WO2019026211A1 - Electromagnetic type drive unit - Google Patents

Electromagnetic type drive unit Download PDF

Info

Publication number
WO2019026211A1
WO2019026211A1 PCT/JP2017/028095 JP2017028095W WO2019026211A1 WO 2019026211 A1 WO2019026211 A1 WO 2019026211A1 JP 2017028095 W JP2017028095 W JP 2017028095W WO 2019026211 A1 WO2019026211 A1 WO 2019026211A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
plunger
edge
magnetic
axial
Prior art date
Application number
PCT/JP2017/028095
Other languages
French (fr)
Japanese (ja)
Inventor
潤 岡村
滝口 和夫
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2019500519A priority Critical patent/JP6571898B2/en
Priority to PCT/JP2017/028095 priority patent/WO2019026211A1/en
Publication of WO2019026211A1 publication Critical patent/WO2019026211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Definitions

  • the present invention relates to an electromagnetic drive unit suitably used, for example, in an electromagnetic proportional hydraulic control valve or the like which constitutes a hydraulic circuit of a construction machine.
  • a hydraulic actuator mounted on a construction machine is controlled by a control valve, and this control valve is remotely controlled by a hydraulic pressure (pilot pressure) controlled by an electromagnetic proportional hydraulic control valve.
  • an electromagnetic drive unit is incorporated in the electromagnetic proportional hydraulic control valve in order to control the output value of the hydraulic pressure in proportion to the current value (feed current value) of the control signal supplied from the controller or the like.
  • the stator fixed iron core
  • the plunger movable iron core
  • the stator The amount of excitation is variably controlled. Since a suction force corresponding to the amount of excitation of the stator acts between the stator and the plunger, this suction force can be used as a driving force to drive an object to be driven such as a valve.
  • the elastic force of a spring or the like acting on the valve body and the oil pressure are balanced with the driving force of the electromagnetic drive unit, and the valve body is adjusted according to the balanced load. By displacing, the opening amount of the oil passage is adjusted. Therefore, in order to perform hydraulic control with higher accuracy, the driving force output from the electromagnetic drive unit, that is, the attraction force acting between the stator and the plunger is supplied to the electromagnetic drive unit. It is desirable to rely solely on That is, it is desirable that the suction force acting between the stator and the plunger be constant regardless of the position of the plunger relative to the stator (the distance between the stator and the plunger).
  • a first suction portion comprising a concave portion having a tapered surface gradually expanding in diameter toward the plunger is provided at an end portion of the stator facing the plunger, and a cylindrical shape is formed closer to the plunger than the first suction portion.
  • An electromagnetic drive unit is proposed in which a second suction unit is provided and the inner circumferential surface of the second suction unit is continuous with the recess of the first suction unit (see Patent Document 1).
  • the gap (gap) between the stator and the plunger is small.
  • the attraction force is mainly the first of the stator. It occurs between the suction part and the end face on the stator side of the plunger.
  • the gap between the stator and the plunger is large, a suction force is generated mainly between the inner peripheral surface of the second suction portion of the stator and the tapered surface formed at the end of the plunger on the stator side.
  • the electromagnetic drive unit according to Patent Document 1 can suppress the decrease in suction force even in the state where the gap between the stator and the plunger is large, and regardless of the position of the plunger relative to the stator, between the stator and the plunger The suction force acting on can be kept almost constant.
  • the present invention has been made in view of the above-described problems of the prior art, and its object is to suppress the rapid increase in the attraction force acting on the plunger in the region where the gap between the stator and the plunger is small. It is an object of the present invention to provide an electromagnetic drive unit in which the region over which the plunger can be displaced can be expanded with a constant or near constant constant suction force.
  • the present invention relates to a stator made of a magnetic material, a plunger made of a magnetic material, and a plunger coaxially arranged with respect to the stator, and a magnetic material, to the stator Is disposed coaxially and has a slide hole for slidably guiding the plunger, the stator, the plunger, and the yoke are disposed so as to surround the stator, and the stator is excited or demagnetized by feed control.
  • the present invention is applied to an electromagnetic drive unit provided with a coil for moving a plunger closer to or away from the stator.
  • a feature of the present invention is provided at an end of the plunger on the stator side and provided at a magnetic pole part receiving magnetic force from the excited stator and at an end of the plunger opposite to the stator, the yoke A sliding contact portion for sliding contact with a sliding hole of the magnetic pole to deliver magnetism, a first edge provided on the outer peripheral edge of the magnetic pole portion on the stator side, and the stator, the plunger being directed to the stator side
  • a cylindrical magnetic control unit having a bottomed hole whose open end is on the plunger side so that the magnetic pole unit moves inward when moving, and an outer peripheral surface of the cylindrical magnetic control unit are provided on the plunger side
  • the magnetic pole portion is provided at a tapered portion gradually decreasing in diameter, and at a portion of the outer peripheral surface of the magnetic pole portion which is separated from the first edge opposite to the stator, and the magnetic pole portion has the cylindrical magnetic control portion And a second edge which enters the bottomed hole of the cylindrical magnetic control unit while moving the hole toward the stator side,
  • the magnetic pole portion of the plunger when the magnetic pole portion of the plunger receives the magnetic force (attracting force) from the stator, the magnetic pole portion of the plunger moves (approaches) in the cylindrical magnetic control portion of the stator toward the stator. Then, when the second edge provided on the outer peripheral surface of the magnetic pole part penetrates into the inside of the cylindrical magnetic control unit, the second edge is in a direction away from the stator with the opening end of the cylindrical magnetic control unit. It receives a magnetic force (attractive force).
  • the attraction force in the direction approaching the stator acting on the first edge of the magnetic pole portion is generated from the stator acting on the second edge of the magnetic pole portion It can be suppressed by the suction force in the direction of leaving.
  • the region where the gap between the stator and the plunger is reduced it is possible to suppress the rapid increase in the attraction force acting on the plunger. Therefore, the region where the plunger can be displaced can be expanded while the suction force acting on the plunger is in a constant or nearly constant characteristic state.
  • FIG. 2 is a cross-sectional view showing the electromagnetic drive unit according to the first embodiment incorporated in a solenoid valve. It is an expanded sectional view which expands and shows principal parts, such as a stator in Drawing 1, a plunger, and a spacer. It is explanatory drawing which shows the attraction
  • FIG. 7 is a cross-sectional view showing an electromagnetic drive unit according to a second embodiment incorporated in a solenoid valve.
  • FIG. 11 is an enlarged cross-sectional view similar to FIG. 10 showing the plunger according to a first variant; It is an expanded sectional view of the position similar to FIG. 2 which shows the stator (taper part) by a 2nd modification.
  • the electromagnetic valve 1 is configured to include the electromagnetic drive unit 2 according to the first embodiment and a control valve unit 24 described later which is a driven device.
  • the solenoid valve 1 is a 3-port 2-position pressure control valve that is switched by the electromagnetic drive unit 2. For example, tilt angle control of a variable displacement hydraulic pump / hydraulic motor, control of a spool of a control valve / throttling valve And the like.
  • the electromagnetic drive unit 2 has an inner housing 3 constituted by a stator 4, a yoke 8 and a ring 9 which will be described later.
  • the stator 4, the yoke 8 and the ring 9 are coaxially arranged with the axial center OO of the stator 4.
  • a solenoid assembly 14 described later is provided on the outer peripheral side of the inner housing 3, and power is supplied to a coil 16 described later constituting the solenoid assembly 14, whereby the plunger 5 described later is guided by the yoke 8 and the stator 4. It is configured to move in a direction (axial direction) along the axial center OO.
  • the stator 4 is formed in a stepped cylindrical shape as a whole using a large-diameter magnetic material, and is excited or demagnetized (demagnetized) according to the power supply control for the coil 16.
  • the stator 4 has a disk-shaped flange portion 4A, a cylindrical shape having a smaller diameter than the flange portion 4A, and a fixed iron core 4B protruding from the flange portion 4A toward the plunger 5 and a fixed iron core portion sandwiching the flange portion 4A. It includes a cylindrical mounting cylinder 4C that protrudes to the opposite side (the control valve unit 24 side) from 4B.
  • An external thread 4D is formed on the outer peripheral surface of the mounting cylindrical portion 4C, and the external thread 4D is screwed to a valve casing 25 of the control valve unit 24, which will be described later.
  • a pin insertion hole 4E penetrating in the axial direction is formed at an axial center position of the flange portion 4A and the fixed core portion 4B.
  • the cylindrical magnetic control unit 4G is provided at an end of the small diameter outer peripheral surface 4F on the plunger 5 side.
  • the cylindrical magnetic control unit 4G is formed as a cylindrical bottomed hole 4J in which the plunger 5 side is an open end 4H, and the bottomed hole 4J has a bottom 4J1.
  • a pole portion 5A described later enters into the bottomed hole 4J.
  • a spacer mounting hole 4K slightly larger in diameter than the pin insertion hole 4E is formed coaxially with the pin insertion hole 4E at the axial center position of the bottom 4J1 of the cylindrical magnetic control unit 4G.
  • the axial length L1 of the cylindrical magnetic control unit 4G is expressed as an axial dimension from the open end 4H to the bottom 4J1 of the bottomed hole 4J.
  • the tapered portion 4L is provided on the outer peripheral surface on the opening end 4H side of the cylindrical magnetic control unit 4G.
  • the tapered portion 4L is formed in a range from the open end 4H to the axial length L1 '.
  • the outer peripheral surface of the tapered portion 4L gradually decreases in diameter toward the plunger 5.
  • the thickness (thickness) in the radial direction is uniform, and the small diameter outer peripheral surface of the fixed core portion 4B It is a cylindrical portion 4M having an outer diameter dimension equal to 4F.
  • the plunger 5 is formed in a cylindrical shape as a whole using a magnetic material.
  • the plunger 5 is disposed coaxially with the axial center OO of the stator 4.
  • the plunger 5 approaches or separates from the stator 4 as the stator 4 is excited or demagnetized.
  • the plunger 5 has a magnetic pole portion 5A and a sliding contact portion 5C which will be described later, and the outer diameter of the magnetic pole portion 5A is set larger than the outer diameter of the sliding contact portion 5C.
  • the magnetic pole portion 5A is provided on the side of the cylindrical magnetic control portion 4G on the stator 4 side of the plunger 5 and receives a magnetic force (attracting force) from the excited stator 4.
  • the outer diameter dimension of the magnetic pole portion 5A is formed slightly smaller than the inner diameter dimension of the cylindrical magnetic control unit 4G of the stator 4, and can enter the bottomed hole 4J of the cylindrical magnetic control unit 4G.
  • the stator side end surface 5B located on the stator 4 side of the magnetic pole portion 5A faces the bottom 4J1 of the bottomed hole 4J and abuts on a spacer 7 described later.
  • the sliding contact portion 5C is provided on the side (yoke 8 side) opposite to the stator 4 of the plunger 5.
  • the sliding contact portion 5C is formed as a cylindrical body having an outer diameter smaller than that of the magnetic pole portion 5A.
  • the boundary between the magnetic pole portion 5A and the sliding contact portion 5C is a tapered surface 5D that gradually decreases in diameter from the outer peripheral surface of the magnetic pole portion 5A toward the outer peripheral surface of the sliding contact portion 5C.
  • the sliding contact portion 5C is slidably fitted in a sliding hole 8D of the yoke 8 described later, and performs magnetic exchange with the yoke 8 while sliding on the sliding hole 8D.
  • a yoke-side end surface 5E located on the yoke 8 side of the sliding contact portion 5C faces the tip of a shaft-side male screw 10E of a screw 10 described later with a gap, and a sub spring 13 described later abuts.
  • the outer peripheral surface of the plunger 5 is covered with a resin layer 5F made of a nonmagnetic material such as, for example, a fluorine-based resin with a uniform thickness.
  • the thickness of the resin layer 5F is, for example, 0.03 mm to 0 in consideration of the sliding resistance between the inner peripheral surface of the sliding hole 8D of the yoke 8 and the sliding contact portion 5C and the durability of the resin layer 5F itself. It is set in the range of .2 mm.
  • a central hole 5G penetrating in the axial direction is formed. Further, in the portion of the plunger 5 that is offset (decentered) in the radial direction from the center hole 5G, a through hole 5H penetrating in the axial direction is formed.
  • the first edge 5J of the plunger 5 is an outer peripheral edge of the magnetic pole portion 5A on the stator 4 side, that is, a corner portion where the outer peripheral surface of the magnetic pole portion 5A and the stator side end surface 5B intersect. It is provided.
  • the first edge 5J receives a magnetic force (attracting force) in a direction approaching the stator 4 from the cylindrical magnetic control unit 4G of the excited stator 4 (see FIGS. 3 to 5).
  • the second edge 5K of the plunger 5 is provided at a portion of the outer circumferential surface of the magnetic pole portion 5A that is spaced apart from the first edge 5J, that is, at the corner where the outer circumferential surface of the magnetic pole portion 5A intersects the tapered surface 5D. ing.
  • the magnetic force attracting force
  • the open end 4H of the cylindrical magnetic control unit 4G See Figure 5.
  • the pin 6 is press-fitted into the center hole 5G of the plunger 5 and provided.
  • the pin 6 is formed of a round bar material extending in the axial direction, and a midway portion thereof is press-fitted into the central hole 5G of the plunger 5.
  • the pin 6 is thereby integrated with the plunger 5.
  • One side (the stator 4 side) of the pin 6 in the axial direction is inserted into the pin insertion hole 4E of the stator 4 and the end thereof is in contact with a spool 29 described later.
  • the other side (yoke 8 side) of the pin 6 in the axial direction extends into a through hole 8G described later of the yoke 8 and abuts on the tip of the shaft-side male screw 10E of the screw 10.
  • the pin 6 axially presses the spool 29 by moving integrally with the plunger 5 in the axial direction.
  • the spacer 7 is provided between the stator 4 and the plunger 5.
  • the spacer 7 regulates the axial minimum distance of the plunger 5 with respect to the stator 4.
  • the spacer 7 has a cylindrical portion 7A and an annular flange portion 7B larger in diameter than the cylindrical portion 7A, and the pin 6 is inserted into the inner peripheral side thereof.
  • the cylindrical portion 7A of the spacer 7 is inserted into the spacer mounting hole 4K of the stator 4, and the flange portion 7B is in contact with the bottom 4J1 of the bottomed hole 4J of the stator 4.
  • the flange portion 7B of the spacer 7 is sandwiched between the bottom 4J1 of the bottomed hole 4J and the stator side end surface 5B of the plunger 5.
  • the plunger 5 does not directly abut on the bottom 4J1 of the bottomed hole 4J, and the axial minimum distance between the two when the stator side end surface 5B of the plunger 5 approaches the bottom 4J1 of the bottomed hole 4J
  • the (interval) is regulated by the axial thickness dimension of the flange portion 7B of the spacer 7.
  • the axial length of the cylindrical magnetic control unit 4G of the stator 4 (the axial dimension from the open end 4H to the bottom 4J1 of the bottomed hole 4J) is L1.
  • the distance (length in the axial direction) from the stator side end surface 5B to the second edge 5K is L2
  • the axial minimum distance (thickness dimension of the flange portion 7B) between the stator 4 and the plunger 5 restricted by the spacer 7 is Assuming that L3, these L1, L2 and L3 are set to satisfy the following equation (1).
  • the distance L2 is set so as to satisfy the following equation 2 with respect to the length L1.
  • the distance L3 is set so as to satisfy the following equation 3 with respect to the length L1.
  • the yoke 8 is disposed coaxially with the stator 4.
  • the yoke 8 is formed in a stepped cylindrical shape using a magnetic material.
  • the yoke 8 includes a bottom 8A serving as a magnetic path, a cylindrical long cylindrical portion 8B axially extending from the outer peripheral side of the bottom 8A toward the stator 4, and the long cylindrical portion 8B sandwiching the bottom 8A.
  • a mounting cylindrical portion 8C projecting to the opposite side.
  • the inner peripheral side of the long cylindrical portion 8B is a sliding hole 8D, and a sliding contact portion 5C of the plunger 5 is slidably fitted in the sliding hole 8D. That is, the slide hole 8D encloses the slide contact portion 5C of the plunger 5 to be cantilevered and guides the plunger 5 slidably in the axial direction.
  • a small diameter outer peripheral surface 8E having a diameter smaller by one step than the outer peripheral surface of the long cylindrical portion 8B is formed.
  • the other end 9B of the ring 9 is fitted to the small diameter outer peripheral surface 8E.
  • a male screw 8F is formed on the outer peripheral surface of the mounting cylindrical portion 8C of the yoke 8, and a nut 21 described later is screwed on the male screw 8F.
  • a through hole 8G penetrating in the axial direction is provided at the axial center position of the bottom 8A of the yoke 8 and the mounting cylinder 8C, and a female screw 8H is formed on the inner peripheral surface of the through hole 8G.
  • the ring 9 is provided between the outer periphery of the fixed core 4 B of the stator 4 and the long cylindrical portion 8 B of the yoke 8.
  • the ring 9 is formed in a cylindrical shape using a magnetic material.
  • One end 9A which is one side (the stator 4 side) of the ring 9 in the axial direction, is fitted and fixed to the small diameter outer peripheral surface 4F of the stator 4.
  • the other end 9B on the other side (yoke 8 side) of the ring 9 in the axial direction is fitted and fixed to the small diameter outer peripheral surface 8E of the yoke 8.
  • an inner housing 3 in which the stator 4, the yoke 8 and the ring 9 are integrated is configured.
  • the screw 10 is provided in the through hole 8G of the yoke 8.
  • the screw 10 is formed in a stepped cylindrical shape, and the screw 10 has a head 10A and a shaft 10B smaller in diameter than the head 10A.
  • the shaft 10B is provided with two flanges 10C and 10D spaced apart in the axial direction.
  • a shaft-side male screw 10E is formed on the outer peripheral surface of the shaft 10B, and the shaft-side male screw 10E is screwed to the female screw 8H of the yoke 8.
  • a head-side male screw 10F is formed on the outer peripheral surface of the head 10A, and the screw 10 is locked by screwing the lock nut 11 to the head-side male screw 10F.
  • an O-ring 12 for sealing oil in the inner housing 3 is provided between the collar portion 10C and the collar portion 10D.
  • the sub spring 13 is disposed in a state of being compressed between the tip end of the shaft-side male screw 10 E of the screw 10 and the yoke-side end face 5 E of the plunger 5.
  • the sub spring 13 presses the yoke side end face 5E of the plunger 5 to the stator 4 side. Therefore, the pressing force of the plunger 5 by the sub spring 13 can be adjusted by rotating the screw 10 in the forward and reverse directions to adjust the amount of screwing into the yoke 8. That is, the screw 10 finely adjusts the driving force on the plunger 5 by the electromagnetic drive unit 2.
  • the solenoid assembly 14 is provided so as to surround the inner housing 3 consisting of the stator 4, the yoke 8 and the ring 9 from the outside.
  • the solenoid assembly 14 includes a bobbin 15, a coil 16, a terminal 17, an exterior mold 18, and a solenoid casing 20 which will be described later.
  • the bobbin 15 is provided on the outer peripheral side of the inner housing 3.
  • the bobbin 15 has a cylindrical bobbin main body 15A fitted to the outer peripheral surface of the inner housing 3 and a pair of wedge members 15B and 15C extending radially outward from both axial ends of the bobbin main body 15A.
  • the one wedge member 15B is provided with a projection 15D projecting in the direction away from the other wedge member 15C, and the wedge member 15C is provided with a projection 15E projecting in the direction away from the wedge member 15B.
  • the coil 16 is wound around the bobbin main body 15A of the bobbin 15 so as to surround the stator 4, the plunger 5 and the yoke 8 from the outside.
  • the coil 16 is electrically connected to the terminal 17, and power is supplied to the coil 16 through the terminal 17.
  • the coil 16 excites or demagnetizes (demagnetizes) the stator 4 by controlling power supply from the outside, and causes the plunger 5 to approach or separate from the stator 4.
  • the exterior mold 18 is provided to cover the coil 16 wound around the bobbin 15 and the respective wedge members 15B and 15C of the bobbin 15 from the outer peripheral side. In this case, the exterior mold 18 covers the protrusion 15D of one wedge member 15B and the protrusion 15E of the other wedge member 15C.
  • the exterior mold 18 envelops the entire bobbin 15 from the outside, and one side (stator 4 side) in the axial direction of the exterior mold 18 is engaged unevenly with the projection 15D of the wedge member 15B without clearance.
  • the other side in the axial direction (yoke 8 side) is engaged with the projections 15E of the wedge member 15C without any gap.
  • An L-shaped bent socket 19 is integrally formed on one side in the axial direction of the exterior mold 18.
  • a socket 19A is formed on the tip side of the socket 19 for inserting a plug (not shown), and the tip of the terminal 17 electrically connected to the coil 16 is disposed in the socket 19A. It is done. Therefore, by inserting a plug (not shown) into the insertion port 19A of the socket 19, power is supplied to the coil 16 from the outside through the terminal 17.
  • the solenoid casing 20 covers the exterior mold 18 from the outer peripheral side.
  • the solenoid casing 20 has a cylindrical casing main body 20A extending in the axial direction, and a lid 20B projecting radially inward from the other axial side (yoke 8 side) of the casing main body 20A.
  • One side (the stator 4 side) of the casing main body 20A in the axial direction is an open end 20C, and the open end 20C is fitted to the outer peripheral surface of the flange portion 4A of the stator 4.
  • a yoke fitting hole 20D penetrating in the axial direction is formed at the center of the lid 20B, and the outer peripheral surface of the bottom 8A of the yoke 8 is fitted in the yoke fitting hole 20D.
  • the mounting cylindrical portion 8C of the yoke 8 protrudes to the outside of the lid portion 20B through the yoke fitting hole 20D.
  • the solenoid casing 20 is fixed to the inner housing 3 by screwing the nut 21 onto the male screw 8F formed on the mounting cylindrical portion 8C.
  • the O-ring 22 is provided between the fixed core portion 4 B of the stator 4, the wedge member 15 B of the bobbin 15, and the exterior mold 18.
  • the O-ring 23 is provided between the bottom 8 A of the yoke 8, the wedge member 15 C of the bobbin 15, and the exterior mold 18.
  • control valve unit 24 which is a driven device attached to the electromagnetic drive unit 2 will be described.
  • the control valve unit 24 is coaxially attached to the electromagnetic drive unit 2 and includes a valve casing 25 and a spool 29 which will be described later.
  • the valve casing 25 is formed in a stepped cylindrical shape (sleeve shape) and extends in the axial direction.
  • the valve casing 25 is positioned between the small diameter cylindrical portion 25A positioned on one side in the axial direction, the large diameter cylindrical portion 25B positioned on the other side in the axial direction, and the small diameter cylindrical portion 25A and the large diameter cylindrical portion 25B. And an intermediate cylindrical portion 25C.
  • the small diameter cylindrical portion 25A includes a supply port 25D connected to a hydraulic pump (not shown), an output port 25E connected to a hydraulic actuator (not shown), and a drain connected to a tank (not shown).
  • a port 25F is provided.
  • a seal surface 25G located between the supply port 25D and the output port 25E and a seal surface 25H located between the output port 25E and the drain port 25F are provided on the inner peripheral surface of the small diameter cylindrical portion 25A.
  • a male screw 25J is formed on the outer peripheral surface of the intermediate cylindrical portion 25C
  • a female screw 25K is formed on the inner peripheral surface of the large diameter cylindrical portion 25B.
  • the control valve unit 24 is attached to the electromagnetic drive unit 2 by screwing the male screw 4D of the stator 4 (mounting cylinder 4C) to the female screw 25K of the valve casing 25.
  • valve casing 25 is disposed in a housing (not shown) having a plurality of flow paths separately connected to the three ports 25D, 25E, 25F, and this housing is an external thread 25J of the intermediate cylindrical portion 25C. It is configured to be screwed on.
  • the flow paths provided in the housing are isolated by O-rings 26 and 27 fitted on the small diameter cylindrical portion 25A with the output port 25E interposed therebetween.
  • an O-ring 28 for sealing oil in the housing is provided at the boundary between the large diameter cylindrical portion 25B and the intermediate cylindrical portion 25C.
  • the spool 29 is axially movably provided on the inner peripheral side of the valve casing 25.
  • a long rod-like body is used as the spool 29 and axially extends on the inner peripheral side of the valve casing 25.
  • a bottomed axial flow passage 29A extending in the axial direction is formed.
  • An annular spring support plate 30 is attached to an outer peripheral surface of the spool 29 and at a boundary position between the intermediate cylindrical portion 25C of the valve casing 25 and the large diameter cylindrical portion 25B.
  • the spring receiving plate 30 axially faces the spring receiving portion 25L formed on the inner peripheral side of the intermediate cylindrical portion 25C of the valve casing 25.
  • a return spring 31 is provided between the spring receiving plate 30 of the spool 29 and the spring receiving portion 25L of the valve casing 25. Therefore, the spool 29 is always pressed to the stator 4 side by the biasing force of the return spring 31, and the end face of the spool 29 on the stator 4 side is in contact with the pin 6.
  • lands 29B, 29C, 29D, 29E are provided so as to be separated in the axial direction.
  • the lands 29B and 29C have the same diameter
  • the lands 29D and 29E have the same diameter
  • the land 29C has a larger diameter than the land 29D.
  • a plate 32 is disposed on the axial end face of the small diameter cylindrical portion 25A of the valve casing 25.
  • the plate 32 is always pressed against the end face in the axial direction of the small diameter cylindrical portion 25A by a wave washer 33 provided between a wall surface (not shown) of the housing to which the valve casing 25 is attached.
  • a damping chamber 34 is formed between the end surface of one side of the spool 29 in the axial direction and the plate 32.
  • An orifice 35 is provided at one end of the spool 29 in the axial direction, and the axial flow passage 29 A of the spool 29 communicates with the damping chamber 34 via the orifice 35.
  • radial flow passages 29F and 29G penetrating in the radial direction are provided so as to be separated in the axial direction.
  • the radial flow passages 29F and 29G communicate with the axial flow passage 29A.
  • the hydraulic oil in the tank (not shown) is led from the drain port 25F to the inner peripheral side of the valve casing 25 through the radial flow passage 29F, the axial flow passage 29A, and the radial flow passage 29G.
  • the hydraulic oil introduced into the valve casing 25 is introduced into the cylindrical magnetic control unit 4G through the pin insertion hole 4E of the stator 4, and the hydraulic oil slides through the through hole 5H of the plunger 5 and the yoke 8 slides. It is introduced into the hole 8D.
  • the hydraulic oil in the tank is configured to be filled in the inner housing 3 of the electromagnetic drive unit 2 through the inside of the spool 29 constituting the control valve unit 24.
  • An O-ring 36 for sealing the hydraulic oil in the valve casing 25 is provided at a connection portion between the large diameter cylindrical portion 25B of the valve casing 25 and the attachment cylindrical portion 4C of the stator 4.
  • the cylindrical portion 7A of the spacer 7 is press-fitted into the spacer mounting hole 4K of the stator 4, and the flange portion 7B of the spacer 7 is brought into contact with the bottom 4J1 of the bottomed hole 4J.
  • one end 9A of the ring 9 is press-fit into the small diameter outer peripheral surface 4F of the stator 4.
  • the pin 6 pressed into the center hole 5G of the plunger 5 is inserted into the pin insertion hole 4E of the stator 4.
  • the small diameter outer peripheral surface 8E of the yoke 8 is press-fit into the other end 9B of the ring 9 while inserting the sliding contact portion 5C of the plunger 5 into the sliding hole 8D of the yoke 8.
  • the stator 4, the yoke 8, and the ring 9 are integrated in a state where the plunger 5 is accommodated in the inside of the yoke 8, and the inner housing 3 can be assembled.
  • the small diameter outer peripheral surface 8E of the yoke 8 and the other end 9B of the ring 9 are joined by butt welding.
  • the butt between the axial end face (step portion) of the small diameter outer peripheral surface 8E of the yoke 8 and the axial end face of the other end 9B of the ring 9 On the other hand, by performing laser welding over the entire circumference, the two are firmly joined.
  • the small diameter outer peripheral surface 4F of the stator 4 and the one end 9A side of the ring 9 are joined by lap welding.
  • the inclination or the like of the ring 9 press-fitted into the stator 4 is adjusted, and the inclination of the stator 4 with respect to the yoke 8 is corrected.
  • laser welding is performed over the entire circumference of the overlapping portion of the small diameter outer peripheral surface 4F of the stator 4 and the one end 9A side of the ring 9 to firmly join the two.
  • a weld line (not shown) formed at the joint between the small diameter outer peripheral surface 4F of the stator 4 and one end 9A of the ring 9 is closer to the flange 4A than the bottom 4J1 of the bottomed hole 4J of the stator 4 Formed at spaced locations.
  • the bobbin 15 on which the coil 16 is wound is assembled on the outer peripheral side of the inner housing 3.
  • the coil 16 wound around the bobbin 15 and the respective wedge members 15B and 15C of the bobbin 15 are covered with the exterior mold 18 from the outer peripheral side.
  • the exterior mold 18 is covered with the solenoid casing 20 from the outer peripheral side.
  • the open end 20C of the solenoid casing 20 (casing main body 20A) is fitted to the outer peripheral surface of the flange 4A of the stator 4, and the yoke fitting hole 20D of the lid 20B is fitted to the outer peripheral surface of the bottom 8A of the yoke 8.
  • the solenoid casing 20 is fixed to the inner housing 3 by screwing the nut 21 onto the male screw 8F of the yoke 8 (mounting cylindrical portion 8C) protruding to the outside of the lid portion 20B.
  • the inner peripheral side of the sub spring 13 is inserted into the end of the pin 6 protruding into the through hole 8 G of the yoke 8, and the O ring 12 is attached between the flanges 10 C and 10 D of the screw 10.
  • the shaft-side male screw 10E of the screw 10 is screwed to the female screw 8H of the yoke 8 (through hole 8G).
  • the electromagnetic drive unit 2 can be assembled.
  • the electromagnetic drive unit 2 according to the first embodiment has the above-described configuration. Hereinafter, the operation of the electromagnetic drive unit 2 and the control valve unit 24 will be described.
  • a plug (not shown) of the power supply device is connected to the socket 19 of the electromagnetic drive unit 2.
  • the power supply may be either a DC power supply or an AC power supply, and power is supplied to the coil 16 from the power supply device via the terminal 17.
  • the spool 29 When power is not supplied to the coil 16, the spool 29 is biased toward the stator 4 by the return spring 31, and the end surface of the spool 29 on the stator 4 side is in contact with the pin 6. Therefore, the output port 25E of the valve casing 25 and the drain port 25F communicate with each other, and the output port 25E and the supply port 25D are maintained in the disconnected state (initial state).
  • the displacement of the plunger 5 is transmitted to the spool 29 via the pin 6, whereby the spool 29 moves in the valve casing 25.
  • the supply port 25D of the valve casing 25 and the output port 25E are communicated or disconnected, and the output port 25E and the drain port 25F are communicated or interrupted, so that the supply and discharge of pressure oil from the hydraulic pump to the hydraulic actuator Is controlled.
  • the power supply to the coil 16 is stopped, the magnetic field due to the coil 16 disappears, and the spool 29 returns to the initial state by the spring force of the return spring 31.
  • the output port 25E of the valve casing 25 and the drain port 25F communicate with each other, and the output port 25E and the supply port 25D are disconnected.
  • the cylindrical magnetic control unit 4G of the stator 4 constituting the magnetic path has a smaller volume than other magnetic path constituent members (plunger 5, yoke 8, solenoid casing 20). For this reason, the magnetic flux is concentrated in the cylindrical magnetic control unit 4G to have a high magnetic flux density, and the magnetization is promoted as compared with the magnetic paths of other portions.
  • an attractive force (magnetic force) is generated between the plunger 5 and the stationary core portion 4B of the stator 4 including the cylindrical magnetic control unit 4G according to Coulomb's law concerning magnetism.
  • the suction force has an axial component, and this axial component acts as an axial suction force that sucks the plunger 5 toward the stator 4 in the axial direction.
  • FIGS. 3 to 5 The stator 4, the plunger 5 and the spacer 7 illustrated in FIGS. 3 to 5 are not hatched to clearly show the magnetic flux lines.
  • a magnetic flux indicated by a plurality of magnetic flux lines 37 in FIG. 3 is generated for the stator 4.
  • the magnetic flux lines 37 at the initial position are obliquely directed from the outer peripheral surface of the magnetic pole portion 5A, the first edge 5J and the stator side end surface 5B toward the tip of the tapered portion 4L formed on the outer peripheral surface of the cylindrical magnetic control portion 4G. Extend.
  • the suction force F1 acting on the plunger 5 extends in the direction inclined with respect to the axial direction along the direction of the magnetic flux lines 37.
  • the plunger 5 is displaced in the direction approaching the stator 4 by an axial attraction force Fx1 which is an axial component of the attraction force F1, and the displacement of the plunger 5 in the axial direction becomes the driving force of the spool 29.
  • the plunger 5 When the plunger 5 is attracted to the stator 4, the plunger 5 is in the middle position shown in FIG. 4, that is, the first edge 5J of the magnetic pole portion 5A enters the inside of the cylindrical magnetic control portion 4G (in the bottomed hole 4J). Displace to position.
  • the area magnetized by the cylindrical magnetic control unit 4G increases in the radial direction as the diameter of the outer peripheral surface of the tapered portion 4L increases.
  • the direction of the magnetic flux line 37 shown in FIG. 4 is inclined in the radial direction as compared with the initial position shown in FIG. 3, and the inclination with respect to the axial direction of the suction force F2 acting on the plunger 5 is the suction force at the initial position.
  • the attraction force F2 becomes larger than the attraction force F1 at the initial position due to the increase of the magnetization area of the cylindrical magnetic control unit 4G.
  • the axial suction force Fx2 which is an axial component of the suction force F2 has a value equivalent to or close to the axial suction force Fx1 at the initial position (Fx2 ⁇ Fx1).
  • the axial length L1 of the cylindrical magnetic control unit 4G of the stator 4, the distance L2 from the stator side end surface 5B of the plunger 5 to the second edge 5K, and the flange portion of the spacer 7 The thickness dimension L3 of 7B is configured to satisfy the relationship of L1 ⁇ L2 + L3. Therefore, while the plunger 5 is displaced toward the restricted position, the second edge 5K of the magnetic pole 5A intrudes into the cylindrical magnetic control unit 4G of the stator 4 (in the bottomed hole 4J).
  • the plunger 5 when the feed current supplied to the coil 16 is set to a constant value, as shown by the characteristic line 38 in FIG. 6, the plunger 5 is at the initial position P1 shown in FIG. While being displaced to the restricted position P3 shown in FIG. 5, the axial suction force Fx acting on the plunger 5 can be maintained at a substantially constant value.
  • the gap between the plunger 5 and the stator 4 approaches the minimum distance regulated by the spacer 7, the axial attraction force Fx acting on the plunger 5 is prevented from rapidly increasing. it can. Therefore, it is possible to secure a large area where the plunger 5 can be displaced, that is, the area A from P1 to P3 in FIG. 6 while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
  • the distance L2 from the stator side end face 5B of the plunger 5 to the second edge 5K is 0.5L1 ⁇ the axial length L1 of the cylindrical magnetic control unit 4G (bottomed hole 4J) of the stator 4 It is set in the range of L2 ⁇ 0.7 L1. Therefore, by adjusting the distance L2 within this range, the size of the region (region A in FIG. 6) in which the plunger 5 can be displaced while the axial suction force Fx acting on the plunger 5 is constant or nearly constant. Can be adjusted appropriately.
  • the second edge 5K of the magnetic pole portion 5A is at a stage before the stator side end surface 5B of the plunger 5 approaches the stator 4. It will intrude into the bottomed hole 4J. Therefore, before the axial attraction force Fx for causing the plunger 5 to approach the stator 4 increases, the axial attraction force Fx for separating the plunger 5 from the stator 4 acts on the plunger 5. As a result, the region in which the plunger 5 can be displaced is narrowed while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
  • the distance L2 is preferably set in the range of 0.5L1 ⁇ L2 ⁇ 0.7L1 with respect to the length L1.
  • a tapered surface 101C is formed at the boundary between the magnetic pole portion 101A and the sliding contact portion 101B, and the angle at which the outer peripheral surface of the magnetic pole portion 101A intersects with the stator side end face 101D.
  • the portion is the first edge 101E
  • the corner at which the outer peripheral surface of the magnetic pole portion 101A and the tapered surface 101C intersect is the second edge 101F.
  • the second edge 101F is positioned outside the bottomed hole 4J in the restricted position where the stator side end face 101D of the plunger 101 is in contact with the flange portion 7B of the spacer 7 in the bottomed hole 4J of the stator 4. It has become.
  • the plunger 101 according to Comparative Example 1 has the plunger 101 between the second edge 101F and the open end 4H of the cylindrical magnetic control unit 4G even when the stator side end face 101D approaches the restricted position. Suction does not act in the direction of moving away from
  • the magnetic pole portion 102A and the sliding contact portion 102B are formed in a cylindrical shape having the same external dimensions. Therefore, although the plunger 102 according to Comparative Example 2 has the first edge 102D at the corner where the outer peripheral surface of the magnetic pole 102A intersects with the stator side end surface 102C, a portion corresponding to the second edge 5K according to the first embodiment Is not provided.
  • the area where the plunger 5 can be displaced is expanded while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
  • the change in suction force due to the displacement of the plunger 5 is reduced. Therefore, in the electromagnetic valve 1 provided with the electromagnetic drive unit 2, the suction force for the plunger 5 necessary to balance the oil pressure acting on the spool 29 and the spring force of the return spring 31 and the sub spring 13 is It is possible to control with high accuracy by the feed control. Therefore, when the solenoid valve 1 provided with the solenoid drive unit 2 is used, for example, in a hydraulic system that performs tilt angle control of a variable displacement hydraulic pump / hydraulic motor, control of a spool of a control valve, etc. Can improve the control accuracy of the hydraulic system.
  • the control valve unit is expanded by expanding the region in which the plunger 5 can be displaced while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
  • the stroke of the spool 29 in the 24 valve casings 25 can be increased.
  • the maximum opening amount between the supply port 25D and the output port 25E and the maximum opening amount between the output port 25E and the drain port 25F can be set large.
  • the supply port 25D, the output port 25E , And the flow rate of the hydraulic fluid flowing through the drain port 25F can be increased.
  • the response of the oil pressure by the solenoid valve 1 can be sped up, and the response of the hydraulic system including the solenoid valve 1 can be sped up.
  • FIGS. 9 and 10 show a second embodiment of the present invention.
  • the second embodiment is characterized in that the outer diameter of the magnetic pole portion of the plunger and the sliding contact portion is the same diameter, and the outer peripheral surface of the plunger is provided with a constricted portion for axially separating the magnetic pole portion and the sliding contact portion.
  • the same reference symbols are given to the same configuration elements as the first embodiment, and the description thereof is omitted.
  • the electromagnetic drive unit 41 constitutes a solenoid valve together with the control valve unit 24. Similar to the electromagnetic drive unit 2 according to the first embodiment, the electromagnetic drive unit 41 includes a stator 4, a plunger 42 described later, pins 6, spacers 7, yokes 8, rings 9, bobbins 15, coils 16, A solenoid casing 20 and the like are included. However, in the second embodiment, the configuration of the plunger 42 is different from that of the plunger 5 according to the first embodiment.
  • the plunger 42 is formed in a cylindrical shape as a whole using a magnetic material, and is disposed coaxially with the stator 4.
  • the plunger 42 has the same outer diameter as the outer diameter of the magnetic pole portion 42A, which will be described later, and the outer diameter of the sliding portion 42C, and the outer peripheral surface of the plunger 42 is provided with a narrowed portion 42G, which will be described later.
  • the magnetic pole portion 42A is provided at an end of the plunger 42 on the stator 4 side.
  • the outer diameter of the magnetic pole portion 42A is formed to be slightly smaller than the inner diameter of the cylindrical magnetic control portion 4G (the bottomed hole 4J) of the stator 4, and the magnetic pole portion 42A enters the inside of the bottomed hole 4J.
  • the stator side end face 42B of the magnetic pole part 42A faces the bottom 4J1 of the bottomed hole 4J and abuts on the flange 7B of the spacer 7.
  • the sliding contact portion 42C is provided at an end of the plunger 42 on the opposite side (yoke 8 side) to the stator 4.
  • the sliding contact portion 42C is slidably inserted in the sliding hole 8D of the yoke 8, and performs magnetic exchange with the yoke 8 while slidingly contacting the sliding hole 8D.
  • the yoke-side end surface 42D of the sliding contact portion 42C faces the tip of the shaft-side male screw 10E of the screw 10, and the sub-spring 13 is in contact.
  • a central hole 42E penetrating in the axial direction is formed at an axial center position of the plunger 42, and a pin 6 is press-fitted into the central hole 42E.
  • a through hole 42F penetrating in the axial direction is formed in a portion of the plunger 42 which is eccentric in the radial direction from the central hole 42E.
  • the constricted portion 42G is formed on the outer peripheral surface of the plunger 42 in the form of a recessed groove all around, and axially separates the magnetic pole portion 42A and the sliding contact portion 42C.
  • the plunger 42 has a pole portion 42A on the stator 4 side and a sliding contact portion 42C on the yoke 8 side with respect to the constriction portion 42G.
  • the first edge 42H of the plunger 42 is provided at a corner where the outer peripheral surface of the magnetic pole portion 42A and the stator side end surface 42B intersect.
  • the first edge 42H receives a magnetic force (attracting force) in a direction approaching the stator 4 from the cylindrical magnetic control unit 4G of the excited stator 4.
  • the second edge 42J of the plunger 42 is provided at a portion of the outer circumferential surface of the magnetic pole portion 42A that is separated from the first edge 42H, that is, at the corner where the outer circumferential surface of the magnetic pole portion 42A intersects with the narrowed portion 42G. ing.
  • the second edge 42J receives a magnetic force (attracting force) in a direction away from the stator 4 from the cylindrical magnetic control unit 4G when it enters the bottomed hole 4J of the excited stator 4.
  • the axial length of the cylindrical magnetic control unit 4G (the bottomed hole 4J) of the stator 4 is L1
  • the distance from the stator side end surface 42B of the plunger 42 to the second edge 42J is L2.
  • the electromagnetic drive unit 41 according to the second embodiment is provided with the plunger 42 as described above, and by performing power supply control on the coil 16, a suction force acts on the plunger 42 from the stator 4.
  • the first edge of the first embodiment is performed until the second edge 42J of the plunger 42 intrudes into the bottomed hole 4J. Similar to the embodiment, an axial suction force acts on the plunger 42 in a direction approaching the stator 4.
  • a magnetic force (attracting force) is generated between the second edge 42J and the open end 4H of the cylindrical magnetic control unit 4G, and the plunger 42 is An axial suction force acts in a direction away from the stator 4.
  • the region in which the plunger 42 can be displaced can be expanded while the axial suction force acting on the plunger 42 is constant or nearly constant.
  • a neck 42G is formed on the outer peripheral surface of the plunger 42 made of a magnetic material, and the pole 42A and the sliding contact 42C are axially separated by the neck 42G.
  • the present invention is not limited thereto.
  • the annular member 43 made of nonmagnetic material is embedded in the constriction portion 42G to have uniform outer diameter dimension. It may be formed as a plunger 42 '.
  • the tapered portion 4L linearly extending while reducing the diameter toward the opening end 4H is provided on the outer peripheral surface of the cylindrical magnetic control unit 4G of the stator 4 is excited.
  • the present invention is not limited to this.
  • a tapered portion 4L 'extending in a curving manner while reducing the diameter toward the opening end 4H may be provided.

Abstract

An electromagnetic type drive unit (2) is provided with a stator (4), a plunger (5), a spacer (7), a yoke (8), and a coil (16). An end portion of the plunger (5) on the stator (4) side is provided with a magnetic pole portion (5A). A first edge (5J) is provided at the outer peripheral edge of the magnetic pole portion (5A) on the stator (4) side thereof. The stator (4) is provided with a tubular magnetic control portion (4G) into which the magnetic pole portion (5A) of the plunger (5) enters. An outer peripheral surface of the tubular magnetic control portion (4G) is provided with a tapered portion (4L) becoming gradually smaller in diameter toward the plunger (5) side. A second edge (5K) is provided in a portion of the outer peripheral surface of the magnetic pole portion (5A) which is spaced apart from the first edge (5J) on the opposite side from the stator (4). The second edge (5K), upon entering a bottomed hole (4J) of the tubular magnetic control portion (4G), is subjected to a magnetic force in a direction away from the stator (4) in a gap between the second edge (5K) and an opening end (4H) of the tubular magnetic control portion (4G).

Description

電磁式駆動ユニットElectromagnetic drive unit
 本発明は、例えば建設機械の油圧回路を構成する電磁比例式油圧制御弁等に好適に用いられる電磁式駆動ユニットに関する。 The present invention relates to an electromagnetic drive unit suitably used, for example, in an electromagnetic proportional hydraulic control valve or the like which constitutes a hydraulic circuit of a construction machine.
 近年、油圧ショベルに代表される建設機械では、燃費低減および制御性の向上を目的として、電子制御を行う機器が多く採用されている。例えば建設機械に搭載された油圧アクチュエータは、コントロールバルブによって制御され、このコントロールバルブは、電磁比例式油圧制御弁によって制御された作動油圧(パイロット圧力)によって遠隔操作される。 BACKGROUND ART In recent years, in construction machines typified by hydraulic shovels, a large number of equipments that perform electronic control have been adopted for the purpose of reducing fuel consumption and improving controllability. For example, a hydraulic actuator mounted on a construction machine is controlled by a control valve, and this control valve is remotely controlled by a hydraulic pressure (pilot pressure) controlled by an electromagnetic proportional hydraulic control valve.
 ここで、電磁比例式油圧制御弁には、コントローラ等から供給される制御信号の電流値(給電電流値)に比例して油圧の出力値を制御するため、電磁式駆動ユニットが組み込まれている。この電磁式駆動ユニットは、ステータ(固定鉄心)とプランジャ(可動鉄心)とが同軸に配置されており、これらステータ、プランジャを囲むように配置されたソレノイドコイルに対する給電制御を行うことにより、ステータの励磁量が可変に制御される。ステータとプランジャとの間には、ステータの励磁量に応じた吸引力が作用するので、この吸引力を駆動力として弁体等の駆動対象を駆動することができる。 Here, an electromagnetic drive unit is incorporated in the electromagnetic proportional hydraulic control valve in order to control the output value of the hydraulic pressure in proportion to the current value (feed current value) of the control signal supplied from the controller or the like. . In this electromagnetic drive unit, the stator (fixed iron core) and the plunger (movable iron core) are coaxially arranged, and by performing power supply control to these stator and solenoid coil arranged so as to surround the plunger, the stator The amount of excitation is variably controlled. Since a suction force corresponding to the amount of excitation of the stator acts between the stator and the plunger, this suction force can be used as a driving force to drive an object to be driven such as a valve.
 ここで、電磁式駆動ユニットを用いた油圧制御弁においては、弁体に作用するばね等の弾性力や油圧力を電磁式駆動ユニットの駆動力と釣合わせ、その釣合い荷重に応じて弁体を変位させることにより、油路の開口量を調整する構成となっている。従って、より高精度な油圧制御を行うためには、電磁式駆動ユニットから出力される駆動力、即ちステータとプランジャとの間に作用する吸引力が、電磁式駆動ユニットに供給される給電電流値のみに依存することが望ましい。即ち、ステータとプランジャとの間に作用する吸引力が、ステータに対するプランジャの位置(ステータとプランジャとの間隔)に関わらず一定であることが望ましい。 Here, in a hydraulic control valve using an electromagnetic drive unit, the elastic force of a spring or the like acting on the valve body and the oil pressure are balanced with the driving force of the electromagnetic drive unit, and the valve body is adjusted according to the balanced load. By displacing, the opening amount of the oil passage is adjusted. Therefore, in order to perform hydraulic control with higher accuracy, the driving force output from the electromagnetic drive unit, that is, the attraction force acting between the stator and the plunger is supplied to the electromagnetic drive unit. It is desirable to rely solely on That is, it is desirable that the suction force acting between the stator and the plunger be constant regardless of the position of the plunger relative to the stator (the distance between the stator and the plunger).
 これに対し、ステータのうちプランジャと対向する端部に、プランジャに向けて徐々に拡径するテーパ面を有する凹部からなる第1吸引部を設けると共に、第1吸引部よりもプランジャ側に円筒状の第2吸引部を設け、第2吸引部の内周面が第1吸引部の凹部と連続するように形成された電磁式駆動ユニットが提案されている(特許文献1参照)。 On the other hand, a first suction portion comprising a concave portion having a tapered surface gradually expanding in diameter toward the plunger is provided at an end portion of the stator facing the plunger, and a cylindrical shape is formed closer to the plunger than the first suction portion. An electromagnetic drive unit is proposed in which a second suction unit is provided and the inner circumferential surface of the second suction unit is continuous with the recess of the first suction unit (see Patent Document 1).
 この特許文献1による電磁式駆動ユニットでは、ステータとプランジャとの間のギャップ(隙間)が小さい。このため、プランジャのステータ側の端部の外周に形成されたテーパ面が、ステータの第1吸引部の凹部に形成されたテーパ面と対面する場合には、吸引力は、主としてステータの第1吸引部とプランジャのステータ側の端面との間で発生する。一方、ステータとプランジャとの間のギャップが大きい場合には、吸引力は、主としてステータの第2吸引部の内周面とプランジャのステータ側の端部に形成されたテーパ面との間で発生する。従って、特許文献1による電磁式駆動ユニットは、ステータとプランジャとの間のギャップが大きい状態においても吸引力の低下を抑えることができ、ステータに対するプランジャの位置に関わらず、ステータとプランジャとの間に作用する吸引力をほぼ一定に保つことができる。 In the electromagnetic drive unit according to Patent Document 1, the gap (gap) between the stator and the plunger is small. For this reason, when the tapered surface formed on the outer periphery of the end portion on the stator side of the plunger faces the tapered surface formed in the recess of the first suction portion of the stator, the attraction force is mainly the first of the stator. It occurs between the suction part and the end face on the stator side of the plunger. On the other hand, when the gap between the stator and the plunger is large, a suction force is generated mainly between the inner peripheral surface of the second suction portion of the stator and the tapered surface formed at the end of the plunger on the stator side. Do. Therefore, the electromagnetic drive unit according to Patent Document 1 can suppress the decrease in suction force even in the state where the gap between the stator and the plunger is large, and regardless of the position of the plunger relative to the stator, between the stator and the plunger The suction force acting on can be kept almost constant.
特開2000-277327号公報JP 2000-277327 A
 しかし、特許文献1による電磁式駆動ユニットにおいては、プランジャがステータに吸引されることにより両者間のギャップがさらに小さくなると、プランジャとステータとの間に発生する吸引力が急激に増大する。このため、例えばプランジャとステータとのギャップが最小値に近くなる領域では、電磁式駆動ユニットに供給される給電電流値を一定としたとしても、プランジャとステータとの間の吸引力を、一定の状態、または一定に近い状態に保つことが困難であるという問題がある。 However, in the electromagnetic drive unit according to Patent Document 1, when the gap between the plunger and the stator is further reduced by the attraction of the plunger to the stator, the attraction force generated between the plunger and the stator rapidly increases. For this reason, for example, in a region where the gap between the plunger and the stator approaches the minimum value, even if the value of the feeding current supplied to the electromagnetic drive unit is constant, the attraction between the plunger and the stator is constant. There is a problem that it is difficult to keep the state or near constant state.
 本発明は、上述した従来技術の問題に鑑みなされたもので、その目的は、ステータとプランジャとの間のギャップが小さくなる領域においてプランジャに作用する吸引力が急激に増大するのを抑え、プランジャに作用する吸引力が一定の状態、または一定に近い状態のままプランジャが変位できる領域を広げることができるようにした電磁式駆動ユニットを提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and its object is to suppress the rapid increase in the attraction force acting on the plunger in the region where the gap between the stator and the plunger is small. It is an object of the present invention to provide an electromagnetic drive unit in which the region over which the plunger can be displaced can be expanded with a constant or near constant constant suction force.
 上述した課題を解決するため、本発明は、磁性体材料からなるステータと、磁性体材料からなり、前記ステータに対して同軸上に配置されるプランジャと、磁性体材料からなり、前記ステータに対して同軸上に配置され前記プランジャを摺動可能に案内する摺動穴を有するヨークと、前記ステータ、前記プランジャ、前記ヨークを囲むように配置され、給電制御により前記ステータを励磁または消磁して前記プランジャを前記ステータに対して接近または離間させるコイルとを備えた電磁式駆動ユニットに適用される。 In order to solve the problems described above, the present invention relates to a stator made of a magnetic material, a plunger made of a magnetic material, and a plunger coaxially arranged with respect to the stator, and a magnetic material, to the stator Is disposed coaxially and has a slide hole for slidably guiding the plunger, the stator, the plunger, and the yoke are disposed so as to surround the stator, and the stator is excited or demagnetized by feed control. The present invention is applied to an electromagnetic drive unit provided with a coil for moving a plunger closer to or away from the stator.
 本発明の特徴は、前記プランジャの前記ステータ側の端部に設けられ、励磁された前記ステータから磁力を受ける磁極部と、前記プランジャの前記ステータとは反対側の端部に設けられ、前記ヨークの摺動穴と摺接し磁気の受け渡しを行う摺接部と、前記磁極部の前記ステータ側の外周縁に設けられた第1縁辺と、前記ステータに設けられ、前記プランジャが前記ステータ側へと移動したときに前記磁極部が内側に入り込むように前記プランジャ側が開口端となった有底穴を有する筒型磁気制御部と、前記筒型磁気制御部の外周面に設けられ、前記プランジャ側に向けて漸次小径となるテーパ部と、前記磁極部の外周面のうち前記第1縁辺から前記ステータとは反対側に離間した部位に設けられ、前記磁極部が前記筒型磁気制御部の前記有底穴を前記ステータ側へと移動する間に前記筒型磁気制御部の前記有底穴に侵入する第2縁辺とを備え、前記第2縁辺は、前記筒型磁気制御部の前記有底穴に侵入したときに前記筒型磁気制御部の開口端との間で前記ステータから離間する方向への磁力を受ける構成としたことにある。 A feature of the present invention is provided at an end of the plunger on the stator side and provided at a magnetic pole part receiving magnetic force from the excited stator and at an end of the plunger opposite to the stator, the yoke A sliding contact portion for sliding contact with a sliding hole of the magnetic pole to deliver magnetism, a first edge provided on the outer peripheral edge of the magnetic pole portion on the stator side, and the stator, the plunger being directed to the stator side A cylindrical magnetic control unit having a bottomed hole whose open end is on the plunger side so that the magnetic pole unit moves inward when moving, and an outer peripheral surface of the cylindrical magnetic control unit are provided on the plunger side The magnetic pole portion is provided at a tapered portion gradually decreasing in diameter, and at a portion of the outer peripheral surface of the magnetic pole portion which is separated from the first edge opposite to the stator, and the magnetic pole portion has the cylindrical magnetic control portion And a second edge which enters the bottomed hole of the cylindrical magnetic control unit while moving the hole toward the stator side, the second edge being in the bottomed hole of the cylindrical magnetic control unit The magnetic sensor is configured to receive a magnetic force in a direction away from the stator with the open end of the cylindrical magnetic control unit when it enters.
 本発明によれば、プランジャの磁極部がステータから磁力(吸引力)を受けることにより、プランジャの磁極部は、ステータの筒型磁気制御部内をステータ側へと移動(接近)する。そして、磁極部の外周面に設けられた第2縁辺が筒型磁気制御部の内側に侵入すると、第2縁辺は、筒型磁気制御部の開口端との間でステータから離間する方向への磁力(吸引力)を受ける。これにより、ステータとプランジャとの間のギャップが最小距離に近づく領域において、磁極部の第1縁辺に作用するステータに接近する方向への吸引力を、磁極部の第2縁辺に作用するステータから離れる方向への吸引力によって抑制することができる。この結果、ステータとプランジャとの間のギャップが小さくなる領域において、プランジャに作用する吸引力が急激に増大するのを抑えることができる。従って、プランジャに作用する吸引力が一定もしくは一定に近い特性状態のままプランジャが変位できる領域を広げることができる。 According to the present invention, when the magnetic pole portion of the plunger receives the magnetic force (attracting force) from the stator, the magnetic pole portion of the plunger moves (approaches) in the cylindrical magnetic control portion of the stator toward the stator. Then, when the second edge provided on the outer peripheral surface of the magnetic pole part penetrates into the inside of the cylindrical magnetic control unit, the second edge is in a direction away from the stator with the opening end of the cylindrical magnetic control unit. It receives a magnetic force (attractive force). Thereby, in a region where the gap between the stator and the plunger approaches the minimum distance, the attraction force in the direction approaching the stator acting on the first edge of the magnetic pole portion is generated from the stator acting on the second edge of the magnetic pole portion It can be suppressed by the suction force in the direction of leaving. As a result, in the region where the gap between the stator and the plunger is reduced, it is possible to suppress the rapid increase in the attraction force acting on the plunger. Therefore, the region where the plunger can be displaced can be expanded while the suction force acting on the plunger is in a constant or nearly constant characteristic state.
第1の実施の形態による電磁式駆動ユニットを電磁弁に組込んだ状態で示す断面図である。FIG. 2 is a cross-sectional view showing the electromagnetic drive unit according to the first embodiment incorporated in a solenoid valve. 図1中のステータ、プランジャ、スペーサ等の要部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows principal parts, such as a stator in Drawing 1, a plunger, and a spacer. プランジャがステータの筒型磁気制御部の外部にある状態で、磁束線とプランジャに作用する吸引力を示す説明図である。It is explanatory drawing which shows the attraction | suction force which acts on a magnetic flux line and a plunger in the state which has a plunger outside the cylindrical magnetic control part of a stator. プランジャがステータの筒型磁気制御部内に入り込んだ状態で、磁束線とプランジャに作用する吸引力を示す説明図である。It is explanatory drawing which shows the attraction | suction force which acts on a magnetic flux line and a plunger in the state which the plunger entered in the cylindrical magnetic control part of a stator. プランジャがスペーサに当接した状態で、磁束線とプランジャに作用する吸引力を示す説明図である。It is explanatory drawing which shows the suction | attraction force which acts on a magnetic flux line and a plunger in the state which the plunger contact | abutted to the spacer. プランジャの変位とプランジャに作用する吸引力との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between displacement of a plunger, and the suction | attraction force which acts on a plunger. 第1の比較例によるステータ、プランジャ、スペーサ等を示す拡大断面図である。It is an expanded sectional view showing a stator, a plunger, a spacer, etc. by a 1st comparative example. 第2の比較例によるステータ、プランジャ、スペーサ等を示す拡大断面図である。It is an expanded sectional view showing the stator by the 2nd comparative example, a plunger, a spacer, etc. 第2の実施の形態による電磁式駆動ユニットを電磁弁に組込んだ状態で示す断面図である。FIG. 7 is a cross-sectional view showing an electromagnetic drive unit according to a second embodiment incorporated in a solenoid valve. 図9中のステータ、プランジャ、スペーサ等の要部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows principal parts, such as a stator in FIG. 9, a plunger, and a spacer. 第1の変形例によるプランジャを示す図10と同様位置の拡大断面図である。FIG. 11 is an enlarged cross-sectional view similar to FIG. 10 showing the plunger according to a first variant; 第2の変形例によるステータ(テーパ部)を示す図2と同様位置の拡大断面図である。It is an expanded sectional view of the position similar to FIG. 2 which shows the stator (taper part) by a 2nd modification.
 以下、本発明の実施の形態による電磁式駆動ユニットを電磁弁に適用した場合を例に挙げ、添付図面に従って詳細に説明する。 Hereinafter, a case where the electromagnetic drive unit according to the embodiment of the present invention is applied to a solenoid valve will be described in detail with reference to the accompanying drawings.
 図1ないし図6は本発明の第1の実施の形態を示している。図1において、電磁弁1は、第1の実施の形態による電磁式駆動ユニット2と、被駆動装置である後述の制御弁ユニット24とを備えて構成されている。電磁弁1は、電磁式駆動ユニット2によって切換操作される3ポート2位置の圧力制御弁であり、例えば可変容量型油圧ポンプ/油圧モータの傾転角制御、コントロールバルブのスプール/絞り弁の制御等に好適に用いられるものである。 1 to 6 show a first embodiment of the present invention. In FIG. 1, the electromagnetic valve 1 is configured to include the electromagnetic drive unit 2 according to the first embodiment and a control valve unit 24 described later which is a driven device. The solenoid valve 1 is a 3-port 2-position pressure control valve that is switched by the electromagnetic drive unit 2. For example, tilt angle control of a variable displacement hydraulic pump / hydraulic motor, control of a spool of a control valve / throttling valve And the like.
 まず、電磁弁駆動ユニット2について説明する。電磁式駆動ユニット2は、後述するステータ4、ヨーク8、リング9によって構成されたインナハウジング3を有している。これらステータ4、ヨーク8、リング9は、ステータ4の軸心O-Oと同軸上に配置されている。インナハウジング3の外周側には、後述のソレノイドアセンブリ14が設けられ、ソレノイドアセンブリ14を構成する後述のコイル16に対する給電が行われることにより、後述のプランジャ5が、ヨーク8に案内されつつステータ4の軸心O-Oに沿う方向(軸方向)に移動する構成となっている。 First, the solenoid valve drive unit 2 will be described. The electromagnetic drive unit 2 has an inner housing 3 constituted by a stator 4, a yoke 8 and a ring 9 which will be described later. The stator 4, the yoke 8 and the ring 9 are coaxially arranged with the axial center OO of the stator 4. A solenoid assembly 14 described later is provided on the outer peripheral side of the inner housing 3, and power is supplied to a coil 16 described later constituting the solenoid assembly 14, whereby the plunger 5 described later is guided by the yoke 8 and the stator 4. It is configured to move in a direction (axial direction) along the axial center OO.
ここで、ステータ4の構成について述べる。即ち、ステータ4は、大径な磁性体材料を用いて全体として段付円筒状に形成され、コイル16に対する給電制御に応じて励磁または消磁(解磁)されるものである。ステータ4は、円板状のフランジ部4Aと、フランジ部4Aよりも小径な円柱状をなし、フランジ部4Aからプランジャ5に向けて突出した固定鉄心4Bと、フランジ部4Aを挟んで固定鉄心部4Bとは反対側(制御弁ユニット24側)に突出した円筒状の取付筒部4Cとを含んでいる。取付筒部4Cの外周面には雄ねじ4Dが形成され、この雄ねじ4Dは制御弁ユニット24の後述する弁ケーシング25に螺着されている。フランジ部4Aと固定鉄心部4Bの軸中心位置には、軸方向に貫通するピン挿通孔4Eが形成されている。固定鉄心部4Bのプランジャ5側(反フランジ部4A側)の外周面には、固定鉄心部4Bの外周面よりも一段小径となった小径外周面4Fが形成され、この小径外周面4Fには、後述するリング9の一端9Aが嵌合している。 Here, the configuration of the stator 4 will be described. That is, the stator 4 is formed in a stepped cylindrical shape as a whole using a large-diameter magnetic material, and is excited or demagnetized (demagnetized) according to the power supply control for the coil 16. The stator 4 has a disk-shaped flange portion 4A, a cylindrical shape having a smaller diameter than the flange portion 4A, and a fixed iron core 4B protruding from the flange portion 4A toward the plunger 5 and a fixed iron core portion sandwiching the flange portion 4A. It includes a cylindrical mounting cylinder 4C that protrudes to the opposite side (the control valve unit 24 side) from 4B. An external thread 4D is formed on the outer peripheral surface of the mounting cylindrical portion 4C, and the external thread 4D is screwed to a valve casing 25 of the control valve unit 24, which will be described later. A pin insertion hole 4E penetrating in the axial direction is formed at an axial center position of the flange portion 4A and the fixed core portion 4B. On the outer peripheral surface of fixed iron core portion 4B on the plunger 5 side (the opposite flange portion 4A side), a small diameter outer peripheral surface 4F having a diameter smaller by one step than the outer peripheral surface of fixed iron core portion 4B is formed. , One end 9A of a ring 9 described later is fitted.
 筒型磁気制御部4Gは、小径外周面4Fのうち、プランジャ5側の端部に設けられている。図2に示すように、筒型磁気制御部4Gは、プランジャ5側が開口端4Hとなった円筒状の有底穴4Jとして形成され、この有底穴4Jは底部4J1を有している。この有底穴4Jには、プランジャ5がステータ4側に移動したときに後述の磁極部5Aが入り込むものである。筒型磁気制御部4Gの底部4J1の軸中心位置には、ピン挿通孔4Eよりも僅かに大径なスペーサ取付穴4Kが、ピン挿通孔4Eと同軸上に穿設されている。ここで、筒型磁気制御部4Gの軸方向の長さL1は、開口端4Hから有底穴4Jの底部4J1までの軸方向寸法として表される。 The cylindrical magnetic control unit 4G is provided at an end of the small diameter outer peripheral surface 4F on the plunger 5 side. As shown in FIG. 2, the cylindrical magnetic control unit 4G is formed as a cylindrical bottomed hole 4J in which the plunger 5 side is an open end 4H, and the bottomed hole 4J has a bottom 4J1. When the plunger 5 moves to the stator 4 side, a pole portion 5A described later enters into the bottomed hole 4J. A spacer mounting hole 4K slightly larger in diameter than the pin insertion hole 4E is formed coaxially with the pin insertion hole 4E at the axial center position of the bottom 4J1 of the cylindrical magnetic control unit 4G. Here, the axial length L1 of the cylindrical magnetic control unit 4G is expressed as an axial dimension from the open end 4H to the bottom 4J1 of the bottomed hole 4J.
 テーパ部4Lは、筒型磁気制御部4Gの開口端4H側の外周面に設けられている。テーパ部4Lは、開口端4Hから軸方向の長さL1′までの範囲に形成されている。テーパ部4Lの外周面は、プランジャ5に向けて漸次小径となっている。一方、筒型磁気制御部4Gの外周面のうち底部4J1から軸方向の長さL1″までの範囲は、径方向の厚さ(肉厚)が一様で、固定鉄心部4Bの小径外周面4Fと等しい外径寸法を有する円筒部4Mとなっている。 The tapered portion 4L is provided on the outer peripheral surface on the opening end 4H side of the cylindrical magnetic control unit 4G. The tapered portion 4L is formed in a range from the open end 4H to the axial length L1 '. The outer peripheral surface of the tapered portion 4L gradually decreases in diameter toward the plunger 5. On the other hand, in the range from the bottom 4J1 to the axial length L1 ′ ′ of the outer peripheral surface of the cylindrical magnetic control unit 4G, the thickness (thickness) in the radial direction is uniform, and the small diameter outer peripheral surface of the fixed core portion 4B It is a cylindrical portion 4M having an outer diameter dimension equal to 4F.
 次に、プランジャ5の構成について述べる。プランジャ5は、磁性体材料を用いて全体として円筒状に形成されている。プランジャ5は、ステータ4の軸心O-Oと同軸上に配置されている。プランジャ5は、ステータ4が励磁または消磁されることにより、ステータ4に対して接近または離間するものである。プランジャ5は、後述の磁極部5Aと摺接部5Cとを有し、磁極部5Aの外径寸法は摺接部5Cの外径寸法よりも大きく設定されている。 Next, the configuration of the plunger 5 will be described. The plunger 5 is formed in a cylindrical shape as a whole using a magnetic material. The plunger 5 is disposed coaxially with the axial center OO of the stator 4. The plunger 5 approaches or separates from the stator 4 as the stator 4 is excited or demagnetized. The plunger 5 has a magnetic pole portion 5A and a sliding contact portion 5C which will be described later, and the outer diameter of the magnetic pole portion 5A is set larger than the outer diameter of the sliding contact portion 5C.
 磁極部5Aは、プランジャ5のステータ4側の筒型磁気制御部4G側に設けられ、励磁されたステータ4からの磁力(吸引力)を受けるものである。磁極部5Aの外径寸法は、ステータ4の筒型磁気制御部4Gの内径寸法よりも僅かに小さく形成され、筒型磁気制御部4Gの有底穴4Jに入り込むことができる。磁極部5Aのステータ4側に位置するステータ側端面5Bは、有底穴4Jの底部4J1と対面し、後述のスペーサ7に当接するものである。 The magnetic pole portion 5A is provided on the side of the cylindrical magnetic control portion 4G on the stator 4 side of the plunger 5 and receives a magnetic force (attracting force) from the excited stator 4. The outer diameter dimension of the magnetic pole portion 5A is formed slightly smaller than the inner diameter dimension of the cylindrical magnetic control unit 4G of the stator 4, and can enter the bottomed hole 4J of the cylindrical magnetic control unit 4G. The stator side end surface 5B located on the stator 4 side of the magnetic pole portion 5A faces the bottom 4J1 of the bottomed hole 4J and abuts on a spacer 7 described later.
 摺接部5Cは、プランジャ5のステータ4とは反対側(ヨーク8側)に設けられている。摺接部5Cは磁極部5Aよりも小さな外径寸法を有した筒体として形成されている。ここで、磁極部5Aと摺接部5Cとの境界部は、磁極部5Aの外周面から摺接部5Cの外周面に向けて漸次小径となるテーパ面5Dとなっている。摺接部5Cは、後述するヨーク8の摺動穴8D内に摺動可能に挿嵌され、この摺動穴8Dに摺接しつつヨーク8との間で磁気の受け渡しを行う。 The sliding contact portion 5C is provided on the side (yoke 8 side) opposite to the stator 4 of the plunger 5. The sliding contact portion 5C is formed as a cylindrical body having an outer diameter smaller than that of the magnetic pole portion 5A. Here, the boundary between the magnetic pole portion 5A and the sliding contact portion 5C is a tapered surface 5D that gradually decreases in diameter from the outer peripheral surface of the magnetic pole portion 5A toward the outer peripheral surface of the sliding contact portion 5C. The sliding contact portion 5C is slidably fitted in a sliding hole 8D of the yoke 8 described later, and performs magnetic exchange with the yoke 8 while sliding on the sliding hole 8D.
 摺接部5Cのヨーク8側に位置するヨーク側端面5Eは、後述するスクリュ10の軸部側雄ねじ10Eの先端と隙間をもって対面し、後述のサブスプリング13が当接するものである。プランジャ5の外周面は、例えばフッ素系樹脂等の非磁性体材料からなる樹脂層5Fによって均一な厚みで被覆されている。この樹脂層5Fの厚みは、ヨーク8の摺動穴8Dの内周面と摺接部5Cとの間の摺動抵抗や樹脂層5F自体の耐久性を考慮して、例えば0.03mm~0.2mmの範囲に設定されている。プランジャ5の軸中心位置には、軸方向に貫通する中心孔5Gが形成されている。また、プランジャ5のうち中心孔5Gから径方向にずれた(偏心した)部位には、軸方向に貫通する貫通孔5Hが形成されている。 A yoke-side end surface 5E located on the yoke 8 side of the sliding contact portion 5C faces the tip of a shaft-side male screw 10E of a screw 10 described later with a gap, and a sub spring 13 described later abuts. The outer peripheral surface of the plunger 5 is covered with a resin layer 5F made of a nonmagnetic material such as, for example, a fluorine-based resin with a uniform thickness. The thickness of the resin layer 5F is, for example, 0.03 mm to 0 in consideration of the sliding resistance between the inner peripheral surface of the sliding hole 8D of the yoke 8 and the sliding contact portion 5C and the durability of the resin layer 5F itself. It is set in the range of .2 mm. At an axial center position of the plunger 5, a central hole 5G penetrating in the axial direction is formed. Further, in the portion of the plunger 5 that is offset (decentered) in the radial direction from the center hole 5G, a through hole 5H penetrating in the axial direction is formed.
 図2に示すように、プランジャ5の第1縁辺5Jは、磁極部5Aの外周面のうちステータ4側の外周縁、即ち、磁極部5Aの外周面とステータ側端面5Bとが交わる角部に設けられている。この第1縁辺5Jは、励磁されたステータ4の筒型磁気制御部4Gから、ステータ4に接近する方向への磁力(吸引力)を受けるものである(図3ないし図5参照)。 As shown in FIG. 2, the first edge 5J of the plunger 5 is an outer peripheral edge of the magnetic pole portion 5A on the stator 4 side, that is, a corner portion where the outer peripheral surface of the magnetic pole portion 5A and the stator side end surface 5B intersect. It is provided. The first edge 5J receives a magnetic force (attracting force) in a direction approaching the stator 4 from the cylindrical magnetic control unit 4G of the excited stator 4 (see FIGS. 3 to 5).
 プランジャ5の第2縁辺5Kは、磁極部5Aの外周面のうち第1縁辺5Jとは反対側に離間した部位、即ち、磁極部5Aの外周面とテーパ面5Dとが交わる角部に設けられている。この第2縁辺5Kは、励磁されたステータ4の有底穴4Jに侵入したときに、筒型磁気制御部4Gの開口端4Hとの間でステータ4から離間する方向への磁力(吸引力)を受けるものである(図5参照)。 The second edge 5K of the plunger 5 is provided at a portion of the outer circumferential surface of the magnetic pole portion 5A that is spaced apart from the first edge 5J, that is, at the corner where the outer circumferential surface of the magnetic pole portion 5A intersects the tapered surface 5D. ing. When the second edge 5K intrudes into the bottomed hole 4J of the excited stator 4, the magnetic force (attracting force) in the direction of separating from the stator 4 with the open end 4H of the cylindrical magnetic control unit 4G. (See Figure 5).
 次に、ピン6、スペーサ7の構成について述べる。まず、ピン6は、プランジャ5の中心孔5G内に圧入して設けられている。ピン6は、軸方向に延在する丸棒材からなり、その途中部位がプランジャ5の中心孔5G内に圧入される。これにより、ピン6はプランジャ5と一体化されている。ピン6の軸方向の一側(ステータ4側)は、ステータ4のピン挿通孔4E内に挿通され、その端部は後述するスプール29に当接している。ピン6の軸方向の他側(ヨーク8側)は、ヨーク8の後述する貫通孔8G内へと延び、スクリュ10の軸部側雄ねじ10Eの先端に当接している。ピン6は、プランジャ5と一体となって軸方向に移動することにより、スプール29を軸方向に押圧する。 Next, the configuration of the pin 6 and the spacer 7 will be described. First, the pin 6 is press-fitted into the center hole 5G of the plunger 5 and provided. The pin 6 is formed of a round bar material extending in the axial direction, and a midway portion thereof is press-fitted into the central hole 5G of the plunger 5. The pin 6 is thereby integrated with the plunger 5. One side (the stator 4 side) of the pin 6 in the axial direction is inserted into the pin insertion hole 4E of the stator 4 and the end thereof is in contact with a spool 29 described later. The other side (yoke 8 side) of the pin 6 in the axial direction extends into a through hole 8G described later of the yoke 8 and abuts on the tip of the shaft-side male screw 10E of the screw 10. The pin 6 axially presses the spool 29 by moving integrally with the plunger 5 in the axial direction.
 スペーサ7は、ステータ4とプランジャ5との間に設けられている。スペーサ7は、ステータ4に対するプランジャ5の軸方向最小距離を規制するものである。図2に示すように、スペーサ7は、円筒部7Aと円筒部7Aよりも大径な環状のフランジ部7Bとを有し、その内周側にはピン6が挿通されている。スペーサ7の円筒部7Aは、ステータ4のスペーサ取付穴4Kに挿嵌され、フランジ部7Bは、ステータ4の有底穴4Jの底部4J1に当接している。スペーサ7のフランジ部7Bは、有底穴4Jの底部4J1とプランジャ5のステータ側端面5Bとの間に挟まれる。これにより、プランジャ5が有底穴4Jの底部4J1に直接当接することがなく、プランジャ5のステータ側端面5Bが有底穴4Jの底部4J1に最接近したときの両者間の軸方向の最小距離(間隔)は、スペーサ7のフランジ部7Bの軸方向の厚さ寸法によって規制されている。 The spacer 7 is provided between the stator 4 and the plunger 5. The spacer 7 regulates the axial minimum distance of the plunger 5 with respect to the stator 4. As shown in FIG. 2, the spacer 7 has a cylindrical portion 7A and an annular flange portion 7B larger in diameter than the cylindrical portion 7A, and the pin 6 is inserted into the inner peripheral side thereof. The cylindrical portion 7A of the spacer 7 is inserted into the spacer mounting hole 4K of the stator 4, and the flange portion 7B is in contact with the bottom 4J1 of the bottomed hole 4J of the stator 4. The flange portion 7B of the spacer 7 is sandwiched between the bottom 4J1 of the bottomed hole 4J and the stator side end surface 5B of the plunger 5. As a result, the plunger 5 does not directly abut on the bottom 4J1 of the bottomed hole 4J, and the axial minimum distance between the two when the stator side end surface 5B of the plunger 5 approaches the bottom 4J1 of the bottomed hole 4J The (interval) is regulated by the axial thickness dimension of the flange portion 7B of the spacer 7.
 ここで、図2に示すように、ステータ4の筒型磁気制御部4Gの軸方向の長さ(開口端4Hから有底穴4Jの底部4J1までの軸方向寸法)をL1とし、プランジャ5のステータ側端面5Bから第2縁辺5Kまでの距離(軸方向の長さ)をL2とし、スペーサ7によって規制されたステータ4とプランジャ5との軸方向最小距離(フランジ部7Bの厚さ寸法)をL3とすると、これらL1,L2,L3は下記数1の関係を満たすように設定されている。 Here, as shown in FIG. 2, the axial length of the cylindrical magnetic control unit 4G of the stator 4 (the axial dimension from the open end 4H to the bottom 4J1 of the bottomed hole 4J) is L1. The distance (length in the axial direction) from the stator side end surface 5B to the second edge 5K is L2, and the axial minimum distance (thickness dimension of the flange portion 7B) between the stator 4 and the plunger 5 restricted by the spacer 7 is Assuming that L3, these L1, L2 and L3 are set to satisfy the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、前記距離L2は、前記長さL1に対して下記数2の関係を満たすように設定されている。 Further, the distance L2 is set so as to satisfy the following equation 2 with respect to the length L1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
さらに、前記距離L3は、前記長さL1に対して下記数3の関係を満たすように設定されている。 Furthermore, the distance L3 is set so as to satisfy the following equation 3 with respect to the length L1.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、ヨーク8、リング9、スクリュ10、サブスプリング13等の構成について述べる。まず、ヨーク8は、ステータ4に対して同軸上に配置されている。ヨーク8は磁性体材料を用いて段付円筒状に形成されている。ここで、ヨーク8は、磁路となる底部8Aと、底部8Aの外周側からステータ4に向けて軸方向に延びる円筒状の長筒部8Bと、底部8Aを挟んで長筒部8Bとは反対側に突出した取付筒部8Cとを含んでいる。長筒部8Bの内周側は摺動穴8Dとなり、この摺動穴8Dにはプランジャ5の摺接部5Cが摺動可能に挿嵌されている。即ち、摺動穴8Dは、プランジャ5の摺接部5Cを内包して片持ちすると共にプランジャ5を軸方向に摺動可能に案内するものである。 Next, the configuration of the yoke 8, the ring 9, the screw 10, the sub spring 13 and the like will be described. First, the yoke 8 is disposed coaxially with the stator 4. The yoke 8 is formed in a stepped cylindrical shape using a magnetic material. Here, the yoke 8 includes a bottom 8A serving as a magnetic path, a cylindrical long cylindrical portion 8B axially extending from the outer peripheral side of the bottom 8A toward the stator 4, and the long cylindrical portion 8B sandwiching the bottom 8A. And a mounting cylindrical portion 8C projecting to the opposite side. The inner peripheral side of the long cylindrical portion 8B is a sliding hole 8D, and a sliding contact portion 5C of the plunger 5 is slidably fitted in the sliding hole 8D. That is, the slide hole 8D encloses the slide contact portion 5C of the plunger 5 to be cantilevered and guides the plunger 5 slidably in the axial direction.
 ヨーク8の長筒部8Bの外周面のうちステータ4側の端部には、長筒部8Bの外周面よりも一段小径となった小径外周面8Eが形成されている。この小径外周面8Eにはリング9の他端9Bが嵌合している。一方、ヨーク8の取付筒部8Cの外周面には雄ねじ8Fが形成され、この雄ねじ8Fには後述のナット21が螺着されている。ヨーク8の底部8Aと取付筒部8Cの軸中心位置には、軸方向に貫通する貫通孔8Gが設けられ、貫通孔8Gの内周面には雌ねじ8Hが形成されている。 At the end of the outer peripheral surface of the long cylindrical portion 8B of the yoke 8 on the stator 4 side, a small diameter outer peripheral surface 8E having a diameter smaller by one step than the outer peripheral surface of the long cylindrical portion 8B is formed. The other end 9B of the ring 9 is fitted to the small diameter outer peripheral surface 8E. On the other hand, a male screw 8F is formed on the outer peripheral surface of the mounting cylindrical portion 8C of the yoke 8, and a nut 21 described later is screwed on the male screw 8F. A through hole 8G penetrating in the axial direction is provided at the axial center position of the bottom 8A of the yoke 8 and the mounting cylinder 8C, and a female screw 8H is formed on the inner peripheral surface of the through hole 8G.
 リング9は、ステータ4の固定鉄心4Bの外周とヨーク8の長筒部8Bとの間に設けられている。リング9は磁性体材料を用いて円筒状に形成されている。リング9の軸方向の一側(ステータ4側)となる一端9Aは、ステータ4の小径外周面4Fに嵌合して固定されている。リング9の軸方向の他側(ヨーク8側)となる他端9Bは、ヨーク8の小径外周面8Eに嵌合して固定されている。これにより、ステータ4と、ヨーク8と、リング9とが一体化されたインナハウジング3が構成されている。 The ring 9 is provided between the outer periphery of the fixed core 4 B of the stator 4 and the long cylindrical portion 8 B of the yoke 8. The ring 9 is formed in a cylindrical shape using a magnetic material. One end 9A, which is one side (the stator 4 side) of the ring 9 in the axial direction, is fitted and fixed to the small diameter outer peripheral surface 4F of the stator 4. The other end 9B on the other side (yoke 8 side) of the ring 9 in the axial direction is fitted and fixed to the small diameter outer peripheral surface 8E of the yoke 8. Thus, an inner housing 3 in which the stator 4, the yoke 8 and the ring 9 are integrated is configured.
 スクリュ10は、ヨーク8の貫通孔8G内に設けられている。スクリュ10は段付円柱状に形成され、このスクリュ10は、頭部10Aと、頭部10Aよりも小径な軸部10Bとを有している。軸部10Bには軸方向に離間して2つの鍔部10C,10Dが設けられている。軸部10Bの外周面には軸部側雄ねじ10Eが形成され、軸部側雄ねじ10Eはヨーク8の雌ねじ8Hに螺着されている。一方、頭部10Aの外周面には頭部側雄ねじ10Fが形成され、この頭部側雄ねじ10Fにロックナット11を螺着することにより、スクリュ10が緩み止めされている。また、鍔部10Cと鍔部10Dとの間には、インナハウジング3内に油を封止するOリング12が設けられている。 The screw 10 is provided in the through hole 8G of the yoke 8. The screw 10 is formed in a stepped cylindrical shape, and the screw 10 has a head 10A and a shaft 10B smaller in diameter than the head 10A. The shaft 10B is provided with two flanges 10C and 10D spaced apart in the axial direction. A shaft-side male screw 10E is formed on the outer peripheral surface of the shaft 10B, and the shaft-side male screw 10E is screwed to the female screw 8H of the yoke 8. On the other hand, a head-side male screw 10F is formed on the outer peripheral surface of the head 10A, and the screw 10 is locked by screwing the lock nut 11 to the head-side male screw 10F. Further, an O-ring 12 for sealing oil in the inner housing 3 is provided between the collar portion 10C and the collar portion 10D.
 サブスプリング13は、スクリュ10の軸部側雄ねじ10Eの先端とプランジャ5のヨーク側端面5Eとの間に圧縮した状態で配置されている。サブスプリング13は、プランジャ5のヨーク側端面5Eをステータ4側に押圧している。従って、スクリュ10を正逆方向に回転させてヨーク8に対する螺入量を調整することにより、サブスプリング13によるプランジャ5の押圧力を調整することができる。即ち、スクリュ10は、電磁式駆動ユニット2によるプランジャ5に対する駆動力を微調整するものである。 The sub spring 13 is disposed in a state of being compressed between the tip end of the shaft-side male screw 10 E of the screw 10 and the yoke-side end face 5 E of the plunger 5. The sub spring 13 presses the yoke side end face 5E of the plunger 5 to the stator 4 side. Therefore, the pressing force of the plunger 5 by the sub spring 13 can be adjusted by rotating the screw 10 in the forward and reverse directions to adjust the amount of screwing into the yoke 8. That is, the screw 10 finely adjusts the driving force on the plunger 5 by the electromagnetic drive unit 2.
 次に、ソレノイドアセンブリ14の構成について説明する。ソレノイドアセンブリ14は、ステータ4、ヨーク8、リング9からなるインナハウジング3を外側から囲むように設けられている。ソレノイドアセンブリ14は、後述するボビン15、コイル16、ターミナル17、外装モールド18、ソレノイドケーシング20を含んで構成されている。 Next, the configuration of the solenoid assembly 14 will be described. The solenoid assembly 14 is provided so as to surround the inner housing 3 consisting of the stator 4, the yoke 8 and the ring 9 from the outside. The solenoid assembly 14 includes a bobbin 15, a coil 16, a terminal 17, an exterior mold 18, and a solenoid casing 20 which will be described later.
 ボビン15は、インナハウジング3の外周側に設けられている。ボビン15は、インナハウジング3の外周面に嵌合する円筒状のボビン本体15Aと、ボビン本体15Aの軸方向の両端から径方向外側に張出す一対の鍔部材15B,15Cとを有している。一方の鍔部材15Bには、他方の鍔部材15Cから離れる方向に突出する突起部15Dが設けられ、鍔部材15Cには、鍔部材15Bから離れる方向に突出する突起部15Eが設けられている。 The bobbin 15 is provided on the outer peripheral side of the inner housing 3. The bobbin 15 has a cylindrical bobbin main body 15A fitted to the outer peripheral surface of the inner housing 3 and a pair of wedge members 15B and 15C extending radially outward from both axial ends of the bobbin main body 15A. . The one wedge member 15B is provided with a projection 15D projecting in the direction away from the other wedge member 15C, and the wedge member 15C is provided with a projection 15E projecting in the direction away from the wedge member 15B.
 コイル16は、ボビン15のボビン本体15Aに巻装されることにより、ステータ4、プランジャ5、ヨーク8を外側から囲むように配置されている。コイル16はターミナル17に電気的に接続され、ターミナル17を介してコイル16に対する給電が行われる。コイル16は、外部からの給電を制御することによりステータ4を励磁または消磁(解磁)し、プランジャ5をステータ4に対して接近または離間させるものである。 The coil 16 is wound around the bobbin main body 15A of the bobbin 15 so as to surround the stator 4, the plunger 5 and the yoke 8 from the outside. The coil 16 is electrically connected to the terminal 17, and power is supplied to the coil 16 through the terminal 17. The coil 16 excites or demagnetizes (demagnetizes) the stator 4 by controlling power supply from the outside, and causes the plunger 5 to approach or separate from the stator 4.
 外装モールド18は、ボビン15に巻装されたコイル16とボビン15の各鍔部材15B,15Cとを外周側から覆って設けられている。この場合、外装モールド18は、一方の鍔部材15Bの突起部15Dおよび他方の鍔部材15Cの突起部15Eに覆い被さっている。これにより、外装モールド18は、ボビン15全体を外側から包み込み、外装モールド18の軸方向の一側(ステータ4側)は、鍔部材15Bの突起部15Dに隙間なく凹凸嵌合し、外装モールド18の軸方向の他側(ヨーク8側)は、鍔部材15Cの突起部15Eに隙間なく凹凸嵌合している。 The exterior mold 18 is provided to cover the coil 16 wound around the bobbin 15 and the respective wedge members 15B and 15C of the bobbin 15 from the outer peripheral side. In this case, the exterior mold 18 covers the protrusion 15D of one wedge member 15B and the protrusion 15E of the other wedge member 15C. Thus, the exterior mold 18 envelops the entire bobbin 15 from the outside, and one side (stator 4 side) in the axial direction of the exterior mold 18 is engaged unevenly with the projection 15D of the wedge member 15B without clearance. The other side in the axial direction (yoke 8 side) is engaged with the projections 15E of the wedge member 15C without any gap.
 外装モールド18の軸方向の一側には、L字状に屈曲したソケット19が一体形成されている。ソケット19の先端側には、プラグ(図示せず)を差込むための差込口19Aが形成され、差込口19A内には、コイル16に電気的に接続されたターミナル17の先端が配置されている。従って、ソケット19の差込口19Aにプラグ(図示せず)を差込むことにより、ターミナル17を介して外部からコイル16に対する給電が行われる構成となっている。 An L-shaped bent socket 19 is integrally formed on one side in the axial direction of the exterior mold 18. A socket 19A is formed on the tip side of the socket 19 for inserting a plug (not shown), and the tip of the terminal 17 electrically connected to the coil 16 is disposed in the socket 19A. It is done. Therefore, by inserting a plug (not shown) into the insertion port 19A of the socket 19, power is supplied to the coil 16 from the outside through the terminal 17.
 ソレノイドケーシング20は、外装モールド18を外周側から覆っている。ソレノイドケーシング20は、軸方向に延びる円筒状のケーシング本体20Aと、ケーシング本体20Aの軸方向の他側(ヨーク8側)から径方向内側に張出した蓋部20Bとを有している。ケーシング本体20Aの軸方向の一側(ステータ4側)は開口端20Cとなり、この開口端20Cは、ステータ4のフランジ部4Aの外周面に嵌合している。 The solenoid casing 20 covers the exterior mold 18 from the outer peripheral side. The solenoid casing 20 has a cylindrical casing main body 20A extending in the axial direction, and a lid 20B projecting radially inward from the other axial side (yoke 8 side) of the casing main body 20A. One side (the stator 4 side) of the casing main body 20A in the axial direction is an open end 20C, and the open end 20C is fitted to the outer peripheral surface of the flange portion 4A of the stator 4.
 一方、蓋部20Bの中心部には軸方向に貫通するヨーク嵌合孔20Dが形成され、このヨーク嵌合孔20Dにはヨーク8の底部8Aの外周面が嵌合している。この状態で、ヨーク8の取付筒部8Cは、ヨーク嵌合孔20Dを通じて蓋部20Bの外部に突出している。この取付筒部8Cに形成された雄ねじ8Fにナット21を螺着することにより、ソレノイドケーシング20は、インナハウジング3に対して固定されている。 On the other hand, a yoke fitting hole 20D penetrating in the axial direction is formed at the center of the lid 20B, and the outer peripheral surface of the bottom 8A of the yoke 8 is fitted in the yoke fitting hole 20D. In this state, the mounting cylindrical portion 8C of the yoke 8 protrudes to the outside of the lid portion 20B through the yoke fitting hole 20D. The solenoid casing 20 is fixed to the inner housing 3 by screwing the nut 21 onto the male screw 8F formed on the mounting cylindrical portion 8C.
 Oリング22は、ステータ4の固定鉄心部4Bと、ボビン15の鍔部材15Bと、外装モールド18との間に設けられている。Oリング23は、ヨーク8の底部8Aと、ボビン15の鍔部材15Cと、外装モールド18との間に設けられている。これらOリング22,23は、インナハウジング3とソレノイドアセンブリ14との間の隙間をシールすると共に、ボビン15の鍔部材15B,15Cと外装モールド18との境界面をシールし、この境界面からコイル16側に水分が浸入するのを抑えるものである。 The O-ring 22 is provided between the fixed core portion 4 B of the stator 4, the wedge member 15 B of the bobbin 15, and the exterior mold 18. The O-ring 23 is provided between the bottom 8 A of the yoke 8, the wedge member 15 C of the bobbin 15, and the exterior mold 18. These O- rings 22 and 23 seal the gap between the inner housing 3 and the solenoid assembly 14 and also seal the interface between the wedge members 15B and 15C of the bobbin 15 and the exterior mold 18, and the coil from the interface It is intended to suppress the infiltration of water to the 16 side.
 次に、電磁式駆動ユニット2に取付けられた被駆動装置である制御弁ユニット24について説明する。制御弁ユニット24は、電磁式駆動ユニット2に同軸に取付けられるもので、後述する弁ケーシング25、スプール29を含んで構成されている。 Next, the control valve unit 24 which is a driven device attached to the electromagnetic drive unit 2 will be described. The control valve unit 24 is coaxially attached to the electromagnetic drive unit 2 and includes a valve casing 25 and a spool 29 which will be described later.
 弁ケーシング25は、段付円筒状(スリーブ状)に形成され、軸方向に延在している。弁ケーシング25は、軸方向の一側に位置する小径筒部25Aと、軸方向の他側に位置する大径筒部25Bと、小径筒部25Aと大径筒部25Bとの間に位置する中間筒部25Cとを有している。小径筒部25Aには、油圧ポンプ(図示せず)に接続される供給ポート25Dと、油圧アクチュエータ(図示せず)に接続される出力ポート25Eと、タンク(図示せず)に接続されるドレンポート25Fとが設けられている。小径筒部25Aの内周面には、供給ポート25Dと出力ポート25Eとの間に位置するシール面25Gと、出力ポート25Eとドレンポート25Fとの間に位置するシール面25Hとが設けられている。また、中間筒部25Cの外周面には雄ねじ25Jが形成され、大径筒部25Bの内周面には雌ねじ25Kが形成されている。そして、弁ケーシング25の雌ねじ25Kにステータ4(取付筒部4C)の雄ねじ4Dを螺着することにより、電磁式駆動ユニット2に制御弁ユニット24が取付けられている。 The valve casing 25 is formed in a stepped cylindrical shape (sleeve shape) and extends in the axial direction. The valve casing 25 is positioned between the small diameter cylindrical portion 25A positioned on one side in the axial direction, the large diameter cylindrical portion 25B positioned on the other side in the axial direction, and the small diameter cylindrical portion 25A and the large diameter cylindrical portion 25B. And an intermediate cylindrical portion 25C. The small diameter cylindrical portion 25A includes a supply port 25D connected to a hydraulic pump (not shown), an output port 25E connected to a hydraulic actuator (not shown), and a drain connected to a tank (not shown). A port 25F is provided. A seal surface 25G located between the supply port 25D and the output port 25E and a seal surface 25H located between the output port 25E and the drain port 25F are provided on the inner peripheral surface of the small diameter cylindrical portion 25A. There is. Further, a male screw 25J is formed on the outer peripheral surface of the intermediate cylindrical portion 25C, and a female screw 25K is formed on the inner peripheral surface of the large diameter cylindrical portion 25B. The control valve unit 24 is attached to the electromagnetic drive unit 2 by screwing the male screw 4D of the stator 4 (mounting cylinder 4C) to the female screw 25K of the valve casing 25.
 ここで、弁ケーシング25は、3つのポート25D,25E,25Fに別々に接続される複数の流路を有するハウジング(図示せず)内に配置され、このハウジングは、中間筒部25Cの雄ねじ25Jに螺着される構成となっている。このハウジングに設けられた各流路間は、出力ポート25Eを挟んで小径筒部25Aに外嵌されたOリング26,27によって隔離されている。また、大径筒部25Bと中間筒部25Cとの境界部には、ハウジング内に油を封止するOリング28が設けられている。 Here, the valve casing 25 is disposed in a housing (not shown) having a plurality of flow paths separately connected to the three ports 25D, 25E, 25F, and this housing is an external thread 25J of the intermediate cylindrical portion 25C. It is configured to be screwed on. The flow paths provided in the housing are isolated by O- rings 26 and 27 fitted on the small diameter cylindrical portion 25A with the output port 25E interposed therebetween. Further, an O-ring 28 for sealing oil in the housing is provided at the boundary between the large diameter cylindrical portion 25B and the intermediate cylindrical portion 25C.
 スプール29は、弁ケーシング25の内周側に軸方向に移動可能に設けられている。スプール29は、長尺な棒状体が用いられ、弁ケーシング25の内周側を軸方向に延びている。このスプール29の軸中心位置には、軸方向に延びる有底の軸方向流路29Aが形成されている。スプール29の外周面であって弁ケーシング25の中間筒部25Cと大径筒部25Bとの境界位置には、環状のばね受板30が取付けられている。このばね受板30は、弁ケーシング25の中間筒部25Cの内周側に形成されたばね受部25Lと軸方向で対面している。スプール29のばね受板30と弁ケーシング25のばね受部25Lとの間には、リターンスプリング31が設けられている。従って、スプール29は、リターンスプリング31の付勢力によって常にステータ4側に押付けられ、スプール29のステータ4側の端面はピン6に当接している。 The spool 29 is axially movably provided on the inner peripheral side of the valve casing 25. A long rod-like body is used as the spool 29 and axially extends on the inner peripheral side of the valve casing 25. At the axial center position of the spool 29, a bottomed axial flow passage 29A extending in the axial direction is formed. An annular spring support plate 30 is attached to an outer peripheral surface of the spool 29 and at a boundary position between the intermediate cylindrical portion 25C of the valve casing 25 and the large diameter cylindrical portion 25B. The spring receiving plate 30 axially faces the spring receiving portion 25L formed on the inner peripheral side of the intermediate cylindrical portion 25C of the valve casing 25. A return spring 31 is provided between the spring receiving plate 30 of the spool 29 and the spring receiving portion 25L of the valve casing 25. Therefore, the spool 29 is always pressed to the stator 4 side by the biasing force of the return spring 31, and the end face of the spool 29 on the stator 4 side is in contact with the pin 6.
 スプール29の外周面には、軸方向に離間して4つのランド29B,29C,29D,29Eが設けられている。ランド29B,29Cは同径であり、ランド29D,29Eは同径であり、ランド29Cはランド29Dよりも大径に設定されている。ランド29Cが弁ケーシング25のシール面25Gに接触した状態では、供給ポート25Dと出力ポート25Eとは遮断される。スプール29が軸方向に移動してランド29Cがシール面25Gから離間した状態では、供給ポート25Dと出力ポート25Eが連通する。これにより、油圧ポンプ(図示せず)から供給ポート25Dに供給された圧油は、出力ポート25Eを通じて油圧アクチュエータ(図示せず)へと導かれる。 On the outer peripheral surface of the spool 29, four lands 29B, 29C, 29D, 29E are provided so as to be separated in the axial direction. The lands 29B and 29C have the same diameter, the lands 29D and 29E have the same diameter, and the land 29C has a larger diameter than the land 29D. When the land 29C is in contact with the sealing surface 25G of the valve casing 25, the supply port 25D and the output port 25E are shut off. When the spool 29 moves in the axial direction and the land 29C is separated from the sealing surface 25G, the supply port 25D and the output port 25E communicate with each other. Thereby, the pressure oil supplied from the hydraulic pump (not shown) to the supply port 25D is led to the hydraulic actuator (not shown) through the output port 25E.
 一方、ランド29Dが弁ケーシング25のシール面25Hと接触した状態では、出力ポート25Eとドレンポート25Fとは遮断される。スプール29が軸方向に移動してランド29Dがシール面25Hから離間した状態では、出力ポート25Eとドレンポート25Fとが連通する。これにより、油圧アクチュエータに供給された圧油は、出力ポート25Eからドレンポート25Fを通じてタンク(図示せず)へと戻る。 On the other hand, when the land 29D is in contact with the sealing surface 25H of the valve casing 25, the output port 25E and the drain port 25F are disconnected. When the spool 29 moves in the axial direction and the land 29D is separated from the sealing surface 25H, the output port 25E and the drain port 25F communicate with each other. Thus, the pressure oil supplied to the hydraulic actuator returns from the output port 25E to the tank (not shown) through the drain port 25F.
 弁ケーシング25の小径筒部25Aの軸方向端面にはプレート32が配置されている。プレート32は、弁ケーシング25が取付けられるハウジングの壁面(図示せず)との間に設けられたウェーブワッシャ33により、小径筒部25Aの軸方向端面に常に押圧されている。これにより、スプール29の軸方向の一側の端面とプレート32との間には、ダンピング室34が形成されている。スプール29の軸方向の一側の端部にはオリフィス35が設けられ、スプール29の軸方向流路29Aは、オリフィス35を介してダンピング室34に連通している。 A plate 32 is disposed on the axial end face of the small diameter cylindrical portion 25A of the valve casing 25. The plate 32 is always pressed against the end face in the axial direction of the small diameter cylindrical portion 25A by a wave washer 33 provided between a wall surface (not shown) of the housing to which the valve casing 25 is attached. Thus, a damping chamber 34 is formed between the end surface of one side of the spool 29 in the axial direction and the plate 32. An orifice 35 is provided at one end of the spool 29 in the axial direction, and the axial flow passage 29 A of the spool 29 communicates with the damping chamber 34 via the orifice 35.
 スプール29には、径方向に貫通する径方向流路29F,29Gが、軸方向に離間して設けられている。これら各径方向流路29F,29Gは、軸方向流路29Aに連通している。これにより、タンク(図示せず)内の作動油は、ドレンポート25Fから径方向流路29F、軸方向流路29A、径方向流路29Gを介して弁ケーシング25の内周側に導かれる。弁ケーシング25内に導かれた作動油は、ステータ4のピン挿通孔4Eを介して筒型磁気制御部4G内に導入され、さらに作動油は、プランジャ5の貫通孔5Hを通じてヨーク8の摺動穴8D内に導入される。このように、タンク内の作動油は、制御弁ユニット24を構成するスプール29の内部を通って電磁式駆動ユニット2のインナハウジング3の内部に充填される構成となっている。弁ケーシング25の大径筒部25Bとステータ4の取付筒部4Cとの接続部位には、弁ケーシング25内に作動油を封止するOリング36が設けられている。 In the spool 29, radial flow passages 29F and 29G penetrating in the radial direction are provided so as to be separated in the axial direction. The radial flow passages 29F and 29G communicate with the axial flow passage 29A. Thus, the hydraulic oil in the tank (not shown) is led from the drain port 25F to the inner peripheral side of the valve casing 25 through the radial flow passage 29F, the axial flow passage 29A, and the radial flow passage 29G. The hydraulic oil introduced into the valve casing 25 is introduced into the cylindrical magnetic control unit 4G through the pin insertion hole 4E of the stator 4, and the hydraulic oil slides through the through hole 5H of the plunger 5 and the yoke 8 slides. It is introduced into the hole 8D. As described above, the hydraulic oil in the tank is configured to be filled in the inner housing 3 of the electromagnetic drive unit 2 through the inside of the spool 29 constituting the control valve unit 24. An O-ring 36 for sealing the hydraulic oil in the valve casing 25 is provided at a connection portion between the large diameter cylindrical portion 25B of the valve casing 25 and the attachment cylindrical portion 4C of the stator 4.
次に、電磁式駆動ユニット2を構成するインナハウジング3の製造方法について説明する。 Next, a method of manufacturing the inner housing 3 constituting the electromagnetic drive unit 2 will be described.
まず、インナハウジング3を組立てる第1工程では、ステータ4のスペーサ取付穴4K内にスペーサ7の円筒部7Aを圧入し、スペーサ7のフランジ部7Bを有底穴4Jの底部4J1に当接させる。次に、ステータ4の小径外周面4Fにリング9の一端9Aを圧入する。この状態で、プランジャ5の中心孔5Gに圧入されたピン6をステータ4のピン挿通孔4Eに差し込む。次に、ヨーク8の摺動穴8D内にプランジャ5の摺接部5Cを挿嵌しながら、ヨーク8の小径外周面8Eをリング9の他端9Bに圧入する。これにより、プランジャ5をヨーク8の内部に収容した状態で、ステータ4、ヨーク8、リング9が一体化され、インナハウジング3を組立てることができる。 First, in the first step of assembling the inner housing 3, the cylindrical portion 7A of the spacer 7 is press-fitted into the spacer mounting hole 4K of the stator 4, and the flange portion 7B of the spacer 7 is brought into contact with the bottom 4J1 of the bottomed hole 4J. Next, one end 9A of the ring 9 is press-fit into the small diameter outer peripheral surface 4F of the stator 4. In this state, the pin 6 pressed into the center hole 5G of the plunger 5 is inserted into the pin insertion hole 4E of the stator 4. Next, the small diameter outer peripheral surface 8E of the yoke 8 is press-fit into the other end 9B of the ring 9 while inserting the sliding contact portion 5C of the plunger 5 into the sliding hole 8D of the yoke 8. Thereby, the stator 4, the yoke 8, and the ring 9 are integrated in a state where the plunger 5 is accommodated in the inside of the yoke 8, and the inner housing 3 can be assembled.
次に、第2工程において、ヨーク8の小径外周面8Eとリング9の他端9Bとを突合わせ溶接によって接合する。この第2工程では、ヨーク8に対するリング9の傾きを矯正した状態で、ヨーク8の小径外周面8Eの軸方向端面(段差部)とリング9の他端9Bの軸方向端面との突合わせ部に対し、全周に亘ってレーザ溶接を施すことにより、両者間を強固に接合する。 Next, in the second step, the small diameter outer peripheral surface 8E of the yoke 8 and the other end 9B of the ring 9 are joined by butt welding. In the second step, in a state in which the inclination of the ring 9 with respect to the yoke 8 is corrected, the butt between the axial end face (step portion) of the small diameter outer peripheral surface 8E of the yoke 8 and the axial end face of the other end 9B of the ring 9 On the other hand, by performing laser welding over the entire circumference, the two are firmly joined.
次に、第3工程において、ステータ4の小径外周面4Fとリング9の一端9A側とを重ね溶接によって接合する。この第3工程では、ステータ4に圧入されたリング9の傾き等を調整し、ヨーク8に対するステータ4の傾きを矯正する。この状態で、ステータ4の小径外周面4Fとリング9の一端9A側との重なり合った部分に、全周に亘ってレーザ溶接を施すことにより、両者間を強固に接合する。この場合、ステータ4の小径外周面4Fとリング9の一端9Aとの接合部に形成される溶接線(図示せず)は、ステータ4の有底穴4Jの底部4J1よりもフランジ部4A側に離間した位置に形成される。 Next, in the third step, the small diameter outer peripheral surface 4F of the stator 4 and the one end 9A side of the ring 9 are joined by lap welding. In the third step, the inclination or the like of the ring 9 press-fitted into the stator 4 is adjusted, and the inclination of the stator 4 with respect to the yoke 8 is corrected. In this state, laser welding is performed over the entire circumference of the overlapping portion of the small diameter outer peripheral surface 4F of the stator 4 and the one end 9A side of the ring 9 to firmly join the two. In this case, a weld line (not shown) formed at the joint between the small diameter outer peripheral surface 4F of the stator 4 and one end 9A of the ring 9 is closer to the flange 4A than the bottom 4J1 of the bottomed hole 4J of the stator 4 Formed at spaced locations.
そして、インナハウジング3が組立てられた後には、例えばコイル16が巻装されたボビン15をインナハウジング3の外周側に組付ける。ボビン15に巻装されたコイル16とボビン15の各鍔部材15B,15Cとを、外装モールド18によって外周側から覆う。次に、ソレノイドケーシング20によって外装モールド18を外周側から覆う。さらに、ソレノイドケーシング20(ケーシング本体20A)の開口端20Cをステータ4のフランジ部4Aの外周面に嵌合すると共に、蓋部20Bのヨーク嵌合孔20Dをヨーク8の底部8Aの外周面に嵌合する。 Then, after the inner housing 3 is assembled, for example, the bobbin 15 on which the coil 16 is wound is assembled on the outer peripheral side of the inner housing 3. The coil 16 wound around the bobbin 15 and the respective wedge members 15B and 15C of the bobbin 15 are covered with the exterior mold 18 from the outer peripheral side. Next, the exterior mold 18 is covered with the solenoid casing 20 from the outer peripheral side. Further, the open end 20C of the solenoid casing 20 (casing main body 20A) is fitted to the outer peripheral surface of the flange 4A of the stator 4, and the yoke fitting hole 20D of the lid 20B is fitted to the outer peripheral surface of the bottom 8A of the yoke 8. Match.
この状態で、蓋部20Bの外部に突出したヨーク8(取付筒部8C)の雄ねじ8Fにナット21を螺着することにより、ソレノイドケーシング20をインナハウジング3に固定する。次に、ヨーク8の貫通孔8G内に突出したピン6の端部にサブスプリング13の内周側を挿通し、スクリュ10の鍔部10C,10D間にOリング12を取付ける。この状態で、ヨーク8(貫通孔8G)の雌ねじ8Hにスクリュ10の軸部側雄ねじ10Eを螺着する。そして、軸部側雄ねじ10Eの端部がピン6の端部に当接した状態で、スクリュ10の頭部側雄ねじ10Fにロックナット11を螺合することにより、ヨーク8に対してスクリュ10を固定する。このようにして、電磁式駆動ユニット2を組立てることができる。 In this state, the solenoid casing 20 is fixed to the inner housing 3 by screwing the nut 21 onto the male screw 8F of the yoke 8 (mounting cylindrical portion 8C) protruding to the outside of the lid portion 20B. Next, the inner peripheral side of the sub spring 13 is inserted into the end of the pin 6 protruding into the through hole 8 G of the yoke 8, and the O ring 12 is attached between the flanges 10 C and 10 D of the screw 10. In this state, the shaft-side male screw 10E of the screw 10 is screwed to the female screw 8H of the yoke 8 (through hole 8G). Then, with the end of the shaft-side male screw 10E in contact with the end of the pin 6, the head-side male screw 10F of the screw 10 is screwed with the lock nut 11 to make the screw 10 with respect to the yoke 8. Fix it. Thus, the electromagnetic drive unit 2 can be assembled.
第1の実施の形態による電磁式駆動ユニット2は上述の如き構成を有するもので、以下、電磁式駆動ユニット2および制御弁ユニット24の動作について説明する。 The electromagnetic drive unit 2 according to the first embodiment has the above-described configuration. Hereinafter, the operation of the electromagnetic drive unit 2 and the control valve unit 24 will be described.
まず、電磁式駆動ユニット2のソケット19に電源装置のプラグ(いずれも図示せず)を接続する。この場合、電源は直流電源および交流電源のいずれであっても良く、電源装置からターミナル17を介してコイル16に対する給電が行われる。 First, a plug (not shown) of the power supply device is connected to the socket 19 of the electromagnetic drive unit 2. In this case, the power supply may be either a DC power supply or an AC power supply, and power is supplied to the coil 16 from the power supply device via the terminal 17.
コイル16に対する給電が行われていない状態では、スプール29は、リターンスプリング31によってステータ4側に付勢され、スプール29のステータ4側の端面はピン6に当接している。このため、弁ケーシング25の出力ポート25Eとドレンポート25Fとが連通し、出力ポート25Eと供給ポート25Dとが遮断された状態(初期状態)に保持される。 When power is not supplied to the coil 16, the spool 29 is biased toward the stator 4 by the return spring 31, and the end surface of the spool 29 on the stator 4 side is in contact with the pin 6. Therefore, the output port 25E of the valve casing 25 and the drain port 25F communicate with each other, and the output port 25E and the supply port 25D are maintained in the disconnected state (initial state).
電源装置からターミナル17を介してコイル16に対する給電が行われると、コイル16によって磁界(励磁力)が発生し、プランジャ5は、コイル16に給電された電流値に応じた吸引力をもってステータ4の固定鉄心部4Bに吸引される。このとき、プランジャ5の摺接部5Cは、ヨーク8の長筒部8Bの摺動穴8Dの内周面に摺接しながらステータ4側に移動する。そして、プランジャ5は、スプール29に作用する油圧力、リターンスプリング31およびサブスプリング13のばね力、固定鉄心部4Bから作用する吸引力が釣り合った位置で停止する。 When power is supplied to the coil 16 from the power supply unit through the terminal 17, a magnetic field (excitation force) is generated by the coil 16, and the plunger 5 draws the stator 4 with a suction force corresponding to the current value supplied to the coil 16. It is sucked into the fixed core portion 4B. At this time, the sliding contact portion 5C of the plunger 5 moves toward the stator 4 while being in sliding contact with the inner circumferential surface of the sliding hole 8D of the long cylindrical portion 8B of the yoke 8. Then, the plunger 5 stops at a position where the oil pressure acting on the spool 29, the spring force of the return spring 31 and the sub spring 13, and the suction force acting from the fixed core portion 4B are balanced.
このプランジャ5の変位が、ピン6を介してスプール29に伝わることにより、スプール29が弁ケーシング25内を移動する。これにより、弁ケーシング25の供給ポート25Dと出力ポート25Eとの間が連通または遮断され、出力ポート25Eとドレンポート25Fとの間が連通または遮断され、油圧ポンプから油圧アクチュエータに対する圧油の給排が制御される。コイル16に対する給電が停止されると、コイル16による磁界が消滅し、スプール29は、リターンスプリング31のばね力により初期状態に戻る。これにより、弁ケーシング25の出力ポート25Eとドレンポート25Fとが連通し、出力ポート25Eと供給ポート25Dとが遮断される。 The displacement of the plunger 5 is transmitted to the spool 29 via the pin 6, whereby the spool 29 moves in the valve casing 25. As a result, the supply port 25D of the valve casing 25 and the output port 25E are communicated or disconnected, and the output port 25E and the drain port 25F are communicated or interrupted, so that the supply and discharge of pressure oil from the hydraulic pump to the hydraulic actuator Is controlled. When the power supply to the coil 16 is stopped, the magnetic field due to the coil 16 disappears, and the spool 29 returns to the initial state by the spring force of the return spring 31. As a result, the output port 25E of the valve casing 25 and the drain port 25F communicate with each other, and the output port 25E and the supply port 25D are disconnected.
ここで、コイル16に対する給電によってステータ4が吸引力を発生する動作について説明する。 Here, an operation in which the stator 4 generates a suction force by power feeding to the coil 16 will be described.
まず、電源装置からターミナル17を介してコイル16に対する給電が行われると、コイル16によって磁界が発生する。このとき、磁路を構成するステータ4、プランジャ5、ヨーク8、ソレノイドケーシング20の内部には磁束が発生する。この場合、磁路を構成するステータ4の筒型磁気制御部4Gは、他の磁路構成部材(プランジャ5、ヨーク8、ソレノイドケーシング20)と比較して体積が少ない。このため、筒型磁気制御部4Gには磁束が集中して高磁束密度となり、他の部分の磁路と比較して磁化が促進される。この結果、磁気に関するクーロンの法則により、筒型磁気制御部4Gを含むステータ4の固定鉄心部4Bとプランジャ5との間で吸引力(磁力)が発生する。この吸引力は軸方向成分を有し、この軸方向成分はプランジャ5をステータ4に向けて軸方向に吸引する軸方向の吸引力として作用する。 First, when power is supplied to the coil 16 from the power supply device via the terminal 17, a magnetic field is generated by the coil 16. At this time, a magnetic flux is generated inside the stator 4, the plunger 5, the yoke 8 and the solenoid casing 20 which constitute a magnetic path. In this case, the cylindrical magnetic control unit 4G of the stator 4 constituting the magnetic path has a smaller volume than other magnetic path constituent members (plunger 5, yoke 8, solenoid casing 20). For this reason, the magnetic flux is concentrated in the cylindrical magnetic control unit 4G to have a high magnetic flux density, and the magnetization is promoted as compared with the magnetic paths of other portions. As a result, an attractive force (magnetic force) is generated between the plunger 5 and the stationary core portion 4B of the stator 4 including the cylindrical magnetic control unit 4G according to Coulomb's law concerning magnetism. The suction force has an axial component, and this axial component acts as an axial suction force that sucks the plunger 5 toward the stator 4 in the axial direction.
ここで、ステータ4に対するプランジャ5の位置と、プランジャ5に作用する吸引力との関係について、図3ないし図5を参照して説明する。なお、図3ないし図5に図示されるステータ4、プランジャ5、スペーサ7は、磁束線を明瞭に示すためにハッチングを省略している。 Here, the relationship between the position of the plunger 5 with respect to the stator 4 and the suction force acting on the plunger 5 will be described with reference to FIGS. 3 to 5. The stator 4, the plunger 5 and the spacer 7 illustrated in FIGS. 3 to 5 are not hatched to clearly show the magnetic flux lines.
まず、プランジャ5が図3に示す初期位置、即ち、磁極部5Aの第1縁辺5Jが、軸方向においてステータ4の筒型磁気制御部4Gの開口端4Hと同じ位置にあるときには、プランジャ5とステータ4に対し、図3中に複数の磁束線37で示される磁束が発生する。初期位置における磁束線37は、磁極部5Aの外周面、第1縁辺5Jおよびステータ側端面5Bから、筒型磁気制御部4Gの外周面に形成されたテーパ部4Lの先端に向けて斜め方向に延びる。このため、プランジャ5に作用する吸引力F1は、磁束線37の向きに沿うことにより軸方向に対して傾斜した方向に延びる。プランジャ5は、吸引力F1の軸方向成分である軸方向の吸引力Fx1により、ステータ4に接近する方向に変位し、このプランジャ5の軸方向への変位が、スプール29の駆動力となる。 First, when the plunger 5 is at the initial position shown in FIG. 3, that is, when the first edge 5J of the magnetic pole portion 5A is at the same position as the open end 4H of the cylindrical magnetic control portion 4G of the stator 4 in the axial direction, A magnetic flux indicated by a plurality of magnetic flux lines 37 in FIG. 3 is generated for the stator 4. The magnetic flux lines 37 at the initial position are obliquely directed from the outer peripheral surface of the magnetic pole portion 5A, the first edge 5J and the stator side end surface 5B toward the tip of the tapered portion 4L formed on the outer peripheral surface of the cylindrical magnetic control portion 4G. Extend. Therefore, the suction force F1 acting on the plunger 5 extends in the direction inclined with respect to the axial direction along the direction of the magnetic flux lines 37. The plunger 5 is displaced in the direction approaching the stator 4 by an axial attraction force Fx1 which is an axial component of the attraction force F1, and the displacement of the plunger 5 in the axial direction becomes the driving force of the spool 29.
プランジャ5がステータ4に吸引されると、プランジャ5は、図4に示す中間位置、即ち、磁極部5Aの第1縁辺5Jが筒型磁気制御部4G内(有底穴4J内)に入り込んだ位置に変位する。図4の中間位置では、筒型磁気制御部4Gの磁化する領域が、テーパ部4Lの外周面が拡径するのに応じて半径方向に増加する。これにより、図4に示す磁束線37の向きは、図3に示す初期位置に比較して半径方向に傾き、プランジャ5に作用する吸引力F2の軸方向に対する傾きは、初期位置での吸引力F1の傾きよりも大きくなる。一方、筒型磁気制御部4Gの磁化する領域が増加することにより、吸引力F2は、初期位置での吸引力F1よりも大きくなる。この結果、吸引力F2の軸方向成分である軸方向の吸引力Fx2は、初期位置での軸方向の吸引力Fx1と同等の値もしくは同等の値に近い値となる(Fx2≒Fx1)。 When the plunger 5 is attracted to the stator 4, the plunger 5 is in the middle position shown in FIG. 4, that is, the first edge 5J of the magnetic pole portion 5A enters the inside of the cylindrical magnetic control portion 4G (in the bottomed hole 4J). Displace to position. At the intermediate position in FIG. 4, the area magnetized by the cylindrical magnetic control unit 4G increases in the radial direction as the diameter of the outer peripheral surface of the tapered portion 4L increases. Thereby, the direction of the magnetic flux line 37 shown in FIG. 4 is inclined in the radial direction as compared with the initial position shown in FIG. 3, and the inclination with respect to the axial direction of the suction force F2 acting on the plunger 5 is the suction force at the initial position. It becomes larger than the inclination of F1. On the other hand, the attraction force F2 becomes larger than the attraction force F1 at the initial position due to the increase of the magnetization area of the cylindrical magnetic control unit 4G. As a result, the axial suction force Fx2 which is an axial component of the suction force F2 has a value equivalent to or close to the axial suction force Fx1 at the initial position (Fx2 ≒ Fx1).
 プランジャ5がさらにステータ4に吸引されると、プランジャ5は、図5に示す規制位置、即ち、プランジャ5のステータ側端面5Bがスペーサ7のフランジ部7Bに当接する位置に変位する。これにより、ステータ4とプランジャ5との間のギャップが、スペーサ7によって規制される最小距離となる。このとき、磁極部5Aの第1縁辺5Jは、筒型磁気制御部4Gのテーパ部4Lから円筒部4Mの内周側へと変位しているため、筒型磁気制御部4Gの磁化する領域が半径方向にさらに増加する。これにより、図5に示す磁束線37の向きは、図4に示す中間位置に比較してさらに半径方向に傾き、プランジャ5に作用する吸引力F3の軸方向に対する傾きは、中間位置での吸引力F2の傾きよりもさらに大きくなる。一方、プランジャ5がステータ4に対し最接近するため、プランジャ5に作用する吸引力F3は、中間位置での吸引力F2よりも大きくなる。 When the plunger 5 is further attracted to the stator 4, the plunger 5 is displaced to the restricted position shown in FIG. 5, that is, the position where the stator side end face 5B of the plunger 5 abuts on the flange 7B of the spacer 7. Thereby, the gap between the stator 4 and the plunger 5 becomes the minimum distance regulated by the spacer 7. At this time, since the first edge 5J of the magnetic pole portion 5A is displaced from the tapered portion 4L of the cylindrical magnetic control portion 4G to the inner peripheral side of the cylindrical portion 4M, the region magnetized by the cylindrical magnetic control portion 4G is Further increase in the radial direction. Thereby, the direction of the magnetic flux lines 37 shown in FIG. 5 is further inclined in the radial direction compared to the intermediate position shown in FIG. 4 and the inclination with respect to the axial direction of the suction force F3 acting on the plunger 5 is the suction at the intermediate position. It becomes larger than the inclination of force F2. On the other hand, since the plunger 5 comes closest to the stator 4, the suction force F3 acting on the plunger 5 is larger than the suction force F2 at the intermediate position.
ここで、本実施の形態では、ステータ4の筒型磁気制御部4Gの軸方向の長さL1と、プランジャ5のステータ側端面5Bから第2縁辺5Kまでの距離L2と、スペーサ7のフランジ部7Bの厚さ寸法L3とは、L1<L2+L3の関係を満たすように構成されている。従って、プランジャ5が規制位置に向けて変位する間に、磁極部5Aの第2縁辺5Kは、ステータ4の筒型磁気制御部4G内(有底穴4J内)に侵入する。 Here, in the present embodiment, the axial length L1 of the cylindrical magnetic control unit 4G of the stator 4, the distance L2 from the stator side end surface 5B of the plunger 5 to the second edge 5K, and the flange portion of the spacer 7 The thickness dimension L3 of 7B is configured to satisfy the relationship of L1 <L2 + L3. Therefore, while the plunger 5 is displaced toward the restricted position, the second edge 5K of the magnetic pole 5A intrudes into the cylindrical magnetic control unit 4G of the stator 4 (in the bottomed hole 4J).
この状態で、磁極部5Aの第2縁辺5Kと筒型磁気制御部4Gの開口端4Hとの間には、第2縁辺5Kから開口端4Hに向けて斜め方向に磁束が発生する。このため、第2縁辺5Kに対し、軸方向に対して傾斜しつつ開口端4Hに向かう吸引力F4が作用する。この吸引力F4の軸方向成分である軸方向の吸引力Fx4は、プランジャ5をスペーサ7から離間させる方向に作用するので、吸引力F3の軸方向成分である軸方向の吸引力Fx3とは逆向きとなる。従って、プランジャ5をステータ4に接近させる方向に作用する軸方向の吸引力Fx3の一部が、プランジャ5をステータ4から離間させる方向に作用する軸方向の吸引力Fx4によって打消される。この結果、プランジャ5が規制位置に近づく領域において、プランジャ5に作用する軸方向の吸引力(Fx3-Fx4)を、初期位置における軸方向の吸引力Fx1および中間位置における軸方向の吸引力Fx2と同等の値もしくは同等の値に近い値とすることができる(Fx3-Fx4≒Fx2)。 In this state, magnetic flux is generated diagonally from the second edge 5K toward the opening end 4H between the second edge 5K of the magnetic pole portion 5A and the opening end 4H of the cylindrical magnetic control unit 4G. For this reason, a suction force F4 directed toward the opening end 4H acts on the second edge 5K while inclining with respect to the axial direction. The axial suction force Fx4, which is an axial component of the suction force F4, acts in the direction to move the plunger 5 away from the spacer 7, and therefore, it is opposite to the axial suction force Fx3 which is an axial component of the suction force F3. It becomes the direction. Therefore, a part of the axial attraction force Fx3 acting in the direction of causing the plunger 5 to approach the stator 4 is canceled by the axial attraction force Fx4 acting in the direction of separating the plunger 5 from the stator 4. As a result, in a region where the plunger 5 approaches the restricted position, the axial suction force (Fx3-Fx4) acting on the plunger 5 is divided into an axial suction force Fx1 at the initial position and an axial suction force Fx2 at the intermediate position. It is possible to make the same value or a value close to the same value (Fx3-Fx4 ≒ Fx2).
従って、コイル16に給電される給電電流を一定値とした場合には、図6中の特性線38で示すように、プランジャ5が図3に示す初期位置P1、図4に示す中間位置P2、図5に示す規制位置P3へと変位する間に、プランジャ5に作用する軸方向の吸引力Fxを、ほぼ一定値に保つことができる。この結果、プランジャ5とステータ4との間のギャップが、スペーサ7によって規制される最小距離に接近したときに、プランジャ5に作用する軸方向の吸引力Fxが急激に増大するのを抑えることができる。従って、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域、即ち、図6中のP1からP3までの領域Aを大きく確保することができる。 Therefore, when the feed current supplied to the coil 16 is set to a constant value, as shown by the characteristic line 38 in FIG. 6, the plunger 5 is at the initial position P1 shown in FIG. While being displaced to the restricted position P3 shown in FIG. 5, the axial suction force Fx acting on the plunger 5 can be maintained at a substantially constant value. As a result, when the gap between the plunger 5 and the stator 4 approaches the minimum distance regulated by the spacer 7, the axial attraction force Fx acting on the plunger 5 is prevented from rapidly increasing. it can. Therefore, it is possible to secure a large area where the plunger 5 can be displaced, that is, the area A from P1 to P3 in FIG. 6 while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
ここで、プランジャ5のステータ側端面5Bから第2縁辺5Kまでの距離L2は、ステータ4の筒型磁気制御部4G(有底穴4J)の軸方向の長さL1に対し、0.5L1≦L2≦0.7L1の範囲に設定されている。従って、この範囲で前記距離L2を調整することにより、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域(図6中の領域A)の大きさを適宜に調整することができる。この場合、前記距離L2が0.5L1よりも小さい(L2<0.5L1)場合には、プランジャ5のステータ側端面5Bがステータ4に接近する前段階で、磁極部5Aの第2縁辺5Kが有底穴4J内に侵入するようになる。従って、プランジャ5をステータ4に接近させるための軸方向の吸引力Fxが増加する前段階で、プランジャ5をステータ4から離間させるための軸方向の吸引力Fxがプランジャ5に作用してしまう。この結果、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域が狭くなる。 Here, the distance L2 from the stator side end face 5B of the plunger 5 to the second edge 5K is 0.5L1 ≦ the axial length L1 of the cylindrical magnetic control unit 4G (bottomed hole 4J) of the stator 4 It is set in the range of L2 ≦ 0.7 L1. Therefore, by adjusting the distance L2 within this range, the size of the region (region A in FIG. 6) in which the plunger 5 can be displaced while the axial suction force Fx acting on the plunger 5 is constant or nearly constant. Can be adjusted appropriately. In this case, when the distance L2 is smaller than 0.5L1 (L2 <0.5L1), the second edge 5K of the magnetic pole portion 5A is at a stage before the stator side end surface 5B of the plunger 5 approaches the stator 4. It will intrude into the bottomed hole 4J. Therefore, before the axial attraction force Fx for causing the plunger 5 to approach the stator 4 increases, the axial attraction force Fx for separating the plunger 5 from the stator 4 acts on the plunger 5. As a result, the region in which the plunger 5 can be displaced is narrowed while the axial suction force Fx acting on the plunger 5 is constant or nearly constant.
一方、前記距離L2が0.7L1よりも大きい(L2>0.7L1)場合には、プランジャ5のステータ側端面5Bがスペーサ7に当接する直前まで、磁極部5Aの第2縁辺5Kが有底穴4J内に侵入することがない。従って、プランジャ5をスペーサ7から離間させるための軸方向の吸引力Fxが発生するタイミングが遅れてしまう。この結果、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域が狭くなる。このため、前記距離L2は、前記長さL1に対して0.5L1≦L2≦0.7L1の範囲に設定することが望ましい。 On the other hand, when the distance L2 is larger than 0.7L1 (L2> 0.7L1), the second edge 5K of the magnetic pole portion 5A has a bottom until just before the stator side end surface 5B of the plunger 5 abuts the spacer 7 There is no intrusion into the hole 4J. Therefore, the timing at which the axial suction force Fx for separating the plunger 5 from the spacer 7 is generated is delayed. As a result, the region in which the plunger 5 can be displaced is narrowed while the axial suction force Fx acting on the plunger 5 is constant or nearly constant. Therefore, the distance L2 is preferably set in the range of 0.5L1 ≦ L2 ≦ 0.7L1 with respect to the length L1.
ここで、本実施の形態によるプランジャ5と、比較例によるプランジャとの相違について説明する。 Here, the difference between the plunger 5 according to the present embodiment and the plunger according to the comparative example will be described.
 図7に示すように、比較例1によるプランジャ101は、磁極部101Aと摺接部101Bとの境界部にテーパ面101Cが形成され、磁極部101Aの外周面とステータ側端面101Dとが交わる角部が第1縁辺101Eとなり、磁極部101Aの外周面とテーパ面101Cとが交わる角部が第2縁辺101Fとなっている。この場合、プランジャ101のステータ側端面101Dが、ステータ4の有底穴4J内でスペーサ7のフランジ部7Bに当接した規制位置において、第2縁辺101Fは有底穴4Jの外部に位置するようになっている。このため、比較例1によるプランジャ101は、ステータ側端面101Dが規制位置に接近した状態においても、第2縁辺101Fと筒型磁気制御部4Gの開口端4Hとの間に、プランジャ101をステータ4から離間させる方向への吸引力が作用することがない。 As shown in FIG. 7, in the plunger 101 according to Comparative Example 1, a tapered surface 101C is formed at the boundary between the magnetic pole portion 101A and the sliding contact portion 101B, and the angle at which the outer peripheral surface of the magnetic pole portion 101A intersects with the stator side end face 101D. The portion is the first edge 101E, and the corner at which the outer peripheral surface of the magnetic pole portion 101A and the tapered surface 101C intersect is the second edge 101F. In this case, the second edge 101F is positioned outside the bottomed hole 4J in the restricted position where the stator side end face 101D of the plunger 101 is in contact with the flange portion 7B of the spacer 7 in the bottomed hole 4J of the stator 4. It has become. For this reason, the plunger 101 according to Comparative Example 1 has the plunger 101 between the second edge 101F and the open end 4H of the cylindrical magnetic control unit 4G even when the stator side end face 101D approaches the restricted position. Suction does not act in the direction of moving away from
図8に示すように、比較例2によるプランジャ102は、磁極部102Aと摺接部102Bとが等しい外形寸法を有する円柱状に形成されている。従って、比較例2によるプランジャ102は、磁極部102Aの外周面とステータ側端面102Cとが交わる角部が第1縁辺102Dとなるものの、第1の実施の形態による第2縁辺5Kに対応する部位が設けられていない。このため、比較例2によるプランジャ102は、ステータ側端面102Cがスペーサ7のフランジ部7Bに当接する規制位置に接近した状態においても、プランジャ102に対し、ステータ4から離間させる方向への吸引力が作用することがない。 As shown in FIG. 8, in the plunger 102 according to Comparative Example 2, the magnetic pole portion 102A and the sliding contact portion 102B are formed in a cylindrical shape having the same external dimensions. Therefore, although the plunger 102 according to Comparative Example 2 has the first edge 102D at the corner where the outer peripheral surface of the magnetic pole 102A intersects with the stator side end surface 102C, a portion corresponding to the second edge 5K according to the first embodiment Is not provided. For this reason, even in a state in which the stator side end surface 102C approaches the regulated position where the stator side end surface 102C abuts on the flange portion 7B of the spacer 7, the plunger 102 according to Comparative Example 2 has a suction force in the direction of separating the plunger 102 from the stator 4 It does not work.
従って、比較例1によるプランジャ101を用いた電磁式駆動ユニットにおいては、図6中の特性線39で示すように、プランジャ101が初期位置P1から中間位置P2に変位する間は、プランジャ101をステータ4に接近させる方向に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態となる。しかし、プランジャ101が中間位置P2から規制位置P3に変位する間に、プランジャ101をスペーサ7に接近させる方向に作用する軸方向の吸引力Fxが急激に増加してしまう。この結果、プランジャ101に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ101が変位できる領域が、図6中のP1からP2までの狭い領域aとなってしまう。一方、比較例2によるプランジャ102を用いた電磁式駆動ユニットにおいても、比較例1と同様に、プランジャ102の変位とプランジャ102に作用する軸方向の吸引力Fxとの関係は、図6中の特性線39で示されるようになる。 Therefore, in the electromagnetic drive unit using the plunger 101 according to Comparative Example 1, as shown by the characteristic line 39 in FIG. 6, while the plunger 101 is displaced from the initial position P1 to the intermediate position P2, the plunger 101 The axial suction force Fx acting in the direction to approach 4 is in a state of being constant or nearly constant. However, while the plunger 101 is displaced from the intermediate position P2 to the restricting position P3, the axial attraction force Fx acting in the direction to make the plunger 101 approach the spacer 7 rapidly increases. As a result, the region where the plunger 101 can be displaced while the axial suction force Fx acting on the plunger 101 is constant or nearly constant becomes a narrow region a from P1 to P2 in FIG. On the other hand, also in the electromagnetic drive unit using the plunger 102 according to the comparative example 2, as in the comparative example 1, the relationship between the displacement of the plunger 102 and the axial suction force Fx acting on the plunger 102 is as shown in FIG. It becomes as shown by the characteristic line 39.
このように、第1の実施の形態による電磁式駆動ユニット2は、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域が拡大されるので、プランジャ5の変位による吸引力の変化が低減される。このため、電磁式駆動ユニット2を備えた電磁弁1では、スプール29に作用する油圧力、リターンスプリング31およびサブスプリング13のばね力との釣り合いに必要なプランジャ5に対する吸引力を、コイル16に対する給電制御によって高精度に制御することができる。従って、電磁式駆動ユニット2を備えた電磁弁1が、例えば可変容量型油圧ポンプ/油圧モータの傾転角制御、コントロールバルブのスプール/絞り弁の制御等を行う油圧システムに用いられた場合には、油圧システムの制御精度を向上させることができる。 Thus, in the electromagnetic drive unit 2 according to the first embodiment, the area where the plunger 5 can be displaced is expanded while the axial suction force Fx acting on the plunger 5 is constant or nearly constant. The change in suction force due to the displacement of the plunger 5 is reduced. Therefore, in the electromagnetic valve 1 provided with the electromagnetic drive unit 2, the suction force for the plunger 5 necessary to balance the oil pressure acting on the spool 29 and the spring force of the return spring 31 and the sub spring 13 is It is possible to control with high accuracy by the feed control. Therefore, when the solenoid valve 1 provided with the solenoid drive unit 2 is used, for example, in a hydraulic system that performs tilt angle control of a variable displacement hydraulic pump / hydraulic motor, control of a spool of a control valve, etc. Can improve the control accuracy of the hydraulic system.
しかも、電磁式駆動ユニット2を備えた電磁弁1では、プランジャ5に作用する軸方向の吸引力Fxが一定もしくは一定に近い状態のままプランジャ5が変位できる領域を拡大することにより、制御弁ユニット24の弁ケーシング25内におけるスプール29のストロークを大きくすることができる。これにより、例えば供給ポート25Dと出力ポート25Eとの間の最大開口量、および出力ポート25Eとドレンポート25Fとの間の最大開口量を大きく設定することができ、これら供給ポート25D、出力ポート25E、ドレンポート25Fを流れる圧油の流量を増大させることができる。この結果、電磁弁1による油圧力の応答を高速化することができ、この電磁弁1を含む油圧システムの応答の高速化を図ることができる。 Moreover, in the solenoid valve 1 provided with the solenoid drive unit 2, the control valve unit is expanded by expanding the region in which the plunger 5 can be displaced while the axial suction force Fx acting on the plunger 5 is constant or nearly constant. The stroke of the spool 29 in the 24 valve casings 25 can be increased. Thereby, for example, the maximum opening amount between the supply port 25D and the output port 25E and the maximum opening amount between the output port 25E and the drain port 25F can be set large. The supply port 25D, the output port 25E , And the flow rate of the hydraulic fluid flowing through the drain port 25F can be increased. As a result, the response of the oil pressure by the solenoid valve 1 can be sped up, and the response of the hydraulic system including the solenoid valve 1 can be sped up.
次に、図9および図10は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、プランジャの磁極部と摺接部の外径が同径であり、プランジャの外周面には磁極部と摺接部とを軸方向に隔てるくびれ部が設けられていることにある。なお、第2の実施の形態では第1の実施の形態と同一の構成表素に同一符号を付し、その説明を省略するものとする。 Next, FIGS. 9 and 10 show a second embodiment of the present invention. The second embodiment is characterized in that the outer diameter of the magnetic pole portion of the plunger and the sliding contact portion is the same diameter, and the outer peripheral surface of the plunger is provided with a constricted portion for axially separating the magnetic pole portion and the sliding contact portion. To be In the second embodiment, the same reference symbols are given to the same configuration elements as the first embodiment, and the description thereof is omitted.
図中、電磁式駆動ユニット41は、制御弁ユニット24と共に電磁弁を構成するものである。この電磁式駆動ユニット41は、第1の実施の形態による電磁式駆動ユニット2と同様に、ステータ4、後述するプランジャ42、ピン6、スペーサ7、ヨーク8、リング9、ボビン15、コイル16、ソレノイドケーシング20等を含んで構成されている。しかし、第2の実施の形態では、プランジャ42の構成が第1の実施の形態によるプランジャ5とは異なるものである。 In the figure, the electromagnetic drive unit 41 constitutes a solenoid valve together with the control valve unit 24. Similar to the electromagnetic drive unit 2 according to the first embodiment, the electromagnetic drive unit 41 includes a stator 4, a plunger 42 described later, pins 6, spacers 7, yokes 8, rings 9, bobbins 15, coils 16, A solenoid casing 20 and the like are included. However, in the second embodiment, the configuration of the plunger 42 is different from that of the plunger 5 according to the first embodiment.
プランジャ42は、磁性体材料を用いて全体として円筒状に形成され、ステータ4と同軸上に配置されている。プランジャ42は、後述する磁極部42Aの外径寸法と摺接部42Cの外径寸法が同一(同径)となり、プランジャ42の外周面には後述のくびれ部42Gが設けられている。 The plunger 42 is formed in a cylindrical shape as a whole using a magnetic material, and is disposed coaxially with the stator 4. The plunger 42 has the same outer diameter as the outer diameter of the magnetic pole portion 42A, which will be described later, and the outer diameter of the sliding portion 42C, and the outer peripheral surface of the plunger 42 is provided with a narrowed portion 42G, which will be described later.
磁極部42Aは、プランジャ42のステータ4側の端部に設けられている。磁極部42Aは、その外径寸法がステータ4の筒型磁気制御部4G(有底穴4J)の内径寸法よりも僅かに小さく形成され、有底穴4Jの内側に入り込むものである。磁極部42Aのステータ側端面42Bは、有底穴4Jの底部4J1と対面しスペーサ7のフランジ部7Bに当接するものである。 The magnetic pole portion 42A is provided at an end of the plunger 42 on the stator 4 side. The outer diameter of the magnetic pole portion 42A is formed to be slightly smaller than the inner diameter of the cylindrical magnetic control portion 4G (the bottomed hole 4J) of the stator 4, and the magnetic pole portion 42A enters the inside of the bottomed hole 4J. The stator side end face 42B of the magnetic pole part 42A faces the bottom 4J1 of the bottomed hole 4J and abuts on the flange 7B of the spacer 7.
摺接部42Cは、プランジャ42のステータ4とは反対側(ヨーク8側)の端部に設けられている。摺接部42Cは、ヨーク8の摺動穴8D内に摺動可能に挿嵌され、この摺動穴8Dに摺接しつつヨーク8との間で磁気の受け渡しを行うものである。摺接部42Cのヨーク側端面42Dは、スクリュ10の軸部側雄ねじ10Eの先端と対面し、サブスプリング13が当接している。プランジャ42の軸中心位置には軸方向に貫通する中心孔42Eが形成され、この中心孔42E内にはピン6が圧入されている。また、プランジャ42のうち中心孔42Eから径方向に偏心した部位には、軸方向に貫通する貫通孔42Fが形成されている。 The sliding contact portion 42C is provided at an end of the plunger 42 on the opposite side (yoke 8 side) to the stator 4. The sliding contact portion 42C is slidably inserted in the sliding hole 8D of the yoke 8, and performs magnetic exchange with the yoke 8 while slidingly contacting the sliding hole 8D. The yoke-side end surface 42D of the sliding contact portion 42C faces the tip of the shaft-side male screw 10E of the screw 10, and the sub-spring 13 is in contact. A central hole 42E penetrating in the axial direction is formed at an axial center position of the plunger 42, and a pin 6 is press-fitted into the central hole 42E. Further, a through hole 42F penetrating in the axial direction is formed in a portion of the plunger 42 which is eccentric in the radial direction from the central hole 42E.
くびれ部42Gは、プランジャ42の外周面に全周に亘って凹溝状に形成され、磁極部42Aと摺接部42Cとを軸方向に隔てている。プランジャ42は、くびれ部42Gを挟んでステータ4側が磁極部42Aとなり、ヨーク8側が摺接部42Cとなっている。図10に示すように、プランジャ42の第1縁辺42Hは、磁極部42Aの外周面とステータ側端面42Bとが交わる角部に設けられている。この第1縁辺42Hは、励磁されたステータ4の筒型磁気制御部4Gから、ステータ4に接近する方向への磁力(吸引力)を受けるものである。 The constricted portion 42G is formed on the outer peripheral surface of the plunger 42 in the form of a recessed groove all around, and axially separates the magnetic pole portion 42A and the sliding contact portion 42C. The plunger 42 has a pole portion 42A on the stator 4 side and a sliding contact portion 42C on the yoke 8 side with respect to the constriction portion 42G. As shown in FIG. 10, the first edge 42H of the plunger 42 is provided at a corner where the outer peripheral surface of the magnetic pole portion 42A and the stator side end surface 42B intersect. The first edge 42H receives a magnetic force (attracting force) in a direction approaching the stator 4 from the cylindrical magnetic control unit 4G of the excited stator 4.
プランジャ42の第2縁辺42Jは、磁極部42Aの外周面のうち第1縁辺42Hとは反対側に離間した部位、即ち、磁極部42Aの外周面とくびれ部42Gとが交わる角部に設けられている。この第2縁辺42Jは、励磁されたステータ4の有底穴4J内に侵入したときに、筒型磁気制御部4Gからステータ4から離間する方向への磁力(吸引力)を受けるものである。 The second edge 42J of the plunger 42 is provided at a portion of the outer circumferential surface of the magnetic pole portion 42A that is separated from the first edge 42H, that is, at the corner where the outer circumferential surface of the magnetic pole portion 42A intersects with the narrowed portion 42G. ing. The second edge 42J receives a magnetic force (attracting force) in a direction away from the stator 4 from the cylindrical magnetic control unit 4G when it enters the bottomed hole 4J of the excited stator 4.
ここで、ステータ4の筒型磁気制御部4G(有底穴4J)の軸方向の長さをL1とし、プランジャ42のステータ側端面42Bから第2縁辺42Jまでの距離をL2とし、スペーサ7のフランジ部7Bの厚さ寸法をL3とすると、これらL1,L2,L3は、上述した数1(L1>L2+L3)、数2(0.5L1≦L2≦0.7L1)、数3(L3=0.2L1)の関係を満たすように設定されている。 Here, the axial length of the cylindrical magnetic control unit 4G (the bottomed hole 4J) of the stator 4 is L1, and the distance from the stator side end surface 42B of the plunger 42 to the second edge 42J is L2. Assuming that the thickness dimension of the flange portion 7B is L3, these L1, L2 and L3 are the number 1 (L1> L2 + L3), the number 2 (0.5 L1 ≦ L2 ≦ 0.7 L1), the number 3 (L3 = 0) .2L1) is set to satisfy the relationship.
第2の実施の形態による電磁式駆動ユニット41は、上述の如きプランジャ42を備えたもので、コイル16に対する給電制御を行うことにより、ステータ4からプランジャ42に吸引力が作用する。 The electromagnetic drive unit 41 according to the second embodiment is provided with the plunger 42 as described above, and by performing power supply control on the coil 16, a suction force acts on the plunger 42 from the stator 4.
ここで、プランジャ42の第1縁辺42Hがステータ4の有底穴4J内に入り込んだ後、プランジャ42の第2縁辺42Jが有底穴4J内に侵入するまでの間は、第1の実施の形態と同様に、プランジャ42に対してステータ4に接近する方向への軸方向の吸引力が作用する。そして、プランジャ42の第2縁辺42Jが有底穴4J内に侵入すると、第2縁辺42Jと筒型磁気制御部4Gの開口端4Hとの間で磁力(吸引力)が発生し、プランジャ42をステータ4から離間させる方向への軸方向の吸引力が作用する。これにより、プランジャ42をステータ4に接近させる軸方向の吸引力の一部を打消すことができる。この結果、プランジャ42とステータ4との間のギャップが、スペーサ7によって規制される最小距離に接近したときに、プランジャ42に作用する軸方向の吸引力が急激に増大するのを抑えることができる。従って、第1の実施の形態と同様に、プランジャ42に作用する軸方向の吸引力が一定もしくは一定に近い状態のままプランジャ42が変位できる領域を拡大することができる。 Here, after the first edge 42H of the plunger 42 enters the bottomed hole 4J of the stator 4, the first edge of the first embodiment is performed until the second edge 42J of the plunger 42 intrudes into the bottomed hole 4J. Similar to the embodiment, an axial suction force acts on the plunger 42 in a direction approaching the stator 4. When the second edge 42J of the plunger 42 intrudes into the bottomed hole 4J, a magnetic force (attracting force) is generated between the second edge 42J and the open end 4H of the cylindrical magnetic control unit 4G, and the plunger 42 is An axial suction force acts in a direction away from the stator 4. As a result, it is possible to cancel out a part of the axial attraction force that causes the plunger 42 to approach the stator 4. As a result, when the gap between the plunger 42 and the stator 4 approaches the minimum distance regulated by the spacer 7, it is possible to suppress the rapid increase in the axial attraction force acting on the plunger 42. . Therefore, as in the first embodiment, the region in which the plunger 42 can be displaced can be expanded while the axial suction force acting on the plunger 42 is constant or nearly constant.
なお、第2の実施の形態では、磁性体材料からなるプランジャ42の外周面にくびれ部42Gを形成し、くびれ部42Gによって磁極部42Aと摺接部42Cとを軸方向に隔てる構成を例示している。しかし、本発明はこれに限らず、例えば図11に示す第1の変形例のように、くびれ部42Gに非磁性材料からなる環状部材43を埋設することにより、一様な外径寸法を有するプランジャ42′として形成してもよい。 In the second embodiment, a neck 42G is formed on the outer peripheral surface of the plunger 42 made of a magnetic material, and the pole 42A and the sliding contact 42C are axially separated by the neck 42G. ing. However, the present invention is not limited thereto. For example, as in the first modified example shown in FIG. 11, the annular member 43 made of nonmagnetic material is embedded in the constriction portion 42G to have uniform outer diameter dimension. It may be formed as a plunger 42 '.
また、実施の形態では、ステータ4の筒型磁気制御部4Gの外周面に、開口端4Hに向けて縮径しつつ直線的に延びるテーパ部4Lを設けた場合を励磁している。しかし、本発明はこれに限らず、例えば図12に示す第2の変形例のように、開口端4Hに向けて縮径しつつ曲線的に延びるテーパ部4L′を設ける構成としてもよい。 Further, in the embodiment, the case where the tapered portion 4L linearly extending while reducing the diameter toward the opening end 4H is provided on the outer peripheral surface of the cylindrical magnetic control unit 4G of the stator 4 is excited. However, the present invention is not limited to this. For example, as in the second modified example shown in FIG. 12, a tapered portion 4L 'extending in a curving manner while reducing the diameter toward the opening end 4H may be provided.
2,41 電磁式駆動ユニット
4 ステータ
4G 筒型磁気制御部
4H 開口端
4L,4L′ テーパ部
5,42 プランジャ
5A,42A 磁極部
5B,42B ステータ側端面
5C,42C 摺接部
5J,42H 第1縁辺
5K,42J 第2縁辺
7 スペーサ
8 ヨーク
8D 摺動穴
16 コイル
42G くびれ部
2, 41 electromagnetic drive unit 4 stator 4G cylindrical magnetic control unit 4H open end 4L, 4L ' taper portion 5, 42 plunger 5A, 42A magnetic pole portion 5B, 42B stator side end face 5C, 42C sliding contact portion 5J, 42H Edge 5K, 42J Second Edge 7 Spacer 8 Yoke 8D Sliding Hole 16 Coil 42G Neck Part

Claims (5)

  1.  磁性体材料からなるステータと、
     磁性体材料からなり、前記ステータに対して同軸上に配置されるプランジャと、
     磁性体材料からなり、前記ステータに対して同軸上に配置され前記プランジャを摺動可能に案内する摺動穴を有するヨークと、
     前記ステータ、前記プランジャ、前記ヨークを囲むように配置され、給電制御により前記ステータを励磁または消磁して前記プランジャを前記ステータに対して接近または離間させるコイルとを備えた電磁式駆動ユニットにおいて、
     前記プランジャの前記ステータ側の端部に設けられ、励磁された前記ステータから磁力を受ける磁極部と、
     前記プランジャの前記ステータとは反対側の端部に設けられ、前記ヨークの摺動穴と摺接し磁気の受け渡しを行う摺接部と、
     前記磁極部の前記ステータ側の外周縁に設けられた第1縁辺と、
     前記ステータに設けられ、前記プランジャが前記ステータ側へと移動したときに前記磁極部が内側に入り込むように前記プランジャ側が開口端となった有底穴を有する筒型磁気制御部と、
     前記筒型磁気制御部の外周面に設けられ、前記プランジャ側に向けて漸次小径となるテーパ部と、
     前記磁極部の外周面のうち前記第1縁辺から前記ステータとは反対側に離間した部位に設けられ、前記磁極部が前記筒型磁気制御部の前記有底穴を前記ステータ側へと移動する間に前記筒型磁気制御部の前記有底穴に侵入する第2縁辺とを備え、
     前記第2縁辺は、前記筒型磁気制御部の前記有底穴に侵入したときに前記筒型磁気制御部の開口端との間で前記ステータから離間する方向への磁力を受ける構成としたことを特徴とする電磁式駆動ユニット。
    A stator made of a magnetic material,
    A plunger made of a magnetic material and coaxially arranged with respect to the stator;
    A yoke made of a magnetic material and coaxially arranged with respect to the stator and having a slide hole slidably guiding the plunger;
    An electromagnetic drive unit comprising: a stator disposed so as to surround the stator, the plunger, and the yoke, and a coil for exciting or demagnetizing the stator by power supply control to move the plunger toward or away from the stator.
    A pole portion provided at an end of the plunger on the stator side and receiving a magnetic force from the excited stator;
    A sliding contact portion provided at an end of the plunger opposite to the stator and in sliding contact with a sliding hole of the yoke to transfer magnetism;
    A first edge provided on an outer peripheral edge of the magnetic pole portion on the stator side;
    A cylindrical magnetic control unit provided in the stator and having a bottomed hole whose open end is the open end so that the magnetic pole portion enters inward when the plunger moves toward the stator;
    A tapered portion provided on an outer peripheral surface of the cylindrical magnetic control unit and having a gradually smaller diameter toward the plunger;
    The magnetic pole portion is provided on a portion of the outer peripheral surface of the magnetic pole portion that is separated from the first edge on the opposite side to the stator, and the magnetic pole portion moves the bottomed hole of the cylindrical magnetic control portion toward the stator And a second edge which intrudes into the bottomed hole of the cylindrical magnetic control unit,
    The second edge is configured to receive a magnetic force in a direction away from the stator with the open end of the cylindrical magnetic control unit when it enters the bottomed hole of the cylindrical magnetic control unit. An electromagnetic drive unit characterized by
  2.  前記ステータと前記プランジャとの間には両者間の軸方向最小距離を規制するスペーサが設けられ、
     前記筒型磁気制御部の軸方向の長さを(L1)とし、前記プランジャのうち前記ステータと対面するステータ側端面と前記第2縁辺との間の距離を(L2)とし、前記スペーサで規制された前記ステータと前記プランジャとの軸方向の最小距離を(L3)としたときに、前記距離の和(L2+L3)は、前記筒型磁気制御部の長さ(L1)よりも小さいことを特徴とする請求項1に記載の電磁式駆動ユニット。
    A spacer is provided between the stator and the plunger for restricting an axial minimum distance therebetween.
    Let the axial length of the cylindrical magnetic control unit be (L1), let the distance between the stator side end face of the plunger facing the stator and the second edge be (L2), and restrict by the spacer The sum of the distances (L2 + L3) is smaller than the length (L1) of the cylindrical magnetic control unit, where (L3) is the axial minimum distance between the stator and the plunger. The electromagnetic drive unit according to claim 1, wherein
  3.  前記プランジャの前記ステータ側端面と前記第2縁辺との間の距離(L2)は、前記筒型磁気制御部の軸方向の長さ(L1)に対し、0.5L1≦L2≦0.7L1に設定され、
     前記スペーサによって規制される前記ステータと前記プランジャとの軸方向の最小距離(L3)は、L3=0.2L1に設定されていることを特徴とする請求項2に記載の電磁式駆動ユニット。
    The distance (L2) between the stator side end face of the plunger and the second edge is 0.5L1 ≦ L2 ≦ 0.7L1 with respect to the axial length (L1) of the cylindrical magnetic control unit. Is set
    The electromagnetic drive unit according to claim 2, wherein a minimum axial distance (L3) between the stator and the plunger, which is regulated by the spacer, is set to L3 = 0.2L1.
  4.  前記磁極部の外径は、前記摺接部の外径よりも大きいことを特徴とする請求項1に記載の電磁駆動式ユニット。 The electromagnetic drive unit according to claim 1, wherein the outer diameter of the magnetic pole portion is larger than the outer diameter of the sliding contact portion.
  5.  前記磁極部と前記摺接部の外径は同径であり、前記プランジャの外周面には、前記磁極部と前記摺接部とを軸方向に隔てるくびれ部が設けられていることを特徴とする請求項1に記載の電磁式駆動ユニット。 The outer diameters of the magnetic pole portion and the sliding contact portion are the same diameter, and a neck portion separating the magnetic pole portion and the sliding contact portion in the axial direction is provided on the outer peripheral surface of the plunger. The electromagnetic drive unit according to claim 1.
PCT/JP2017/028095 2017-08-02 2017-08-02 Electromagnetic type drive unit WO2019026211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019500519A JP6571898B2 (en) 2017-08-02 2017-08-02 Electromagnetic drive unit
PCT/JP2017/028095 WO2019026211A1 (en) 2017-08-02 2017-08-02 Electromagnetic type drive unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028095 WO2019026211A1 (en) 2017-08-02 2017-08-02 Electromagnetic type drive unit

Publications (1)

Publication Number Publication Date
WO2019026211A1 true WO2019026211A1 (en) 2019-02-07

Family

ID=65232455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028095 WO2019026211A1 (en) 2017-08-02 2017-08-02 Electromagnetic type drive unit

Country Status (2)

Country Link
JP (1) JP6571898B2 (en)
WO (1) WO2019026211A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123008A1 (en) 2019-12-18 2021-06-24 Basf Se Nucleic acid analysis methods and apparatus
JP7455053B2 (en) 2020-12-11 2024-03-25 株式会社クボタ solenoid valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012844A (en) * 2005-06-30 2007-01-18 Aisin Seiki Co Ltd Solenoid and solenoid valve
JP2012127409A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Solenoid linear valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218816A (en) * 2003-01-17 2004-08-05 Sanmei Electric Co Ltd Proportional solenoid
JP2006222199A (en) * 2005-02-09 2006-08-24 Isuzu Motors Ltd Proportional solenoid and flow control valve using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012844A (en) * 2005-06-30 2007-01-18 Aisin Seiki Co Ltd Solenoid and solenoid valve
JP2012127409A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Solenoid linear valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123008A1 (en) 2019-12-18 2021-06-24 Basf Se Nucleic acid analysis methods and apparatus
JP7455053B2 (en) 2020-12-11 2024-03-25 株式会社クボタ solenoid valve

Also Published As

Publication number Publication date
JP6571898B2 (en) 2019-09-04
JPWO2019026211A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5125441B2 (en) Linear solenoid device and solenoid valve
US20100301978A1 (en) Linear actuator
US20090250645A1 (en) Solenoid valve
JP6571898B2 (en) Electromagnetic drive unit
WO2020110881A1 (en) Solenoid
JP2001068335A (en) Electromagnetically driving device and electromagnetic valve using same
JP4492649B2 (en) Bleed valve device
JP4998315B2 (en) solenoid valve
JP2010025217A (en) Solenoid valve
JP4703615B2 (en) Bleed valve device
JP4301318B2 (en) Bleed valve device
JP2007100829A (en) Valve device
CN116438613A (en) Electromagnetic valve
CN112789696B (en) Solenoid coil
KR102344692B1 (en) Solenoid
US11948737B2 (en) Solenoid
US11908620B2 (en) Solenoid
US20230013945A1 (en) Solenoid valve
JP2007051753A (en) Three-way control valve
JP5659032B2 (en) Electromagnetic drive unit
JP2009228801A (en) Solenoid valve
JP2006336766A (en) Electromagnetic drive unit
JP2005101345A (en) Linear solenoid valve
JP2009185975A (en) Electromagnetic drive unit
JP2009203993A (en) Solenoid valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019500519

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920003

Country of ref document: EP

Kind code of ref document: A1