi株、低クロロフィル変異体である5P株、Obi株由来のTAGリパーゼ欠損体であるObi-LOD68株、5P株由来のTAGリパーゼ変異体である5P-LOD18株のそれぞれを、連続光下(L24:D0)又は明期8時間及び暗期16時間の光条件下(L8:D16)で培養し、連続光培養の場合は培養開始後17日、明暗培養の場合は、培養開始後14及び24日目でサンプリングし、細胞内の油脂含有量を測定した]
Figure 0006627336
(Obi strain, low chlorophyll mutant 5P strain, Obi-derived TAG lipase deficient Obi-LOD68 strain, 5P strain derived TAG lipase mutant 5P-LOD18, each under continuous light ( (L24: D0) or 8 hours light period and 16 hours dark period under light conditions (L8: D16), 17 days after the start of culture in the case of continuous light culture, 14 and after the start of culture in the case of light and dark culture. Sampling was performed on day 24, and the fat content in cells was measured.]

〔実施例4〕TAGリパーゼ突然変異体のゲノム解析
Obi-LOD68、5P-LOD11、5P-LOD18の3株のゲノム塩基配列をIllumina HiSeq 2000で決定し、変異解析を行った。Obi-LOD68株ゲノムには23個の遺伝子にアミノ酸配列の変化を伴う突然変異が検出された。5P-LOD11及び5P-LOD18株のゲノムには、それぞれ、10個及び19個のアミノ酸配列の変化を伴う遺伝子変異が検出された。これら独立した3つ突然変異体に共通して変異があった遺伝子は、pev02gs0318601と命名されていた遺伝子(遺伝子塩基配列:配列番号1、mRNAの塩基配列:配列番号2、アミノ酸配列:配列番号3)のみであり、シロイヌナズナの種子の発芽時に働くTAGリパーゼであるSugar dependent 1(AtSDP1)と相同性が高かった。よって、pev02gs0318601遺伝子をSDP1と名付けた。
[Example 4] Genome analysis of TAG lipase mutant
The genomic nucleotide sequences of three strains, Obi-LOD68, 5P-LOD11, and 5P-LOD18, were determined by Illumina HiSeq 2000, and mutation analysis was performed. In the genome of the Obi-LOD68 strain, mutations involving amino acid sequence changes were detected in 23 genes. In the genomes of the 5P-LOD11 and 5P-LOD18 strains, 10 and 19 gene mutations with amino acid sequence changes were detected, respectively. The gene having a mutation in common among these three independent mutants is a gene named pev02gs0318601 (gene base sequence: SEQ ID NO: 1, mRNA base sequence: SEQ ID NO: 2, amino acid sequence: SEQ ID NO: 3 ), And was highly homologous to Sugar dependent 1 (AtSDP1), a TAG lipase that acts during germination of Arabidopsis seeds. Therefore, the pev02gs0318601 gene was named SDP1.

Obi-LOD68株は、Splice acceptor部位に1塩基置換があり、スプライス部位変異が起こっていた。5P-LOD11株は、エキソンとイントロンを含む139 bpの欠失が、5P-LOD18株は塩基置換によるナンセンス変異が確認された。そこで、同じ表現型を持つObi-LOD69株のDNAからpev02gs0318601(= SDP1)遺伝子をPCRにより増幅し、ABI BigDyeTM Terminator v3.1 Cycle Sequencing Kit及びABI 3730xl sequencerにて塩基配列を決定した。その結果、Obi-LOD69株のSDP1遺伝子に、1塩基置換によるミスセンス変異があることが確認された。 The Obi-LOD68 strain had a single base substitution at the Splice acceptor site, and had a splice site mutation. In the 5P-LOD11 strain, a deletion of 139 bp including exons and introns was confirmed, and in the 5P-LOD18 strain, nonsense mutation due to base substitution was confirmed. Therefore, the pev02gs0318601 (= SDP1) gene was amplified by PCR from the DNA of the Obi-LOD69 strain having the same phenotype, and the nucleotide sequence was determined using ABI BigDye Terminator v3.1 Cycle Sequencing Kit and ABI 3730xl sequencer. As a result, it was confirmed that the SDP1 gene of the Obi-LOD69 strain had a missense mutation due to single base substitution.

以上を総合して、Obi-LOD68株、Obi-LOD69株、5P-LOD11株、5P-LOD18株における、(1)暗期でのTAG分解欠損、(2)連続光下又は明暗培養条件下での細胞内TAG蓄積量の増加、及び(3)光が乏しい条件下での増殖の改良は、SDP1遺伝子の変異によって起こされたと結論した。   In summary, Obi-LOD68 strain, Obi-LOD69 strain, 5P-LOD11 strain, 5P-LOD18 strain, (1) TAG degradation deficiency in the dark period, (2) under continuous light or bright and dark culture conditions It was concluded that the increase in the amount of intracellular TAG accumulation and the improvement of (3) growth under low light conditions were caused by mutation of the SDP1 gene.

FERM BP-10484
FERM BP-22179
FERM BP-22293
FERM BP-10484
FERM BP-22179
FERM BP-22293

Claims (8)

SDP1タンパク質のトリアシルグリセロール(TAG)リパーゼ活性を低下させた真核微細藻類変異体であって、親株と比較して、細胞内TAG蓄積量が増加し、且つ短日培養条件下での増殖が向上しており、前記SDP1タンパク質が配列番号4に示すアミノ酸配列と少なくとも90%の配列同一性を有するアミノ酸配列を有し、且つTAGリパーゼ活性を有するタンパク質である、前記真核微細藻類変異体。 Eukaryotic microalgae mutant with reduced triacylglycerol (TAG) lipase activity of SDP1 protein.Increases intracellular TAG accumulation and increases growth under short-day culture conditions compared to the parent strain. The eukaryotic microalgal variant, wherein the SDP1 protein is an improved protein having an amino acid sequence having at least 90% sequence identity with the amino acid sequence shown in SEQ ID NO: 4 and having TAG lipase activity. SDP1タンパク質をコードする遺伝子を破壊した、請求項1記載の真核微細藻類変異体。   The eukaryotic microalgal mutant according to claim 1, wherein the gene encoding the SDP1 protein is disrupted. SDP1タンパク質をコードする遺伝子の発現を低下させた、請求項1記載の真核微細藻類変異体。   The eukaryotic microalgal mutant according to claim 1, wherein the expression of the gene encoding the SDP1 protein is reduced. SDP1タンパク質をコードする遺伝子の翻訳効率を低下させた、請求項1記載の真核微細藻類変異体。   2. The eukaryotic microalgal variant according to claim 1, wherein the translation efficiency of the gene encoding the SDP1 protein is reduced. 緑藻植物門に属する、請求項1〜4のいずれか1項記載の真核微細藻類変異体。   The eukaryotic microalgal variant according to any one of claims 1 to 4, which belongs to the phylum Chlorophyta. トレボキシア藻網に属する、請求項5記載の真核微細藻類変異体。   The eukaryotic microalgae mutant according to claim 5, which belongs to the treboxia algae web. コッコミクサ(Coccomyxa)属又はシュードコッコミクサ(Pseudococcomyxa)属に属する、請求項6記載の真核微細藻類変異体。   The eukaryotic microalgal variant according to claim 6, which belongs to the genus Coccomyxa or the genus Pseudococcomyxa. 請求項1〜7のいずれか1項記載の真核微細藻類変異体を培養する工程を含む、TAG生産方法。   A TAG production method comprising a step of culturing the eukaryotic microalgal mutant according to any one of claims 1 to 7.
JP2015173188A 2015-09-02 2015-09-02 Eukaryotic microalgal lipase mutants Active JP6627336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015173188A JP6627336B2 (en) 2015-09-02 2015-09-02 Eukaryotic microalgal lipase mutants
PCT/JP2016/075879 WO2017038995A1 (en) 2015-09-02 2016-09-02 Lipase mutant of eukaryotic microalga

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173188A JP6627336B2 (en) 2015-09-02 2015-09-02 Eukaryotic microalgal lipase mutants

Publications (2)

Publication Number Publication Date
JP2017046645A JP2017046645A (en) 2017-03-09
JP6627336B2 true JP6627336B2 (en) 2020-01-08

Family

ID=58188968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173188A Active JP6627336B2 (en) 2015-09-02 2015-09-02 Eukaryotic microalgal lipase mutants

Country Status (2)

Country Link
JP (1) JP6627336B2 (en)
WO (1) WO2017038995A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269580B2 (en) * 2018-11-07 2023-05-09 学校法人 中央大学 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011113283A1 (en) * 2011-09-06 2013-03-07 Johann Wolfgang Goethe-Universität Increase of lipid content in microalgae by genetic manipulation of a triacylglycerol (TAG) lipase
JP6446774B2 (en) * 2013-11-19 2019-01-09 株式会社デンソー Lipid accumulation mutant of green algae and use thereof

Also Published As

Publication number Publication date
JP2017046645A (en) 2017-03-09
WO2017038995A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
Daskalaki et al. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica
Xie et al. Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60
Minyuk et al. Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids
JP6446774B2 (en) Lipid accumulation mutant of green algae and use thereof
JP6537146B2 (en) Method for producing triacylglycerol high productivity algae
RU2013134401A (en) MICROORGANISM WITH AN INCREASED PRODUCTION OF L-AMINO ACIDS AND A METHOD FOR PRODUCING L-AMINO ACIDS WITH ITS APPLICATION
Cheng et al. Enhancing the lipid content of the diatom Nitzschia sp. by 60Co-γ irradiation mutation and high-salinity domestication
Sun et al. Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method
Úbeda-Mínguez et al. Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii
Zeng et al. Metabolic analysis of schizochytrium mutants with high DHA content achieved with ARTP mutagenesis combined with iodoacetic acid and dehydroepiandrosterone screening
JP4803584B2 (en) Transformed microorganism with high lipid productivity
JP6627336B2 (en) Eukaryotic microalgal lipase mutants
Zhang et al. Manipulation of triacylglycerol biosynthesis in Nannochloropsis oceanica by overexpressing an Arabidopsis thaliana diacylglycerol acyltransferase gene
JP5988212B2 (en) Method for producing triacylglycerol highly productive algae
CN114958636B (en) Recombinant yarrowia lipolytica capable of producing punica granatum at high yield as well as construction method and application thereof
Soós et al. Biomolecule composition and draft genome of a novel, high-lipid producing Scenedesmaceae microalga
Koh et al. Isolation and characterization of novel Chlorella species with cold resistance and high lipid accumulation for biodiesel production
Iftikhar et al. Isolation, identification of an axenic fungal isolate of aspergillus sp.(mbl-1511) and its subsequent improvement for enhanced extracellular lipolytic potential through monoculture fermentation
CN111378583B (en) Trichoderma reesei and application thereof
JP6893820B2 (en) Methods to improve resistance of nitric acid to substrate analogs in microalgae
JP7269580B2 (en) Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof
JP6613731B2 (en) Eukaryotic microalgae genetically modified strains with improved triglyceride productivity and use thereof
JP2020096583A (en) Green algal variant with reduced chlorophyll content and increased oil and fat productivity, and use thereof
CN110643520A (en) Antarctic fungus Geomyyces sp
Guo et al. Boosting lipid production in the diatom Phaeodactylum tricornutum by knockdown of the Enoyl CoA hydratase using CRISPR interference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250