JP7256058B2 - Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water - Google Patents

Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water Download PDF

Info

Publication number
JP7256058B2
JP7256058B2 JP2019069442A JP2019069442A JP7256058B2 JP 7256058 B2 JP7256058 B2 JP 7256058B2 JP 2019069442 A JP2019069442 A JP 2019069442A JP 2019069442 A JP2019069442 A JP 2019069442A JP 7256058 B2 JP7256058 B2 JP 7256058B2
Authority
JP
Japan
Prior art keywords
monochloramine
residual chlorine
water
added
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019069442A
Other languages
Japanese (ja)
Other versions
JP2020163356A (en
Inventor
智生 石間
和毅 田村
Original Assignee
アクアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72715468&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7256058(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by アクアス株式会社 filed Critical アクアス株式会社
Priority to JP2019069442A priority Critical patent/JP7256058B2/en
Publication of JP2020163356A publication Critical patent/JP2020163356A/en
Application granted granted Critical
Publication of JP7256058B2 publication Critical patent/JP7256058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、さまざまな障害を引き起こすおそれのある生物の水系への付着や繁殖の抑制、あるいは、除去を目的としてモノクロラミンを比較的低い濃度で添加した水系水の処理方法に関する。 The present invention relates to a method for treating aqueous water to which monochloramine has been added at a relatively low concentration for the purpose of suppressing or removing the adhesion and propagation of organisms that may cause various disorders to the water system.

冷却水や各種工程水、食品製造用水、あるいは、純水やボイラー水の原水等の各種水系では、さまざまな障害を引き起こすおそれのある生物の水系への付着、あるいは、繁殖の抑制や除去を目的としてモノクロラミンを添加することが行われている(特許文献1)。 In various water systems such as cooling water, various process water, food manufacturing water, pure water, boiler water raw water, etc., the purpose is to suppress or remove the adhesion or breeding of organisms that may cause various problems. Addition of monochloramine is performed as a method (Patent Document 1).

しかしながら、これらモノクロラミンを含む水系水をその利用後に、河川、湖、沼、あるいは、海などに排出した場合に、排出口付近の水域に存在する水産資源などの水棲生物に悪影響が及ぶことが懸念される。 However, when aquatic water containing these monochloramines is discharged into rivers, lakes, marshes, or the sea after its use, aquatic organisms such as marine resources existing in the water area near the outlet may be adversely affected. Concerned.

このために、河川、湖、沼、あるいは、海などに排出した場合であっても、水産資源などの水棲生物に悪影響が及ぶ懸念を抑制、あるいは、解消することが求められている。 For this reason, there is a need to suppress or eliminate the concern that aquatic organisms such as marine resources will be adversely affected even when discharged into rivers, lakes, marshes, or the sea.

ここで、特許文献2では純水製造時の原水にモノクロラミンの添加処理を行った後の脱クロラミン化のために、亜硫酸塩を添加する技術が提案されている。そして、本発明者らも同様に、亜硫酸ナトリウムが好適に使用できると考えていた(特許文献3)。 Here, Patent Document 2 proposes a technique of adding a sulfite for dechloramination after adding monochloramine to raw water in the production of pure water. The present inventors also thought that sodium sulfite could be suitably used (Patent Document 3).

特開2015-212248号公報JP 2015-212248 A 特開平02-052087号公報JP-A-02-052087 特開2017-119245号公報JP 2017-119245 A

社団法人 日本水産資源保護協会、「水産用水基準 第7版(2012年版)」、平成25年1月発行Japan Fisheries Resources Conservation Association, "Fisheries Water Standards 7th Edition (2012 Edition)", January 2013

しかしながら、検討の結果、低濃度のモノクロラミンを含有する水に対して、還元剤として亜硫酸塩(重亜硫酸塩を含む)を添加した場合、全残留塩素の全量を相殺しうると想定される添加量では不足し、その6倍の量の添加が必要となることが判った。
その原因として、低濃度のモノクロラミンを含有する水に対して亜硫酸塩を添加した場合、これら亜硫酸塩の大部分はモノクロラミン含有量に比して多量に存在する水中の溶存酸素と反応し、その結果、全残留塩素の相殺にはほとんど寄与しないと考えられた。
However, as a result of examination, it is assumed that when sulfite (including bisulfite) is added as a reducing agent to water containing low concentrations of monochloramine, the total amount of residual chlorine can be offset. It was found that the amount was insufficient and the addition of six times that amount was required.
The reason for this is that when sulfites are added to water containing a low concentration of monochloramine, most of these sulfites react with dissolved oxygen in the water, which is present in a large amount relative to the content of monochloramine, As a result, it was considered that it hardly contributes to offsetting all residual chlorine.

この場合、全残留塩素の相殺に要する還元剤のコストが高くなるのみならず、全残留塩素の全量を相殺したにも関わらず、多量の亜硫酸塩を添加したために溶存酸素濃度が著しく低下した水により水産資源を含む水棲生物に悪影響が生じる懸念がある。 In this case, not only does the cost of the reducing agent required for offsetting the total residual chlorine increase, but the dissolved oxygen concentration is remarkably reduced due to the addition of a large amount of sulfite despite the total amount of the residual chlorine being offset. There is concern that aquatic organisms, including fisheries resources, may be adversely affected by this.

本発明はこのような亜硫酸塩を用いたときに生じる上記の問題、すなわち、河川、湖、沼、あるいは、海などへ排出した場合であっても、結合残留塩素や遊離残留塩素、さらには、これらを相殺するために添加する還元剤による溶存酸素濃度の低下による排出口付近の水棲生物への悪影響の懸念を抑制ないし解消しつつ、全残留塩素を相殺する還元剤の必要量を少なくすることが可能な水系水の処理方法を提供することを目的とする。 The present invention solves the above-mentioned problems that occur when using such sulfites, that is, even when discharged into rivers, lakes, marshes, or seas, combined residual chlorine and free residual chlorine, and further, To reduce the required amount of the reducing agent that offsets all residual chlorine while suppressing or eliminating the concern of adverse effects on aquatic organisms near the discharge port due to the decrease in dissolved oxygen concentration due to the reducing agent added to offset these. It is an object of the present invention to provide a method for treating water system water.

本発明の生物の海水冷却水系への付着や繁殖の抑制あるいは除去方法は、最終的にに排出される、モノクロラミン添加対象の海水冷却水系水に対して全残留塩素の濃度が0.01mg/L以上0.15mg/L以下となるようにモノクロラミンを添加する第一工程と、当該モノクロラミンが添加された前記海水冷却水系水に対して、前記海に排出される前に当該モノクロラミンが添加された海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加する第二工程と、をこの順で備えていることを特徴とする。 The method for suppressing or removing the adhesion and propagation of organisms to a seawater cooling water system of the present invention is such that the concentration of total residual chlorine is 0.01 mg in the seawater cooling water system water to which monochloramine is added, which is finally discharged into the sea . / L or more and 0.15 mg / L or less, and a first step of adding monochloramine to the seawater cooling water system water to which the monochloramine has been added before the monochloramine is discharged into the sea A second step of adding 1 to 1.5 times the amount of thiosulfate compound that is assumed to be able to offset the total amount of residual chlorine in the seawater cooling water system water to which It is characterized by having

また、本発明の生物の海水冷却水系への付着や繁殖の抑制あるいは除去方法は、上記の構成に加えて、前記海水冷却水系水の全残留塩素濃度、および/または、前記チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、当該全残留塩素濃度に応じて前記チオ硫酸塩化合物の添加量を制御する構成とすることができる。 Further, the method for suppressing or removing the adhesion or breeding of organisms to a seawater cooling water system of the present invention, in addition to the above configuration, includes the total residual chlorine concentration of the seawater cooling water system and/or the content of the thiosulfate compound The total residual chlorine concentration after addition may be measured, and the amount of the thiosulfate compound to be added may be controlled according to the total residual chlorine concentration.

本発明の海水冷却水系水の処理方法は、上記の課題を解決するために、モノクロラミンを全残留塩素が0.01mg/L以上0.15mg/L以下の濃度で含有し、かつ、最終的にに排出される海水冷却水系水に対して、前記海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加することを特徴とする。 In order to solve the above problems, the method for treating seawater cooling water system water of the present invention contains monochloramine at a concentration of 0.01 mg / L or more and 0.15 mg / L or less of total residual chlorine, and finally To the seawater cooling water system water discharged into the sea , 1 to 1.5 times the added amount of thiosulfate compounds that is assumed to be able to offset the total amount of all residual chlorine in the seawater cooling water system water. It is characterized by adding

また、本発明の水系水の処理方法は、上記の構成に加えて、前記水系水の全残留塩素濃度、および/または、前記チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、当該全残留塩素濃度に応じて前記チオ硫酸塩化合物の添加量を制御する構成とすることができる。 Further, in the aqueous water treatment method of the present invention, in addition to the above configuration, the total residual chlorine concentration of the aqueous water and / or the total residual chlorine concentration after the addition of the thiosulfate compound is measured, The amount of the thiosulfate compound to be added may be controlled according to the total residual chlorine concentration.

本発明の生物の海水冷却水系への付着や繁殖の抑制あるいは除去方法は、最終的にに排出される、モノクロラミン添加対象の海水冷却水系水に対して全残留塩素の濃度が0.01mg/L以上0.15mg/L以下となるようにモノクロラミンを添加する第一工程と、当該モノクロラミンが添加された前記海水冷却水系水に対して、前記海に排出される前に当該モノクロラミンが添加された海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加する第二工程と、をこの順で備えている構成により、へ排出した場合に、結合残留塩素や遊離残留塩素、さらには、これらを相殺するために添加する還元剤による溶存酸素濃度の低下による排出口付近の水棲生物に悪影響が及ぶ懸念を顕著に抑制ないし解消しつつ、全残留塩素を相殺する還元剤の必要量を少なくすることが可能となる。さらに、結合残留塩素や遊離残留塩素による悪影響を抑制ないし解消することができる。 The method for suppressing or removing the adhesion and propagation of organisms to a seawater cooling water system of the present invention is such that the concentration of total residual chlorine is 0.01 mg in the seawater cooling water system water to which monochloramine is added, which is finally discharged into the sea . / L or more and 0.15 mg / L or less, and a first step of adding monochloramine to the seawater cooling water system water to which the monochloramine has been added before the monochloramine is discharged into the sea A second step of adding 1 to 1.5 times the amount of thiosulfate compound that is assumed to be able to offset the total amount of residual chlorine in the seawater cooling water system water to which Due to the equipped structure, when discharged into the sea , combined residual chlorine, free residual chlorine, and furthermore, a reduction in dissolved oxygen concentration due to the reducing agent added to offset them adversely affects aquatic organisms near the discharge port. It is possible to reduce the required amount of the reducing agent to offset all residual chlorine while significantly suppressing or eliminating the concerns. Furthermore, the adverse effects of combined residual chlorine and free residual chlorine can be suppressed or eliminated.

また、上記の構成に加えて、海水冷却水系水の全残留塩素濃度、および/または、チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、この濃度に応じてチオ硫酸塩化合物の添加量を制御する構成とすることができる。 In addition to the above configuration, the total residual chlorine concentration of the seawater cooling water system and / or the total residual chlorine concentration after the addition of the thiosulfate compound is measured, and the thiosulfate compound is added according to this concentration. It can be configured to control the amount.

本発明の海水冷却水系水の処理方法は、モノクロラミンを全残留塩素が0.01mg/L以上0.15mg/L以下の濃度で含有し、かつ、最終的にに排出される海水冷却水系水に対して、前記海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加する構成により、へ排出した場合に、結合残留塩素や遊離残留塩素、さらには、これらを相殺するために添加する還元剤による溶存酸素濃度の低下による排出口付近の水棲生物に悪影響が及ぶ懸念を顕著に抑制ないし解消しつつ、全残留塩素を相殺する還元剤の必要量を少なくすることが可能となる。さらに、結合残留塩素や遊離残留塩素による悪影響を抑制ないし解消することができる。 The seawater cooling water system water treatment method of the present invention contains monochloramine at a concentration of 0.01 mg / L or more and 0.15 mg / L or less of total residual chlorine, and is finally discharged into the sea . Discharged into the sea by adding a thiosulfate compound to water in an amount of 1 to 1.5 times the amount assumed to be able to offset the total amount of residual chlorine in the seawater cooling water system. In this case, it is possible to remarkably suppress or eliminate the concern that aquatic organisms near the discharge port may be adversely affected by a decrease in dissolved oxygen concentration due to combined residual chlorine, free residual chlorine, and a reducing agent added to offset them. , it is possible to reduce the amount of reducing agent required to offset the total residual chlorine. Furthermore, the adverse effects of combined residual chlorine and free residual chlorine can be suppressed or eliminated.

また、上記の構成に加えて、水系水の全残留塩素濃度、および/または、チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、この濃度に応じてチオ硫酸塩化合物の添加量を制御する構成とすることができる。 In addition to the above configuration, the total residual chlorine concentration of the water system and / or the total residual chlorine concentration after the addition of the thiosulfate compound is measured, and the amount of the thiosulfate compound added is adjusted according to this concentration. It can be configured to control.

実施例で用いたモノクロラミン生成装置を示すモデル図である。1 is a model diagram showing a monochloramine generator used in Examples. FIG.

本発明の水系水の処理方法は、モノクロラミンを低濃度で含有する水系水に対して実施する。 The aqueous water treatment method of the present invention is carried out on aqueous water containing monochloramine at a low concentration.

ここでモノクロラミンは、さまざまな障害を引き起こすおそれのある生物の水系への付着、あるいは、繁殖の抑制や除去を目的として添加される。 Here, monochloramine is added for the purpose of suppressing or removing organisms that may cause various disorders from adhering to water systems or breeding.

しかし、上記の目的で水系水にモノクロラミンを添加する場合、添加の効果を十分に得ることができ、かつ、過剰添加とならない範囲、たとえば水系水中のモノクロラミン濃度が0.01mg/L(リットル)以上0.15mg/L以下程度の範囲となるように添加することが好ましい。 However, when monochloramine is added to aqueous water for the above purpose, the effect of addition can be sufficiently obtained and it is not excessively added. ) or more and 0.15 mg/L or less.

このような低濃度で水系水にモノクロラミンを含有させる場合、冷却水系などの、有機物を含む水系に対しては、次亜塩素酸化合物とアンモニウム塩化合物との反応により比較的高濃度、たとえば500mg/L以上10000mg/L以下の濃度範囲となるように高濃度のモノクロラミン溶液を調製して、モノクロラミンを水系水に添加することが好ましい。
有機物を含む水系水の場合、次亜塩素酸化合物、および、アンモニウム塩化合物をたとえば数mg/L以下の低濃度となるように別々に直接添加しても、モノクロラミン生成の反応速度が遅いため、これら有機物が低濃度の次亜塩素酸化合物と速やかに反応して次亜塩素酸化合物を分解してしまうため、添加した次亜塩素酸化合物がモノクロラミンの生成に寄与できない。
When monochloramine is contained in aqueous water at such a low concentration, for water systems containing organic matter such as cooling water systems, a relatively high concentration, for example 500 mg, is obtained due to the reaction between the hypochlorous acid compound and the ammonium salt compound. It is preferable to prepare a high-concentration monochloramine solution so that the concentration range is from 10000 mg/L to 10000 mg/L, and then add monochloramine to the aqueous water.
In the case of water-based water containing organic matter, even if the hypochlorous acid compound and the ammonium salt compound are directly added separately to a low concentration of, for example, several mg/L or less, the reaction rate of monochloramine production is slow. Since these organic substances rapidly react with low-concentration hypochlorous acid compounds to decompose the hypochlorous acid compounds, the added hypochlorous acid compounds cannot contribute to the production of monochloramine.

比較的高濃度のモノクロラミン溶液は、たとえば次のようにして連続的に調製することができる。すなわち、下流側端が添加対象水系に接続する配管などの送液経路を流れる水に、水中の遊離残留塩素濃度が、たとえば500mg/L以上10000mg/L以下の範囲の任意の濃度となるように次亜塩素酸化合物を添加し、次亜塩素酸化合物の添加箇所よりも送液経路の下流で、水中の遊離残留塩素濃度とアンモニウムイオン濃度とのモル比が1:1~1:1.5の範囲(境界値を含む)となるようにアンモニウム塩化合物を添加することで、次亜塩素酸化合物とアンモニウム塩化合物とを反応させてモノクロラミン溶液を調製する。 A relatively high concentration monochloramine solution can be prepared continuously, for example, as follows. That is, the free residual chlorine concentration in the water flowing through the liquid feeding path such as the pipe whose downstream end is connected to the water system to be added is, for example, 500 mg / L or more and 10000 mg / L or less. The hypochlorous acid compound is added, and the molar ratio of the free residual chlorine concentration and the ammonium ion concentration in the water is 1:1 to 1:1.5 downstream of the addition point of the hypochlorous acid compound in the liquid feeding path. By adding the ammonium salt compound so that the range of (including the boundary value), the hypochlorous acid compound and the ammonium salt compound are reacted to prepare a monochloramine solution.

用いる送液経路を流れる水としては、水道水や工業用水などの清水の他、モノクロラミンを添加する対象の、有機物を含む水を、単独で、あるいは、清水と併用して用いることもできる。
これら水の中の、次亜塩素酸化合物と反応する有機物の量と比較して次亜塩素酸化合物の添加量を圧倒的に多くすることにより、有機物を含む水を使用してもモノクロラミンの生成に悪影響を及ぼすほど次亜塩素酸化合物が減少することを抑制できる。ただし、これら水中の有機物と次亜塩素酸化合物とが反応すると、トリハロメタンを生成するおそれが生じるので、トリハロメタンの生成を防ぐ上で、清水を用いることが好ましい。
なお、次亜塩素酸化合物とアンモニウム塩化合物とを反応させてモノクロラミン溶液としたものを有機物が含まれる水系水に添加しても、モノクロラミンと水中の有機物とが反応してトリハロメタンが生成することはない。
As the water flowing through the liquid-feeding path to be used, in addition to clear water such as tap water and industrial water, water containing organic matter to which monochloramine is added can be used alone or in combination with clear water.
By significantly increasing the amount of hypochlorous acid compound added compared to the amount of organic matter that reacts with the hypochlorous acid compound in the water, monochloramine can be produced even if water containing organic matter is used. It is possible to suppress the reduction of hypochlorous acid compounds to the extent that it adversely affects production. However, if the organic substances in the water react with the hypochlorous acid compound, trihalomethanes may be produced. Therefore, it is preferable to use fresh water in order to prevent the production of trihalomethanes.
Even if a monochloramine solution obtained by reacting a hypochlorous acid compound and an ammonium salt compound is added to aqueous water containing organic matter, the monochloramine reacts with the organic matter in the water to produce trihalomethane. never.

用いる次亜塩素酸化合物としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、あるいは、これらの併用が挙げられるが、これらに限定されるものではなく、水中で次亜塩素酸塩を生成する化合物であればよい。
これらのうち、特に市販の5~12質量%の次亜塩素酸ナトリウム水溶液を用いると、ポンプで注入しやすく、さらに、市販の次亜塩素酸ナトリウム水溶液には適度な遊離アルカリが共存するため、モノクロラミンの生成反応が速やかに進むので好ましい。
The hypochlorous acid compound to be used includes, but is not limited to, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, or a combination thereof. Any compound that generates chlorate may be used.
Among these, when using a commercially available 5 to 12% by mass sodium hypochlorite aqueous solution, it is easy to inject with a pump, and furthermore, a moderate amount of free alkali coexists in the commercially available sodium hypochlorite aqueous solution. This is preferable because the production reaction of monochloramine proceeds rapidly.

モノクロラミン溶液の調製時に、次亜塩素酸化合物は水中の遊離残留塩素濃度が500mg/L以上10000mg/L以下となるように添加することが好ましい。次亜塩素酸化合物の添加濃度が低すぎるとモノクロラミンが生成しにくくなる。
また、生成するモノクロラミンも低濃度となるため、モノクロラミンの添加対象水系への添加濃度を望ましい全残留塩素濃度範囲である0.01mg/L以上0.15mg/L以下とするためには、添加対象水系に対して多量のモノクロラミン溶液を添加しなければならなくなる。そのため、モノクロラミン生成装置が大型化してしまうと云う弊害が生じる。
また、添加時のモノクロラミン溶液の濃度が高すぎると、遊離残留塩素に対するアンモニウムイオンのモル比を1以上にしてもモノクロラミン以外に副生成物であるジクロラミンやトリクロラミンが生成してしまうので好ましくない。
このように生成したジクロラミンやトリクロラミンは不安定で、これらとモノクロラミンとが複合的に反応してアンモニア態窒素の分解反応が進行し、モノクロラミン濃度は低下する。
また、この反応はpHの低下を伴う反応であり、溶液のpHが酸性となることで次亜塩素酸イオンから塩素ガスが発生するのできわめて危険である。なお、より好ましい濃度範囲は1000mg/L以上5000mg/L以下である。
When preparing the monochloramine solution, the hypochlorous acid compound is preferably added so that the concentration of free residual chlorine in water is 500 mg/L or more and 10000 mg/L or less. If the concentration of the hypochlorous acid compound added is too low, it becomes difficult to generate monochloramine.
In addition, since the concentration of monochloramine produced is also low, in order to make the concentration of monochloramine added to the water system to be added to the desired total residual chlorine concentration range of 0.01 mg / L or more and 0.15 mg / L or less, A large amount of monochloramine solution must be added to the target water system. As a result, there arises a problem that the monochloramine generating apparatus is enlarged.
Further, if the concentration of the monochloramine solution is too high at the time of addition, even if the molar ratio of ammonium ion to free residual chlorine is 1 or more, by-products such as dichloramine and trichloramine are produced in addition to monochloramine, which is preferable. do not have.
The dichloramine and trichloramine produced in this way are unstable, and they react in a complex manner with monochloramine to proceed with the decomposition reaction of ammonia nitrogen, thereby lowering the concentration of monochloramine.
In addition, this reaction is a reaction accompanied by a decrease in pH, and when the pH of the solution becomes acidic, chlorine gas is generated from hypochlorite ions, which is extremely dangerous. A more preferable concentration range is 1000 mg/L or more and 5000 mg/L or less.

モノクロラミン溶液の調整に用いるアンモニウム塩化合物としては、塩化アンモニウム、臭化アンモニウム、硝酸アンモニウム、炭酸アンモニウム、燐酸アンモニウム、硫酸アンモニウム、ホウ酸アンモニウムなど、および、これらの併用が挙げられるが、比較的高濃度のモノクロラミン水溶液とすることができ、ポンプでの注入が容易となるので塩化アンモニウムや硫酸アンモニウムが好ましい。 Ammonium salt compounds used to prepare the monochloramine solution include ammonium chloride, ammonium bromide, ammonium nitrate, ammonium carbonate, ammonium phosphate, ammonium sulfate, ammonium borate, and the like, and combinations thereof, but relatively high concentrations of Ammonium chloride and ammonium sulfate are preferred because they can be aqueous monochloramine solutions and are easier to pump.

アンモニウム塩化合物は、水中の遊離残留塩素濃度(モル濃度)を1としたときに、アンモニウムイオン濃度(モル濃度)が1以上となるように添加するとモノクロラミンを効率よく生成できるので好適である。 When the ammonium salt compound is added so that the ammonium ion concentration (molarity) is 1 or more when the free residual chlorine concentration (molarity) in water is 1, monochloramine can be efficiently produced, which is preferable.

なお、後述するように、モノクロラミンを低濃度で含有する水系水の全残留塩素をチオ硫酸塩化合物により相殺した水を、水産資源のある河川、湖、沼、あるいは、海などに排出する場合、上記のモル比を1.5超とすると、排出口付近の水域のアンモニア態窒素の濃度が水産用水基準(非特許文献1)を超える恐れが生じるので好ましくない。 As will be described later, when the water in which all the residual chlorine in water containing monochloramine at a low concentration is offset by a thiosulfate compound is discharged into rivers, lakes, marshes, or seas with marine resources. If the above molar ratio exceeds 1.5, the concentration of ammonium nitrogen in the water area near the outlet may exceed the standard for marine water (Non-Patent Document 1), which is not preferable.

また、アンモニウム塩化合物の添加は次亜塩素酸化合物の添加箇所の下流で行うことが好ましい。アンモニウム塩化合物の添加箇所を次亜塩素酸化合物の添加箇所の上流とすると、次亜塩素酸化合物の添加箇所付近の次亜塩素酸化合物と水とが完全混合する前の状態では、アンモニウムイオンに対する次亜塩素酸イオン(=遊離残留塩素)のモル比が部分的に1以上となる。その結果、モル比が1以上の部分でモノクロラミン以外に副生成物であるジクロラミンやトリクロラミンが生成してしまう。 Moreover, it is preferable to add the ammonium salt compound downstream of the point where the hypochlorous acid compound is added. When the ammonium salt compound is added upstream of the hypochlorous acid compound addition point, before the hypochlorous acid compound near the hypochlorous acid compound addition point and water are completely mixed, the ammonium ion The molar ratio of hypochlorite ions (=free residual chlorine) partially becomes 1 or more. As a result, dichloramine and trichloramine, which are by-products, are produced in addition to monochloramine at a molar ratio of 1 or more.

次亜塩素酸化合物とアンモニウム塩化合物の添加順序やこれらの濃度およびモル比が適切であれば、上記の副反応は起こらず、モノクロラミンのみを生成することが可能であるが、モノクロラミンの生成反応はpH8~9の弱アルカリ性で最も進行しやすい。
したがって、次亜塩素酸化合物として遊離アルカリを含む次亜塩素酸ナトリウム水溶液を用いると、次亜塩素酸化合物添加後の水のpHが自然と弱アルカリ性になるので好ましい。
If the order of addition of the hypochlorous acid compound and the ammonium salt compound and their concentrations and molar ratios are appropriate, the above side reactions do not occur and only monochloramine can be produced. The reaction proceeds most easily in weakly alkaline conditions of pH 8-9.
Therefore, it is preferable to use an aqueous sodium hypochlorite solution containing free alkali as the hypochlorous acid compound, because the pH of the water after addition of the hypochlorous acid compound naturally becomes weakly alkaline.

なお、次亜塩素酸化合物の添加箇所やアンモニウム塩化合物の添加箇所の下流にラインミキサ等の攪拌手段を設置するとモノクロラミンが効率よく生成するので好ましい。
特に次亜塩素酸化合物の添加箇所とアンモニウム塩化合物の添加箇所との間にラインミキサを設置すると、水中の次亜塩素酸イオンが均一な濃度となり、次亜塩素酸イオンとアンモニウムイオンとのモル比の部分的な逆転を防止できるので好ましい。また、送液経路の途中に混合槽を設け、この混合槽で攪拌を行ってもよい。
Incidentally, it is preferable to install a stirring means such as a line mixer downstream of the addition point of the hypochlorous acid compound and the addition point of the ammonium salt compound, since monochloramine is efficiently generated.
In particular, when a line mixer is installed between the point where the hypochlorous acid compound is added and the point where the ammonium salt compound is added, the concentration of hypochlorite ions in the water becomes uniform, and the molar ratio of hypochlorite ions and ammonium ions increases. This is preferable because partial reversal of the ratio can be prevented. Moreover, a mixing tank may be provided in the middle of the liquid feeding path, and stirring may be performed in this mixing tank.

モノクロラミン溶液を上記の方法で生成することで、最初に添加した次亜塩素酸化合物由来の遊離残留塩素のほとんどすべてがモノクロラミン生成に寄与する。したがって、生成したモノクロラミン溶液中の全残留塩素濃度は、次亜塩素酸化合物添加時の水中の遊離残留塩素濃度とほぼ同一の、500mg/L以上10000mg/L以下の任意の濃度となる。 By producing the monochloramine solution by the above method, almost all of the free residual chlorine derived from the initially added hypochlorous acid compound contributes to the production of monochloramine. Therefore, the total residual chlorine concentration in the produced monochloramine solution becomes an arbitrary concentration of 500 mg/L or more and 10000 mg/L or less, which is almost the same as the free residual chlorine concentration in water when the hypochlorous acid compound is added.

上記の方法で調製した500mg/L以上10000mg/L以下の任意の濃度のモノクロラミン溶液を、添加対象の水系水に対して全残留塩素濃度として0.01mg/L以上0.15mg/L以下の濃度で添加することが好ましい。
モノクロラミンの添加濃度が0.01mg/L未満であると、さまざまな障害を引き起こすおそれのある生物の水系への付着、あるいは、繁殖の抑制や除去などのモノクロラミンの添加による効果が十分には発揮せれない。他方、その添加濃度が0.15mg/Lを超えて添加した場合、添加濃度の増加に見合う効果の増加は得られず、さらに排出口付近の水域のアンモニア態窒素の濃度が上記の水産用水基準を越えてしまうおそれが生じる。
A monochloramine solution with an arbitrary concentration of 500 mg / L or more and 10000 mg / L or less prepared by the above method is added to the aqueous water to be added as a total residual chlorine concentration of 0.01 mg / L or more and 0.15 mg / L or less. It is preferred to add in concentration.
If the concentration of monochloramine added is less than 0.01 mg/L, the effect of adding monochloramine, such as the suppression or removal of the adhesion of organisms that may cause various disorders to the water system, or the breeding, is not sufficient. I can't do it. On the other hand, when the additive concentration exceeds 0.15 mg / L, the increase in the effect corresponding to the increase in the additive concentration is not obtained, and furthermore, the concentration of ammonium nitrogen in the water area near the outlet exceeds the above marine water standard There is a risk of exceeding

本発明の水系水の処理方法では、水系水中のモノクロラミンが不要となったときに、チオ硫酸塩化合物を添加して残留するモノクロラミンを相殺する。たとえば海水冷却水系などで、生物の水系への付着を目的にモノクロラミンを添加し、最終的に冷却水を海に排出する場合では、排出口の上流で冷却水中に残留するモノクロラミンをチオ硫酸塩化合物の添加で相殺する。 In the aqueous water treatment method of the present invention, when the monochloramine in the aqueous water becomes unnecessary, a thiosulfate compound is added to offset the residual monochloramine. For example, in a seawater cooling water system, monochloramine is added for the purpose of adhering organisms to the water system, and when the cooling water is finally discharged into the sea, monochloramine remaining in the cooling water is removed by thiosulfuric acid at the upstream of the discharge port. Offset by addition of salt compounds.

チオ硫酸塩化合物としては、ナトリウム塩、カリウム塩、バリウム塩、マグネシウム塩、アンモニウム塩等が知られている。このうち水に可溶で還元性を有する化合物を、単独であるいは2種以上組み合わせて用いる。
なお、これらのうち、入手が容易なチオ硫酸ナトリウムを用いることが好ましい。チオ硫酸塩化合物は通常、水道水や工業用水などの清水の水溶液として添加するが、一部または全部にモノクロラミンを添加する対象の水を用いてもよい。
Sodium salts, potassium salts, barium salts, magnesium salts, ammonium salts and the like are known as thiosulfate compounds. Among these, water-soluble and reducing compounds are used alone or in combination of two or more.
Among these, sodium thiosulfate, which is easily available, is preferably used. The thiosulfate compound is usually added as an aqueous solution of fresh water such as tap water or industrial water, but water to which monochloramine is added partially or wholly may be used.

チオ硫酸塩化合物の添加量はモノクロラミンを含む水系水の全残留塩素の全量を相殺可能なものとすることが残留塩素による各種障害の発生の抑制ないし防止を可能とするので好ましい。 It is preferable that the amount of the thiosulfate compound to be added is capable of canceling out the total amount of residual chlorine in the aqueous water containing monochloramine, since this makes it possible to suppress or prevent the occurrence of various problems caused by residual chlorine.

チオ硫酸塩化合物の水溶液を用いる場合にはその濃度は0.1質量%以上30質量%以下とすると、添加の制御が容易で、かつ、薬液タンクを含む添加装置をコンパクトなものとすることができるので好ましい。 When an aqueous solution of a thiosulfate compound is used, if the concentration is 0.1% by mass or more and 30% by mass or less, the addition can be easily controlled and the addition device including the chemical tank can be made compact. It is preferable because it can be done.

本発明では上記のようにチオ硫酸塩化合物を添加することが必須であり、このとき、たとえばモノクロラミンとチオ硫酸ナトリウムとは下記式(I)に示すように4:1のモル比で反応する。 In the present invention, it is essential to add a thiosulfate compound as described above, and at this time, for example, monochloramine and sodium thiosulfate react in a molar ratio of 4:1 as shown in formula (I) below. .

<化1>
4NHCl + Na・5HO → 2NaHSO + 4NHCl
……(I)
<Chemical 1>
4NH2Cl + Na2S2O3.5H2O 2NaHSO4 + 4NH4Cl
…… (I)

本発明では添加対象の水系水中の全残留塩素がモノクロラミンによるものとして、その全量を相殺しうると想定される量、すなわちこのモノクロラミンのモル数の1/4のモル数のチオ硫酸塩化合物の質量を1としたときに1以上1.5以下の質量のチオ硫酸塩化合物を添加することが好ましい。 In the present invention, the total amount of residual chlorine in the aqueous water to be added is assumed to be due to monochloramine, and an amount assumed to be able to offset the entire amount, that is, a thiosulfate compound with a molar number of 1/4 of the molar number of this monochloramine It is preferable to add the thiosulfate compound in a mass of 1 or more and 1.5 or less when the mass of is 1.

チオ硫酸塩化合物の添加量が上記の範囲より少ないと、相殺処理後の水を河川、湖、沼や、海に排出したときに、残留するモノクロラミンによる水棲生物への悪影響の懸念が大きくなり、また、多すぎるとチオ硫酸塩化合物の使用量が多くなり、処理コストの上昇を来たすとともに、排出水中の溶存酸素濃度が低下するおそれがある。このため、排出口付近の水域の水棲生物への悪影響の懸念が大きくなる。
したがって、より好ましいチオ硫酸塩化合物の添加量は、添加対象の水系中の全残留塩素の全量を相殺しうると想定される量のチオ硫酸塩化合物を1としたときに1.05以上1.3以下である。
If the amount of the thiosulfate compound added is less than the above range, there is a greater concern that residual monochloramine will have an adverse effect on aquatic organisms when the water after offsetting treatment is discharged into rivers, lakes, marshes, or the sea. On the other hand, if the amount is too large, the amount of the thiosulfate compound to be used is increased, which may lead to an increase in the treatment cost and a decrease in the dissolved oxygen concentration in the effluent. Therefore, there is a growing concern about adverse effects on aquatic organisms in water areas near the outlet.
Therefore, the amount of the thiosulfate compound to be added is more preferably 1.05 or more when the amount of the thiosulfate compound assumed to be able to offset the total amount of residual chlorine in the water system to be added is 1.05 or more. 3 or less.

チオ硫酸塩化合物の添加にあたり、残留塩素計などによりチオ硫酸塩化合物の添加対象の、および/あるいは、チオ硫酸塩化合物添加後の水系水中の全残留塩素濃度を測定して添加量を制御することで、添加量の最適化が可能となる。その制御により、また残留塩素による水棲生物への悪影響の発生をより確実に抑制ないし防止が可能となり、かつ、高コスト化と溶存酸素の低下を引き起こす過剰添加を防止することが可能となる。 When adding a thiosulfate compound, the total residual chlorine concentration in the water to which the thiosulfate compound is added and/or after the addition of the thiosulfate compound is measured with a residual chlorine meter or the like, and the amount added is controlled. , it is possible to optimize the amount of addition. This control makes it possible to more reliably suppress or prevent the occurrence of adverse effects of residual chlorine on aquatic organisms, and to prevent excessive addition that causes an increase in cost and a decrease in dissolved oxygen.

ここで、還元剤としてチオ硫酸塩化合物ではなく亜硫酸水素ナトリウム(重亜硫酸ナトリウム)を用いたときのモノクロラミンとの反応式を式(II)に示す。 Here, the reaction formula with monochloramine when sodium hydrogen sulfite (sodium bisulfite) is used instead of a thiosulfate compound as a reducing agent is shown in formula (II).

<化2>
NHCl + NaHSO + HO → NaHSO + NHCl
……(II)
<Chemical 2>
NH2Cl + NaHSO3 + H2O -> NaHSO4 + NH4Cl
…… (II)

このように、モノクロラミンと亜硫酸水素ナトリウムが反応する場合には亜硫酸水素ナトリウムによるモノクロラミンの相殺反応が100%進行した場合であっても、モノクロラミンに対して1:1のモル比の亜硫酸水素ナトリウムが必要となる。
そして、処理対象水の溶存酸素に起因すると推察されるが、実際にはその必要量はさらに多くなり、水系水中の全残留塩素の全量を相殺しうると想定される添加量の6倍の還元剤が必要となってしまう。
In this way, when monochloramine and sodium hydrogen sulfite react, even if the counteracting reaction of monochloramine by sodium hydrogen sulfite proceeds 100%, hydrogen sulfite is added to monochloramine at a molar ratio of 1:1. You need sodium.
And, although it is presumed to be due to the dissolved oxygen in the water to be treated, the required amount is actually even greater, and the reduction is 6 times the addition amount assumed to be able to offset the total amount of all residual chlorine in the water system. You will need a drug.

なお、チオ硫酸塩化合物の添加箇所の、水系の水路の幅が広い場合、チオ硫酸塩化合物の水系水への添加は水系の水路の幅方向の複数箇所に添加することがその添加によるモノクロラミンの相殺効果が高くなるので好ましい。
また、チオ硫酸塩化合物の添加箇所の水系水流れ方向下流にラインミキサ、水系水の流れを部分的に遮る邪魔板や、攪拌機を備えた混合槽などの混合手段を設置すると残留塩素の相殺効果をより確実とすることが可能となるので好ましい。
In addition, when the width of the water channel where the thiosulfate compound is added is wide, the addition of the thiosulfate compound to the water channel may be performed at multiple points in the width direction of the water channel. It is preferable because the canceling effect of
In addition, if a mixing means such as a line mixer, a baffle plate that partially blocks the flow of the water system, or a mixing tank equipped with a stirrer is installed downstream of the addition point of the thiosulfate compound in the water flow direction, the residual chlorine will be offset. It is preferable because it becomes possible to ensure the

本発明においてモノクロラミンおよびチオ硫酸塩化合物の添加は常時連続的に行ってもよいが、モノクロラミンの添加目的に応じて断続的に行うこともできる。 In the present invention, the addition of monochloramine and the thiosulfate compound may be carried out continuously, or may be carried out intermittently depending on the purpose of addition of monochloramine.

以上、本発明について、好ましい実施形態を挙げて説明したが、本発明の水系水の処理方法は、上記実施形態の構成に限定されるものではない。 Although the present invention has been described above with reference to preferred embodiments, the method for treating aqueous water of the present invention is not limited to the configurations of the above embodiments.

当業者は、従来公知の知見に従い、本発明の水系水の処理方法を適宜改変することができる。このような改変によってもなお、本発明の水系水の処理方法の構成を具備する限り、もちろん、本発明の範疇に含まれるものである。 Those skilled in the art can appropriately modify the aqueous water treatment method of the present invention according to conventionally known knowledge. Even with such modification, as long as it has the configuration of the aqueous water treatment method of the present invention, it is of course included in the scope of the present invention.

《実施例1》
調製後1週間経過し、酸素が飽和ないし飽和に近いレベルで溶存していると考えられる純水に、塩素剤としてモノクロラミンを添加して全残留塩素濃度が0.1mg/Lの試験水(15.0℃)を調製した。
<<Example 1>>
One week after preparation, monochloramine was added as a chlorinating agent to pure water that was considered to contain dissolved oxygen at a saturated or near-saturated level, and test water with a total residual chlorine concentration of 0.1 mg/L ( 15.0°C) was prepared.

この試験水1Lを1Lビーカーに採取し、毎分300回転で攪拌しながら試験水中の全残留塩素の全量が前記反応式(I)にしたがってチオ硫酸ナトリウムと反応して相殺しうると想定される量の、0.1mol/Lのチオ硫酸ナトリウム水溶液を添加した。試験水の全残留塩素濃度の経緯を表1に示す。 1 L of this test water is collected in a 1 L beaker and stirred at 300 revolutions per minute. amount of 0.1 mol/L sodium thiosulfate aqueous solution was added. Table 1 shows the history of the total residual chlorine concentration of the test water.

Figure 0007256058000001
Figure 0007256058000001

表1からチオ硫酸ナトリウムを用いた場合、想定される必要量のチオ硫酸ナトリウム水溶液でモノクロラミンによる全残留塩素の全量の相殺が可能であることが判る。 It can be seen from Table 1 that when sodium thiosulfate is used, it is possible to offset the total amount of residual chlorine by monochloramine with the assumed required amount of sodium thiosulfate aqueous solution.

《比較例1》
実施例1と同様に、ただし、チオ硫酸ナトリウム水溶液の代わりに0.1mol/Lの亜硫酸水素ナトリウム水溶液を、試験水中のモノクロラミン全量が前記反応式(II)にしたがって硫酸水素ナトリウムと反応すると想定したときの必要量を添加し、試験水の全残留塩素濃度を測定した。
その結果、試験水の全残留塩素濃度が0.08mg/Lであり、亜硫酸水素ナトリウムによる相殺が不十分であったので、試験水の全残留塩素が不検出となるまで、同量の亜硫酸水素ナトリウム水溶液の添加および全残留塩素濃度の測定を繰り返した。このときの試験水の全残留塩素濃度の経緯を表2に示す。
<<Comparative example 1>>
As in Example 1, except that instead of the sodium thiosulfate aqueous solution, a 0.1 mol/L sodium hydrogensulfite aqueous solution is used, and it is assumed that the total amount of monochloramine in the test water reacts with sodium hydrogensulfate according to the reaction formula (II). The required amount was added when the test water was added, and the total residual chlorine concentration of the test water was measured.
As a result, the total residual chlorine concentration in the test water was 0.08 mg / L, and the offset by sodium hydrogen sulfite was insufficient, so the same amount of hydrogen sulfite was added until the total residual chlorine in the test water was not detected. The addition of aqueous sodium solution and measurement of total residual chlorine concentration were repeated. Table 2 shows the history of the total residual chlorine concentration of the test water at this time.

Figure 0007256058000002
Figure 0007256058000002

表2から全残留塩素の全量を相殺するために、本来想定される量の6倍の亜硫酸水素ナトリウム水溶液が必要であることが判る。 From Table 2, it can be seen that 6 times the amount of the sodium bisulfite aqueous solution originally assumed is required to offset the total amount of residual chlorine.

<実施例2、および、比較例2>
実施例1、および、比較例1と同様に、ただし、純水の代わりに東京湾岸にある工場の海水冷却水系の入口で採取した海水を用いて試験を行った。
<Example 2 and Comparative Example 2>
The test was conducted in the same manner as in Example 1 and Comparative Example 1, except that instead of pure water, seawater sampled at the inlet of the seawater cooling water system of a factory located on the coast of Tokyo Bay was used.

その結果、チオ硫酸ナトリウムを用いた場合には試験水中の全残留塩素の全量を相殺しうると想定される添加量で、全残留塩素の全量を相殺できたが、亜硫酸ナトリウム水溶液を用いた場合には試験水中の全残留塩素の全量を相殺しうると想定される量の6倍量の亜硫酸ナトリウム水溶液が必要であった。 As a result, when sodium thiosulfate was used, the total amount of residual chlorine in the test water could be offset by the addition amount assumed to be able to offset the total amount of residual chlorine, but when using the sodium sulfite aqueous solution required 6 times the amount of aqueous sodium sulfite solution expected to offset the total amount of residual chlorine in the test water.

<実施例3>
東京湾岸にある工場の海水冷却水系で試験を行った。
モノクロラミンは図1にモデル的に示すモノクロラミン生成装置Aを用いて生成した。
<Example 3>
The test was conducted in the seawater cooling water system of a factory located on the Tokyo Bay.
Monochloramine was produced using a monochloramine production apparatus A modeled in FIG.

モノクロラミン生成装置Aにおいて、ボールタップLS制御により一定水量の工業用水を貯留している水タンク10から、ポンプ11によって1時間当たり0.3Lの流量で工業用水を送液経路に送る。
その送液経路で、タンク12内の12質量%の次亜塩素酸ナトリウム水溶液をポンプ13により1時間当たり2.5gの添加量で添加し、ラインミキサ14により攪拌し、次いで、さらにその下流でタンク15内の15質量%の塩化アンモニウム水溶液をポンプ16により1時間当たり1.8gの添加量で添加してモノクロラミンを生成した。
このとき、送液経路内で混合する遊離残留塩素濃度とアンモニウムイオン濃度とのモル比は1:1.2であり、生成したモノクロラミン水溶液の濃度は全残留塩素濃度として1000mg/Lであった。
In the monochloramine generator A, a pump 11 pumps industrial water at a flow rate of 0.3 L per hour from a water tank 10 storing a constant amount of industrial water through ball tap LS control.
In the liquid feeding route, a 12% by mass sodium hypochlorite aqueous solution in the tank 12 is added by the pump 13 at an addition amount of 2.5 g per hour, stirred by the line mixer 14, and then further downstream A 15 mass % ammonium chloride aqueous solution in tank 15 was added by pump 16 at an addition rate of 1.8 g per hour to produce monochloramine.
At this time, the molar ratio of free residual chlorine concentration and ammonium ion concentration mixed in the liquid feeding path was 1:1.2, and the concentration of the produced monochloramine aqueous solution was 1000 mg/L as the total residual chlorine concentration. .

このようにして生成したモノクロラミン溶液を、海水冷却水系を流れる海水に全残留塩素濃度として0.1mg/Lとなるように添加した。 The monochloramine solution thus produced was added to seawater flowing through the seawater cooling water system so that the total residual chlorine concentration was 0.1 mg/L.

この海水冷却水系の海への排出口付近の上流に、海水冷却水の流れ方向順に、第一の塩素濃度計、薬注ポンプ、攪拌のための邪魔板、第二の塩素濃度計を設置し、第一の塩素濃度計によって検出された全残留塩素濃度の全量が前記反応式(I)にしたがってチオ硫酸ナトリウムと反応して相殺しうると想定される必要量の1.2倍の30質量%のチオ硫酸ナトリウム水溶液を供給した。なお、第二の塩素濃度計では、全残留塩素は検出されなかった。 In the upstream of this seawater cooling water system near the discharge port to the sea, install the first chlorine concentration meter, the chemical injection pump, the baffle plate for stirring, and the second chlorine concentration meter in the order of the flow direction of the seawater cooling water. , 30 masses, which is 1.2 times the required amount assumed to be able to offset the total residual chlorine concentration detected by the first chlorine concentration meter by reacting with sodium thiosulfate according to the reaction formula (I) % sodium thiosulfate aqueous solution. No residual chlorine was detected by the second chlorine concentration meter.

また、こののち1年を通じて海水冷却水系へのフジツボ、ヒドロ虫、ホヤ、および、ムラサキイガイ等の貝類、さらに、微生物由来のスライム等の海棲生物の冷却水系への付着を防止することができた。 In addition, it was possible to prevent the attachment of barnacles, hydroids, sea squirts, shellfish such as mussels, and marine organisms such as slime derived from microorganisms to the cooling water system throughout the year. .

A モノクロラミン生成装置
LS ボールタップ
10 水タンク
11 ポンプ
12 タンク
13 ポンプ
14 ラインミキサ
15 タンク
16 ポンプ
A Monochloramine generator LS Ball tap 10 Water tank 11 Pump 12 Tank 13 Pump 14 Line mixer 15 Tank 16 Pump

Claims (4)

最終的にに排出される、モノクロラミン添加対象の海水冷却水系水に対して全残留塩素の濃度が0.01mg/L以上0.15mg/L以下となるようにモノクロラミンを添加する第一工程と、当該モノクロラミンが添加された前記海水冷却水系水に対して、前記海に排出される前に当該モノクロラミンが添加された海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加する第二工程と、をこの順で備えていることを特徴とする生物の海水冷却水系への付着や繁殖の抑制あるいは除去方法。 First , monochloramine is added so that the concentration of total residual chlorine is 0.01 mg / L or more and 0.15 mg / L or less to the seawater cooling water system water to which monochloramine is added, which is finally discharged to the sea . It is assumed that the seawater cooling water system water to which the monochloramine has been added can offset the total amount of all residual chlorine in the seawater cooling water system water to which the monochloramine has been added before being discharged into the sea. and a second step of adding a thiosulfate compound in an amount of 1 to 1.5 times the amount added, in this order . Or how to remove it. 前記海水冷却水系水の全残留塩素濃度、および/または、前記チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、当該全残留塩素濃度に応じて前記チオ硫酸塩化合物の添加量を制御することを特徴とする請求項1に記載の生物の海水冷却水系への付着や繁殖の抑制あるいは除去方法。 The total residual chlorine concentration of the seawater cooling water system and/or the total residual chlorine concentration after the addition of the thiosulfate compound is measured, and the amount of the thiosulfate compound added is controlled according to the total residual chlorine concentration. 2. The method for suppressing or removing organisms from adhering to or breeding in a seawater cooling water system according to claim 1, characterized by: モノクロラミンを全残留塩素が0.01mg/L以上0.15mg/L以下の濃度で含有し、かつ、最終的にに排出される、海水冷却水系水に対して、前記海水冷却水系水における全残留塩素の全量を相殺しうると想定される添加量の1倍以上1.5倍以下のチオ硫酸塩化合物を添加することを特徴とする海水冷却水系水の処理方法。 For seawater cooling water system water containing monochloramine at a concentration of 0.01 mg / L or more and 0.15 mg / L or less total residual chlorine and finally discharged to the sea , in the seawater cooling water system water A method for treating seawater cooling system water, characterized by adding a thiosulfate compound in an amount of 1 to 1.5 times the amount assumed to be able to offset the total amount of residual chlorine. 前記海水冷却水系水の全残留塩素濃度、および/または、前記チオ硫酸塩化合物の添加後の全残留塩素濃度を測定し、当該全残留塩素濃度に応じて前記チオ硫酸塩化合物の添加量を制御することを特徴とする請求項3に記載の海水冷却水系水の処理方法。 The total residual chlorine concentration of the seawater cooling water system and/or the total residual chlorine concentration after the addition of the thiosulfate compound is measured, and the amount of the thiosulfate compound added is controlled according to the total residual chlorine concentration. The method for treating seawater cooling water system water according to claim 3, characterized in that:
JP2019069442A 2019-03-29 2019-03-29 Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water Active JP7256058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069442A JP7256058B2 (en) 2019-03-29 2019-03-29 Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069442A JP7256058B2 (en) 2019-03-29 2019-03-29 Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water

Publications (2)

Publication Number Publication Date
JP2020163356A JP2020163356A (en) 2020-10-08
JP7256058B2 true JP7256058B2 (en) 2023-04-11

Family

ID=72715468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069442A Active JP7256058B2 (en) 2019-03-29 2019-03-29 Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water

Country Status (1)

Country Link
JP (1) JP7256058B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028569A (en) 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method
WO2011125504A1 (en) 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
JP2016215179A (en) 2015-05-26 2016-12-22 株式会社日立製作所 Desalination system using reverse osmosis membrane, and operation method therefor
JP2017186294A (en) 2016-04-08 2017-10-12 アクアス株式会社 Microorganism inhibitor composition and microorganism inhibition method
WO2018116842A1 (en) 2016-12-20 2018-06-28 株式会社クラレ Porous carbon material, method for producing same and use of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028569A (en) 2007-07-24 2009-02-12 Jfe Engineering Kk Ballast water treatment apparatus and ballast water treatment method
WO2011125504A1 (en) 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
JP2016215179A (en) 2015-05-26 2016-12-22 株式会社日立製作所 Desalination system using reverse osmosis membrane, and operation method therefor
JP2017186294A (en) 2016-04-08 2017-10-12 アクアス株式会社 Microorganism inhibitor composition and microorganism inhibition method
WO2018116842A1 (en) 2016-12-20 2018-06-28 株式会社クラレ Porous carbon material, method for producing same and use of same

Also Published As

Publication number Publication date
JP2020163356A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
KR102061679B1 (en) Slime inhibition method for separation membrane
JP6412639B2 (en) Ammonia nitrogen-containing wastewater treatment method and ammonia nitrogen decomposing agent
CA2418012C (en) Method and composition for cleaning and maintaining water delivery systems
AU2010289926B2 (en) Method for producing a stable oxidizing biocide
JP6534524B2 (en) Filtration treatment system and filtration treatment method
KR102119234B1 (en) How to treat cyanide-containing wastewater
CN107635652A (en) The method of modifying of reverse osmosis membrane, reverse osmosis membrane, the operation method of the processing method of boron water and seperation film
WO2019208405A1 (en) Method for treating reverse osmosis membrane, method for suppressing aqueous biofouling, and apparatus for suppressing aqueous biofouling
JP6107985B2 (en) Reverse osmosis membrane device pretreatment method and water treatment device
CN108137358A (en) The processing method of the waste water containing cyanide complex and the inorganic agent for this method
JP5879596B1 (en) Method for preventing adhesion of marine organisms and adhesion preventive agent used therefor
JP7256058B2 (en) Method for suppressing or removing adherence or breeding of organisms to seawater cooling water system, and method for treating seawater cooling water system water
JP6506987B2 (en) Method of reforming reverse osmosis membrane, and method of treating boron-containing water
JP6584948B2 (en) Marine organism adhesion control method
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JP6279295B2 (en) Ultrapure water production system and ultrapure water production method
JP6578561B2 (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
JP2018030104A5 (en)
JP6565966B2 (en) Water treatment method
JP6339985B2 (en) Method for reducing chlorine dioxide concentration in water and water treatment agent for reducing chlorine dioxide concentration in water
WO2013065863A1 (en) Treating agent for ship ballast water and method for treating ship ballast water using same
WO2016194443A1 (en) Method for pretreating reverse osmosis membrane device, and device for treating water
JP2018122292A (en) Method for preventing adhesion of marine organisms and antiadhesive agent used therefor
JP2019076864A (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2023120351A1 (en) Method for suppressing microorganism contamination in water system

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20220106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220304

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230330

R150 Certificate of patent or registration of utility model

Ref document number: 7256058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150