JP2005282478A - Control method of exhaust emission control system and exhaust emission control system - Google Patents

Control method of exhaust emission control system and exhaust emission control system Download PDF

Info

Publication number
JP2005282478A
JP2005282478A JP2004098289A JP2004098289A JP2005282478A JP 2005282478 A JP2005282478 A JP 2005282478A JP 2004098289 A JP2004098289 A JP 2004098289A JP 2004098289 A JP2004098289 A JP 2004098289A JP 2005282478 A JP2005282478 A JP 2005282478A
Authority
JP
Japan
Prior art keywords
regeneration
temperature
exhaust gas
control
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004098289A
Other languages
Japanese (ja)
Other versions
JP4466158B2 (en
Inventor
Tamotsu Go
維 伍
Takashi Haseyama
尊史 長谷山
Atsushi Matsunuma
厚 松沼
Takuro Iwashita
拓朗 岩下
Takao Onodera
貴夫 小野寺
Hide Ikeda
秀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004098289A priority Critical patent/JP4466158B2/en
Publication of JP2005282478A publication Critical patent/JP2005282478A/en
Application granted granted Critical
Publication of JP4466158B2 publication Critical patent/JP4466158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an exhaust emission control system and the exhaust emission control system by which misfire and generation of white smoke can be prevented by forced regeneration control when an engine is not heated with regard to forced regeneration control executing cylinder fuel injection control of multi-injection, post injection or the like so as to regenerate DPF of a continuous regeneration type DPF device. <P>SOLUTION: In the exhaust emission control system 1 equipped with a continuous regeneration type DPF device 13 in an exhaust gas passage 12 of an engine 10 and with a cooling water temperature detecting means 341C for detecting temperature Twm of cooling water in the engine 10, even when forced regeneration is determined to be necessary and when the temperature Twm of cooling water in the engine 10 which is detected by the cooling water temperature detecting means 341C is detected to be lower than the prescribed water temperature Tw0 for determination, the cylinder fuel injection control for forced regeneration of DPF 13a is not executed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼルエンジン等の内燃機関の排気ガスに対して、連続再生型ディーゼルパティキュレートフィルタ(DPF)装置による粒子状物質(PM)の浄化を行う排気ガス浄化システムの制御方法及び排気ガス浄化システムに関するものである。   The present invention relates to a control method for an exhaust gas purification system for purifying particulate matter (PM) by exhaust gas from an internal combustion engine such as a diesel engine using a continuous regeneration type diesel particulate filter (DPF) device, and exhaust gas purification. It is about the system.

ディーゼルエンジンから排出される粒子状物質(PM:パティキュレート・マター:以下PMとする)の排出量は、NOx,COそしてHC等と共に年々規制が強化されてきており、このPMをディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter :以下DPFとする)と呼ばれるフィルタで捕集して、外部へ排出されるPMの量を低減する技術が開発されている。   Particulate matter (PM: particulate matter: hereinafter referred to as PM) emitted from diesel engines is being regulated more and more with NOx, CO, HC, etc., and this PM is used as a diesel particulate filter. A technique for reducing the amount of PM collected by a filter called (DPF: Diesel Particulate Filter: hereinafter referred to as DPF) and discharged to the outside has been developed.

このPMを捕集するDPFにはセラミック製のモノリスハニカム型ウオールフロータイプのフィルタや、セラミックや金属を繊維状にした繊維型タイプのフィルタ等があり、これらのDPFを用いた排気ガス浄化システムは、他の排気ガス浄化システムと同様に、エンジンの排気通路の途中に設置され、エンジンで発生する排気ガスを浄化して排出している。   DPFs that collect PM include ceramic monolith honeycomb wall flow type filters, fiber type filters made of ceramic or metal fibers, and exhaust gas purification systems using these DPFs. As with other exhaust gas purification systems, it is installed in the middle of the exhaust passage of the engine to purify and discharge exhaust gas generated by the engine.

これらのDPF装置に、DPFの上流側に酸化触媒を設けた連続再生型DPF装置や、触媒付きフィルタに担持させた触媒の作用によってPMの燃焼温度を低下させ、排気ガスによってPMを焼却する連続再生型DPF装置等がある。   In these DPF devices, a continuous regeneration type DPF device in which an oxidation catalyst is provided on the upstream side of the DPF, or a continuous combustion type in which the PM combustion temperature is lowered by the action of the catalyst supported on the catalyst-equipped filter, and the PM is incinerated with exhaust gas There are regenerative DPF devices and the like.

この上流側酸化触媒の連続再生型DPF装置は、NO2 (二酸化窒素)によるPMの酸化が、排気ガス中の酸素によりPMを酸化することにより、低温で行われることを利用したもので、酸化触媒とフィルタとから構成され、この上流側の白金等を担持した酸化触媒により、排気ガス中のNO(一酸化窒素)を酸化してNO2 にして、このNO2 で、下流側のフィルタに捕集されたPMを酸化してCO2 (二酸化炭素)とし、PMを除去している。 This upstream regeneration catalyst continuous regeneration type DPF device utilizes the fact that oxidation of PM by NO 2 (nitrogen dioxide) is performed at a low temperature by oxidizing PM with oxygen in exhaust gas. The catalyst is composed of a catalyst and a filter, and the upstream side of the oxidation catalyst carrying platinum or the like oxidizes NO (nitrogen monoxide) in the exhaust gas to NO 2 , and with this NO 2 , the downstream filter The collected PM is oxidized to CO 2 (carbon dioxide) to remove the PM.

また、触媒付きフィルタの連続再生型DPF装置は、酸化セリウム(CeO2 )等の触媒を有する触媒付きフィルタで構成され、低温域(300℃〜600℃程度)では、触媒付きフィルタにおける排気ガス中のO2 (酸素)を使用した反応(4CeO2 +C→2Ce2 3 +CO2 ,2Ce2 3 +O2 →4CeO2 等)によりPMを酸化し、PMが排気ガス中のO2 で燃焼する温度より高い高温域(600℃程度以上)では、排気ガス中のO2 によりPMを酸化している。 Moreover, the continuous regeneration type DPF device for a filter with a catalyst is constituted by a filter with a catalyst having a catalyst such as cerium oxide (CeO 2 ), and in the exhaust gas in the filter with a catalyst in a low temperature range (about 300 ° C. to 600 ° C.). oxidizing the PM by the O 2 reaction using (oxygen) (4CeO 2 + C → 2Ce 2 O 3 + CO 2, 2Ce 2 O 3 + O 2 → 4CeO 2 , etc.), PM is burned with O 2 in the exhaust gas In a high temperature range (about 600 ° C. or higher) higher than the temperature, PM is oxidized by O 2 in the exhaust gas.

そして、この触媒付きフィルタの連続再生型DPF装置等でも、上流側に酸化触媒を設けて、排気ガス中の未燃HCやCOの酸化反応により、これらの大気中への放出を防止しながら、後段PMフィルタ入口排気ガス温度を上昇させて、PMの酸化除去を促進することが行われている。   And even in the continuous regeneration type DPF device etc. of this filter with a catalyst, an oxidation catalyst is provided on the upstream side, and by preventing the unburned HC and CO in the exhaust gas from being released into the atmosphere, The exhaust gas temperature at the rear stage PM filter inlet is raised to promote PM oxidation removal.

しかしながら、これらの連続再生型DPF装置においても、排気ガス温度が350℃以上の時には、このフィルタに捕集されたPMは連続的に燃焼して浄化され、フィルタは自己再生するが、排気温度が低い場合やNOの排出が少ないエンジンの運転状態、例えば、エンジンのアイドル運転や低負荷・低速度運転等の低排気温度状態が継続した場合においては、排気ガス温度が低く触媒の温度が低下して活性化しないため、酸化反応が促進されず、また、NOが不足するので、上記の反応が生ぜず、PMを酸化してフィルタを再生できないため、PMのフィルタへの堆積が継続されて、フィルタが目詰まりが進行する。そのため、このフィルタの目詰まりによる排圧上昇の問題が生じる。   However, even in these continuous regeneration type DPF devices, when the exhaust gas temperature is 350 ° C. or higher, PM collected by this filter is continuously burned and purified, and the filter self-regenerates, but the exhaust temperature is When the engine is in low operating conditions or low exhaust emissions, such as when the engine is idling or under low exhaust temperature conditions such as low load / low speed operation, the exhaust gas temperature is low and the catalyst temperature decreases. Therefore, the oxidation reaction is not promoted, and since NO is insufficient, the above reaction does not occur, and the filter cannot be regenerated by oxidizing the PM. Filter clogging progresses. Therefore, the problem of an increase in exhaust pressure due to the clogging of the filter occurs.

このフィルタの目詰まりに対して、この目詰まりが所定の目詰まり量を超えた時に排気温度を強制的に昇温させて捕集されているPMを強制的に燃焼除去することが考えられている。このフィルタの目詰まりの検出手段としては、フィルタの前後差圧で検出する方法や、走行距離で検出する方法や、エンジンの運転状態から捕集されるPM量を予め設定したマップデータ等から算出してPM累積量を求めて検出する方法等があり、また、排気温度の昇温手段としては、筒内(シリンダ内)噴射における噴射制御による方法や排気管内への直接燃料噴射における燃料制御による方法がある。   For this clogging of the filter, when the clogging exceeds a predetermined clogging amount, it is considered that the exhaust temperature is forcibly raised to forcibly remove the collected PM. Yes. The filter clogging detection means includes a method of detecting by the differential pressure across the filter, a method of detecting by the travel distance, and calculating the PM amount collected from the operating state of the engine from map data set in advance. Then, there is a method for obtaining and detecting the PM accumulated amount, and as a means for raising the exhaust temperature, a method by injection control in in-cylinder (in-cylinder) injection or by fuel control in direct fuel injection into the exhaust pipe There is a way.

この筒内噴射制御は、排気温度がフィルタの上流に設けた酸化触媒又はフィルタに担持された酸化触媒の活性温度よりも低い場合に、マルチ噴射(多段噴射)を行って排気ガスを昇温し、その活性温度よりも上昇したらポスト噴射(後噴射)を行って、排気ガス中の燃料を酸化触媒で燃焼して排気ガスをフィルタに捕集されたPMが燃焼する温度以上に昇温して、フィルタに捕集されたPMを燃焼除去してフィルタを再生させる。   This in-cylinder injection control performs multi-injection (multistage injection) to raise the temperature of the exhaust gas when the exhaust temperature is lower than the activation temperature of the oxidation catalyst provided upstream of the filter or the oxidation catalyst supported on the filter. When the temperature rises above the activation temperature, post-injection (post-injection) is performed, and the fuel in the exhaust gas is burned by the oxidation catalyst, and the exhaust gas is heated to a temperature higher than the temperature at which the PM collected by the filter burns. The PM collected by the filter is burned and removed to regenerate the filter.

通常、これらの連続再生型DPF装置では、このPMの蓄積量が予め設定したPMの蓄積限界値に到達した時に、自動的に、エンジンの運転状態を強制再生モード運転に変更して排気温度を強制的に上昇させたり、NOやNO2 の量を増加させたりして、フィルタに捕集されたPMを酸化して除去して再生処理を行っている。 Normally, in these continuous regeneration type DPF devices, when the accumulated amount of PM reaches a preset accumulation limit value of PM, the engine operating state is automatically changed to the forced regeneration mode operation to set the exhaust temperature. The regeneration process is performed by forcibly increasing or increasing the amount of NO or NO 2 to oxidize and remove the PM collected by the filter.

しかしながら、排気温度を上げるために、筒内(シリンダ内)燃料噴射制御において、可能な限り噴射タイミングを遅らせて噴射するマルチ噴射やポスト噴射等を行う場合に、エンジン自体の状態、例えば、暖機過程中等により、エンジンの冷却水の温度が十分に上がっていない場合がある。この冷却水温度が低い場合には、筒内の着火時の温度が低いため、この噴射タイミングを遅らせた燃料噴射にとっては悪い着火環境となり、失火したり、燃焼不十分による白煙が発生したりするという問題がある。また、これを回避するために燃料噴射時期を進角させると、DPFの再生に必要な排気温度を得ることができないという問題が生じる。   However, in the in-cylinder (in-cylinder) fuel injection control, in order to raise the exhaust temperature, when performing multi-injection or post-injection in which the injection timing is delayed as much as possible, the state of the engine itself, for example, warm-up The engine coolant temperature may not be sufficiently high due to the process being performed. When this cooling water temperature is low, the temperature at the time of ignition in the cylinder is low, so that it becomes a bad ignition environment for fuel injection with this injection timing delayed, and misfires or white smoke due to insufficient combustion occurs. There is a problem of doing. Further, if the fuel injection timing is advanced to avoid this, there arises a problem that the exhaust temperature necessary for regeneration of the DPF cannot be obtained.

一方、DPFの再生をポスト噴射により行う際に、ホワイトスモークが発生するのを防止するために、DPFの再生開始初期において、DPFに捕集された排気微粒子(PM)を除去可能な発熱量に見合う基本の噴射量に向かって、ポスト噴射の噴射量を漸増させる内燃機関の燃料噴射制御装置が提案されている。   On the other hand, when the regeneration of the DPF is performed by post-injection, in order to prevent white smoke from being generated, the amount of generated heat can be removed at the initial stage of the regeneration of the DPF so that the exhaust particulates (PM) collected by the DPF can be removed. A fuel injection control device for an internal combustion engine that gradually increases the post-injection injection amount toward a suitable basic injection amount has been proposed.

しかしながら、この内燃機関の燃料噴射制御装置では、酸化触媒の酸化能力と関連したホワイトスモークの発生の問題を解決しようとするものであり、エンジンの暖機が不十分な状態での筒内燃料噴射におけるマルチ噴射やポスト噴射による失火や白煙の対策はないため、これらの問題に対する解決手段とはならない。   However, this fuel injection control device for an internal combustion engine is intended to solve the problem of white smoke generation related to the oxidation capability of the oxidation catalyst, and in-cylinder fuel injection in a state where engine warm-up is insufficient. Since there is no countermeasure against misfire or white smoke due to multi-injection or post-injection in Japan, it is not a solution to these problems.

また、この内燃機関の燃料噴射制御装置では、常にポスト噴射を漸増させる制御となるので、PMの燃焼除去の時間が長くなり、燃費も悪化するという問題が生じる。
特開2004−11446号公報
Further, in this fuel injection control device for an internal combustion engine, the control is always to gradually increase the post injection, so that there is a problem that the time for PM combustion removal becomes longer and the fuel consumption deteriorates.
JP 2004-11446 A

本発明の目的は、連続再生型DPF装置のDPFを再生するためのマルチ噴射やポスト噴射等の筒内燃料噴射制御を行う強制再生制御に関して、エンジンが温まっていない時の強制再生制御による失火や白煙の発生を防止することができる排気ガス浄化システムの制御方法及び排気ガス浄化システムを提供することにある。   An object of the present invention relates to forced regeneration control that performs in-cylinder fuel injection control such as multi-injection and post-injection to regenerate the DPF of the continuous regeneration type DPF device, misfire caused by forced regeneration control when the engine is not warmed, An object of the present invention is to provide an exhaust gas purification system control method and an exhaust gas purification system capable of preventing the generation of white smoke.

上記の目的を達成するための本発明の排気ガス浄化システムの制御方法は、車両に搭載されたエンジンの排気ガス通路に連続再生型ディーゼルパティキュレートフィルタ(以下、DPF)装置を備えると共に、該連続再生型DPF装置における粒子状物質の捕集量を検出する捕集量検出手段と、エンジンの冷却水の温度を検出する冷却水温検出手段と、筒内燃料噴射制御により排気温度を上昇させて強制的に捕集された粒子状物質を燃焼して該連続再生型DPF装置を再生させる強制再生手段とを有するDPF制御手段を備えた排気ガス浄化システムにおいて、強制再生が必要と判断した場合であっても、前記冷却水温検出手段により検出されたエンジンの冷却水の温度が、所定の判定用水温より低いことを検出した場合には、強制再生のための前記筒内燃料噴射制御を行わないように構成される。   In order to achieve the above object, a method for controlling an exhaust gas purification system according to the present invention includes a continuous regeneration type diesel particulate filter (hereinafter referred to as DPF) device in an exhaust gas passage of an engine mounted on a vehicle. The amount of collected particulate matter detection means in the regenerative DPF device, the cooling water temperature detection means for detecting the temperature of the engine cooling water, and the in-cylinder fuel injection control to raise the exhaust temperature and force it This is a case where it is determined that forced regeneration is necessary in an exhaust gas purification system having a DPF control means having a forced regeneration means for combusting collected particulate matter and regenerating the continuous regeneration type DPF device. However, if it is detected that the temperature of the engine cooling water detected by the cooling water temperature detecting means is lower than a predetermined water temperature for determination, forced regeneration is performed. Configured so as not to of the in-cylinder fuel injection control.

また、上記の目的を達成するための本発明の排気ガス浄化システムは、車両に搭載されたエンジンの排気ガス通路に連続再生型DPF装置を備えると共に、該連続再生型DPF装置における粒子状物質の量を検出する捕集量検出手段と、エンジンの冷却水の温度を検出する冷却水温検出手段と、筒内燃料噴射制御により排気温度を上昇させて強制的に捕集された粒子状物質を燃焼して該連続再生型DPF装置を再生させる強制再生手段とを有するDPF制御手段を備えた排気ガス浄化システムにおいて、前記DPF制御手段が、前記強制再生手段による強制再生が必要と判断した場合であっても、前記冷却水温検出手段により検出されたエンジンの冷却水の温度が、所定の判定用水温より低いことを検出した場合には、強制再生のための前記筒内燃料噴射制御を行わないように制御するように構成される。   An exhaust gas purification system of the present invention for achieving the above object includes a continuous regeneration type DPF device in an exhaust gas passage of an engine mounted on a vehicle, and the particulate matter in the continuous regeneration type DPF device. Collected amount detection means for detecting the amount of fuel, cooling water temperature detection means for detecting the temperature of the engine cooling water, and combustion of particulate matter that has been forcibly collected by raising the exhaust gas temperature by in-cylinder fuel injection control In the exhaust gas purification system having the DPF control means having the forced regeneration means for regenerating the continuous regeneration type DPF device, the DPF control means determines that the forced regeneration by the forced regeneration means is necessary. However, if it is detected that the temperature of the engine coolant detected by the coolant temperature detecting means is lower than a predetermined water temperature for determination, the forced regeneration Configured to control so as not to inner fuel injection control.

そして、上記の排気ガス浄化システムにおいて、前記筒内燃料噴射制御がマルチ噴射制御とポスト噴射制御の少なくとも一方又はその両方を含むように構成される。   In the exhaust gas purification system, the in-cylinder fuel injection control is configured to include at least one or both of multi-injection control and post-injection control.

なお、上記の排気ガス浄化システムにおける連続再生型DPF装置としては、フィルタに酸化触媒を担持させた連続再生型DPF装置、フィルタの上流側に酸化触媒を設けた連続再生型DPF装置、フィルタに触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPF装置等がある。   The continuous regeneration type DPF device in the exhaust gas purification system described above includes a continuous regeneration type DPF device in which an oxidation catalyst is supported on a filter, a continuous regeneration type DPF device in which an oxidation catalyst is provided upstream of the filter, and a catalyst in the filter. And a continuous regeneration type DPF device in which an oxidation catalyst is provided on the upstream side of the filter.

本発明の排気ガス浄化システムの制御方法と排気ガス浄化システムによれば、エンジンの冷却水の温度が所定の判定用水温よりも低い場合には、マルチ噴射やポスト噴射等の筒内燃料噴射制御を含む強制再生制御を行わないように構成し、確実に冷却水の温度が上がってから強制再生制御を行うため、エンジン失火によるドライバビリティの悪化や白煙の発生等の不具合を防止することができる。   According to the exhaust gas purification system control method and exhaust gas purification system of the present invention, in-cylinder fuel injection control such as multi-injection and post-injection when the temperature of engine coolant is lower than a predetermined water temperature for determination. It is configured not to perform forced regeneration control that includes, and forced regeneration control is performed after the temperature of the cooling water has risen reliably. This prevents problems such as deterioration of drivability due to engine misfire and generation of white smoke. it can.

以下、本発明に係る実施の形態の排気ガス浄化システムの制御方法と排気ガス浄化システムについて、酸化触媒と触媒付きフィルタの組合せで構成される連続再生型DPF装置を備えた排気ガス浄化システムを例にして、図面を参照しながら説明する。   Hereinafter, as for an exhaust gas purification system control method and an exhaust gas purification system according to an embodiment of the present invention, an example of an exhaust gas purification system including a continuous regeneration type DPF device constituted by a combination of an oxidation catalyst and a filter with a catalyst will be described. This will be described with reference to the drawings.

図1に、この実施の形態のエンジンの排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、ディーゼルエンジン10の排気マニホールド11に接続する排気通路12に連続再生型DPF(ディーゼルパティキュレートフィルタ)装置13を設けて構成されている。この連続再生型DPF装置13は、上流側に酸化触媒(DOC)13aを下流側に触媒付きフィルタ(CSF)13bを有して構成される。   FIG. 1 shows a configuration of an engine exhaust gas purification system 1 according to this embodiment. The exhaust gas purification system 1 is configured by providing a continuous regeneration type DPF (diesel particulate filter) device 13 in an exhaust passage 12 connected to an exhaust manifold 11 of a diesel engine 10. The continuous regeneration type DPF device 13 includes an oxidation catalyst (DOC) 13a on the upstream side and a filter with catalyst (CSF) 13b on the downstream side.

この酸化触媒13aは、多孔質のセラミックのハニカム構造等の担持体に、白金(Pt)等の酸化触媒を担持させて形成され、触媒付きフィルタ13bは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウオールフロータイプのフィルタや、アルミナ等の無機繊維をランダムに積層したフェルト状のフィルタ等で形成される。このフィルタの部分に白金や酸化セリウム等の触媒を担持する。   This oxidation catalyst 13a is formed by carrying an oxidation catalyst such as platinum (Pt) on a carrier such as a porous ceramic honeycomb structure, and the filter with catalyst 13b is formed at the inlet of the channel of the porous ceramic honeycomb. And a monolith honeycomb wall flow type filter in which the outlets are alternately sealed, or a felt-like filter in which inorganic fibers such as alumina are laminated at random. A catalyst such as platinum or cerium oxide is supported on the filter.

そして、触媒付きフィルタ13bに、モノリスハニカム型ウオールフロータイプのフィルタを採用した場合には、排気ガスG中のPM(粒子状物質)は多孔質のセラミックの壁で捕集(トラップ)され、繊維型フィルタタイプを採用した場合には、フィルタの無機繊維でPMを捕集する。   When a monolith honeycomb wall flow type filter is adopted as the filter with catalyst 13b, PM (particulate matter) in the exhaust gas G is collected (trapped) by the porous ceramic wall, and the fibers When the mold filter type is adopted, PM is collected by the inorganic fibers of the filter.

そして、触媒付きフィルタ13bのPMの堆積量を推定するために、連続再生型DPF装置13の前後に接続された導通管に差圧センサ21が設けられる。また、触媒付きフィルタ13bの再生制御用に、酸化触媒13aと触媒付きフィルタ13bの上流側、中間及び下流側に、それぞれ、酸化触媒入口排気温度センサ22、フィルタ入口排気温度センサ23が設けられる。なお、吸気通路17には、エアクリーナー18が設けられている。   Then, in order to estimate the amount of PM deposited on the filter with catalyst 13b, a differential pressure sensor 21 is provided in a conducting pipe connected before and after the continuous regeneration type DPF device 13. For regeneration control of the filter with catalyst 13b, an oxidation catalyst inlet exhaust temperature sensor 22 and a filter inlet exhaust temperature sensor are provided on the upstream side, the middle, and the downstream side of the oxidation catalyst 13a and the filter with catalyst 13b, respectively. An air cleaner 18 is provided in the intake passage 17.

これらのセンサの出力値は、エンジン10の運転の全般的な制御を行うと共に、連続再生型DPF装置13の再生制御も行う制御装置(ECU:エンジンコントロールユニット)30に入力され、この制御装置30から出力される制御信号により、エンジン10の燃料噴射装置(噴射ノズル)14や、排気通路12の連続再生型DPF装置13の下流側に設けられ、排気量を調整する排気絞り弁16や、図示しないEGR通路にEGRクーラと共に設けられたEGR量を調整するEGRバルブ等が制御される。   Output values of these sensors are input to a control device (ECU: engine control unit) 30 that performs overall control of the operation of the engine 10 and also performs regeneration control of the continuous regeneration type DPF device 13. An exhaust throttle valve 16 that is provided downstream of the fuel injection device (injection nozzle) 14 of the engine 10 and the continuous regeneration type DPF device 13 in the exhaust passage 12 according to the control signal output from An EGR valve or the like that adjusts the EGR amount provided in the EGR passage together with the EGR cooler is controlled.

この燃料噴射装置14は燃料ポンプ(図示しない)で昇圧された高圧の燃料を一時的に貯えるコモンレール噴射システム(図示しない)に接続されており、制御装置30には、エンジンの運転のために、アクセルポジションセンサ(APS)31からのアクセル開度、回転数センサ32からのエンジン回転数、走行距離センサ33からの走行距離、水温センサ34からのエンジンの冷却水の温度等の情報の他、車両速度等も入力される。   The fuel injection device 14 is connected to a common rail injection system (not shown) that temporarily stores high-pressure fuel boosted by a fuel pump (not shown). In addition to information such as the accelerator opening from the accelerator position sensor (APS) 31, the engine speed from the rotation speed sensor 32, the travel distance from the travel distance sensor 33, the temperature of the engine coolant from the water temperature sensor 34, the vehicle Speed etc. are also input.

そして、制御装置30は、図2に示すように、エンジンの運転を制御するエンジン制御手段20Cと、排気ガス浄化システム1のためのDPF制御手段30C等を有して構成される。そして、このDPF制御手段30Cは、通常運転制御手段31C、PM捕集量検出手段32C、走行距離検出手段33C、強制再生手段34C、警告手段35C等を有して構成される。   As shown in FIG. 2, the control device 30 includes an engine control means 20C for controlling the operation of the engine, a DPF control means 30C for the exhaust gas purification system 1, and the like. The DPF control means 30C includes a normal operation control means 31C, a PM collection amount detection means 32C, a travel distance detection means 33C, a forced regeneration means 34C, a warning means 35C, and the like.

通常運転検出手段31Cは、特に、連続再生型DPF装置13の再生に関係なしに行われる通常の運転を行うための手段であり、アクセルポジションセンサ31の信号及び回転数センサ32の信号に基づいて制御装置30で演算された通電時間信号により、所定量の燃料が燃料噴射装置14から噴射される通常の噴射制御が行われる。   The normal operation detection means 31C is a means for performing a normal operation that is performed regardless of the regeneration of the continuous regeneration type DPF device 13, and based on the signal of the accelerator position sensor 31 and the signal of the rotation speed sensor 32. Normal injection control in which a predetermined amount of fuel is injected from the fuel injection device 14 is performed based on the energization time signal calculated by the control device 30.

PM捕集量検出手段32Cは、連続再生型DPF装置13の触媒付きフィルタ13bに捕集されるPM(粒子状物質)の捕集量ΔPm を検出する手段であり、この捕集量ΔPm の検出は、エンジンの回転速度や負荷から推定した堆積量の累積計算値や、エンジンの回転累積時間や、連続再生型DPF装置13の前後の差圧等で検出する。この実施の形態では、連続再生型DPF装置13の前後の差圧、即ち、差圧センサ21による測定値を基にして検出する。   The PM trapping amount detection means 32C is a means for detecting the trapping amount ΔPm of PM (particulate matter) trapped in the filter 13b with catalyst of the continuous regeneration type DPF device 13, and detecting the trapping amount ΔPm. Is detected from the accumulated calculation value of the accumulation amount estimated from the engine speed and load, the engine rotation accumulation time, the differential pressure before and after the continuous regeneration type DPF device 13, and the like. In this embodiment, detection is performed based on the differential pressure before and after the continuous regeneration type DPF device 13, that is, based on the measured value by the differential pressure sensor 21.

走行距離検出手段33Cは、DPF再生の後に車両が走行した距離ΔMc を検出する手段であり、走行距離センサ33で計測される走行距離を基にして求められ、強制再生が行われた場合には、再生の開始時から再生終了時までの適当な時期にリセットされる。   The travel distance detection means 33C is a means for detecting the distance ΔMc traveled by the vehicle after the DPF regeneration. The travel distance detection means 33C is obtained based on the travel distance measured by the travel distance sensor 33, and when the forced regeneration is performed. The time is reset at an appropriate time from the start of playback to the end of playback.

強制再生手段34Cは、連続再生型DPF装置13の種類に応じて多少制御が異なるが、エンジン10の筒内(シリンダ内)噴射においてマルチ噴射(多段噴射)を行って、排気温度を酸化触媒13aの活性温度まで上昇させ、その後ポスト噴射(後噴射)を行ってフィルタ入口排気温度センサ23で検知されるフィルタ入口排気温度Tfiを500℃〜600℃に上げて、PMの酸化除去に適した温度や環境になるようにし、触媒付きフィルタ13bに捕集されたPMを強制的に燃焼除去して触媒付きフィルタ13bを強制再生する。なお、排気絞り弁16やEGR等の吸気系制御を必要に応じて併用する。   The forced regeneration means 34C is slightly different in control depending on the type of the continuous regeneration type DPF device 13, but performs multi-injection (multistage injection) in the cylinder (in-cylinder) injection of the engine 10 to change the exhaust temperature to the oxidation catalyst 13a. Is increased to the activation temperature, and then post-injection (post-injection) is performed to increase the filter inlet exhaust temperature Tfi detected by the filter inlet exhaust temperature sensor 23 to 500 ° C. to 600 ° C. The PM collected in the filter 13b with catalyst is forcibly burned and removed to forcibly regenerate the filter 13b with catalyst. In addition, intake system control such as the exhaust throttle valve 16 and EGR is used in combination as necessary.

そして、本発明においては、この強制再生手段34Cは、エンジンの冷却水の温度Twmを検出する冷却水温検出手段341Cを有して構成され、この冷却水温検出手段341Cで検出されたエンジンの冷却水の温度Twmが予め設定された所定の判定用水温Tw0より小さい場合には、マルチ噴射制御及びポスト噴射制御を行わず、検出された冷却水温Twmが所定の判定用水温度Tw0より高くなるまで待って、高くなってからマルチ噴射制御及びポスト噴射制御を行って、触媒付きフィルタ13bを強制再生するように構成される。   In the present invention, the forced regeneration means 34C includes a cooling water temperature detecting means 341C that detects the temperature Twm of the engine cooling water, and the engine cooling water detected by the cooling water temperature detecting means 341C. When the temperature Twm is lower than a predetermined determination water temperature Tw0, the multi-injection control and the post-injection control are not performed, and the process waits until the detected cooling water temperature Twm becomes higher than the predetermined determination water temperature Tw0. Then, the multi-injection control and the post-injection control are performed after it becomes high, and the filter 13b with catalyst is forcibly regenerated.

警告手段35Cは、点滅灯(DPFランプ)41、警告灯(警告ランプ)42等で構成され、ドライバー(運転者)に、点滅灯41の点滅により手動による強制再生手段34Cの作動を促す警告を行ったり、警告灯42の点灯によりドライバーに車両をサービスセンターに持っていくように促す手段である。なお、この警告を受けたドライバーは手動再生スイッチ43を操作することにより、強制再生手段34Cを作動することができる。   The warning unit 35C includes a flashing lamp (DPF lamp) 41, a warning lamp (warning lamp) 42, and the like, and warns the driver (driver) of urging the manual regeneration means 34C to operate manually by the flashing of the flashing lamp 41. It is a means for urging the driver to take the vehicle to the service center by going on or turning on the warning light 42. The driver who has received this warning can operate the forced regeneration means 34C by operating the manual regeneration switch 43.

そして、これらの各種手段を有するDPF制御手段30Cは、PM捕集量検出手段32Cで検出されたPMの捕集量ΔPm と、走行距離検出手段33Cで検出されたDPF再生の後の走行距離ΔMc に基づいて、通常運転制御手段31Cによる通常の運転を継続したり、ドライバーに対して手動による強制再生手段34Cの作動を促す警告を行ったり、自動的に強制再生手段34Cを作動させたりする手段として構成される。   The DPF control means 30C having these various means includes the PM collection amount ΔPm detected by the PM collection amount detection means 32C and the travel distance ΔMc after the DPF regeneration detected by the travel distance detection means 33C. Based on the above, means for continuing normal operation by the normal operation control means 31C, warning the driver for manually operating the forced regeneration means 34C, or automatically operating the forced regeneration means 34C Configured as

次に、この排気ガス浄化システム1の再生制御について説明する。この排気ガス浄化システム1の制御においては、通常運転制御手段31Cによって通常の運転が行われ、PMを捕集するが、この通常の運転において、適当な時間間隔で、図3及び図4に例示するような再生制御フローに従った制御を行う。この制御で、PM捕集量検出手段31Cで検出されたPMの捕集量ΔPm と走行距離検出手段32Cで検出された走行距離ΔMc が、所定の範囲内に入るか否か、手動再生の可否、走行自動再生の可否を判断して、必要に応じて、各種の処理を行った後戻って、更に、通常運転制御手段31Cによる通常の運転を行う。そして、通常の運転と再生制御を繰り返しながら、車両の運転が行われる。   Next, regeneration control of the exhaust gas purification system 1 will be described. In the control of the exhaust gas purification system 1, a normal operation is performed by the normal operation control means 31C and PM is collected. In this normal operation, examples are shown in FIGS. 3 and 4 at appropriate time intervals. The control according to the reproduction control flow is performed. With this control, whether the PM collection amount ΔPm detected by the PM collection amount detection means 31C and the travel distance ΔMc detected by the travel distance detection means 32C fall within a predetermined range, whether manual regeneration is possible or not. Then, it is determined whether or not the automatic driving regeneration is possible, and after performing various processes as necessary, the process returns to the normal operation by the normal operation control means 31C. Then, the vehicle is driven while repeating normal driving and regeneration control.

この図3及び図4の再生制御フローについて、強制再生制御の要否を判定するために用いる図5の再生制御用マップを参照しながら説明する。   The regeneration control flow of FIGS. 3 and 4 will be described with reference to the regeneration control map of FIG. 5 used for determining whether or not forced regeneration control is necessary.

最初に、図5の再生制御用マップについて説明すると、この図5の模式的に示した再生制御用マップは、縦軸はPM(捕集物)の捕集量(この実施の形態では差圧)ΔPを示し、この捕集量ΔPの領域を第1閾値(所定の判定用捕集量)ΔP1 、第2閾値ΔP2 、第3閾値ΔP3 の三つの閾値で、第1捕集量領域Rp1,第2捕集量領域Rp2,第3捕集量領域Rp3,第4捕集量領域Rp4の四つの領域に区分する。また、横軸は走行距離ΔMを示し、この走行距離ΔMの領域を第1閾値(所定の判定用走行距離)ΔM1 、第2閾値ΔM2 、第3閾値ΔM3 の三つの閾値で、第1走行距離領域Rm1,第2走行距離領域Rm2,第3走行距離領域Rm3,第4走行距離領域Rm4の四つの領域に区分する。そして、再生制御によって現在の状態がどの領域にあるかを判断し、必要に応じて、次のような処理が行われる。   First, the regeneration control map of FIG. 5 will be described. In the regeneration control map schematically shown in FIG. 5, the vertical axis represents the amount of PM (collected matter) collected (in this embodiment, the differential pressure). ) P, and the area of the trapped amount ΔP is defined by three threshold values of a first threshold value (predetermined trapped amount for determination) ΔP1, a second threshold value ΔP2, and a third threshold value ΔP3. The area is divided into four areas of a second collection amount area Rp2, a third collection amount area Rp3, and a fourth collection amount area Rp4. The horizontal axis indicates the travel distance ΔM, and the region of the travel distance ΔM is defined as the first travel distance with three threshold values: a first threshold (predetermined travel distance for determination) ΔM1, a second threshold ΔM2, and a third threshold ΔM3. The area is divided into four areas: an area Rm1, a second travel distance area Rm2, a third travel distance area Rm3, and a fourth travel distance area Rm4. Then, the region where the current state is is determined by the reproduction control, and the following processing is performed as necessary.

なお、この第1閾値(所定の判定用走行距離)ΔM1 は、手動による強制再生を行う場合のオイルダイリューションによる問題が生じない下限を示す値であり、また、第2閾値ΔM2 は、走行中に自動的に強制再生を行う場合のオイルダイリューションによる問題が生じない下限を示す値である。更に、第3閾値ΔM3 は、触媒付きフィルタ13bにおけるPMの偏積に起因する熱暴走及びDPFの溶損を防止するために強制再生を行う値である。また、この第4走行距離領域Rm4は、第3閾値ΔM3 を超えた領域のことであり、自動的に強制再生を行ったり、自動的に警告灯を点灯したりする。   The first threshold value (predetermined travel distance for determination) ΔM1 is a value indicating a lower limit that does not cause a problem due to oil dilution in the case of manual forced regeneration, and the second threshold value ΔM2 is a travel value. This is a value indicating the lower limit at which no problem due to oil dilution occurs when forced regeneration is automatically performed. Further, the third threshold value ΔM3 is a value for performing forced regeneration in order to prevent thermal runaway due to PM uneven accumulation and DPF meltdown in the filter with catalyst 13b. The fourth travel distance region Rm4 is a region that exceeds the third threshold value ΔM3, and automatically performs forced regeneration or automatically turns on a warning light.

最初に、検出された走行距離ΔMc が第1閾値ΔM1 を超えずに第1走行距離領域Rm1にある場合は、手動(マニュアル)による強制再生を行うと、オイル中の燃料の蒸発が不十分であるため、オイルダイリューションの問題が生じる。そのため、この場合には手動による強制再生を禁ずる。また、この場合でも、走行パターンによっては、走行距離当たりのPMの蓄積量が多くて、検出された捕集量ΔPm が、第3閾値ΔP3 を超えて第4捕集量領域Rp4に入ってしまうことが生じる時があるが、この時には、連続再生型DPF装置13に捕集されたPMが自己燃焼を開始して急激なPMの燃焼である熱暴走を回避するために、手動再生及び走行自動再生を禁止した状態にすると共に、ドライバーにディーラー等のサービスセンターに持っていくことを促すための警告灯42を点灯する。サービスセンターでは、例えば、エアによる逆洗や中温での長時間の焼き出し等を行って、フィルタの溶損を回避しながら、フィルタを再生する。   First, when the detected travel distance ΔMc is in the first travel distance region Rm1 without exceeding the first threshold value ΔM1, if the forced regeneration is performed manually, the fuel in the oil is not sufficiently evaporated. As a result, oil dilution problems arise. Therefore, in this case, manual forced regeneration is prohibited. Even in this case, depending on the travel pattern, the accumulated amount of PM per travel distance is large, and the detected collection amount ΔPm exceeds the third threshold value ΔP3 and enters the fourth collection amount region Rp4. In this case, in order to avoid thermal runaway, in which PM trapped in the continuous regeneration type DPF device 13 starts self-combustion and sudden PM combustion occurs, manual regeneration and automatic traveling are performed. A warning lamp 42 is lit to urge the driver to bring the vehicle to a service center such as a dealer, while prohibiting the reproduction. In the service center, for example, backwashing with air or baking for a long time at an intermediate temperature is performed, and the filter is regenerated while avoiding melting damage of the filter.

次に、検出された走行距離ΔMc が第1閾値ΔM1 を超えて第2走行距離領域Rm2に入った時には、まだ、走行が不十分でエンジンオイルに混入した燃料分の蒸発が十分に行われていないため自動強制再生は行わずに、車両を停止して手動で強制再生を行う手動再生を促す警告を行うが、検出された捕集量ΔPm の大きさによって異なる警告を行う。   Next, when the detected travel distance ΔMc exceeds the first threshold value ΔM1 and enters the second travel distance region Rm2, the travel is still insufficient and the fuel mixed in the engine oil has been sufficiently evaporated. Since there is no automatic forced regeneration, a warning for prompting manual regeneration in which the vehicle is stopped and forced regeneration is performed manually is performed, but a different warning is performed depending on the detected collection amount ΔPm.

検出された捕集量ΔPm が、第1閾値(所定の判定用捕集量)ΔP1 より小さい間は、触媒付きフィルタ13bの目詰まりは小さく、強制再生手段34Cの作動の必要は無いので、そのまま、通常の運転を継続する。また、検出された捕集量ΔPm が、第1閾値(所定の判定用捕集量)ΔP1 を超えているが、第2閾値ΔP2 を超えていないという第2差圧領域Rp2に入った時には、強制再生時のオイルダイリューションの問題を回避するために走行自動再生を禁止すると共に、点滅灯(DPFランプ)41をゆっくり点滅(マニュアル点滅1)させ、ドライバーに対して、車両を停止しての手動による強制再生(手動再生:マニュアル再生)を促す。   While the detected collection amount ΔPm is smaller than the first threshold (predetermined collection amount for determination) ΔP1, the clogging of the filter 13b with catalyst is small and the operation of the forced regeneration means 34C is not necessary, so that Continue normal operation. When the detected collection amount ΔPm exceeds the first threshold value (predetermined collection amount for determination) ΔP1, but enters the second differential pressure region Rp2 that does not exceed the second threshold value ΔP2, In order to avoid the problem of oil dilution during forced regeneration, automatic regeneration is prohibited and the flashing lamp (DPF lamp) 41 flashes slowly (manual flashing 1) to stop the vehicle from the driver. Encourage manual forced regeneration (manual regeneration: manual regeneration).

更に、検出された捕集量ΔPm が、第2閾値ΔP2 を超えているが、第3閾値ΔP3 を超えていないという第3差圧領域Rp3に入った時には、強制再生時のオイルダイリューションの問題を回避するために走行自動再生を禁止すると共に、点滅灯41を早く点滅(マニュアル点滅2)させ、ドライバーに対して、車両を停止しての手動による強制再生を強く促す。この第3差圧領域Rp3に入った場合には、運転状態によっては、連続再生型DPF装置13に捕集されたPMが自己燃焼を開始して急激なPMの燃焼である熱暴走を起こし、触媒付きフィルタ13bの溶損が生じる可能性が大きくなるので、この自己着火を懸念して噴射燃料量の絞りを併せて行う。   Further, when the detected collection amount ΔPm exceeds the second threshold value ΔP2, but enters the third differential pressure region Rp3 that does not exceed the third threshold value ΔP3, the oil dilution during forced regeneration is In order to avoid the problem, the automatic driving regeneration is prohibited, and the blinking lamp 41 blinks quickly (manual blinking 2), and the driver is strongly urged to perform manual regeneration after stopping the vehicle. When entering the third differential pressure region Rp3, depending on the operation state, the PM trapped in the continuous regeneration type DPF device 13 starts self-combustion and causes a thermal runaway that is rapid PM combustion, Since there is a high possibility that the filter with catalyst 13b will be melted, the amount of injected fuel is throttled in consideration of this self-ignition.

そして、検出された捕集量ΔPm が、第3閾値ΔP3 を超えて第4差圧領域Rp4に入った時には、熱暴走を回避するために、手動再生及び走行自動再生を行わないようにして、警告灯42を点灯し、運転者にサービスセンターに持っていくことを促す。   When the detected collection amount ΔPm exceeds the third threshold value ΔP3 and enters the fourth differential pressure region Rp4, in order to avoid thermal runaway, do not perform manual regeneration and automatic traveling regeneration. The warning light 42 is turned on to prompt the driver to take it to the service center.

次に、検出された走行距離ΔMc が第2閾値ΔM2 を超えて第3走行距離領域Rm3に入った時には、エンジンオイルに混入した燃料分の蒸発が十分に行われ、走行中の自動強制再生(走行自動再生)が可能になっているので、検出された捕集量ΔPm が、第1閾値(所定の判定用捕集量)ΔP1 を超えて第2捕集量領域Rp2に入った時には、走行中において自動的に強制再生手段34Cを作動させる走行自動再生を行う。この走行自動再生により、運転者に手動による強制再生、即ち、手動再生スイッチ43のON/OFF操作に関する負担をかけることのないようにする。なお、検出された捕集量ΔPm が、第1閾値(所定の判定用捕集量)ΔP1 より小さい間は、触媒付きフィルタ13bの目詰まりは小さく、強制再生手段34Cの作動の必要は無いので、そのまま、通常の運転を継続する。   Next, when the detected travel distance ΔMc exceeds the second threshold value ΔM2 and enters the third travel distance region Rm3, the fuel mixed in the engine oil is sufficiently evaporated, and the automatic forced regeneration during travel ( When the detected collection amount ΔPm exceeds the first threshold value (predetermined collection amount for determination) ΔP1 and enters the second collection amount region Rp2, the vehicle travels automatically. Automatic running regeneration that automatically activates the forced regeneration means 34C is performed. This traveling automatic regeneration prevents the driver from being burdened with manual forced regeneration, that is, ON / OFF operation of the manual regeneration switch 43. Note that while the detected collection amount ΔPm is smaller than the first threshold value (predetermined collection amount for determination) ΔP1, the clogged filter 13b is not clogged, and there is no need to operate the forced regeneration means 34C. Continue normal operation.

そして、検出された走行距離ΔMc が第3閾値ΔM3 を超えて第4走行距離領域Rm4に入った時には、エンジンオイルに混入した燃料分の蒸発が十分に行われ、走行中の自動強制再生が可能になっているので、検出された捕集量ΔPm が、第3閾値ΔP3 を超えない範囲では、検出された差圧ΔPm に関係なく必ず走行中の自動強制再生を行って偏積されたPMを焼却する。しかし、検出された捕集量ΔPm が、第3閾値ΔP3 を超えて第4差圧領域Rp4に入った時には、熱暴走を回避するために手動再生及び走行自動再生を禁止した状態にすると共に、警告灯42を点灯し、運転者にサービスセンターに持っていくことを促す。   When the detected traveling distance ΔMc exceeds the third threshold value ΔM3 and enters the fourth traveling distance region Rm4, the fuel mixed in the engine oil is sufficiently evaporated, and automatic forced regeneration during traveling is possible. Therefore, in the range where the detected collection amount ΔPm does not exceed the third threshold value ΔP3, regardless of the detected differential pressure ΔPm, the forced regeneration during traveling is always performed and the accumulated PM is Incinerate. However, when the detected collection amount ΔPm exceeds the third threshold value ΔP3 and enters the fourth differential pressure region Rp4, manual regeneration and automatic traveling regeneration are prohibited in order to avoid thermal runaway, The warning light 42 is turned on to prompt the driver to take it to the service center.

上記の図5に示すような再生制御マップに示された制御は、図3に例示したような再生制御フローによって実施できる。この図3の再生制御フローがスタートすると、ステップS10で、検出された走行距離ΔMc が第1閾値(所定の判定用走行距離)ΔM1 を超ているか否かを判定する。この判定で、超えておらずに第1走行距離領域Rm1にある場合には、ステップS11で、検出された捕集量ΔPm が、第3閾値ΔP3 を超えているか否かを判定し、超えていない場合にはそのままでリターンし、通常の運転を継続する。また、超えている場合にはステップS12で警告灯42を点灯してリターンする。   The control shown in the regeneration control map as shown in FIG. 5 can be performed by the regeneration control flow as exemplified in FIG. When the regeneration control flow of FIG. 3 starts, it is determined in step S10 whether or not the detected travel distance ΔMc exceeds a first threshold value (predetermined travel distance for determination) ΔM1. In this determination, if it is not exceeded but is in the first travel distance region Rm1, it is determined in step S11 whether or not the detected collection amount ΔPm exceeds the third threshold value ΔP3. If not, return as it is and continue normal operation. On the other hand, if it exceeds, the warning lamp 42 is turned on in step S12 and the process returns.

従って、ステップS10の判定で第1走行距離領域Rm1にあると判定された場合には、手動による強制再生手段34Cの作動は禁止される。なお、車両の走行中に自動的に強制再生手段34Cの作動を行う走行自動再生も行われない。   Accordingly, when it is determined in step S10 that the vehicle is in the first travel distance region Rm1, manual operation of the forced regeneration means 34C is prohibited. In addition, automatic traveling regeneration in which the forced regeneration means 34C is automatically activated during traveling of the vehicle is not performed.

そして、ステップS10で、走行距離ΔMc が第1閾値(所定の判定用走行距離)ΔM1 を超えている場合には、ステップS20で、走行距離ΔMc が第2閾値ΔM2 を超えているか否かを判定する。この判定で、超えていない場合には、ステップS21で捕集量ΔPm が第1閾値(所定の判定用捕集量)ΔP1 を超えているか否かを判定し、超えていない場合にはそのままリターンし通常の運転を継続する。   If the travel distance ΔMc exceeds the first threshold value (predetermined travel distance for determination) ΔM1 in step S10, it is determined in step S20 whether the travel distance ΔMc exceeds the second threshold value ΔM2. To do. In this determination, if it does not exceed, it is determined in step S21 whether or not the collection amount ΔPm exceeds the first threshold value (predetermined collection amount for determination) ΔP1. Continue normal operation.

そして、ステップS21で捕集量ΔPm が第1閾値(所定の判定用捕集量)ΔP1 を超えている場合には、ステップS22で捕集量ΔPm が第2閾値ΔP2 を超えているか否かを判定し、超えていない場合には、ステップS24で、点滅灯(DPFランプ)41をゆっくり点灯し、ステップS26で手動再生スイッチのON/OFFを判定する。   If the collection amount ΔPm exceeds the first threshold value (predetermined collection amount for determination) ΔP1 in step S21, it is determined in step S22 whether the collection amount ΔPm exceeds the second threshold value ΔP2. If it does not exceed, the flashing lamp (DPF lamp) 41 is slowly turned on in step S24, and whether the manual regeneration switch is ON or OFF is determined in step S26.

また、ステップS22の判定で捕集量ΔPm が第2閾値ΔP2 を超えている場合には、ステップS23で捕集量ΔPm が第3閾値ΔP3 を超えているか否かを判定し、超えていない場合には、ステップS25で、点滅灯(DPFランプ)41を早く点灯し、ステップS26で手動再生スイッチのON/OFFを判定する。   Further, when the collection amount ΔPm exceeds the second threshold value ΔP2 in the determination in step S22, it is determined whether or not the collection amount ΔPm exceeds the third threshold value ΔP3 in step S23. In step S25, the blinking lamp (DPF lamp) 41 is quickly turned on, and in step S26, it is determined whether the manual regeneration switch is on or off.

ステップS26で手動再生スイッチ43がONである場合には、ステップS26の手動再生スイッチ43のONによって強制再生手段34Cを作動させる手動再生を行い、ステップS28で、走行距離ΔMc のカウンタをリセットしてリターンする。また、捕集量ΔPm を差圧ではなく、PMの累積量で判定する場合には、このPMの累積量もリセットする。また、ステップS26で手動再生スイッチ43がONでない場合には、そのままリターンし、この再生制御フローの繰り返し中にドライバーによって手動再生スイッチ43がONされるのを待つ。   If the manual regeneration switch 43 is ON in step S26, manual regeneration is performed by operating the manual regeneration switch 43 in step S26 to operate the forced regeneration means 34C. In step S28, the counter of the travel distance ΔMc is reset. Return. Further, when the trapping amount ΔPm is determined not by the differential pressure but by the accumulated amount of PM, the accumulated amount of PM is also reset. On the other hand, if the manual regeneration switch 43 is not ON in step S26, the process directly returns and waits for the manual regeneration switch 43 to be turned ON by the driver during the repetition of this regeneration control flow.

そして、ステップS23の判定で、捕集量ΔPm が第3閾値ΔP3 を超えている場合には、手動再生と走行自動再生を禁止した状態で、ステップS29で、警告灯42を点灯してリターンする。   If it is determined in step S23 that the collected amount ΔPm exceeds the third threshold value ΔP3, the warning light 42 is turned on in step S29 and the process returns with manual regeneration and automatic traveling regeneration prohibited. .

また、ステップS20の判定で、走行距離ΔMc が第2閾値ΔM2 を超えている場合には、ステップS30で、走行距離ΔMc が第3閾値ΔM3 を超えているか否かを判定する。このステップS30の判定で、超えている場合には、ステップS31で捕集量ΔPm が第1閾値(所定の判定用捕集量)ΔP1 を超えているか否かを判定する。このステップS31の判定で、超えていない場合にはそのままリターンし通常の運転を継続する。また、ステップS31の判定で超えている場合には、ステップS32の判定に行く。そして、ステップS30の判定で、超えていない場合もステップS32の判定に行く。   If it is determined in step S20 that the travel distance ΔMc exceeds the second threshold value ΔM2, it is determined in step S30 whether the travel distance ΔMc exceeds the third threshold value ΔM3. If it is determined in step S30 that it has exceeded, it is determined in step S31 whether or not the collection amount ΔPm exceeds the first threshold value (predetermined collection amount for determination) ΔP1. If it is determined in step S31 that it has not exceeded, the routine returns and the normal operation is continued. On the other hand, if it exceeds the determination in step S31, the determination goes to step S32. And even if it is not exceeded by determination of step S30, it goes to determination of step S32.

ステップS32で、捕集量ΔPm が第3閾値ΔP3 を超えているか否かを判定し、超えている場合には、手動再生と走行自動再生を禁止した状態で、ステップS35で、警告灯42を点灯してリターンする。   In step S32, it is determined whether or not the collection amount ΔPm exceeds the third threshold value ΔP3. If so, manual regeneration and automatic traveling regeneration are prohibited. In step S35, the warning lamp 42 is turned on. Turns on and returns.

また、ステップS32の判定で、捕集量ΔPm が第3閾値ΔP3 を超えていない場合には、ステップS33で走行中に自動的に強制再生手段34Cを作動させる走行自動再生を行い、ステップS34で、走行距離ΔMc のカウンタをリセットし、リターンする。また、捕集量ΔPm を差圧ではなく、PMの累積量で判定する場合には、このPMの累積量もリセットする。   If it is determined in step S32 that the collected amount ΔPm does not exceed the third threshold value ΔP3, in step S33, automatic regeneration is performed to automatically operate the forced regeneration means 34C during traveling, and in step S34. The travel distance ΔMc counter is reset and the process returns. Further, when the trapping amount ΔPm is determined not by the differential pressure but by the accumulated amount of PM, the accumulated amount of PM is also reset.

そして、本発明においては、強制再生手段34Cを作動させるステップS27の手動再生及びステップS33の走行自動再生においては、図4に示すような制御フローで、マルチ噴射制御とポスト噴射制御が行われ、触媒付きフィルタ13bを再生する。   In the present invention, in the manual regeneration in step S27 for operating the forced regeneration means 34C and the automatic traveling regeneration in step S33, multi-injection control and post-injection control are performed in a control flow as shown in FIG. The filter with catalyst 13b is regenerated.

この図4に示す制御フローでは、図3の制御フローのステップS27やステップS33で呼ばれてスタートすると、ステップS41で、水温センサ34で検出したエンジンの冷却水の温度Twmが、事前に設定してある所定の判定用水温Tw0以上であるか否かを判定し、小さければ、直ぐに強制再生を開始するとマルチ噴射やポスト噴射時に失火してしまい、白煙が出る危険性があるので、ステップS42に行き、暖機システムを作動し、冷却水温Twmの判定のインターバルに関係する所定の時間の間暖機運転を行い、ステップS41に戻り、冷却水の温度Twmが所定の判定用水温Tw0以上に上昇するまで待つ。   In the control flow shown in FIG. 4, when it is called and started in step S27 or step S33 of the control flow of FIG. 3, the temperature Twm of the engine coolant detected by the water temperature sensor 34 is set in advance in step S41. It is determined whether or not the temperature is equal to or higher than a predetermined water temperature for determination Tw0. If it is small, there is a risk that misfires may occur during multi-injection or post-injection if forced regeneration is started immediately, and white smoke may be emitted. , The warm-up system is activated, the warm-up operation is performed for a predetermined time related to the determination interval of the cooling water temperature Twm, the process returns to step S41, and the cooling water temperature Twm is equal to or higher than the predetermined determination water temperature Tw0. Wait until it rises.

また、ステップS41の冷却水の温度Twmの判定で、所定の判定用水温Tw0以上であれば、ステップS43で、強制再生システムの作動を許可し、ステップS44で排気温度のチェックを行う。即ち、酸化触媒入口排気温度センサ22で検出される排気温度Tdiが所定の判定温度Td0よりも小さいか否かを判定する。   If it is determined in step S41 that the cooling water temperature Twm is equal to or higher than a predetermined determination water temperature Tw0, the forced regeneration system is allowed to operate in step S43, and the exhaust gas temperature is checked in step S44. That is, it is determined whether or not the exhaust gas temperature Tdi detected by the oxidation catalyst inlet exhaust gas temperature sensor 22 is lower than a predetermined determination temperature Td0.

そして、ステップS44の排気温度のチェックで、排気温度Tdiが所定の判定温度Td0よりも小さい場合には、ステップS45のマルチ噴射を行う第1強制再生制御を、再生制御の完了を判定するインターバルに関係する所定の時間の間行う。その後、ステップS47で、再生制御が完了したか否かを判定する。この第1強制再生制御は、エンジン10の筒内(シリンダ内)噴射においてマルチ噴射(多段噴射)を行って、排気温度Tdiを酸化触媒13aの活性温度Td0まで上昇させる制御である。   If the exhaust gas temperature Tdi is smaller than the predetermined determination temperature Td0 in the exhaust gas temperature check in step S44, the first forced regeneration control for performing multi-injection in step S45 is set as an interval for determining the completion of the regeneration control. For a predetermined time of interest. Thereafter, in step S47, it is determined whether or not the reproduction control is completed. The first forced regeneration control is a control for increasing the exhaust temperature Tdi to the activation temperature Td0 of the oxidation catalyst 13a by performing multi-injection (multi-stage injection) in the cylinder (in-cylinder) injection of the engine 10.

また、ステップS44の排気温度のチェックで、排気温度Tdiが所定の判定温度Td0以上の場合には、ステップS46のマルチ噴射とポスト噴射を行う第2強制再生制御を、再生制御の完了を判定するインターバルに関係する所定の時間の間行う。この第2強制再生制御では、マルチ噴射と共にポスト噴射(後噴射)を行ってフィルタ入口排気温度センサ23で検知されるフィルタ入口排気温度Tfiを500℃〜600℃に上げて、PMの酸化除去に適した温度や環境になるようにし、触媒付きフィルタ13bに捕集されたPMを強制的に燃焼除去して触媒付きフィルタ13bを強制再生する。その後、ステップS47で、再生制御が完了したか否かを判定する。なお、この強制再生に際しては、排気絞り弁16やEGR等の吸気系制御を必要に応じて併用する。また、ポスト噴射の代わりに、排気通路内直接燃料噴射により、排気ガス中に未燃燃料を供給するようにして、マルチ噴射と排気通路内直接燃料噴射で第2強制再生制御を行ってもよい。   If the exhaust gas temperature Tdi is equal to or higher than the predetermined determination temperature Td0 in the exhaust gas temperature check in step S44, the completion of the regeneration control is determined in the second forced regeneration control in which the multi-injection and post-injection are performed in step S46. For a predetermined time related to the interval. In this second forced regeneration control, post-injection (post-injection) is performed together with multi-injection, and the filter inlet exhaust temperature Tfi detected by the filter inlet exhaust temperature sensor 23 is raised to 500 ° C. to 600 ° C. to remove PM by oxidation. An appropriate temperature and environment are set, and the PM collected by the filter with catalyst 13b is forcibly burned and removed to forcibly regenerate the filter with catalyst 13b. Thereafter, in step S47, it is determined whether or not the reproduction control is completed. In this forced regeneration, intake system controls such as the exhaust throttle valve 16 and EGR are used together as necessary. Alternatively, the second forced regeneration control may be performed by multi-injection and direct fuel injection in the exhaust passage by supplying unburned fuel into the exhaust gas by direct fuel injection in the exhaust passage instead of post injection. .

ステップS47の再生制御の判定は、予め設定した再生処理時間を経過したか否か、差圧センサ21で検出した差圧ΔPm が、所定の完了判定用差圧値ΔPm1以下になったか否か等により行う。   In step S47, the regeneration control is determined based on whether or not a preset regeneration processing time has elapsed, whether or not the differential pressure ΔPm detected by the differential pressure sensor 21 has become equal to or less than a predetermined completion determination differential pressure value ΔPm1, and the like. To do.

そして、このステップS47の再生制御の完了の判定で、完了していないと判定された場合には、ステップS41に戻って、ステップS41〜ステップS47を、完了の判定が得られるまで繰り返す。   If it is determined in step S47 that the regeneration control is not completed, the process returns to step S41, and steps S41 to S47 are repeated until completion is obtained.

このステップS47の再生制御の完了の判定で、完了していると判定された場合には、この図4の制御フローを終了してリターンし、図3の制御フローに戻る。   If it is determined in step S47 that the regeneration control has been completed, the control flow in FIG. 4 is terminated and the process returns, and the process returns to the control flow in FIG.

上記の排気ガス浄化システムの制御によれば、エンジンの冷却水の温度Twmが所定の判定用水温Tw0よりも低い場合には、マルチ噴射制御やポスト噴射制御等の筒内燃料噴射制御を含む強制再生制御を行わず、エンジンの冷却水の温度Twmが所定の判定用水温Tw0以上の場合だけ、強制再生制御を行うことができる。   According to the control of the exhaust gas purification system described above, when the engine coolant temperature Twm is lower than the predetermined determination water temperature Tw0, forced injection including in-cylinder fuel injection control such as multi-injection control and post-injection control is performed. The forced regeneration control can be performed only when the temperature Twm of the engine cooling water is equal to or higher than the predetermined determination water temperature Tw0 without performing the regeneration control.

従って、エンジンの冷却水の温度が低くて、強制再生制御時において、再生初期時の失火によりドライバビリティが悪化したり、白煙が発生したりする不具合を防止することができる。   Therefore, it is possible to prevent the problem that the drivability is deteriorated or white smoke is generated due to misfire at the initial stage of regeneration in the forced regeneration control when the temperature of the cooling water of the engine is low.

なお、上記の説明では、排気ガス浄化システムにおける連続再生型DPF装置として、フィルタに触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPF装置を例にして説明したが、本発明はこれに限定されるものではなく、フィルタに酸化触媒を担持させた連続再生型DPF装置、フィルタの上流側に酸化触媒を設けた連続再生型DPF装置等の他のタイプの連続再生型DPF装置にも適用可能である。   In the above description, the continuous regeneration type DPF device in the exhaust gas purification system is described as an example of the continuous regeneration type DPF device in which the catalyst is supported on the filter and the oxidation catalyst is provided on the upstream side of the filter. The present invention is not limited to this, and other types of continuous regeneration types such as a continuous regeneration type DPF device in which an oxidation catalyst is supported on a filter and a continuous regeneration type DPF device in which an oxidation catalyst is provided on the upstream side of the filter. It can also be applied to a DPF device.

本発明に係る実施の形態の排気ガス浄化システムのシステム構成図である。1 is a system configuration diagram of an exhaust gas purification system according to an embodiment of the present invention. 本発明に係る実施の形態の排気ガス浄化システムの制御手段の構成を示す図である。It is a figure which shows the structure of the control means of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムの再生制御フローを示す図である。It is a figure which shows the regeneration control flow of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の強制再生制御の制御フローを示す図である。It is a figure which shows the control flow of forced regeneration control of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムの再生制御用マップを模式的に示す図である。It is a figure which shows typically the map for regeneration control of the exhaust gas purification system of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 排気ガス浄化システム
10 ディーゼルエンジン(内燃機関)
13 連続再生型DPF装置
13a 酸化触媒
13b 触媒付きフィルタ
30 制御装置(ECU)
34 水温センサ
30C DPF制御手段
31C 通常運転制御手段
32C PM捕集量検出手段
33C 走行距離検出手段
34C 強制再生手段
341C 冷却水温検出手段
35C 警告手段
Twm エンジンの冷却水の温度
Tw0 所定の判定用水温
1 Exhaust gas purification system
10 Diesel engine (internal combustion engine)
13 Continuous regeneration type DPF device
13a Oxidation catalyst
13b Filter with catalyst
30 control unit (ECU)
34 Water temperature sensor
30C DPF control means
31C Normal operation control means
32C PM collection amount detection means
33C Travel distance detection means
34C Forced regeneration means
341C Cooling water temperature detection means
35C Warning means
Twm Engine coolant temperature
Tw0 Predetermined water temperature for judgment

Claims (3)

車両に搭載されたエンジンの排気ガス通路に連続再生型ディーゼルパティキュレートフィルタ装置を備えると共に、該連続再生型ディーゼルパティキュレートフィルタ装置における粒子状物質の捕集量を検出する捕集量検出手段と、エンジンの冷却水の温度を検出する冷却水温検出手段と、筒内燃料噴射制御により排気温度を上昇させて強制的に捕集された粒子状物質を燃焼して該連続再生型ディーゼルパティキュレートフィルタ装置を再生させる強制再生手段とを有するディーゼルパティキュレートフィルタ制御手段を備えた排気ガス浄化システムにおいて、
強制再生が必要と判断した場合であっても、前記冷却水温検出手段により検出されたエンジンの冷却水の温度が、所定の判定用水温より低いことを検出した場合には、強制再生のための前記筒内燃料噴射制御を行わないことを特徴とする排気ガス浄化システムの制御方法。
A collection amount detection means for detecting a trapped amount of particulate matter in the continuous regeneration type diesel particulate filter device, provided with a continuous regeneration type diesel particulate filter device in an exhaust gas passage of an engine mounted on a vehicle; Cooling water temperature detecting means for detecting the cooling water temperature of the engine, and the continuously regenerating diesel particulate filter device by burning the particulate matter forcedly collected by raising the exhaust gas temperature by in-cylinder fuel injection control In an exhaust gas purification system comprising a diesel particulate filter control means having a forced regeneration means for regenerating
Even when it is determined that forced regeneration is necessary, when it is detected that the temperature of the engine coolant detected by the coolant temperature detecting means is lower than a predetermined determination water temperature, the forced regeneration is performed. A control method for an exhaust gas purification system, wherein the in-cylinder fuel injection control is not performed.
車両に搭載されたエンジンの排気ガス通路に連続再生型ディーゼルパティキュレートフィルタ装置を備えると共に、該連続再生型ディーゼルパティキュレートフィルタ装置における粒子状物質の量を検出する捕集量検出手段と、エンジンの冷却水の温度を検出する冷却水温検出手段と、筒内燃料噴射制御により排気温度を上昇させて強制的に捕集された粒子状物質を燃焼して該連続再生型ディーゼルパティキュレートフィルタ装置を再生させる強制再生手段とを有するディーゼルパティキュレートフィルタ制御手段を備えた排気ガス浄化システムにおいて、
前記ディーゼルパティキュレートフィルタ制御手段が、前記強制再生手段による強制再生が必要と判断した場合であっても、前記冷却水温検出手段により検出されたエンジンの冷却水の温度が、所定の判定用水温より低いことを検出した場合には、強制再生のための前記筒内燃料噴射制御を行わないように制御することを特徴とする排気ガス浄化システム。
A continuous regeneration type diesel particulate filter device is provided in an exhaust gas passage of an engine mounted on a vehicle, and a collection amount detection means for detecting the amount of particulate matter in the continuous regeneration type diesel particulate filter device, Cooling water temperature detection means for detecting the temperature of the cooling water, and the particulate matter collected forcibly by raising the exhaust temperature by in-cylinder fuel injection control to burn the continuously regenerated diesel particulate filter device In an exhaust gas purification system comprising diesel particulate filter control means having forced regeneration means
Even when the diesel particulate filter control means determines that the forced regeneration by the forced regeneration means is necessary, the temperature of the engine coolant detected by the coolant temperature detection means is higher than a predetermined judgment water temperature. An exhaust gas purification system that performs control so that the in-cylinder fuel injection control for forced regeneration is not performed when low is detected.
前記筒内燃料噴射制御がマルチ噴射制御とポスト噴射制御の少なくとも一方又はその両方を含むことを特徴とする請求項2記載の排気ガス浄化システム。
The exhaust gas purification system according to claim 2, wherein the in-cylinder fuel injection control includes at least one or both of multi-injection control and post-injection control.
JP2004098289A 2004-03-30 2004-03-30 Exhaust gas purification system control method and exhaust gas purification system Expired - Fee Related JP4466158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098289A JP4466158B2 (en) 2004-03-30 2004-03-30 Exhaust gas purification system control method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098289A JP4466158B2 (en) 2004-03-30 2004-03-30 Exhaust gas purification system control method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2005282478A true JP2005282478A (en) 2005-10-13
JP4466158B2 JP4466158B2 (en) 2010-05-26

Family

ID=35181149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098289A Expired - Fee Related JP4466158B2 (en) 2004-03-30 2004-03-30 Exhaust gas purification system control method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4466158B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108167A1 (en) * 2006-03-17 2007-09-27 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
JP2008038659A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Particulate filter regeneration system of internal combustion engine
EP1903200A1 (en) 2006-09-20 2008-03-26 HONDA MOTOR CO., Ltd. Exhaust gas purification system of internal combustion engine
JP2009127626A (en) * 2007-11-22 2009-06-11 Robert Bosch Gmbh Method and controller for heating catalyst
EP2270284A1 (en) 2009-07-02 2011-01-05 Hitachi Construction Machinery Co., Ltd Working machine
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
WO2014208578A1 (en) * 2013-06-26 2014-12-31 ヤンマー株式会社 Agricultural work vehicle
US9664131B2 (en) 2013-04-16 2017-05-30 Isuzu Motors Limited Exhaust injection control method for exhaust gas post-treatment device
CN107355289A (en) * 2017-08-18 2017-11-17 河北工业大学 A kind of experimental bench of dpf regeneration control system and the system
CN109339907A (en) * 2018-12-18 2019-02-15 河北工业大学 A kind of DPF system of the miniaturization with heat management

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169137A (en) 2014-03-07 2015-09-28 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549843B2 (en) 2006-03-17 2013-10-08 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
WO2007108167A1 (en) * 2006-03-17 2007-09-27 Isuzu Motors Limited Method of controlling exhaust gas purification system and exhaust gas purification system
JP2008038659A (en) * 2006-08-02 2008-02-21 Toyota Motor Corp Particulate filter regeneration system of internal combustion engine
EP1903200A1 (en) 2006-09-20 2008-03-26 HONDA MOTOR CO., Ltd. Exhaust gas purification system of internal combustion engine
JP2009127626A (en) * 2007-11-22 2009-06-11 Robert Bosch Gmbh Method and controller for heating catalyst
US8561394B2 (en) 2007-11-22 2013-10-22 Robert Bosch Gmbh Procedure and control unit for an accelerated heating of a catalyst in an exhaust gas system of a supercharged combustion engine with a variable valve control
EP2270284A1 (en) 2009-07-02 2011-01-05 Hitachi Construction Machinery Co., Ltd Working machine
US8459008B2 (en) 2009-07-02 2013-06-11 Hitachi Construction Machinery Co., Ltd. Working machine
KR20110002806A (en) 2009-07-02 2011-01-10 히다찌 겐끼 가부시키가이샤 Working machine
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
US9664131B2 (en) 2013-04-16 2017-05-30 Isuzu Motors Limited Exhaust injection control method for exhaust gas post-treatment device
WO2014208578A1 (en) * 2013-06-26 2014-12-31 ヤンマー株式会社 Agricultural work vehicle
JP2015010478A (en) * 2013-06-26 2015-01-19 ヤンマー株式会社 Agricultural work vehicle
CN105339614A (en) * 2013-06-26 2016-02-17 洋马株式会社 Agricultural work vehicle
CN107355289A (en) * 2017-08-18 2017-11-17 河北工业大学 A kind of experimental bench of dpf regeneration control system and the system
CN107355289B (en) * 2017-08-18 2023-06-09 河北工业大学 DPF regeneration control system and experiment table of same
CN109339907A (en) * 2018-12-18 2019-02-15 河北工业大学 A kind of DPF system of the miniaturization with heat management
CN109339907B (en) * 2018-12-18 2023-09-29 河北工业大学 Miniaturized DPF system with thermal management

Also Published As

Publication number Publication date
JP4466158B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4161930B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4175281B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3824003B2 (en) Exhaust gas purification system
JP4161932B2 (en) Exhaust gas purification system control method and exhaust gas purification system
EP1905992B1 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
JP3933172B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4161931B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4100451B1 (en) Exhaust gas purification method and exhaust gas purification system
JP3988785B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4169076B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3956992B1 (en) Exhaust gas purification method and exhaust gas purification system
JP2005299438A (en) Exhaust emission control system and method for controlling exhaust emission control system
WO2007086253A1 (en) Exhaust gas purification method and exhaust gas purification system
JP2007205223A (en) Control method for exhaust emission control system and exhaust emission control system
JP2005282549A (en) Control method of exhaust emission control system and exhaust emission control system
JP2005282477A (en) Method for controlling exhaust emission control system and exhaust emission control system
JP4466158B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4311253B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4517682B2 (en) Exhaust gas purification system
JP4352946B2 (en) Exhaust gas purification system
JP2007023876A (en) Exhaust emission control system and method for controlling exhaust emission control system
JP4292861B2 (en) Exhaust gas purification method and system
JP4403868B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4438485B2 (en) Exhaust gas purification system control method and exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees