JP7255578B2 - Exhaust gas purification system and control method for exhaust gas purification system - Google Patents

Exhaust gas purification system and control method for exhaust gas purification system Download PDF

Info

Publication number
JP7255578B2
JP7255578B2 JP2020166762A JP2020166762A JP7255578B2 JP 7255578 B2 JP7255578 B2 JP 7255578B2 JP 2020166762 A JP2020166762 A JP 2020166762A JP 2020166762 A JP2020166762 A JP 2020166762A JP 7255578 B2 JP7255578 B2 JP 7255578B2
Authority
JP
Japan
Prior art keywords
filter
temperature
catalyst
control
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020166762A
Other languages
Japanese (ja)
Other versions
JP2022059186A (en
Inventor
智博 高塚
宗昌 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020166762A priority Critical patent/JP7255578B2/en
Publication of JP2022059186A publication Critical patent/JP2022059186A/en
Application granted granted Critical
Publication of JP7255578B2 publication Critical patent/JP7255578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本開示は、排気浄化システムおよび排気浄化システムの制御方法に関する。 The present disclosure relates to an exhaust gas purification system and a control method for the exhaust gas purification system.

エンジン(内燃機関)の排気に含まれる粒子状物質を捕集するフィルタ装置を電気ヒータにより昇温するものが提案されている(例えば、特許文献1参照)。また、排気に含まれる窒素酸化物を浄化するNOx浄化触媒装置を電気ヒータにより昇温するものも提案されている(例えば、特許文献2参照)。 2. Description of the Related Art There has been proposed an electric heater that raises the temperature of a filter device that collects particulate matter contained in exhaust gas from an engine (internal combustion engine) (see, for example, Patent Document 1). There has also been proposed an electric heater that raises the temperature of a NOx purification catalyst device that purifies nitrogen oxides contained in exhaust gas (see, for example, Patent Document 2).

特開2005―090450号公報Japanese Unexamined Patent Application Publication No. 2005-090450 実開平5-69315号公報Japanese Utility Model Laid-Open No. 5-69315

上記の特許文献1に記載のフィルタ装置を昇温する電気ヒータと、上記の特許文献2に記載のNOx浄化触媒装置を昇温する電気ヒータとの二つのヒータを用いることで、フィルタ装置およびNOx浄化触媒装置の両方の装置の温度を最適な状態に維持可能になる。 By using two heaters, an electric heater for raising the temperature of the filter device described in Patent Document 1 and an electric heater for raising the temperature of the NOx purification catalyst device described in Patent Document 2, the filter device and the NOx It becomes possible to maintain the temperature of both devices of the purification catalyst device in an optimum state.

しかしながら、電気ヒータは昇温対象となる装置の温度に基づいてその駆動が制御されている。それ故、昇温対象となる装置の温度によっては二つの電気ヒータが同時に駆動することになり、消費電力が増大する。この消費電力の増大は他の電力駆動する装置の駆動に影響を与えるおそれがある。 However, the electric heater is controlled based on the temperature of the device whose temperature is to be raised. Therefore, depending on the temperature of the device to be heated, the two electric heaters will be driven at the same time, increasing power consumption. This increase in power consumption may affect the driving of other power-driven devices.

そこで、二つの電気ヒータで使用可能な電力量に制限を掛ける構成が考えられる。しかし、その構成では、フィルタ装置およびNOx浄化触媒装置のうちの一方の装置を優先して昇温させたい場合に、二つの電気ヒータが同時に駆動している状況では昇温を優先したい装置の昇温が電力量の制限により遅くなるという問題が生じる。 Therefore, it is conceivable to limit the amount of electric power that can be used by the two electric heaters. However, in this configuration, when it is desired to preferentially raise the temperature of one of the filter device and the NOx purifying catalyst device, it is necessary to raise the temperature of the device in which the two electric heaters are driven at the same time. The problem arises that the heating is slowed down by power budget limitations.

このように、上記の特許文献1に記載の装置と上記の特許文献2に記載の装置とを単純に利用しても、フィルタ装置およびNOx浄化触媒装置の両方の装置の温度を適切な状態に維持する有効な解決策とはならない。 Thus, even if the device described in Patent Document 1 and the device described in Patent Document 2 are simply used, the temperatures of both the filter device and the NOx purification catalyst device can be adjusted to appropriate states. It is not an effective solution to maintain.

本開示の目的は、フィルタ装置およびNOx浄化触媒装置の昇温に要する電力消費量を抑制しつつ、それらの装置をそれぞれ最適な温度に維持する排気浄化システムおよび排気浄化システムの制御方法を提供することにある。 An object of the present disclosure is to provide an exhaust gas purification system and a control method for the exhaust gas purification system that maintains the respective optimum temperatures of the filter device and the NOx purification catalyst device while suppressing the amount of power consumption required to raise the temperature of these devices. That's what it is.

上記の目的を達成するための本発明の態様の排気浄化システムは、内燃機関の排気が通過する排気通路に、排気の流れで上流側より順に配置されたフィルタ装置およびNOx浄化触媒装置と、前記フィルタ装置を昇温するフィルタ用ヒータと、前記NOx浄化触媒装置を昇温する触媒用ヒータと、を備えて構成される排気浄化システムにおいて、前記内燃機関の運転状態を取得する運転状態取得装置と、前記フィルタ用ヒータおよび前記触媒用ヒータを制御する制御装置と、を備えて、前記制御装置は、前記運転状態取得装置が取得した前記運転状態に基づいて、前記フィルタ用ヒータが駆動するフィルタ昇温制御の優先度が前記触媒用ヒータが駆動する触媒昇温制御の優先度よりも高い状態と前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態とを切り換える制御を行い、前記フィルタ昇温制御と前記触媒昇温制御との両方の制御が行われる条件では優先度の高い方の制御が行われる構成であることを特徴とする。 An exhaust purification system according to an aspect of the present invention for achieving the above object comprises a filter device and a NOx purification catalyst device arranged in order from the upstream side in the flow of exhaust gas in an exhaust passage through which the exhaust gas of an internal combustion engine passes; an operating state acquiring device for acquiring an operating state of the internal combustion engine in an exhaust purification system comprising a filter heater for raising the temperature of a filter device and a catalyst heater for raising the temperature of the NOx purification catalyst device; and a control device for controlling the filter heater and the catalyst heater, wherein the control device controls the filter heater driven by the filter heater based on the operating state acquired by the operating state acquisition device. Control for switching between a state in which the priority of temperature control is higher than the priority of catalyst temperature increase control driven by the catalyst heater and a state in which the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control. , and under the condition that both the filter temperature increase control and the catalyst temperature increase control are performed, the control with the higher priority is performed.

また、上記の目的を達成するための本発明の態様の排気浄化システムの制御方法は、内燃機関の排気が通過する排気通路に、排気の流れで上流側より順に配置されたフィルタ装置およびNOx浄化触媒装置と、前記フィルタ装置を昇温するフィルタ用ヒータと、前記NOx浄化触媒装置を昇温する触媒用ヒータと、を備えて構成される排気浄化システムの制御方法において、前記内燃機関の運転状態を取得するステップと、取得した前記運転状態に基づいて、前記フィルタ用ヒータが駆動するフィルタ昇温制御の優先度が前記触媒用ヒータが駆動する触媒昇温制御の優先度よりも高い状態と前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態とのいずれかに切り換えるステップと、前記切り換えを行った後に、前記フィルタ昇温制御と前記触媒昇温制御との両方の制御が行われる条件では優先度の高い方の制御を行うステップと、を有することを特徴とする方法である。 Further, a control method for an exhaust gas purification system according to an aspect of the present invention for achieving the above objects includes a filter device and a NOx purification system arranged in an exhaust passage through which exhaust gas of an internal combustion engine passes, in order from the upstream side in the flow of exhaust gas. A control method for an exhaust purification system comprising a catalyst device, a filter heater for raising the temperature of the filter device, and a catalyst heater for raising the temperature of the NOx purification catalyst device, wherein the operating state of the internal combustion engine. a state in which priority of filter temperature increase control driven by the filter heater is higher than priority of catalyst temperature increase control driven by the catalyst heater, based on the acquired operating state; a step of switching to a state in which the priority of catalyst temperature increase control is higher than the priority of said filter temperature increase control; and after performing said switching, performing both said filter temperature increase control and said catalyst temperature increase control. and performing the control with the higher priority under the condition that the control of the above is performed.

本開示によれば、内燃機関の運転状態に応じて昇温を優先すべき装置に対してヒータによる昇温を行うことで、フィルタ装置およびNOx浄化触媒装置の昇温に要する電力消費量を抑制しつつ、それらの装置をそれぞれ最適な温度に維持することができる。 According to the present disclosure, the power consumption required to raise the temperature of the filter device and the NOx purification catalyst device is suppressed by raising the temperature of the device whose temperature should be prioritized according to the operating state of the internal combustion engine. while maintaining each of these devices at the optimum temperature.

本発明の実施形態の排気浄化システムを例示する図である。1 is a diagram illustrating an exhaust purification system according to an embodiment of the invention; FIG. 優先度を切り換える制御を表す制御フローである。It is a control flow showing control which switches a priority. フィルタ昇温制御を表す制御フローである。It is a control flow showing filter temperature raising control. 図3に連なる制御フローである。FIG. 4 is a control flow continuing from FIG. 3; FIG. 触媒昇温制御を表す制御フローである。4 is a control flow showing catalyst temperature increase control;

以下、本開示の実施形態の排気浄化システム1について、図面を参照しながら説明する。 Hereinafter, an exhaust purification system 1 according to an embodiment of the present disclosure will be described with reference to the drawings.

本実施形態の排気浄化システム1では、図1に例示するように、エンジン(内燃機関)2の排気通路3に、排気Gの流れで上流側より順に、酸化触媒装置4、フィルタ装置5、選択還元型触媒装置(NOx浄化触媒装置)6が配置されている。 In the exhaust gas purification system 1 of the present embodiment, as illustrated in FIG. A reduction type catalyst device (NOx purification catalyst device) 6 is arranged.

エンジン2は、複数(本実施形態では4つ)の気筒2aの各々の内部で新気と燃料Fの混合燃焼により動力を発生させる装置である。燃料Fは、各気筒2aの内部に配置された燃料噴射装置2bより供給される。エンジン2の動力は、主に、エンジン2を内部に備えた車両の走行に用いられる。排気通路3は、各気筒2aに排気マニホールドを介して接続されて、各気筒2aの内部での混合燃焼により発生した排気Gが通過する通路である。排気通路3は大気に連通されて、排気Gは大気に排出される。 The engine 2 is a device that generates power by mixed combustion of fresh air and fuel F inside each of a plurality of (four in this embodiment) cylinders 2a. Fuel F is supplied from a fuel injection device 2b arranged inside each cylinder 2a. The power of the engine 2 is mainly used for running the vehicle having the engine 2 therein. The exhaust passage 3 is connected to each cylinder 2a via an exhaust manifold, and is a passage through which exhaust gas G generated by mixed combustion inside each cylinder 2a passes. The exhaust passage 3 communicates with the atmosphere, and the exhaust gas G is discharged to the atmosphere.

酸化触媒装置4は、内部に担持された酸化触媒の作用により排気Gに含まれる炭化水素や一酸化炭素を酸化処理する。フィルタ装置5は、排気Gに含まれる粒子状物質(PM:Particulate Matter)を捕集する。選択還元型触媒装置6は、内部に担持された選択還元型触媒(NOx浄化触媒)の作用により排気Gに含まれるNOxをアンモニアで還元処理する。アンモニアは、選択還元型触媒装置6の前段の排気通路3に配置された尿素水噴射装置6aより噴射された尿素水Uを排気Gの熱量で加水分解して得られる。なお、本実施形態では、選択還元型触媒装置6はNOx浄化触媒装置の一例である。 The oxidation catalyst device 4 oxidizes hydrocarbons and carbon monoxide contained in the exhaust gas G by the action of an oxidation catalyst carried inside. The filter device 5 collects particulate matter (PM) contained in the exhaust gas G. As shown in FIG. The selective reduction catalyst device 6 reduces NOx contained in the exhaust gas G with ammonia by the action of a selective reduction catalyst (NOx purification catalyst) carried inside. Ammonia is obtained by hydrolyzing the urea water U injected from the urea water injection device 6 a arranged in the exhaust passage 3 upstream of the selective reduction catalyst device 6 with the heat of the exhaust G. Note that, in the present embodiment, the selective reduction catalyst device 6 is an example of a NOx purification catalyst device.

排気浄化システム1は、酸化触媒装置4およびフィルタ装置5の間の排気通路3に配置されたフィルタ用ヒータ7と、フィルタ装置5および選択還元型触媒装置6の間の排気通路3に配置された触媒用ヒータ8とを備えて構成されている。フィルタ用ヒータ7はフィルタ装置5を昇温する機能を有する。触媒用ヒータ8は選択還元型触媒装置6を昇温する機能を有する。フィルタ用ヒータ7および触媒用ヒータ8はともにバッテリ9に電気的に接続されている。フィルタ用ヒータ7および触媒用ヒータ8はオンオフ式の電気ヒータで構成され、それぞれの駆動時の消費電力量が略一定である。フィルタ用ヒータ7および触媒用ヒータ8のそれぞれの消費電力量は、例えば、バッテリ9の容量やバッテリ9に接続される他の発電機(図示しない)の使用状況に応じて設定される。 The exhaust purification system 1 includes a filter heater 7 arranged in the exhaust passage 3 between the oxidation catalyst device 4 and the filter device 5, and arranged in the exhaust passage 3 between the filter device 5 and the selective reduction catalyst device 6. Catalyst heater 8 is provided. The filter heater 7 has a function of raising the temperature of the filter device 5 . The catalyst heater 8 has a function of raising the temperature of the selective reduction catalyst device 6 . Both filter heater 7 and catalyst heater 8 are electrically connected to battery 9 . The filter heater 7 and the catalyst heater 8 are composed of on-off electric heaters, and their power consumption during driving is substantially constant. The power consumption of each of the filter heater 7 and the catalyst heater 8 is set according to, for example, the capacity of the battery 9 and the usage status of another generator (not shown) connected to the battery 9 .

なお、フィルタ用ヒータ7はフィルタ装置5を間接的にまたは直接的に昇温可能であればよく、フィルタ装置5より上流側で、酸化触媒装置4の上流側の排気通路3に配置されてもよく、フィルタ装置5と一体化してもよい。また、触媒用ヒータ8も同様に選択還元型触媒装置6を間接的にまたは直接的に昇温可能であればよく、選択還元型触媒装置6と一体化してもよい
排気浄化システム1は、フィルタ用温度センサ(フィルタ用温度検出装置)10、触媒用温度センサ(触媒用温度検出装置)11、前後差圧センサ12を備えている。
Note that the filter heater 7 may be arranged in the exhaust passage 3 on the upstream side of the filter device 5 and on the upstream side of the oxidation catalyst device 4 as long as it can indirectly or directly raise the temperature of the filter device 5 . Alternatively, it may be integrated with the filter device 5 . Similarly, the catalyst heater 8 may also indirectly or directly raise the temperature of the selective reduction catalyst device 6, and may be integrated with the selective reduction catalyst device 6. The exhaust purification system 1 includes a filter A temperature sensor (filter temperature detection device) 10 , a catalyst temperature sensor (catalyst temperature detection device) 11 , and a front-rear differential pressure sensor 12 are provided.

フィルタ用温度センサ10は、フィルタ装置5の前段の排気通路3またはフィルタ装置5の内部に配置されて、フィルタ装置5のフィルタ温度Tfを検出する。触媒用温度センサ11は、選択還元型触媒装置6の前段の排気通路3または選択還元型触媒装置6の内部に配置されて、選択還元型触媒装置6の触媒温度Tnを検出する。前後差圧センサ12は、フィルタ装置5の近傍の排気通路3に配置されて、フィルタ装置5の前後を通過する排気Gの差圧を検出する。 The filter temperature sensor 10 is arranged in the exhaust passage 3 preceding the filter device 5 or inside the filter device 5 to detect the filter temperature Tf of the filter device 5 . The catalyst temperature sensor 11 is arranged in the exhaust passage 3 preceding the selective reduction catalyst device 6 or inside the selective reduction catalyst device 6 to detect the catalyst temperature Tn of the selective reduction catalyst device 6 . The front-rear differential pressure sensor 12 is arranged in the exhaust passage 3 in the vicinity of the filter device 5 and detects the differential pressure of the exhaust gas G passing through the front and back of the filter device 5 .

排気浄化システム1は、制御装置13を備えている。制御装置13は、各種情報処理を行うCPU(Central Processing Unit)、その各種情報処理を行うために用いられるプログラムや情報処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成されるハードウェアである。制御装置13は、各種センサ10~12、燃料噴射装置2b、尿素水噴射装置6a、フィルタ用ヒータ7、および、触媒用ヒータ8等に電気的に接続されている。 The exhaust purification system 1 has a control device 13 . The control device 13 is hardware composed of a CPU (Central Processing Unit) that performs various types of information processing, an internal storage device capable of reading and writing programs and information processing results used for performing the various types of information processing, and various interfaces. is. The control device 13 is electrically connected to various sensors 10 to 12, the fuel injection device 2b, the urea water injection device 6a, the filter heater 7, the catalyst heater 8, and the like.

制御装置13は、再生制御とフィルタ昇温制御と触媒昇温制御とフィルタ昇温制御および触媒昇温制御の優先度を切り換える制御とを行う。 The control device 13 performs regeneration control, filter temperature increase control, catalyst temperature increase control, filter temperature increase control, and catalyst temperature increase control and control for switching the priority.

再生制御は前後差圧センサ12が検出した差圧に基づいて制御の開始と終了とが切り換わる制御である。再生制御は、燃料噴射装置2bからのポスト噴射により酸化触媒装置4に未燃燃料を供給し、酸化触媒装置4での未燃燃料の酸化発熱反応によりフィルタ装置5に流入する排気Gの温度を昇温し、フィルタ装置5を捕集した粒子状物質が燃焼可能な温度まで昇温する制御である。粒子状物質が燃焼可能な温度としては600度が例示される。なお、再生制御は、燃料噴射装置2bのポスト噴射の代わりに酸化触媒装置4の上流側の排気通路3に配置された通路用燃料噴射装置から未燃燃料を噴射させてもよい。 The regeneration control is control in which the start and end of control are switched based on the differential pressure detected by the front-rear differential pressure sensor 12 . In the regeneration control, unburned fuel is supplied to the oxidation catalyst device 4 by post-injection from the fuel injection device 2b, and the temperature of the exhaust gas G flowing into the filter device 5 is reduced by the oxidation exothermic reaction of the unburned fuel in the oxidation catalyst device 4. This control is to raise the temperature to a temperature at which the particulate matter collected by the filter device 5 can be combusted. 600 degrees is exemplified as a temperature at which particulate matter can be combusted. The regeneration control may be performed by injecting unburned fuel from a passage fuel injection device arranged in the exhaust passage 3 on the upstream side of the oxidation catalyst device 4 instead of the post injection of the fuel injection device 2b.

フィルタ昇温制御はフィルタ用温度センサ10が検出したフィルタ温度Tfと予め設定されたフィルタ温度閾値との比較により制御の開始と終了とが切り換わる制御である。フィルタ温度閾値はフィルタ用上限温度Tfaとフィルタ用下限温度Tfbとを有する。フィルタ昇温制御は、フィルタ温度Tfに基づいてフィルタ用ヒータ7を駆動してフィルタ温度Tfをフィルタ用下限温度Tfbとフィルタ用上限温度Tfaとの間の温度範囲に収める制御である。 The filter temperature increase control is control in which the start and end of control are switched by comparing the filter temperature Tf detected by the filter temperature sensor 10 with a preset filter temperature threshold. The filter temperature threshold has a filter upper limit temperature Tfa and a filter lower limit temperature Tfb. The filter temperature increase control is control to drive the filter heater 7 based on the filter temperature Tf to keep the filter temperature Tf within the temperature range between the lower limit filter temperature Tfb and the upper limit filter temperature Tfa.

また、フィルタ昇温制御は、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態である場合に、フィルタ用ヒータ7を常時、駆動する制御である。本開示において、常時、駆動とは、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態から、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも低い状態に切り換わるまで、フィルタ用ヒータ7の駆動を継続するという意味である。 Further, the filter temperature increase control is control for constantly driving the filter heater 7 when the priority of the filter temperature increase control is higher than the priority of the catalyst temperature increase control. In the present disclosure, "always driving" refers to a state in which the priority of filter temperature increase control is higher than that of catalyst temperature increase control to a state in which the priority of filter temperature increase control is lower than that of catalyst temperature increase control. This means that the driving of the filter heater 7 is continued until switching to .

フィルタ用上限温度Tfaおよびフィルタ用下限温度Tfbのそれぞれは予め実験、試験、あるいはシミュレーションにより設定される。フィルタ用上限温度Tfaはフィルタ用ヒータ7の駆動によるフィルタ装置5の昇温の上限値であり、フィルタ用ヒータ7の電力消費量に比例する。フィルタ用上限温度Tfaはフィルタ用ヒータ7の電力消費量を大きくすることで、フィルタ装置5に捕集された粒子状物質が燃焼可能な温度に設定することも可能である。ただし、フィルタ用上限温度Tfaをそのような温度に設定すると電力消費量が過大になる。そこで、本実施形態のフィルタ用上限温度Tfaはフィルタ装置5の再生制御における昇温を補助可能でかつフィルタ装置5が十分に保温されたことを判定可能に設定される。本開示において、再生制御における昇温を補助可能とは、再生制御においてフィルタ装置5の昇温の全てを酸化触媒装置4の未燃燃料の酸化反応で賄うのではなく、フィルタ用上限温度Tfaに至るまではフィルタ用ヒータ7による昇温で補助することである。また、本開示において、フィルタ装置5が十分に保温された状態は、エンジン2から排気通路3に排出された温度の低い排気Gがフィルタ装置5を通過して選択還元型触媒装置6に流入しても後述する触媒用下限温度Tnbを下回らない状態である。つまり、保温されたフィルタ装置5によりフィルタ装置5を通過する温度の低い排気Gを昇温して、選択還元型触媒装置6の温度を触媒用下限温度Tnb以上に維持可能な状態である。フィルタ用下限温度Tfbはフィルタ装置5が保温されていないことを判定可能に設定される。本開示において、フィルタ装置5が保温されていない状態は、エンジン2から排気通路3に排出された温度の低い排気Gがフィルタ装置5を通過して選択還元型触媒装置6に流入すると触媒用下限温度Tnbを下回る状態である。 Each of the filter upper limit temperature Tfa and the filter lower limit temperature Tfb is set in advance by experiments, tests, or simulations. The filter upper limit temperature Tfa is the upper limit of temperature rise of the filter device 5 by driving the filter heater 7 and is proportional to the power consumption of the filter heater 7 . By increasing the power consumption of the filter heater 7, the filter upper limit temperature Tfa can be set to a temperature at which the particulate matter collected by the filter device 5 can be combusted. However, if the filter upper limit temperature Tfa is set to such a temperature, power consumption becomes excessive. Therefore, the filter upper limit temperature Tfa of the present embodiment is set so as to be able to assist the temperature rise in the regeneration control of the filter device 5 and to determine whether the filter device 5 is sufficiently kept warm. In the present disclosure, the ability to assist the temperature rise in regeneration control means that the entire temperature rise of the filter device 5 in the regeneration control is not covered by the oxidation reaction of the unburned fuel in the oxidation catalyst device 4, but the filter upper limit temperature Tfa. Until then, the heating is assisted by the temperature rise by the heater 7 for the filter. In the present disclosure, when the filter device 5 is sufficiently insulated, the low-temperature exhaust G discharged from the engine 2 into the exhaust passage 3 passes through the filter device 5 and flows into the selective catalytic reduction device 6. However, the temperature does not fall below the lower limit temperature Tnb for catalyst, which will be described later. In other words, the temperature of the low-temperature exhaust gas G passing through the filter device 5 is raised by the heat-retained filter device 5, and the temperature of the selective reduction catalyst device 6 can be maintained at or above the lower limit temperature Tnb for the catalyst. The filter lower limit temperature Tfb is set so that it can be determined that the filter device 5 is not kept warm. In the present disclosure, when the filter device 5 is not insulated, the low-temperature exhaust gas G discharged from the engine 2 into the exhaust passage 3 passes through the filter device 5 and flows into the selective catalytic reduction catalyst device 6. It is in a state below the temperature Tnb.

触媒昇温制御は触媒用温度センサ11が検出した触媒温度Tnと予め設定された触媒温度閾値との比較により制御の開始と終了とが切り換わる制御である。触媒温度閾値は触媒用上限温度Tnaと触媒用下限温度Tnbとを有する。触媒昇温制御は、検出した触媒温度Tnに基づいて触媒用ヒータ8を駆動して触媒温度Tnを触媒用下限温度Tnbと触媒用上限温度Tnaとの間の温度範囲に収める制御である。 The catalyst temperature increase control is a control in which the start and end of control are switched by comparing the catalyst temperature Tn detected by the catalyst temperature sensor 11 with a preset catalyst temperature threshold value. The catalyst temperature threshold has a catalyst upper limit temperature Tna and a catalyst lower limit temperature Tnb. The catalyst temperature increase control is a control that drives the catalyst heater 8 based on the detected catalyst temperature Tn to keep the catalyst temperature Tn within the temperature range between the catalyst lower limit temperature Tnb and the catalyst upper limit temperature Tna.

触媒用上限温度Tnaおよび触媒用下限温度Tnbのそれぞれは選択還元型触媒装置6の触媒が活性化する活性化温度に基づいて、予め実験、試験、あるいはシミュレーションにより設定される。本開示において、活性化温度とは選択還元型触媒装置6の触媒が活性化して、所望の浄化率を得られる温度帯であり、尿素水噴射装置6aから噴射された尿素水Uがアンモニアに十分に加水分解される温度帯でもある。活性化温度としては200度~300度の範囲が例示される。なお、選択還元型触媒装置6において、活性化温度よりも高い温度で浄化率が低下する温度がある。触媒用下限温度Tnbは活性化温度の下限値よりも高い温度に設定される。触媒用上限温度Tnaは触媒用下限温度Tnbよりも高く、浄化率が低下する温度よりも低い温度に設定される。触媒用上限温度Tnaは活性化温度の範囲内の温度に設定されることがより望ましい。 Each of the catalyst upper limit temperature Tna and the catalyst lower limit temperature Tnb is set in advance by experiment, test, or simulation based on the activation temperature at which the catalyst of the selective catalytic reduction device 6 is activated. In the present disclosure, the activation temperature is a temperature range in which the catalyst of the selective reduction catalyst device 6 is activated and a desired purification rate is obtained. It is also the temperature zone where it is hydrolyzed to A range of 200 to 300 degrees is exemplified as the activation temperature. In the selective reduction catalyst device 6, there is a temperature higher than the activation temperature at which the purification rate decreases. The catalyst lower limit temperature Tnb is set to a temperature higher than the lower limit of the activation temperature. The catalyst upper limit temperature Tna is set to a temperature higher than the catalyst lower limit temperature Tnb and lower than the temperature at which the purification rate decreases. More preferably, the catalyst upper limit temperature Tna is set to a temperature within the activation temperature range.

フィルタ昇温制御および触媒用昇温制御の優先度を切り換える制御は、エンジン2の運転状態に基づいてフィルタ用ヒータ7と触媒用ヒータ8のいずれの駆動を優先するかを切り換える制御である。本開示において、エンジン2の運転状態とは、冷間運転状態、フィルタ再生状態、それ以外の状態の三つの状態である。冷間運転状態はエンジン2の各部の温度が雰囲気温度と同等あるいはそれ以下の状態であり、エンジン2の冷間始動が例示される。フィルタ再生状態はフィルタ装置5で捕集した粒子状物質を燃焼除去する再生制御を行っている状態である。本実施形態で、優先度を切り換えるエンジン2の運転状態は、フィルタ再生状態とフィルタ再生状態以外の状態であり、運転状態取得装置として前後差圧センサ12を用いる。なお、冷間運転状態を判定する場合は、上記のセンサに加えて、冷間運転状態を判定可能なセンサを追加する。このセンサとしてはエンジン2の冷却水の水温を取得する水温センサ、エンジン2の潤滑油の油温を取得する油温センサが例示され、それらの取得した温度が予め設定した閾値を下回る場合に冷間運転状態と判定する。 The control for switching the priority between the filter temperature increase control and the catalyst temperature increase control is control for switching which of the filter heater 7 and the catalyst heater 8 should be driven based on the operating state of the engine 2 . In the present disclosure, the operating state of the engine 2 includes three states: a cold operating state, a filter regeneration state, and other states. The cold operating state is a state in which the temperature of each part of the engine 2 is equal to or lower than the ambient temperature, and cold start of the engine 2 is exemplified. The filter regeneration state is a state in which regeneration control is performed to burn and remove the particulate matter collected by the filter device 5 . In this embodiment, the operating state of the engine 2 for which the priority is switched is the filter regeneration state and a state other than the filter regeneration state, and the differential pressure sensor 12 is used as the operating state acquisition device. When determining the cold running state, in addition to the above sensors, a sensor capable of determining the cold running state is added. Examples of this sensor include a water temperature sensor that acquires the water temperature of the cooling water of the engine 2 and an oil temperature sensor that acquires the oil temperature of the lubricating oil of the engine 2. It is determined that the vehicle is in the intermittent operation state.

この切り換える制御は、エンジン2の運転状態がフィルタ再生状態と判定した場合に、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態に切り換え、エンジン2の運転状態がフィルタ再生状態以外の状態と判定した場合に触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高い状態に切り換える。 In this switching control, when it is determined that the operating state of the engine 2 is in the filter regeneration state, the priority of the filter temperature increase control is switched to a higher priority than the catalyst temperature increase control. If it is determined to be in a state other than the state, the priority of the catalyst temperature increase control is switched to a state higher than the priority of the filter temperature increase control.

切り換える制御が優先度を切り換えて、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態の場合に、フィルタ昇温制御が行われているときは触媒昇温制御の開始が禁止される。また、触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高い状態の場合に、触媒昇温制御が行われているときはフィルタ昇温制御の開始が禁止される。なお、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態の場合に、フィルタ昇温制御が行われていないときは触媒昇温制御の開始の禁止が解除される。また、触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高い状態の場合に、触媒昇温制御が行われていないときはフィルタ昇温制御の開始の禁止が解除される。 If the priority of the control to be switched is switched and the priority of the filter temperature rise control is higher than the priority of the catalyst temperature rise control, the catalyst temperature rise control will not start while the filter temperature rise control is being performed. It is forbidden. Further, when the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control, the start of the filter temperature increase control is prohibited while the catalyst temperature increase control is being performed. When the priority of the filter temperature increase control is higher than the priority of the catalyst temperature increase control and the filter temperature increase control is not being performed, the prohibition of starting the catalyst temperature increase control is cancelled. Further, when the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control, the prohibition of starting the filter temperature increase control is canceled when the catalyst temperature increase control is not performed.

図2~図5に例示するように、本実施形態の排気浄化システム1の制御方法はそれぞれが独立した制御であり、それぞれが所定の周期ごとに繰り返される。なお、再生制御については周知技術でありその説明を省略する。 As illustrated in FIGS. 2 to 5, the control methods of the exhaust purification system 1 of the present embodiment are independent controls, and are repeated at predetermined intervals. It should be noted that the reproduction control is a well-known technique, and the explanation thereof will be omitted.

本実施形態において、優先度の高低、各制御の開始および終了をそれぞれフラグにより判定するものとする。具体的に、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態に切り換わったときに第一フラグF1が立ち(F1=1)、触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高い状態に切り換わったときに第一フラグF1が降ろされる(F1=0)。また、フィルタ昇温制御が開始したときに第二フラグF2が立ち(F2=1)、フィルタ昇温制御が終了したときに第二フラグF2が降ろされる(F2=0)。また、触媒昇温制御が開始したときに第三フラグF3が立ち(F3=1)、触媒昇温制御が終了したときに第三フラグF3が降ろされる(F3=0)。 In this embodiment, flags are used to determine the level of priority and the start and end of each control. Specifically, when the priority of the filter temperature increase control is switched to a higher priority than the catalyst temperature increase control, the first flag F1 is set (F1=1), and the priority of the catalyst temperature increase control is set to the filter The first flag F1 is lowered (F1=0) when the state is switched to a higher priority than the temperature increase control. Further, the second flag F2 is set (F2=1) when the filter temperature increase control is started, and the second flag F2 is cleared (F2=0) when the filter temperature increase control is finished. Further, the third flag F3 is set (F3=1) when the catalyst temperature increase control is started, and the third flag F3 is lowered (F3=0) when the catalyst temperature increase control is finished.

図2に例示するように、優先度を切り換える制御において、制御装置13は、エンジン2の運転状態がフィルタ装置5の再生制御が行われるフィルタ再生状態か否かを判定する(S110)。再生制御は前述したとおり、前後差圧センサ12が取得した前後差圧と予め設定した差圧閾値とを比較して、制御の開始を判定するものである。そこで、このステップにおいても前後差圧センサ12が取得した前後差圧が予め設定した差圧閾値を超えた場合にエンジン1の運転状態がフィルタ再生状態と判定してもよい。 As illustrated in FIG. 2, in the priority switching control, the control device 13 determines whether or not the operating state of the engine 2 is a filter regeneration state in which regeneration control of the filter device 5 is performed (S110). As described above, the regeneration control compares the differential pressure acquired by the differential pressure sensor 12 with a preset differential pressure threshold to determine the start of control. Therefore, in this step as well, when the differential pressure acquired by the differential pressure sensor 12 exceeds a preset differential pressure threshold value, it may be determined that the operating state of the engine 1 is in the filter regeneration state.

エンジン1の運転状態がフィルタ再生状態と判定すると(S110:YES)、制御装置13はフラグF1を立てて、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態に切り換える(S120)。一方、エンジン1の運転状態がフィルタ再生状態以外の状態と判定すると(S110:NO)、制御装置13はフラグF1を降ろして、触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高い状態に切り換える(S130)。 When it is determined that the operating state of the engine 1 is in the filter regeneration state (S110: YES), the control device 13 sets the flag F1 and switches to a state in which the priority of the filter temperature increase control is higher than the priority of the catalyst temperature increase control ( S120). On the other hand, when it is determined that the operating state of the engine 1 is in a state other than the filter regeneration state (S110: NO), the control device 13 lowers the flag F1 so that the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control. Switch to high state (S130).

図3に例示するように、フィルタ昇温制御において、制御装置13はフラグF1が立っているか否かを判定し、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高いか否かを判定する(S200)。 As illustrated in FIG. 3, in the filter temperature increase control, the control device 13 determines whether or not the flag F1 is set, and determines whether the priority of the filter temperature increase control is higher than the priority of the catalyst temperature increase control. (S200).

フラグF1が立っていると判定すると(S200:YES)、制御装置13はフィルタ用ヒータ7を駆動して、フィルタ装置5を昇温する(S210)。次いで、制御装置13はフラグF2を立てて、フィルタ昇温制御中の状態にする(S220)。フィルタ用ヒータ7の駆動は、フラグF2が立っている限り続く。 If it is determined that the flag F1 is set (S200: YES), the controller 13 drives the filter heater 7 to raise the temperature of the filter device 5 (S210). Next, the control device 13 sets the flag F2 to bring the filter temperature increase control into a state (S220). The driving of the filter heater 7 continues as long as the flag F2 is set.

一方、フラグF1が降りていると判定すると(S200:NO)、制御装置13はフラグF3が降りているか否かを判定し、優先度の高い触媒昇温制御が行われているか否かを判定する(S230)。フラグF3が降りていると判定すると(S230:YES)、制御装置13はフィルタ昇温制御におけるフィルタ用ヒータ7の駆動の開始および停止を行う。 On the other hand, when it is determined that the flag F1 is lowered (S200: NO), the control device 13 determines whether the flag F3 is lowered, and determines whether or not the high-priority catalyst temperature raising control is being performed. (S230). When determining that the flag F3 is down (S230: YES), the control device 13 starts and stops driving the filter heater 7 in the filter temperature increase control.

一方、フラグF3が立っていると判定すると(S230:NO)、制御装置13はフィルタ昇温制御を禁止する(S240)。フィルタ昇温制御を禁止するとは、フィルタ昇温制御によりフィルタ用ヒータ7が駆動している場合にその駆動を停止し、フィルタ用ヒータ7の駆動が停止している場合にその停止を維持することである。よって、フィルタ昇温制御が禁止されると、フラグF2は降ろされる。 On the other hand, when determining that the flag F3 is set (S230: NO), the control device 13 prohibits the filter temperature increase control (S240). To prohibit the filter temperature rise control means to stop the drive of the filter heater 7 when it is driven by the filter temperature rise control, and to maintain the stop of the filter heater 7 when the drive of the filter heater 7 is stopped. is. Therefore, when the filter temperature increase control is prohibited, the flag F2 is lowered.

図4に例示するように、次いで、フィルタ用温度センサ10がフィルタ温度Tfを取得する(S310)。次いで、制御装置13はフィルタ温度Tfがフィルタ下限温度Tfbを下回るか否かを判定する(S320)。フィルタ温度Tfがフィルタ下限温度Tfbを下回ると判定すると(S320:YES)、制御装置13はフィルタ用ヒータ7を駆動して、フィルタ装置5を昇温する(S330)。次いで、制御装置13はフラグF2を立てて、フィルタ昇温制御中の状態にする(S330)。 As illustrated in FIG. 4, the filter temperature sensor 10 then obtains the filter temperature Tf (S310). Next, control device 13 determines whether or not filter temperature Tf is lower than filter lower limit temperature Tfb (S320). When it is determined that the filter temperature Tf is lower than the filter lower limit temperature Tfb (S320: YES), the control device 13 drives the filter heater 7 to raise the temperature of the filter device 5 (S330). Next, the control device 13 sets the flag F2 to bring the filter temperature increase control into a state (S330).

一方、フィルタ温度Tfがフィルタ下限温度Tfb以上と判定すると(S320:NO)、制御装置13はフィルタ温度Tfがフィルタ上限温度Tfa以上か否かを判定する(S350)。フィルタ温度Tfがフィルタ上限温度Tfa以上と判定すると(S350:YES)、制御装置13はフィルタ用ヒータ7の駆動を停止して、フィルタ装置5の昇温を停止する(S360)。次いで、制御装置13はフラグF2を降ろして、フィルタ昇温制御が停止した状態にする(S370)。 On the other hand, when it is determined that the filter temperature Tf is equal to or higher than the filter lower limit temperature Tfb (S320: NO), the control device 13 determines whether the filter temperature Tf is equal to or higher than the filter upper limit temperature Tfa (S350). When it is determined that the filter temperature Tf is equal to or higher than the filter upper limit temperature Tfa (S350: YES), the control device 13 stops driving the filter heater 7 to stop raising the temperature of the filter device 5 (S360). Next, the control device 13 clears the flag F2 to stop the filter temperature increase control (S370).

図5に例示するように、触媒昇温制御において、制御装置13はフラグF1が降りているか否かを判定し、触媒昇温制御の優先度がフィルタ昇温制御の優先度よりも高いか否かを判定する(S400)。 As illustrated in FIG. 5, in the catalyst temperature increase control, the control device 13 determines whether or not the flag F1 is lowered, and determines whether the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control. (S400).

フラグF1が降りていると判定すると(S400:YES)、制御装置13は触媒昇温制御における触媒用ヒータ8の駆動の開始および停止を行う。一方、フラグF1が立っていると判定すると(S400:NO)、制御装置13はフラグF2が降りているか否かを判定し、優先度の高いフィルタ昇温制御が行われているか否かを判定する(S410)。フラグF2が降りていると判定すると(S410:YES)、制御装置13はフィルタ昇温制御におけるフィルタ用ヒータ7の駆動の開始および停止を行う。 When determining that the flag F1 is down (S400: YES), the control device 13 starts and stops driving the catalyst heater 8 in the catalyst temperature increase control. On the other hand, if it is determined that the flag F1 is set (S400: NO), the control device 13 determines whether the flag F2 is set or not, and determines whether or not the high-priority filter temperature raising control is being performed. (S410). When determining that the flag F2 is down (S410: YES), the control device 13 starts and stops driving the filter heater 7 in the filter temperature increase control.

一方、フラグF2が立っていると判定すると(S410:NO)、制御装置13は触媒昇温制御を禁止する(S420)。触媒昇温制御を禁止するとは、触媒昇温制御により触媒用ヒータ8が駆動している場合にその駆動を停止し、触媒用ヒータ8の駆動が停止している場合にその停止を維持することである。よって、触媒昇温制御が禁止されると、フラグF3は降ろされる。 On the other hand, if it is determined that the flag F2 is set (S410: NO), the controller 13 prohibits the catalyst temperature increase control (S420). Prohibiting the catalyst temperature increase control means to stop driving the catalyst heater 8 when it is being driven by the catalyst temperature increase control, and to maintain the stop when the catalyst heater 8 is not being driven. is. Therefore, when the catalyst temperature increase control is prohibited, the flag F3 is lowered.

次いで、触媒用温度センサ11が触媒温度Tnを取得する(S430)。次いで、制御装置13は触媒温度Tnが触媒下限温度Tnbを下回るか否かを判定する(S440)。触媒温度Tnが触媒下限温度Tnbを下回ると判定すると(S440:YES)、制御装置13は触媒用ヒータ8を駆動して、選択還元型触媒装置6を昇温する(S450)。次いで、制御装置13はフラグF3を立てて、触媒昇温制御中の状態にする(S460)。 Next, the catalyst temperature sensor 11 acquires the catalyst temperature Tn (S430). Next, control device 13 determines whether or not catalyst temperature Tn is lower than catalyst lower limit temperature Tnb (S440). When it is determined that the catalyst temperature Tn is lower than the catalyst lower limit temperature Tnb (S440: YES), the control device 13 drives the catalyst heater 8 to raise the temperature of the selective reduction catalyst device 6 (S450). Next, the control device 13 sets the flag F3 to bring the catalyst temperature increase control into a state (S460).

一方、触媒温度Tnが触媒下限温度Tnb以上と判定すると(S440:NO)、制御装置13は触媒温度Tnが触媒上限温度Tna以上か否かを判定する(S470)。触媒温度Tnが触媒上限温度Tna以上と判定すると(S470:YES)、制御装置13は触媒用ヒータ8の駆動を停止して、選択還元型触媒装置6の昇温を停止する(S480)。次いで、制御装置13はフラグF3を降ろして、触媒昇温制御が停止した状態にする(S490)。 On the other hand, when it is determined that the catalyst temperature Tn is equal to or higher than the catalyst lower limit temperature Tnb (S440: NO), the controller 13 determines whether the catalyst temperature Tn is equal to or higher than the catalyst upper limit temperature Tna (S470). When it is determined that the catalyst temperature Tn is equal to or higher than the catalyst upper limit temperature Tna (S470: YES), the controller 13 stops driving the catalyst heater 8 to stop raising the temperature of the selective reduction catalyst device 6 (S480). Next, the control device 13 clears the flag F3 to stop the catalyst temperature increase control (S490).

以上により、本実施形態の排気浄化システム1によれば、エンジン2の運転状態に基づいてフィルタ昇温制御と触媒昇温制御の優先度の高低を切り換え、フィルタ昇温制御と触媒昇温制御との両方の制御が行われる条件では優先度の高い方の制御が行われる。それ故、二つのヒータが同時には駆動せず、昇温を優先すべき装置側のヒータが優先して駆動される。これにより、フィルタ装置5、選択還元型触媒装置6の昇温に要する電力消費量を抑制しつつ、これらの装置5、6を最適な温度に維持することができる。 As described above, according to the exhaust purification system 1 of the present embodiment, the priority of the filter temperature increase control and the catalyst temperature increase control is switched based on the operating state of the engine 2, and the filter temperature increase control and the catalyst temperature increase control are performed. Under the condition that both of the above controls are performed, the control with the higher priority is performed. Therefore, the two heaters are not driven at the same time, and the heater on the side of the device, which should be given priority in increasing the temperature, is preferentially driven. As a result, it is possible to keep these devices 5 and 6 at the optimum temperature while suppressing the power consumption required for raising the temperature of the filter device 5 and the selective catalytic reduction device 6 .

フィルタ昇温制御はフィルタ装置5の再生制御における昇温を補助する役割と、フィルタ装置5の再生制御以外のときにフィルタ装置5を蓄熱材として機能させる役割とを有する。 Filter temperature rise control has a role of assisting temperature rise in regeneration control of the filter device 5 and a role of causing the filter device 5 to function as a heat storage material when regeneration control of the filter device 5 is not performed.

再生制御において未燃燃料を酸化触媒装置4に供給することのみでフィルタ装置5の温度を捕集した粒子状物質が燃焼可能な温度まで昇温すると、供給された未燃燃料の分、燃費が悪化する。そこで、排気浄化システム1によれば、エンジン2の運転状態がフィルタ再生状態である場合に、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態に切り換えられる。それ故、フィルタ昇温制御によりフィルタ装置5の昇温をアシストできる。これにより、フィルタ装置5の再生制御時にフィルタ装置5の温度を再生制御に必要な温度まで早期に昇温させることができるとともに、再生制御における未燃燃料の使用量を削減することができる。この結果、燃費を向上することができる。 When the temperature of the filter device 5 is raised to a temperature at which the collected particulate matter can be combusted only by supplying unburned fuel to the oxidation catalyst device 4 in regeneration control, the fuel consumption increases by the amount of the supplied unburned fuel. Getting worse. Therefore, according to the exhaust purification system 1, when the operating state of the engine 2 is the filter regeneration state, the priority of the filter temperature increase control is switched to a higher priority than the catalyst temperature increase control. Therefore, the temperature rise of the filter device 5 can be assisted by the filter temperature rise control. As a result, the temperature of the filter device 5 can be quickly raised to the temperature required for the regeneration control during the regeneration control of the filter device 5, and the amount of unburned fuel used in the regeneration control can be reduced. As a result, fuel consumption can be improved.

再生制御中、つまり、フィルタ昇温制御の優先度が触媒昇温制御の優先度よりも高い状態である場合に、フィルタ昇温制御はフィルタ用ヒータ7を常時、駆動することが望ましい。再生制御中は、フィルタ用ヒータ7を常時、駆動することでフィルタ装置5の昇温をアシストする効果が高まり、再生制御における未燃燃料の使用量の削減に有利になる。 During the regeneration control, that is, when the priority of the filter temperature increase control is higher than that of the catalyst temperature increase control, it is preferable that the filter heater 7 is always driven by the filter temperature increase control. By constantly driving the filter heater 7 during regeneration control, the effect of assisting the temperature rise of the filter device 5 increases, which is advantageous for reducing the amount of unburned fuel used in the regeneration control.

また、再生制御以外のときにフィルタ装置5の温度が低いと、排気Gの温度が低下した場合に、選択還元型触媒装置6の温度が低下する。そこで、排気浄化システム1によれば、触媒昇温制御の優先度が高い場合に、触媒昇温制御が終了すると、フィルタ装置5の再生制御が行われていないときでも、フィルタ装置5の温度が低いときに、フィルタ昇温制御が行われる。フィルタ昇温制御がフィルタ装置5の再生制御以外で行われることで、フィルタ装置5を蓄熱材として機能させることが可能となる。これにより、排気Gの温度が低下した場合に、フィルタ装置5を通過した排気Gの温度を昇温することが可能となり、排気Gの温度の低下による選択還元型触媒装置6の温度の低下を回避して、選択還元型触媒装置6を活性化した状態に維持することができる。 In addition, when the temperature of the filter device 5 is low at times other than regeneration control, the temperature of the selective catalytic reduction catalyst device 6 is lowered when the temperature of the exhaust gas G is lowered. Therefore, according to the exhaust gas purification system 1, when the priority of the catalyst temperature increase control is high, when the catalyst temperature increase control ends, the temperature of the filter device 5 rises even when the regeneration control of the filter device 5 is not performed. When it is low, filter temperature raising control is performed. By performing the filter temperature increase control other than the regeneration control of the filter device 5, the filter device 5 can be made to function as a heat storage material. As a result, when the temperature of the exhaust gas G drops, the temperature of the exhaust gas G that has passed through the filter device 5 can be raised, and the temperature drop of the selective catalytic reduction catalyst device 6 due to the drop in the temperature of the exhaust gas G can be prevented. By avoiding this, the selective reduction catalyst device 6 can be maintained in an activated state.

触媒昇温制御は選択還元型触媒装置6の温度を活性化温度に維持する役割を有する。エンジン2の運転状態が冷間運転状態である場合、フィルタ装置5の温度および選択還元型触媒装置6の温度の両方が低い状態にある。この状態で二つのヒータを駆動すると電力消費量が増加する。一方で、電力消費量に制限を設けると各装置の昇温効果が低くなる。そこで、排気浄化システム1によれば、エンジン2の運転状態が冷間運転状態である場合に、触媒昇温制御の優先度はフィルタ昇温制御の優先度よりも高い状態に切り換えられる。それ故、二つのヒータが駆動する条件で、触媒昇温制御を優先的に行うことができる。これにより、エンジン2の運転状態が冷間運転状態である場合に、選択還元型触媒装置6の温度を早期に活性化温度まで昇温することができる。 Catalyst temperature rise control has a role of maintaining the temperature of the selective reduction catalyst device 6 at the activation temperature. When the operating state of the engine 2 is in the cold operating state, both the temperature of the filter device 5 and the temperature of the selective catalytic reduction device 6 are low. Driving two heaters in this state increases power consumption. On the other hand, setting a limit on the amount of power consumption reduces the effect of increasing the temperature of each device. Therefore, according to the exhaust gas purification system 1, when the operating state of the engine 2 is in the cold operating state, the priority of the catalyst temperature increase control is switched to a state higher than the priority of the filter temperature increase control. Therefore, the catalyst temperature increase control can be preferentially performed under the condition that the two heaters are driven. As a result, when the operating state of the engine 2 is in the cold operating state, the temperature of the selective catalytic reduction catalyst device 6 can be quickly increased to the activation temperature.

このように、フィルタ装置5の再生制御における昇温を補助する役割とフィルタ装置5の再生制御以外のときにフィルタ装置5を蓄熱材として機能させる役割とを有するフィルタ昇温制御と、選択還元型触媒装置6の温度を活性化温度に維持する役割を有する触媒昇温制御とのそれぞれをエンジン2の運転状態に応じて使い分けることで、各装置を最適な状態に維持できる。 In this way, filter temperature rise control having a role of assisting the temperature rise in the regeneration control of the filter device 5 and a role of making the filter device 5 function as a heat storage material when the regeneration control of the filter device 5 is not performed, and a selective reduction type Each device can be maintained in an optimum state by selectively using the catalyst temperature increase control, which has a role of maintaining the temperature of the catalyst device 6 at the activation temperature, according to the operating state of the engine 2 .

フィルタ昇温制御は再生制御以外で、フィルタ装置5を保温して蓄熱材として機能させる役割を有するが、フィルタ装置5が蓄熱材として機能する状況は排気Gの温度が低下したときであり、その状況は常時発生するものではない。そこで、再生制御以外では触媒昇温制御の優先度をフィルタ昇温制御の優先度よりも高くすることで、選択還元型触媒装置6の温度が活性化温度以上に維持される期間が長くなるので、排気Gに含まれるNOxを選択還元型触媒装置6で安定して浄化処理することができる。 The filter temperature increase control has a role other than the regeneration control to keep the filter device 5 warm and function as a heat storage material. The situation does not occur all the time. Therefore, by setting the priority of the catalyst temperature increase control higher than the priority of the filter temperature increase control other than the regeneration control, the period during which the temperature of the selective catalytic reduction catalyst device 6 is maintained at the activation temperature or higher becomes longer. , NOx contained in the exhaust gas G can be stably purified by the selective reduction catalyst device 6 .

触媒用下限温度Tnbは選択還元型触媒装置6の触媒が活性化する温度の下限値よりも高い温度であり、触媒用上限温度Tnaは触媒用下限温度Tnbよりも高く活性化する温度の範囲内の温度であり、フィルタ用下限温度Tfbは触媒用下限温度Tnbよりも高い温度であり、フィルタ用上限温度Tfaはフィルタ用下限温度Tfbよりも高い温度である。さらに、フィルタ用上限温度Tfaは触媒用上限温度Tnaよりも10~30℃高い温度に、好ましくは20℃程度高い温度に設定されることが好ましい。また、フィルタ用下限温度Tfbは触媒用下限温度Tnbよりも10~30℃高い温度に、好ましくは20℃程度高い温度に設定されることが好ましい。このように設定することで、フィルタ装置5の保温時の温度に排気Gの温度が低下したときのマージンを与えることができ、フィルタ装置5を蓄熱材として機能させるには有利になる。 The catalyst lower limit temperature Tnb is a temperature higher than the lower limit of the temperature at which the catalyst of the selective reduction catalyst device 6 is activated, and the catalyst upper limit temperature Tna is higher than the catalyst lower limit temperature Tnb and within the range of the activation temperature. , the filter lower limit temperature Tfb is higher than the catalyst lower limit temperature Tnb, and the filter upper limit temperature Tfa is higher than the filter lower limit temperature Tfb. Further, the filter upper limit temperature Tfa is preferably set to a temperature higher by 10 to 30° C. than the catalyst upper limit temperature Tna, preferably about 20° C. higher. Further, the filter lower limit temperature Tfb is preferably set to a temperature higher by 10 to 30° C. than the catalyst lower limit temperature Tnb, preferably about 20° C. higher. By setting in this way, it is possible to provide a margin for the temperature of the filter device 5 during heat retention when the temperature of the exhaust gas G drops, which is advantageous for the function of the filter device 5 as a heat storage material.

フィルタ再生制御は、エンジン2の運転状態がフィルタ再生状態の場合で、再生制御が行われている場合に、フィルタ用ヒータ7を常時、駆動させたままにしなくてもよい。また、バッテリ9の容量が大きく、電力量に余剰が見込まれる場合に、フィルタ再生制御は、エンジン2の運転状態がフィルタ再生状態の場合で、再生制御が行われている場合に、フィルタ用上限温度Tfaを粒子状物質が燃焼可能な温度に近づけて、フィルタ用ヒータ7による昇温アシストの効果を高めてもよい。 In filter regeneration control, when the operating state of the engine 2 is in the filter regeneration state and the regeneration control is being performed, the filter heater 7 does not have to be driven all the time. Further, when the capacity of the battery 9 is large and a surplus of electric power is expected, the filter regeneration control is performed when the operating state of the engine 2 is in the filter regeneration state and when the regeneration control is performed, the filter upper limit The temperature Tfa may be brought close to a temperature at which particulate matter can be combusted to enhance the effect of assisting the temperature increase by the filter heater 7 .

1 排気浄化システム
2 エンジン(内燃機関)
2a 気筒
2b 燃料噴射装置
3 排気通路
4 酸化触媒装置
5 フィルタ装置
6 選択還元型触媒装置(NOx浄化触媒装置)
6a 尿素水噴射装置
7 フィルタ用ヒータ
8 触媒用ヒータ
9 バッテリ
10 フィルタ用温度センサ(フィルタ用温度検出装置)
11 触媒用温度センサ(触媒用温度検出装置)
12 前後差圧センサ
13 制御装置
1 Exhaust purification system 2 Engine (internal combustion engine)
2a Cylinder 2b Fuel injection device 3 Exhaust passage 4 Oxidation catalyst device 5 Filter device 6 Selective reduction type catalyst device (NOx purification catalyst device)
6a Urea water injection device 7 Filter heater 8 Catalyst heater 9 Battery 10 Filter temperature sensor (filter temperature detection device)
11 catalyst temperature sensor (catalyst temperature detection device)
12 Front-back differential pressure sensor 13 Control device

Claims (9)

内燃機関の排気が通過する排気通路に、排気の流れで上流側より順に配置されたフィルタ装置およびNOx浄化触媒装置と、前記フィルタ装置を昇温するフィルタ用ヒータと、前記NOx浄化触媒装置を昇温する触媒用ヒータと、を備えて構成される排気浄化システムにおいて、
前記内燃機関の運転状態を取得する運転状態取得装置と、前記フィルタ用ヒータおよび前記触媒用ヒータを制御する制御装置と、を備えて、
前記制御装置は、前記運転状態取得装置が取得した前記運転状態に基づいて、前記フィルタ用ヒータが駆動するフィルタ昇温制御の優先度が前記触媒用ヒータが駆動する触媒昇温制御の優先度よりも高い状態と前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態とを切り換える制御を行い、前記フィルタ昇温制御と前記触媒昇温制御との両方の制御が行われる条件では優先度の高い方の制御が行われる構成であることを特徴とする排気浄化システム。
A filter device and a NOx purification catalyst device are arranged in an exhaust passage through which exhaust gas of an internal combustion engine passes in order from the upstream side with respect to the flow of exhaust gas, a filter heater for raising the temperature of the filter device, and the NOx purification catalyst device. and a catalyst heater for warming,
An operating state acquisition device that acquires the operating state of the internal combustion engine, and a control device that controls the filter heater and the catalyst heater,
Based on the operating state acquired by the operating state acquisition device, the control device prioritizes the filter temperature increase control driven by the filter heater over the catalyst temperature increase control driven by the catalyst heater. and a state in which the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control, and both the filter temperature increase control and the catalyst temperature increase control are performed. An exhaust gas purification system characterized in that it is configured such that control with a higher priority is performed under conditions where
前記制御装置は、前記運転状態が冷間運転状態である場合に、前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態に切り換える制御を行う請求項1に記載の排気浄化システム。 2. The control device according to claim 1, wherein when the operating state is a cold operating state, the control device performs control to switch the priority of the catalyst temperature increase control to a higher priority than the filter temperature increase control. Exhaust purification system. 前記制御装置は、前記運転状態がフィルタ再生状態である場合に、前記フィルタ昇温制御の優先度が前記触媒昇温制御の優先度よりも高い状態に切り換える制御を行う請求項1または2に記載の排気浄化システム。 3. The control device according to claim 1, wherein when the operating state is the filter regeneration state, the control device performs control to switch the priority of the filter temperature increase control to a higher priority than the catalyst temperature increase control. exhaust purification system. 前記制御装置は、前記運転状態がフィルタ再生状態以外の状態である場合に、前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態に切り換える請求項3に記載の排気浄化システム。 4. The exhaust gas according to claim 3, wherein the control device switches to a state in which the priority of the catalyst temperature increase control is higher than the priority of the filter temperature increase control when the operating state is a state other than the filter regeneration state. purification system. 前記フィルタ装置のフィルタ温度を検出するフィルタ用温度検出装置と、前記NOx浄化触媒装置の触媒温度を検出する触媒用温度検出装置と、を備え、
前記フィルタ昇温制御は前記フィルタ用温度検出装置が検出した前記フィルタ温度と予め設定されたフィルタ温度閾値との比較により前記フィルタ用ヒータの駆動の開始と停止とが切り換わる制御であり、
前記触媒昇温制御は前記触媒用温度検出装置が検出した前記触媒温度と予め設定された触媒温度閾値との比較により前記触媒用ヒータの駆動の開始と停止とが切り換わる制御であり、
前記フィルタ昇温制御と前記触媒昇温制御とのどちらか一方の制御の優先度が他方の制御の優先度よりも高い状態では前記一方の制御が行われていない場合に前記他方の制御が開始可能になる請求項1~4のいずれか1項に記載の排気浄化システム。
a filter temperature detection device that detects a filter temperature of the filter device; and a catalyst temperature detection device that detects a catalyst temperature of the NOx purification catalyst device,
The filter temperature increase control is control in which the start and stop of driving the filter heater are switched by comparing the filter temperature detected by the filter temperature detection device with a preset filter temperature threshold,
The catalyst temperature increase control is control for switching between starting and stopping the driving of the catalyst heater by comparing the catalyst temperature detected by the catalyst temperature detection device with a preset catalyst temperature threshold,
In a state in which the priority of either one of the filter temperature increase control and the catalyst temperature increase control is higher than the priority of the other control, the other control is started when the one control is not performed. The exhaust purification system according to any one of claims 1 to 4, wherein the exhaust purification system is enabled.
前記フィルタ温度閾値はフィルタ用上限温度とフィルタ用下限温度とを有し、前記触媒温度閾値は触媒用上限温度と触媒用下限温度とを有し、
前記フィルタ昇温制御は、前記フィルタ温度が前記フィルタ用下限温度を下回る場合に前記フィルタ用ヒータの駆動を開始し、前記フィルタ温度が前記フィルタ用上限温度を上回る場合に前記フィルタ用ヒータの駆動を停止する制御であり、
前記触媒昇温制御は、前記触媒温度が前記触媒用下限温度を下回る場合に前記触媒用ヒータの駆動を開始し、前記触媒温度が前記触媒用上限温度を上回る場合に前記触媒用ヒータの駆動を停止する制御である請求項5に記載の排気浄化システム。
The filter temperature threshold has a filter upper limit temperature and a filter lower limit temperature, the catalyst temperature threshold has a catalyst upper limit temperature and a catalyst lower limit temperature,
The filter temperature increase control starts driving the filter heater when the filter temperature is lower than the filter lower limit temperature, and starts driving the filter heater when the filter temperature exceeds the filter upper limit temperature. is the control to stop,
The catalyst temperature increase control starts driving the catalyst heater when the catalyst temperature is lower than the lower limit temperature for catalyst, and starts driving the heater for catalyst when the catalyst temperature exceeds the upper limit temperature for catalyst. 6. The exhaust purification system according to claim 5, wherein the control is to stop.
前記触媒用下限温度は前記NOx浄化触媒装置の触媒が活性化する温度の下限値よりも高い温度であり、前記触媒用上限温度は前記触媒用下限温度よりも高く前記活性化する温度の範囲内の温度であり、前記フィルタ用下限温度は前記触媒用下限温度よりも高い温度であり、前記フィルタ用上限温度は前記フィルタ用下限温度よりも高い温度である請求項6に記載の排気浄化システム。 The catalyst lower limit temperature is a temperature higher than the lower limit temperature at which the catalyst of the NOx purification catalyst device is activated, and the catalyst upper limit temperature is higher than the catalyst lower limit temperature and within the activation temperature range. 7. The exhaust purification system according to claim 6, wherein the filter lower limit temperature is higher than the catalyst lower limit temperature, and the filter upper limit temperature is higher than the filter lower limit temperature. 前記フィルタ昇温制御は、前記フィルタ昇温制御の優先度が前記触媒昇温制御の優先度よりも高い状態である場合に、前記フィルタ用ヒータを常時、駆動する制御である請求項1~7のいずれか1項に記載の排気浄化システム。 wherein said filter temperature rise control is control for constantly driving said filter heater when said filter temperature rise control has a higher priority than said catalyst temperature rise control. The exhaust purification system according to any one of Claims 1 to 3. 内燃機関の排気が通過する排気通路に、排気の流れで上流側より順に配置されたフィルタ装置およびNOx浄化触媒装置と、前記フィルタ装置を昇温するフィルタ用ヒータと、前記NOx浄化触媒装置を昇温する触媒用ヒータと、を備えて構成される排気浄化システムの制御方法において、
前記内燃機関の運転状態を取得するステップと、
取得した前記運転状態に基づいて、前記フィルタ用ヒータが駆動するフィルタ昇温制御の優先度が前記触媒用ヒータが駆動する触媒昇温制御の優先度よりも高い状態と前記触媒昇温制御の優先度が前記フィルタ昇温制御の優先度よりも高い状態とのいずれかに切り換えるステップと、
前記切り換えを行った後に、前記フィルタ昇温制御と前記触媒昇温制御との両方の制御が行われる条件では優先度の高い方の制御を行うステップと、
を有することを特徴とする排気浄化システムの制御方法。
A filter device and a NOx purification catalyst device are arranged in an exhaust passage through which exhaust gas of an internal combustion engine passes in order from the upstream side with respect to the flow of exhaust gas, a filter heater for raising the temperature of the filter device, and the NOx purification catalyst device. In a control method for an exhaust gas purification system comprising a catalyst heater for heating,
obtaining an operating state of the internal combustion engine;
A state in which the priority of filter temperature rise control driven by the filter heater is higher than the priority of the catalyst temperature rise control driven by the catalyst heater and the priority of the catalyst temperature rise control based on the acquired operating state. switching to a state where the priority is higher than the priority of the filter temperature rise control;
After performing the switching, performing the control with the higher priority under the condition that both the filter temperature increase control and the catalyst temperature increase control are performed;
A control method for an exhaust purification system, comprising:
JP2020166762A 2020-10-01 2020-10-01 Exhaust gas purification system and control method for exhaust gas purification system Active JP7255578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020166762A JP7255578B2 (en) 2020-10-01 2020-10-01 Exhaust gas purification system and control method for exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020166762A JP7255578B2 (en) 2020-10-01 2020-10-01 Exhaust gas purification system and control method for exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2022059186A JP2022059186A (en) 2022-04-13
JP7255578B2 true JP7255578B2 (en) 2023-04-11

Family

ID=81124229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020166762A Active JP7255578B2 (en) 2020-10-01 2020-10-01 Exhaust gas purification system and control method for exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP7255578B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4129829B2 (en) 2002-05-20 2008-08-06 サン電子株式会社 Education system
JP2012111381A (en) 2010-11-25 2012-06-14 Daimler Ag Controller of hybrid electric vehicle
JP2012225163A (en) 2011-04-15 2012-11-15 Toyota Motor Corp Ehc control method and exhaust gas purification system using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129829U (en) * 1991-05-24 1992-11-27 三菱自動車工業株式会社 diesel engine catalytic converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4129829B2 (en) 2002-05-20 2008-08-06 サン電子株式会社 Education system
JP2012111381A (en) 2010-11-25 2012-06-14 Daimler Ag Controller of hybrid electric vehicle
JP2012225163A (en) 2011-04-15 2012-11-15 Toyota Motor Corp Ehc control method and exhaust gas purification system using the same

Also Published As

Publication number Publication date
JP2022059186A (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP5383615B2 (en) Warming up the aftertreatment burner system
US7550119B2 (en) Regeneration device of exhaust gas purification filter and filter regeneration method
JP3992057B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3933625B2 (en) Diesel engine particulate reduction system
CN102242659A (en) Hybrid catalyst radiant preheating system
JP2008057364A (en) Exhaust emission control system of internal combustion engine
KR20210062696A (en) Energy-optimized forced regeneration of particle filters in hybrid vehicles
CN105484885A (en) Engine control method for maintaining performance of oxidation catalyst
JP4363655B2 (en) Temperature control method for oxidation catalyst and exhaust gas purification device for internal combustion engine
JP2010261331A (en) Exhaust purification device
JP5316266B2 (en) Reducing agent supply device for urea SCR catalyst
JP4702020B2 (en) Exhaust gas purification system for internal combustion engine
JP2008038634A (en) Exhaust emission control device for internal combustion engine
JP2007239556A (en) Exhaust emission control system of internal combustion engine
JP7255578B2 (en) Exhaust gas purification system and control method for exhaust gas purification system
US20100186378A1 (en) Exhaust gas purification apparatus for internal combustion engine
JP2008196375A (en) Exhaust emission control device of internal combustion engine
WO2020184646A1 (en) Exhaust gas purifying device, and control device for exhaust gas purifying device
JP6570255B2 (en) Control device and control method for reducing agent injection device
JP2005282478A (en) Control method of exhaust emission control system and exhaust emission control system
JP5437890B2 (en) Method and apparatus for preventing fuel freezing in aftertreatment burner system
JP2010019092A (en) Exhaust emission control device for internal combustion engine
JP4640145B2 (en) Exhaust gas purification system for internal combustion engine
JP7298512B2 (en) Exhaust purification system and its control method
KR102598405B1 (en) Exhaust gas purification system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150