JP7255145B2 - electromagnetic solenoid - Google Patents

electromagnetic solenoid Download PDF

Info

Publication number
JP7255145B2
JP7255145B2 JP2018216830A JP2018216830A JP7255145B2 JP 7255145 B2 JP7255145 B2 JP 7255145B2 JP 2018216830 A JP2018216830 A JP 2018216830A JP 2018216830 A JP2018216830 A JP 2018216830A JP 7255145 B2 JP7255145 B2 JP 7255145B2
Authority
JP
Japan
Prior art keywords
shaft
bearing holder
bearing
stator
electromagnetic solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018216830A
Other languages
Japanese (ja)
Other versions
JP2020088044A (en
Inventor
綾汰 竹内
康之 松尾
伸哉 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2018216830A priority Critical patent/JP7255145B2/en
Priority to DE102019131063.6A priority patent/DE102019131063A1/en
Publication of JP2020088044A publication Critical patent/JP2020088044A/en
Application granted granted Critical
Publication of JP7255145B2 publication Critical patent/JP7255145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0686Braking, pressure equilibration, shock absorbing
    • F16K31/0693Pressure equilibration of the armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/031Electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/033Hydraulic engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F2007/163Armatures entering the winding with axial bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

本発明は、励磁コイルの通電時に固定子から作用する電磁力によって可動子を直線的に作動させる電磁ソレノイドに関する。 The present invention relates to an electromagnetic solenoid that linearly actuates a mover by an electromagnetic force acting from a stator when an excitation coil is energized.

上記構成の電磁ソレノイド(文献ではリニアソレノイド)として、特許文献1には、励磁ソレノイドへの通電により発生する磁束を複数の固定子から可動子に受け渡すことにより作動する可動子を備える技術が記載されている。 As an electromagnetic solenoid (linear solenoid in the literature) having the above configuration, Patent Document 1 describes a technology provided with a mover that operates by transferring magnetic flux generated by energization of an excitation solenoid from a plurality of stators to the mover. It is

この特許文献1では、複数の固定子の1つ(文献では第3固定子)に対し、電磁ソレノイドの内部と外部とを連通させる貫通孔が記載されている。 This patent document 1 describes a through hole for communicating the inside and the outside of the electromagnetic solenoid with respect to one of the plurality of stators (the third stator in the document).

特許文献2には、電磁ソレノイド(文献ではリニアソレノイド)の駆動力を弁体に伝えるシャフトの支持構造の技術が記載されている。 Patent Literature 2 describes a technique for a shaft support structure that transmits the driving force of an electromagnetic solenoid (linear solenoid in the literature) to a valve body.

この特許文献2のシャフトの支持構造は、シャフトを摺動自在に支持する軸受の挿通孔に、部材を筒状に巻いた形状で、巻間に隙間が形成された巻ブッシュを取り付け、隙間により呼吸溝を形成した技術が記載されている。 In the shaft support structure of Patent Document 2, a winding bush formed by winding a member into a cylindrical shape and having a gap formed between windings is attached to an insertion hole of a bearing that slidably supports the shaft. Techniques for forming breathing grooves are described.

特開2015-84395号公報JP 2015-84395 A 特開2009-108902号公報Japanese Patent Application Laid-Open No. 2009-108902

例えば、励磁ソレノイドからの磁気が作用する筒状の固定子を備え、この固定子の内部に可動子を配置し、可動子に連結するシャフトを備え、このシャフトをハウジングの外部に突出させた構成の電磁ソレノイドを想定する。このように構成された電磁ソレノイドでは、プランジャの作動に伴い、固定子が収容された空間の空気や流体の排出と吸入とを可能にする連通孔をハウジング等に形成する。 For example, a structure comprising a cylindrical stator to which magnetism from an exciting solenoid acts, a mover disposed inside the stator, a shaft connected to the mover, and the shaft protruding outside the housing is assumed to be an electromagnetic solenoid. In the electromagnetic solenoid constructed in this manner, a communication hole is formed in the housing or the like to enable the discharge and intake of air and fluid in the space in which the stator is accommodated, in accordance with the actuation of the plunger.

このように空気や流体の排出と吸入とを可能にする連通孔の構成として、特許文献1に記載されるものでは、固定子に貫通孔を形成するため、貫通孔を形成するために加工工程を必要とするため手間が掛かり、電磁ソレノイドのコスト上昇に繋がるものである。 As a configuration of the communication hole that enables the discharge and intake of air and fluid in this way, in the one described in Patent Document 1, in order to form the through hole in the stator, a processing process for forming the through hole is required, which is troublesome and leads to an increase in the cost of the electromagnetic solenoid.

また、特許文献2に記載されるものでは、巻ブッシュを必要とすることから部品点数を増大させるだけでなく、巻ブッシュがシャフトの全周を取り囲む構造ではないため、シャフトを支持する機能が損なわれるものであった。 In addition, the structure described in Patent Document 2 not only increases the number of parts because it requires a rolled bush, but also impairs the function of supporting the shaft because the rolled bush does not surround the entire circumference of the shaft. It was something that could be done.

このような理由から、可動子の作動時に可動子が収容された内部空間と外部とを結ぶ連通路を容易に形成し得る電磁ソレノイドが求められている。 For these reasons, there is a demand for an electromagnetic solenoid that can easily form a communication path connecting the internal space in which the mover is housed and the outside when the mover is actuated.

本発明に係る電磁ソレノイドの特徴構成は、通電により電磁力を作り出す励磁コイルと、前記励磁コイルの内側に配置され、軸芯を中心とする円筒状で磁性体からなる固定子と、前記固定子の内部空間において前記軸芯に沿って移動自在に収容され、磁性体からなる円柱状の可動子と、前記可動子と一体的に作動するように前記可動子の軸芯と同軸芯で前記可動子に設けられたシャフトと、前記シャフトをスライド自動自在に支持するシャフト軸受とを備え、前記シャフト軸受が、円盤状の軸受ホルダの中央に形成された孔部に圧入保持され前記シャフトが挿通する環状の軸受体を有し、前記軸受ホルダが、前記固定子の内周面の外端部分に接触する状態で配置され、前記軸受ホルダの外部と前記内部空間とを連通させる連通路を備えている点にある。また、前記軸受ホルダが、前記固定子のうち前記軸芯と直交する露出面と、前記軸受ホルダの外面とが面一になるように前記軸受ホルダが前記固定子の前記内周面に圧入固定されても良い。 The characteristic configuration of the electromagnetic solenoid according to the present invention includes an excitation coil that generates an electromagnetic force when energized, a stator disposed inside the excitation coil and made of a cylindrical magnetic material centered on the axis, and the stator and a columnar mover made of a magnetic material, which is housed in the inner space of the inner space so as to move along the axis, and the mover coaxially with the axis of the mover so as to operate integrally with the mover and a shaft bearing for automatically slidably supporting the shaft. The shaft bearing is press-fitted and held in a hole formed in the center of a disc-shaped bearing holder, and the shaft is inserted through the shaft. An annular bearing body is provided, the bearing holder is disposed in contact with an outer end portion of the inner peripheral surface of the stator, and has a communication path that communicates the outside of the bearing holder with the inner space. at the point where The bearing holder is press-fitted and fixed to the inner peripheral surface of the stator so that the exposed surface of the stator perpendicular to the axial center and the outer surface of the bearing holder are flush with each other. May be.

この特徴構成によると、励磁コイルに通電することにより可動子が作動する際には、可動子に連結するシャフトがシャフト軸受に支持される状態で突出または退入する作動が許されると共に、この作動に伴い軸受ホルダに形成した連通路を介して空気やオイル等の流体の排出や吸入が可能となる。特に、この構成では軸受ホルダに連通路が形成されるため、ケーシングを加工する必要がない。
従って、可動子の作動時に可動子が収容された内部空間と外部とを結ぶ連通路を容易に形成し得る電磁ソレノイドが構成された。
According to this characteristic configuration, when the mover is actuated by energizing the exciting coil, the shaft connected to the mover is allowed to protrude or retract while being supported by the shaft bearing. As a result, fluid such as air and oil can be discharged or sucked through the communication path formed in the bearing holder. In particular, in this configuration, since the communicating passage is formed in the bearing holder, there is no need to process the casing.
Therefore, an electromagnetic solenoid is constructed which can easily form a communication path connecting the internal space in which the mover is accommodated and the outside when the mover is actuated.

他の構成として、前記連通路が、前記軸受ホルダの外周縁と、前記内部空間を形成する前記固定子の内周縁との間に形成されても良い。 As another configuration, the communication path may be formed between the outer peripheral edge of the bearing holder and the inner peripheral edge of the stator that forms the internal space.

これによると、例えば、軸受ホルダの外周縁の一部に窪みを形成することや、内部空間の外端部分の内周の一部に窪みを形成する程度の加工により、固定子の内部空間の外端部に軸受ホルダを嵌め込むことにより、軸受ホルダの外周縁と固定子の外端部の内周との間に連通路を形成できる。 According to this, for example, by forming a recess in a part of the outer peripheral edge of the bearing holder or by forming a recess in a part of the inner periphery of the outer end portion of the internal space, the inner space of the stator is processed. By fitting the bearing holder into the outer end, a communication path can be formed between the outer peripheral edge of the bearing holder and the inner periphery of the outer end of the stator.

他の構成として、前記連通路が、前記軸受ホルダの外周縁の一部を取り除いた切除部によって形成されても良い。 As another configuration, the communication path may be formed by a cut-away portion obtained by removing a part of the outer peripheral edge of the bearing holder.

これによると、軸受ホルダを、例えば、プレス加工によって製造する際に、軸受ホルダの外周縁の一部を取り除いて切除部を形成するだけで、連通路を形成するための加工を別途行わずに連通路を形成できる。 According to this, when the bearing holder is manufactured by, for example, press working, only by removing part of the outer peripheral edge of the bearing holder to form the cut portion, there is no need to separately perform processing for forming the communication path. A communicating path can be formed.

他の構成として、前記シャフト軸受が、前記シャフトを取り囲む環状であり、前記連通路が、前記軸受ホルダのうち前記シャフト軸受を内嵌する保持孔の内周の一部を取り除くことにより凹状に形成されても良い。 As another configuration, the shaft bearing has an annular shape surrounding the shaft, and the communication passage is formed in a concave shape by removing part of the inner circumference of a holding hole in which the shaft bearing is fitted in the bearing holder. May be.

これによると、軸受ホルダを、例えば、プレス加工する際に、この軸受ホルダの外周の一部を凹状に取り除くだけで、連通孔を形成するための特別の加工を別途行わずとも、軸受ホルダの内周とシャフト軸受の外周との間に連通孔を形成できる。 According to this, when the bearing holder is pressed, for example, by simply removing a part of the outer periphery of the bearing holder in a concave shape, the bearing holder can be formed without special processing for forming the communication hole. A communicating hole can be formed between the inner circumference and the outer circumference of the shaft bearing.

プランジャが非駆動位置にある電磁ソレノイドの断面図である。FIG. 4B is a cross-sectional view of the electromagnetic solenoid with the plunger in the non-actuated position; プランジャが作動状態にある電磁ソレノイドの断面図である。FIG. 4 is a cross-sectional view of an electromagnetic solenoid with a plunger in an actuated state; 電磁ソレノイドの分解状態の断面図である。FIG. 3 is a cross-sectional view of an electromagnetic solenoid in an exploded state; 電磁ソレノイドの外面図である。It is an external view of an electromagnetic solenoid. 図1のV-V線断面図である。FIG. 2 is a cross-sectional view taken along line VV of FIG. 1; 別実施形態(a)の連通孔を示す断面図である。It is sectional drawing which shows the communicating hole of another embodiment (a).

以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1~図4に示すように、励磁コイルAと、ヨーク部B(固定子の一例)と、これら励磁コイルAとヨーク部Bを一体化する樹脂材8とで成るハウジングCとを備えると共に、ヨーク部Bの内部の内部空間に軸芯Xに沿って移動自在に収容されるプランジャ11(可動子の一例)と、シャフト12とを備えて電磁ソレノイド100が構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings.
[Basic configuration]
As shown in FIGS. 1 to 4, it comprises an exciting coil A, a yoke portion B (an example of a stator), and a housing C made of a resin material 8 that integrates the exciting coil A and the yoke portion B. , a plunger 11 (an example of a mover) that is housed in an internal space inside the yoke portion B so as to be movable along the axis X, and a shaft 12 to constitute an electromagnetic solenoid 100 .

この電磁ソレノイド100は、プランジャ11がプランジャ軸芯(図1では軸芯Xと一致する)を中心とする円柱状に成形され、このプランジャ11においてプランジャ軸芯と同軸芯で形成された嵌合孔11aに軸状のシャフト12が嵌合連結する。これにより、プランジャ11とシャフト12とが軸芯Xと同軸芯で配置される。 In this electromagnetic solenoid 100, the plunger 11 is formed in a columnar shape centered on the plunger axis (which coincides with the axis X in FIG. 1), and the plunger 11 has a fitting hole formed coaxially with the plunger axis. An axial shaft 12 is fitted and connected to 11a. As a result, the plunger 11 and the shaft 12 are arranged coaxially with the axis X. As shown in FIG.

図1には、車両のエンジンの吸気バルブや排気バルブの開閉時期(バルブタイミング)を油圧によって制御する弁開閉時期制御装置(図示せず)のスプールSを操作する電磁ソレノイド100が示されている。 FIG. 1 shows an electromagnetic solenoid 100 that operates a spool S of a valve opening/closing timing control device (not shown) that hydraulically controls opening/closing timing (valve timing) of intake valves and exhaust valves of a vehicle engine. .

スプールSは突出方向(同図で左方向)にスプリング(図示せず)により付勢されている。このスプールSが軸芯Xと同軸芯で配置され、その突出端の被操作面にシャフト12の突出端を当接させている。これにより、電磁ソレノイド100が駆動されない(励磁コイルAに通電されない)状態ではスプールSからの押圧力によりプランジャ11は図1に示す非駆動位置(プランジャ11の作動方向と逆側の移動端)に保持される。 The spool S is biased by a spring (not shown) in the protruding direction (leftward in the figure). The spool S is arranged coaxially with the axis X, and the projecting end of the shaft 12 is brought into contact with the operated surface of the projecting end. As a result, when the electromagnetic solenoid 100 is not driven (the excitation coil A is not energized), the pressing force from the spool S moves the plunger 11 to the non-driving position shown in FIG. retained.

これに対し、電磁ソレノイド100が駆動(励磁コイルAに通電)された場合には図2に示すように、励磁コイルAに供給される電流値に対応した量だけシャフト12が突出作動して目標とする位置にポジションにスプールSが操作され、弁開閉時期制御装置が作動油を制御することでバルブの開閉時期の設定が実現する。 On the other hand, when the electromagnetic solenoid 100 is driven (energized to the exciting coil A), as shown in FIG. The valve opening/closing timing is set by operating the spool S to the position where the valve opening/closing timing control device controls the hydraulic oil.

以下の説明では、電磁ソレノイド100のうち、この電磁ソレノイド100の駆動時に、プランジャ11の作動方向(図1,2で右側)の下流側の面(図1,2で右側の面)を前面と称し、この反対側の面である作動方向の上流側の面を後面と称している。 In the following description, of the electromagnetic solenoid 100, when the electromagnetic solenoid 100 is driven, the downstream surface (right surface in FIGS. 1 and 2) of the plunger 11 in the operating direction (right side in FIGS. 1 and 2) will be referred to as the front surface. The surface on the upstream side in the operating direction, which is the surface on the opposite side, is called the rear surface.

〔電磁ソレノイドの詳細〕
励磁コイルAは、非磁性体材料で絶縁性の樹脂製のボビン1に、銅合金等の良導体で成る線材を巻回することでコイル2が構成されている。コイル2を構成する線材はハウジングCに一体形成されたコネクタ部Caの内部の端子3に導通している。
[Details of the electromagnetic solenoid]
The excitation coil A has a coil 2 formed by winding a wire rod made of a good conductor such as a copper alloy around a bobbin 1 made of non-magnetic and insulating resin. A wire constituting the coil 2 is electrically connected to a terminal 3 inside a connector portion Ca formed integrally with the housing C. As shown in FIG.

図1,2,4に示すように、ハウジングCは一対の支持部Cbを外方に突出する姿勢で一体形成されており、夫々の支持部Cbには連結用のボルトが挿通する孔部が形成されている。 As shown in FIGS. 1, 2 and 4, the housing C is integrally formed with a pair of support portions Cb projecting outward, and each support portion Cb has a hole through which a connecting bolt is inserted. formed.

図1に示すように、ヨーク部Bは、鉄材等の磁性体で成る第1ヨーク5と、鉄材等の磁性体で成る第2ヨーク6との組み合わせにより構成されている。 As shown in FIG. 1, the yoke portion B is configured by combining a first yoke 5 made of a magnetic material such as iron and a second yoke 6 made of a magnetic material such as iron.

図1~図3に示すように、第1ヨーク5は、軸芯Xを中心とする筒状の第1筒状部5aと、電磁ソレノイド100の前面側に配置される第1側壁部5bと、第1筒状部5aの外方を取り囲む位置に配置される第1外壁部5cとを一体形成した構造を有しており、第1筒状部5aには、軸芯Xを中心とする第1内周面5Sが形成されている。 As shown in FIGS. 1 to 3, the first yoke 5 includes a first tubular portion 5a centered on the axis X, and a first side wall portion 5b arranged on the front side of the electromagnetic solenoid 100. , and a first outer wall portion 5c disposed at a position surrounding the outer side of the first cylindrical portion 5a. A first inner peripheral surface 5S is formed.

第2ヨーク6は、軸芯Xを中心とする筒状の第2筒状部6aと、電磁ソレノイド100の後面側に配置される第2側壁部6bとを一体形成した構造を有し、第2筒状部6aには、軸芯Xを中心とする第2内周面6Sが形成されている。 The second yoke 6 has a structure in which a second tubular portion 6a centered on the axis X and a second side wall portion 6b arranged on the rear surface side of the electromagnetic solenoid 100 are integrally formed. A second inner peripheral surface 6S centered on the axial center X is formed on the second cylindrical portion 6a.

ヨーク部Bは、第1筒状部5aと第2筒状部6aとが軸芯Xに沿う方向に連なる位置関係で配置され、第1内周面5Sと第2内周面6Sとを取り囲む位置に励磁コイルAが配置される。更に、励磁コイルAと、第1ヨーク5と、第2ヨーク6を一体化する樹脂材8により、ハウジングCが構成されている。 The yoke portion B is arranged such that the first tubular portion 5a and the second tubular portion 6a are aligned in the direction along the axis X, and surrounds the first inner peripheral surface 5S and the second inner peripheral surface 6S. An exciting coil A is arranged at the position. Further, a housing C is configured by a resin material 8 that integrates the exciting coil A, the first yoke 5, and the second yoke 6 together.

第1筒状部5aと第2筒状部6aとで取り囲まれる領域(第1内周面5Sと第2内周面6Sとに面する領域)に、軸芯Xを中心として断面形状が円形となる内部空間が形成されている。また、第2筒状部6aの内周には、磁性体でリング状となるブッシュ7が嵌め込まれている。このブッシュ7は、後述するプランジャ軸受Eを構成するものであり、第2筒状部6aのうち第1筒状部5aに隣接する端部位置に配置されている。 A circular cross-sectional shape centered on the axis X is provided in a region surrounded by the first tubular portion 5a and the second tubular portion 6a (a region facing the first inner peripheral surface 5S and the second inner peripheral surface 6S). An internal space is formed. A ring-shaped bush 7 made of a magnetic material is fitted in the inner circumference of the second tubular portion 6a. The bush 7 constitutes a plunger bearing E, which will be described later, and is arranged at an end position of the second tubular portion 6a adjacent to the first tubular portion 5a.

電磁ソレノイド100が非駆動状態(励磁コイルAに通電しない状態)にある場合には、図1に示すように第1筒状部5aと第2筒状部6aとの境界位置にプランジャ11の前側端面11fが並列する位置関係となる。 When the electromagnetic solenoid 100 is in a non-driving state (a state in which the exciting coil A is not energized), as shown in FIG. The positional relationship is such that the end faces 11f are aligned.

ヨーク部Bは、第1ヨーク5と第2ヨーク6とで磁路を形成しており、第1ヨーク5の第1筒状部5aのうち、第2筒状部6aに近接する部位ほど肉厚を低減することにより、この部位の透磁率を低下させている。これにより、励磁コイルAに通電した場合には、第1筒状部5aと第2筒状部6aとに亘って形成される磁束の一部が境界から内部空間の内部に漏れてプランジャ11に作用し、この磁束に起因する電磁力によりプランジャ11を突出方向に作動させる。 In the yoke portion B, the first yoke 5 and the second yoke 6 form a magnetic path. By reducing the thickness, the magnetic permeability of this portion is lowered. As a result, when the excitation coil A is energized, part of the magnetic flux formed across the first cylindrical portion 5a and the second cylindrical portion 6a leaks from the boundary into the internal space and reaches the plunger 11. The electromagnetic force resulting from this magnetic flux actuates the plunger 11 in the protruding direction.

プランジャ11は、前述したように円柱状であり、軸芯Xに沿う方向でハウジングCの前面に近い側の端部に前側端面11fが形成され、他方の端部に後側端面11rが形成されている。プランジャ11は、外周面11Sのうち、前側端面11fに近い外面ほど僅かに小径となるテーパ面11Stが成形されている(図3を参照)。 The plunger 11 has a cylindrical shape as described above, and has a front end face 11f formed at the end near the front face of the housing C in the direction along the axis X, and a rear end face 11r formed at the other end. ing. The plunger 11 is formed with a tapered surface 11St having a slightly smaller diameter toward the outer surface 11S closer to the front end surface 11f (see FIG. 3).

プランジャ11には、前側端面11fから後側端面11rに亘ってプランジャ軸芯と同軸芯に嵌合孔11aが形成されている。また、プランジャ11には嵌合孔11aと平行する姿勢の給排孔11bが形成されている。これにより、嵌合孔11aにシャフト12の基端側を圧入固定した状態でも、プランジャ11の前側端面11fと、後側端面11rとが給排孔11bにより連通する状態が維持される。 A fitting hole 11a is formed in the plunger 11 coaxially with the plunger axis from the front end face 11f to the rear end face 11r. Further, the plunger 11 is formed with a supply/discharge hole 11b that is parallel to the fitting hole 11a. As a result, even when the proximal end of the shaft 12 is press-fitted into the fitting hole 11a, the front end face 11f and the rear end face 11r of the plunger 11 are kept in communication with each other through the supply/discharge hole 11b.

〔軸受構造〕
図1~図5に示すように、電磁ソレノイド100は、シャフト12の突出側の端部を、軸芯Xに沿う方向にスライド移動自在に支持するシャフト軸受Dを備えると共に、プランジャ11の外周部分を軸芯Xに沿う方向にスライド移動自在に支持するプランジャ軸受Eを備えている。これにより、電磁ソレノイド100の駆動時等には、プランジャ11とシャフト12とを一体的に軸芯Xに沿って案内する。
[Bearing structure]
As shown in FIGS. 1 to 5, the electromagnetic solenoid 100 includes a shaft bearing D that supports the protruding end of the shaft 12 so as to be slidable in the direction along the axis X, and the outer peripheral portion of the plunger 11. is slidably supported in the direction along the axis X. As a result, the plunger 11 and the shaft 12 are integrally guided along the axis X when the electromagnetic solenoid 100 is driven.

プランジャ軸受Eは、ブッシュ7によって形成されている。また、ヨーク部Bを構成する第2ヨーク6の第2内周面6Sと、プランジャ11の外周面11Sとの間に僅かな間隙が形成されるため(特に、図5に示す平滑領域6Sa)、この第2内周面6Sもプランジャ11を案内するように機能する。 A plunger bearing E is formed by a bush 7 . In addition, a small gap is formed between the second inner peripheral surface 6S of the second yoke 6, which constitutes the yoke portion B, and the outer peripheral surface 11S of the plunger 11 (particularly, the smooth area 6Sa shown in FIG. 5). , the second inner peripheral surface 6S also functions to guide the plunger 11. As shown in FIG.

このように、ブッシュ7がプランジャ11の外周面11Sを抱き込むことにより、プランジャ11が軸芯Xから離間する方向への変位を規制する状態で、プランジャ11が軸芯Xに沿って作動する際の移動を許容する。 In this way, when the plunger 11 operates along the axis X in a state in which the plunger 11 is restrained from being displaced from the axis X by embracing the outer peripheral surface 11S of the plunger 11, allow movement of

シャフト軸受Dは、ハウジングCの前面側で第1ヨーク5の第1内周面5Sの外端部分(内周縁)に圧入される円盤状の軸受ホルダ15の中央に形成された孔部に圧入保持され、シャフト12を取り囲む環状の軸受体16で構成されている。 The shaft bearing D is press-fitted into a hole formed in the center of a disk-shaped bearing holder 15 that is press-fitted into the outer end portion (inner peripheral edge) of the first inner peripheral surface 5S of the first yoke 5 on the front side of the housing C. It consists of an annular bearing body 16 that is retained and surrounds the shaft 12 .

軸受体16は、シャフト12の外端側に外嵌する位置に配置され、耐摩耗性の高いリング状の材料で形成されている。軸受ホルダ15の外周には、プランジャ11の作動時にハウジング内部と外部との間での流体の出入りを可能にする連通路21が形成されている。この連通路21の詳細は後述する。尚、軸受ホルダ15と軸受体16とは磁性体と非磁性体との何れで構成されても良いが、非磁性体で構成されることが好ましい。 The bearing body 16 is arranged at a position where it fits on the outer end side of the shaft 12 and is formed of a ring-shaped material with high wear resistance. A communication passage 21 is formed on the outer periphery of the bearing holder 15 to allow fluid to flow in and out between the inside and outside of the housing when the plunger 11 is actuated. Details of the communication path 21 will be described later. The bearing holder 15 and the bearing body 16 may be made of either a magnetic material or a non-magnetic material, but are preferably made of a non-magnetic material.

特に、図5に示すようにシャフト軸受Dの軸受ホルダ15の外周の一部を直線的に取り除くことで切除部15aを形成し、この切除部15aによって内部空間と、ハウジングCの外部との間での流体の流動を可能にする連通路21が形成されている。 In particular, as shown in FIG. 5, a portion of the outer periphery of the bearing holder 15 of the shaft bearing D is linearly removed to form a cutout portion 15a, and the cutout portion 15a provides a space between the inner space and the outside of the housing C. A communication passage 21 is formed to allow fluid flow in the .

つまり、この軸受ホルダ15を第1ヨーク5(固定子)の第1内周面5Sの外端部分に圧入することにより、軸受ホルダ15の外周と第1ヨーク5の第1内周面5Sとの間に連通路21が形成される。つまり、軸受ホルダ15の外周縁のうち、周方向で等間隔となる複数箇所(実施形態では3箇所)の一部を、直線的に取り除くことにより複数の切除部15aが形成されている。 That is, by press-fitting the bearing holder 15 into the outer end portion of the first inner peripheral surface 5S of the first yoke 5 (stator), the outer periphery of the bearing holder 15 and the first inner peripheral surface 5S of the first yoke 5 are brought together. A communication path 21 is formed between That is, a plurality of cut portions 15a are formed by linearly removing portions of the outer peripheral edge of the bearing holder 15 at a plurality of locations (three locations in the embodiment) that are equally spaced in the circumferential direction.

尚、ブッシュ7の内周面と、第1内周面5Sと、第2内周面6Sとにニッケル燐メッキ等の硬質層を形成することや、フッ素樹脂(例えば、テフロン樹脂〔商品名〕)等、耐熱性が高く化学的に安定で摩擦係数が低い樹脂被膜を形成しても良い。 It should be noted that the inner peripheral surface of the bush 7, the first inner peripheral surface 5S, and the second inner peripheral surface 6S may be formed with a hard layer such as nickel-phosphorus plating, or a fluororesin (eg, Teflon resin [trade name]). ), etc., a resin film having high heat resistance, chemical stability, and a low coefficient of friction may be formed.

〔実施形態の作用効果〕
このように、シャフト12がシャフト軸受Dに支持され、プランジャ11(可動子)がプランジャ軸受Eに支持されるため、電磁ソレノイド100の駆動時にはプランジャ11とシャフト12とを一体的に軸芯Xに沿って直線的に作動させることが可能となる。
[Action and effect of the embodiment]
Since the shaft 12 is supported by the shaft bearing D and the plunger 11 (moving element) is supported by the plunger bearing E, the plunger 11 and the shaft 12 are integrally aligned with the axis X when the electromagnetic solenoid 100 is driven. It is possible to operate linearly along the

また、この構成では、連通路21が軸受ホルダ15の外周縁の一部を加工する際に使用する金型を変更する程度の簡単な改良により形成可能となり、例えば、ハウジングCに孔部を形成する等の別途の加工を必要としない。 In addition, in this configuration, the communicating passage 21 can be formed by a simple modification such as changing the mold used when processing a part of the outer peripheral edge of the bearing holder 15. For example, a hole is formed in the housing C. No separate processing such as

また、複数の連通路21を、軸受ホルダ15の周方向で等間隔で形成されているため、例えば、軸受ホルダ15を大きく切り欠いて単一の連通路21を形成する構造のように強度低下を招くことがなく、プランジャ11が作動する際には、軸受ホルダ15の周方向の複数箇所の連通路21から空気等の流体を吸引することや、空気等の流体を排出することによりプランジャ11に偏った荷重を作用させることもない。更に、連通路21が周方向で等間隔で形成されているので、軸受ホルダ15を第1ヨーク5の第1内周面5Sの外端部分に嵌め込んでも、軸受ホルダ15が軸芯Xに対して傾くことがない。 In addition, since the plurality of communication paths 21 are formed at regular intervals in the circumferential direction of the bearing holder 15, for example, a structure in which the bearing holder 15 is largely notched to form a single communication path 21 has a reduced strength. When the plunger 11 operates, the plunger 11 can be operated by sucking fluid such as air from a plurality of communicating passages 21 in the circumferential direction of the bearing holder 15 and by discharging the fluid such as air. Also, a biased load is not applied. Furthermore, since the communicating passages 21 are formed at regular intervals in the circumferential direction, even if the bearing holder 15 is fitted to the outer end portion of the first inner peripheral surface 5S of the first yoke 5, the bearing holder 15 is not aligned with the axis X. I can't lean against it.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
The present invention may be configured as follows other than the above-described embodiments (components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).

(a)図6に示すように、軸受ホルダ15において軸受体16(シャフト軸受D)を内嵌支持する保持孔15Hの内周の一部を取り除くことにより凹状部15b形成し、この凹状部15bによって内部空間とハウジングCの外部との間での流体の流動を可能にする連通路21を形成する。 (a) As shown in FIG. 6, a concave portion 15b is formed by removing a portion of the inner periphery of a holding hole 15H that internally fits and supports a bearing body 16 (shaft bearing D) in a bearing holder 15. form a communication passage 21 that allows fluid to flow between the interior space and the exterior of the housing C. As shown in FIG.

つまり、軸受体16は、シャフト12を取り囲む環状であり、軸受ホルダ15の保持孔15Hの内周の周方向で等間隔となる複数箇所(別実施形態では3箇所)に凹状部15bが形成されている。この構造の軸受ホルダ15の保持孔15Hに軸受体16(シャフト軸受D)を圧入して固定している。これにより軸受ホルダ15の内周と軸受体16の外周との間に複数の連通路21が形成される。 That is, the bearing body 16 has an annular shape surrounding the shaft 12, and concave portions 15b are formed at a plurality of locations (three locations in another embodiment) at equal intervals in the circumferential direction on the inner circumference of the holding hole 15H of the bearing holder 15. ing. The bearing body 16 (shaft bearing D) is press-fitted into the holding hole 15H of the bearing holder 15 of this structure and fixed. Thereby, a plurality of communication paths 21 are formed between the inner circumference of the bearing holder 15 and the outer circumference of the bearing body 16 .

このように別実施形態(a)では、連通路21が軸受ホルダ15の内周縁の一部を加工する際に使用する金型を変更する程度の簡単な改良により形成可能となり、例えば、ハウジングCに孔部を形成する等の加工を必要としない。また、この構成では、シャフト12の全周に軸受体16の内周が均等に接触するため、シャフト12をガイドする性能を低下させることもない。 As described above, in the alternative embodiment (a), the communication path 21 can be formed by a simple improvement such as changing the mold used when processing a part of the inner peripheral edge of the bearing holder 15. For example, the housing C There is no need for processing such as forming a hole in the In addition, in this configuration, the inner circumference of the bearing body 16 evenly contacts the entire circumference of the shaft 12, so the performance of guiding the shaft 12 is not lowered.

(b)実施形態では、軸受ホルダ15の外周縁の一部を直線的に切り欠く切除部15aを形成していたが、直線的に切り欠く形態に代えて、例えば、軸受ホルダ15の中心方向に張り出すように湾曲する曲線、あるいは、軸受ホルダ15の中心方向に張り出すように折れ曲がる組み合わせとなる複数の直線で形成しても良い。 (b) In the embodiment, the cutout portion 15a is formed by linearly cutting out a part of the outer peripheral edge of the bearing holder 15. It may be formed by a curved line that projects outward, or a plurality of straight lines that are combined to project toward the center of the bearing holder 15 .

このように切除部15aの形状を設定することにより、直線的な切除部15aを形成する構成と比較して、軸受ホルダ15の外周のうち切除される周長を拡大することなく、連通路21の断面積を大きくできる。 By setting the shape of the cutout portion 15a in this way, the communication path 21 can be formed without increasing the length of the cutout portion of the outer circumference of the bearing holder 15, compared to the configuration in which the straight cutout portion 15a is formed. can increase the cross-sectional area of

(c)別実施形態(a)のように軸受ホルダ15の保持孔15Hの内周に凹状部15bを形成することにより、連通路21を作り出す構成において、別実施形態(b)で説明したものと同様に軸受ホルダ15の外周方向に張り出すように湾曲する曲線、あるいは、軸受ホルダ15の外周方向に張り出すように折れ曲がるように組み合わせた複数の直線で形成する。 (c) In the configuration in which the communication path 21 is created by forming the concave portion 15b on the inner circumference of the holding hole 15H of the bearing holder 15 as in the other embodiment (a), the configuration described in the other embodiment (b). , or a plurality of straight lines that are combined so as to project in the outer peripheral direction of the bearing holder 15 .

このように凹状部15bの形状を設定することにより、軸受ホルダ15の内周のうち切除される周長を拡大することなく、連通路21の断面積を大きくできる。 By setting the shape of the concave portion 15b in this way, the cross-sectional area of the communicating passage 21 can be increased without increasing the length of the inner circumference of the bearing holder 15 that is removed.

本発明は、励磁コイルの通電時にヨークから作用する電磁力によって可動子を直線的に作動させる電磁ソレノイドに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for an electromagnetic solenoid that linearly operates a mover by an electromagnetic force acting from a yoke when an excitation coil is energized.

A 励磁コイル
B ヨーク部(固定子)
D シャフト軸受
11 プランジャ(可動子)
12 シャフト
15 軸受ホルダ
15H 保持孔
16 軸受体(シャフト軸受)
15a 切除部
21 連通路
X 軸芯
A Exciting coil B Yoke part (stator)
D shaft bearing 11 plunger (moving element)
12 Shaft 15 Bearing holder 15H Holding hole 16 Bearing body (shaft bearing)
15a Cutaway portion 21 Communicating path X axis center

Claims (5)

通電により電磁力を作り出す励磁コイルと、
前記励磁コイルの内側に配置され、軸芯を中心とする円筒状で磁性体からなる固定子と、
前記固定子の内部空間において前記軸芯に沿って移動自在に収容され、磁性体からなる円柱状の可動子と、
前記可動子と一体的に作動するように前記可動子の軸芯と同軸芯で前記可動子に設けられたシャフトと、
前記シャフトをスライド自動自在に支持するシャフト軸受とを備え、
前記シャフト軸受が、円盤状の軸受ホルダの中央に形成された孔部に圧入保持され前記シャフトが挿通する環状の軸受体を有し、
前記軸受ホルダが、前記固定子の内周面の外端部分に接触する状態で配置され、
前記軸受ホルダの外部と前記内部空間とを連通させる連通路を備えている電磁ソレノイド。
an exciting coil that produces electromagnetic force when energized;
a cylindrical stator centered on the axis and made of a magnetic material, the stator being arranged inside the excitation coil;
a columnar mover made of a magnetic material, which is accommodated in the inner space of the stator so as to be movable along the axis;
a shaft provided on the mover coaxially with the axis of the mover so as to operate integrally with the mover;
and a shaft bearing that slidably and automatically supports the shaft,
The shaft bearing has an annular bearing body that is press-fitted and held in a hole formed in the center of a disk-shaped bearing holder and through which the shaft is inserted,
The bearing holder is arranged in contact with the outer end portion of the inner peripheral surface of the stator,
An electromagnetic solenoid provided with a communication path that communicates the outside of the bearing holder with the internal space.
前記軸受ホルダが、前記固定子のうち前記軸芯と直交する露出面と、前記軸受ホルダの外面とが面一になるように前記軸受ホルダが前記固定子の前記内周面に圧入固定されている請求項1に記載の電磁ソレノイド。 The bearing holder is press-fitted and fixed to the inner peripheral surface of the stator so that the exposed surface of the stator perpendicular to the axial center and the outer surface of the bearing holder are flush with each other. 2. The electromagnetic solenoid of claim 1. 前記連通路が、前記軸受ホルダの外周縁と、前記内部空間を形成する前記固定子の内周縁との間に形成されている請求項1又は2に記載の電磁ソレノイド。 3. The electromagnetic solenoid according to claim 1 , wherein the communicating path is formed between the outer peripheral edge of the bearing holder and the inner peripheral edge of the stator forming the internal space. 前記連通路が、前記軸受ホルダの前記外周縁の一部を取り除いた切除部によって形成されている請求項に記載の電磁ソレノイド。 4. The electromagnetic solenoid according to claim 3 , wherein the communication path is formed by a cut-away portion obtained by removing a part of the outer peripheral edge of the bearing holder . 前記シャフト軸受が、前記シャフトを取り囲む環状であり、
前記連通路が、前記軸受ホルダのうち前記シャフト軸受を内嵌する保持孔の内周の一部を取り除くことにより凹状に形成されている請求項1又は2に記載の電磁ソレノイド。
the shaft bearing is annular surrounding the shaft;
3. The electromagnetic solenoid according to claim 1 , wherein the communication path is formed in a concave shape by removing part of the inner periphery of a holding hole in which the shaft bearing is fitted in the bearing holder.
JP2018216830A 2018-11-19 2018-11-19 electromagnetic solenoid Active JP7255145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018216830A JP7255145B2 (en) 2018-11-19 2018-11-19 electromagnetic solenoid
DE102019131063.6A DE102019131063A1 (en) 2018-11-19 2019-11-18 Electromagnetic solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216830A JP7255145B2 (en) 2018-11-19 2018-11-19 electromagnetic solenoid

Publications (2)

Publication Number Publication Date
JP2020088044A JP2020088044A (en) 2020-06-04
JP7255145B2 true JP7255145B2 (en) 2023-04-11

Family

ID=70470182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216830A Active JP7255145B2 (en) 2018-11-19 2018-11-19 electromagnetic solenoid

Country Status (2)

Country Link
JP (1) JP7255145B2 (en)
DE (1) DE102019131063A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226100A1 (en) * 2019-05-08 2020-11-12 イーグル工業株式会社 Solenoid valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041339A (en) 1999-07-29 2001-02-13 Toyoda Mach Works Ltd Solenoid valve
JP2001317653A (en) 2000-02-29 2001-11-16 Nok Corp Solenoid
JP2002164211A (en) 2000-11-24 2002-06-07 Ckd Corp Solenoid
JP2012204574A (en) 2011-03-25 2012-10-22 Denso Corp Linear solenoid
JP2015144186A (en) 2014-01-31 2015-08-06 株式会社日本自動車部品総合研究所 electromagnetic actuator
WO2016104392A1 (en) 2014-12-26 2016-06-30 イーグル工業株式会社 Solenoid
JP2016131163A (en) 2015-01-12 2016-07-21 イーグル工業株式会社 solenoid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603426Y2 (en) * 1979-12-17 1985-01-30 東北三「国」工業株式会社 three-way solenoid valve
JPS5934969Y2 (en) * 1980-05-28 1984-09-27 シ−ケ−デイコントロ−ルズ株式会社 oil immersion solenoid
JPH0638230Y2 (en) * 1987-03-30 1994-10-05 株式会社ゼクセル Solenoid for solenoid valve
JPH0544621Y2 (en) * 1988-09-05 1993-11-12
JPH02142980A (en) * 1988-11-25 1990-06-01 Sanmei Denki Kk Electromagnet for solenoid valve
JP2826675B2 (en) * 1990-05-22 1998-11-18 三明電機株式会社 Electromagnet for solenoid valve
JP2536427Y2 (en) * 1993-10-20 1997-05-21 株式会社京浜精機製作所 Electromagnetic device
JPH08107016A (en) * 1994-10-03 1996-04-23 Nok Corp Solenoid
JP2009108902A (en) 2007-10-29 2009-05-21 Denso Corp Shaft supporting structure
JP5861721B2 (en) 2013-09-19 2016-02-16 株式会社デンソー Linear solenoid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041339A (en) 1999-07-29 2001-02-13 Toyoda Mach Works Ltd Solenoid valve
JP2001317653A (en) 2000-02-29 2001-11-16 Nok Corp Solenoid
JP2002164211A (en) 2000-11-24 2002-06-07 Ckd Corp Solenoid
JP2012204574A (en) 2011-03-25 2012-10-22 Denso Corp Linear solenoid
JP2015144186A (en) 2014-01-31 2015-08-06 株式会社日本自動車部品総合研究所 electromagnetic actuator
WO2016104392A1 (en) 2014-12-26 2016-06-30 イーグル工業株式会社 Solenoid
JP2016131163A (en) 2015-01-12 2016-07-21 イーグル工業株式会社 solenoid

Also Published As

Publication number Publication date
DE102019131063A1 (en) 2020-05-20
JP2020088044A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5125441B2 (en) Linear solenoid device and solenoid valve
WO2020110881A1 (en) Solenoid
WO2020110885A1 (en) Solenoid
JP2018186230A (en) Electromagnetic actuator
WO2020110884A1 (en) Solenoid
JP7255145B2 (en) electromagnetic solenoid
JP2003130246A (en) Solenoid valve device
JP5128224B2 (en) solenoid valve
WO2019026211A1 (en) Electromagnetic type drive unit
JP5351603B2 (en) Linear solenoid and valve device using the same
US20210005369A1 (en) Solenoid
JP4237114B2 (en) solenoid valve
JP2020088043A (en) Electromagnetic solenoid
JP2009079605A (en) Solenoid valve device
JP2018170470A (en) Electromagnetic solenoid
JP5720638B2 (en) Linear solenoid
JP7298143B2 (en) electromagnetic solenoid
JPH10299932A (en) Solenoid valve
JP4013440B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP2006183754A (en) Solenoid valve
JP6736330B2 (en) Solenoid valve cartridge assembly, solenoid valve solenoid and solenoid valve
JP4458282B2 (en) solenoid valve
JP5768736B2 (en) Linear solenoid
JP7088131B2 (en) solenoid
JPH0849786A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150