JP7254958B2 - 見込み生産のパターン化された透明導電層 - Google Patents

見込み生産のパターン化された透明導電層 Download PDF

Info

Publication number
JP7254958B2
JP7254958B2 JP2021556411A JP2021556411A JP7254958B2 JP 7254958 B2 JP7254958 B2 JP 7254958B2 JP 2021556411 A JP2021556411 A JP 2021556411A JP 2021556411 A JP2021556411 A JP 2021556411A JP 7254958 B2 JP7254958 B2 JP 7254958B2
Authority
JP
Japan
Prior art keywords
transparent conductive
layer
conductive layer
oxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021556411A
Other languages
English (en)
Other versions
JP2022525656A (ja
Inventor
マリウス サーラック、セバスチャン
Original Assignee
セイジ・エレクトロクロミクス,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイジ・エレクトロクロミクス,インコーポレイテッド filed Critical セイジ・エレクトロクロミクス,インコーポレイテッド
Publication of JP2022525656A publication Critical patent/JP2022525656A/ja
Application granted granted Critical
Publication of JP7254958B2 publication Critical patent/JP7254958B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F2001/15145Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material the electrochromic layer comprises a mixture of anodic and cathodic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Description

本開示は、電気化学デバイスおよびそれを形成する方法に関する。
電気化学デバイスは、エレクトロクロミックスタックを含むことができ、透明導電層を使用して、スタックの動作のための電気接続を提供する。エレクトロクロミック(EC)デバイスは、印加電位に応じて、電気化学的酸化および還元に続いて、それらの光学特性を可逆的に改変することが可能な材料を採用する。光変調は、電気化学材料格子における電子および電荷補償イオンの同時挿入および抽出の結果である。
エレクトロクロミックデバイスの進歩は、デバイスが、製造中のスループットを維持しながら、より高速かつより均一なスイッチング速度を有することを求めている。
したがって、エレクトロクロミックデバイスの製造におけるさらなる改善が求められる。
一実施形態による、エレクトロクロミックデバイスの概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、一製造段階での電気化学の概略断面図である。 本開示の一実装例による、電気化学デバイスを形成するためのプロセスを表すフローチャートである。 一実施形態による、透明導電層の概略上面図である。 一実施形態による、透明導電層の概略上面図である。 本開示の一実装例による、絶縁グレージングユニットの概略図である。 様々なサンプルの保持電圧のグラフである。 別の実施形態による、エレクトロクロミックラミネートデバイスの概略断面図である。
当業者は、図中の要素が単純化および明瞭化のために示されており、必ずしも縮尺どおりに描かれていないことを理解している。例えば、図中の要素のいくつかの寸法は、本発明の実装例の理解を改善するのを助けるために、他の要素に対して誇張されている場合がある。
図面と組み合わせた以下の説明は、本明細書に開示される教示を理解するのを助けるために提供される。以下の考察は、本教示の具体的な実装例および実装例に焦点を合わせるであろう。この焦点は、本教示を説明するのを助けるために提供されており、本教示の範囲または適用性に対する限定として解釈されるべきではない。
本明細書で使用される場合、「含む(comprise)」、「含む(comprising)」、「含む(include)」、「含む(including)」、「有する(has)」、「有する(having)」という用語、またはこれらの任意の他の変形語は、非排他的な包含を含むことを意図している。例えば、特徴のリストを含むプロセス、方法、物品、または装置は、必ずしもそれらの特徴だけに限定されず、明示的に列記されていない、またはそのようなプロセス、方法、物品、または装置に固有でない他の特徴を含み得る。さらに、そうではないと明示的に述べられていない限り、「または(or)」は、包含的な「または」を指し、排他的な「または」を指さない。例えば、条件AまたはBは、以下のいずれか1つによって満たされる。Aは真(または存在する)かつBは偽(または存在しない)、Aは偽(または存在しない)かつBは真(または存在する)、およびAとBの両方が真(または存在する)である。
「1つ(a)」または「1つ(an)」の使用は、本明細書に記載の要素および構成要素を説明するために使用される。これは単に便宜上および本発明の範囲の一般的な意味を与えるために行われる。この説明は、他を意味することが明確でない限り、1つまたは少なくとも1つおよび複数も含む単数形、またはその逆を含むように読む必要がある。
「約」、「およそ」、または「実質的に」という言葉の使用は、パラメータの値が規定の値または位置に近いことを意味することを意図している。しかしながら、わずかな違いにより、値または位置が記載どおりにならない場合がある。
バスバー、孔、孔などを含むパターン化された特徴は、幅、深さまたは厚さ、および長さを有することができ、長さは、幅および深さまたは厚さよりも長い。本明細書で使用されるとき、直径は、円の幅であり、短軸は、楕円の幅である。
「インピーダンスパラメータ」は、デバイスに5mV~50mVが印加されたときに、-20℃で、DCバイアスによって5×5cmのデバイス上で、2log(周波数/Hz)で測定される、電気化学デバイスの有効抵抗-オーミック抵抗および電気化学的リアクタンスの複合効果-の測定値である。結果として生じる電流を測定し、100Hz~6MHzの範囲の各周波数でのインピーダンスおよび位相角を計算する。
他に定義されない限り、本明細書において使用されるすべての技術的および科学的用語は、本発明が属する分野の当業者によって一般的に理解されるのと同じ意味を有する。材料、方法、および例は、例示的なものにすぎず、限定的であることを意図しない。本明細書で説明しない範囲で、特定の材料および処理行為に関する多くの詳細は従来どおりであり、ガラス、蒸着、およびエレクトロクロミック技術の範囲の教科書および他の情報源に見出され得る。
本開示によれば、図1は、改善されたフィルム構造を有する、部分的に製作された電気化学デバイス100の断面図を例示する。例示を明瞭にする目的で、電気化学デバイス100は、可変透過デバイスである。一実施形態において、電気化学デバイス100は、エレクトロクロミックデバイスとすることができる。別の実施形態において、電気化学デバイス100は、薄膜電池とすることができる。しかしながら、本開示は、他のタイプのスクライブしたエレクトロアクティブデバイス、電気化学デバイス、ならびに異なるスタックまたはフィルム構造(例えば、追加の層)を有する他のエレクトロクロミックデバイスに同様に適用可能であることが認識されるであろう。図1の電気化学デバイス100に関して、デバイス100は、基板110および基板110を覆うスタックを含むことができる。スタックは、第1の透明導体層120と、陰極電気化学層130と、陽極電気化学層140と、第2の透明導体層150と、を含むことができる。一実施形態において、スタックはまた、陰極電気化学層130と陽極電気化学層140との間にイオン伝導層も含むことができる。
一実装例において、基板110としては、ガラス基板、サファイア基板、酸窒化アルミニウム基板、またはスピネル基板を挙げることができる。別の実装例において、基板110は、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、または上述のコポリマーなどの、透明ポリマーを含むことができる。基板110は、可撓性であるか、またはそうでない場合がある。特定の実装例において、基板110は、フロートガラスまたはホウケイ酸ガラスとすることができ、厚さ0.5mm~12mmの範囲の厚さを有することができる。基板110は、12mm、10mm以下、8mm以下、6mm以下、5mm以下、3mm以下、2mm以下、1.5mm以下、1mm以下、または0.01mm以下などの、16mm以下の厚さを有することができる。別の特定の実装例において、基板110は、50ミクロン~300ミクロンの範囲の厚さを有する鉱物ガラスである、極薄ガラスを含むことができる。特定の実装例において、基板110は、形成されている多くの異なる電気化学デバイスのために使用することができ、マザーボードと称することができる。
透明導電層120および150は、導電性金属酸化物または導電性ポリマーを含むことができる。その例としては、いずれかをAl、Ga、Inなどの三価元素でドープすることができる酸化スズもしくは酸化亜鉛、フッ素化酸化スズ、またはポリアニリン、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)などのスルホン化ポリマーなどを挙げることができる。別の実装例において、透明導電層120および150は、金、銀、銅、ニッケル、アルミニウム、またはこれらの任意の組み合わせを含むことができる。透明導電層120および150は、酸化インジウム、酸化インジウムスズ、ドープ酸化インジウム、酸化スズ、ドープ酸化スズ、酸化亜鉛、ドープ酸化亜鉛、酸化ルテニウム、ドープ酸化ルテニウム、およびこれらの任意の組み合わせを含むことができる。透明導電層120および150は、同じまたは異なる組成を有することができる。一実装例において、基板110の上の透明導電層120は、アクティブスタックから材料を除去することなく、第1の抵抗率および第2の抵抗率を有することができる。一実装例において、透明導電層120は、パターン122の第1の部分が第1の抵抗率に対応し、パターン124の第2の部分が第2の抵抗率に対応するパターンを有することができる。パターン122の第1の部分およびパターン124の第2の部分は、同じ材料とすることができる。一実装例において、パターン122の第1の部分は、抵抗率を増加させるために、短パルスレーザによって改変されている。一実装例において、第1の抵抗率は、第2の抵抗率よりも大きい。別の実装例において、第1の抵抗率は、第2の抵抗率よりも小さい。以下でより詳細に説明するように、パターンの第1の部分およびパターンの第2の部分は、第1の透明導電層120を改変することに由来する。
透明導電層120および150は、10nm~600nmの厚さを有することができる。一実装例において、透明導電層120および150は、200nm~500nmの厚さを有することができる。一実装例において、透明導電層120および150は、320nm~460nmの厚さを有することができる。一実装例において、第1の透明導電層120は、10nm~600nmの厚さを有することができる。一実装例において、第2の透明導電層150は、80nm~600nmの厚さを有することができる。
層130および140は、電極層とすることができ、一方の層は、陰極電気化学層とすることができ、他方の層は、陽極エレクトロクロミック層(対向電極層とも称される)とすることができる。一実施形態において、陰極電気化学層130は、エレクトロクロミック層である。陰極電気化学層130は、WO、V、MoO、Nb、TiO、CuO、Ni、NiO、Ir、Cr、Co、Mn、混合酸化物(例えば、W-Mo酸化物、W-V酸化物)、またはこれらの任意の組み合わせなどの無機金属酸化物材料を含むことができ、40nm~600nmの範囲の厚さを有し得る。一実装例において、陰極電気化学層130は、100nm~400nmの厚さを有することができる。一実装例において、陰極電気化学層130は、350nm~390nmの厚さを有することができる。陰極電気化学層130は、リチウム、アルミニウム、ジルコニウム、リン、窒素、フッ素、塩素、臭素、ヨウ素、アスタチン、ホウ素、リチウムを含むもしくは含まないホウ酸塩、リチウムを含むもしくは含まない酸化タンタル、リチウムを含むもしくは含まないランタニド系材料、別のリチウム系セラミック材料、またはこれらの任意の組み合わせを含むことができる。
陽極エレクトロクロミック層140は、陰極エレクトロクロミック層130もしくはTa、ZrO、HfO、Sbに関して列記される材料のいずれか、またはこれらの任意の組み合わせを含むことができ、酸化ニッケル(NiO、Ni、もしくはこれら2つの組み合わせ)、およびLi、Na、H、または別のイオンをさらに含むことができ、40nm~500nmの範囲の厚さを有することができる。一実装例において、陽極エレクトロクロミック層140は、150nm~300nmの厚さを有することができる。一実装例において、陽極エレクトロクロミック層140は、250nm~290nmの厚さを有することができる。いくつかの実装例において、リチウムが、第1の電極130または第2の電極140のうちの少なくとも1つに挿入され得る。
別の実装例において、デバイス100は、基板110と第1の透明導電層120との間に複数の層を含むことができる。一実装例において、基板110と第1の透明導電層120との間に反射防止層があり得る。反射防止層は、SiO、NbO、Nbを含むことができ、20nm~100nmの厚さであってもよい。デバイス100は、少なくとも2つのバスバーを含むことができ、一方のバスバーが第1の透明導電層120に電気的に接続され、第2のバスバーが第2の透明導電層150に電気的に接続される。
図3は、本開示の一実装例によるエレクトロクロミックデバイスを形成するためのプロセス300を表すフローチャートである。図2A~図2Fは、本開示の一実装例による様々な製造段階でのエレクトロクロミックデバイス200の概略断面図である。エレクトロクロミックデバイス200は、上記のエレクトロクロミックデバイス100と同様であり得る。プロセスは、基板210を形成することを含むことができる。基板210は、上記の基板110と同様であり得る。動作310で、図2Aに示すように、基板210上に第1の透明導電層220を堆積させることができる。第1の透明導電層220は、上記の第1の透明導電層120と同様であり得る。一実装例において、第1の透明導電層220の堆積は、5kW~20kWの電力で、200℃~400℃で、酸素およびアルゴンを含むスパッタガス中で、0.1m/分~0.5m/分の速度で、スパッタ堆積によって実行することができる。一実装例において、スパッタガスは、40%~80%の酸素および20%~60%のアルゴンを含む。一実装例において、スパッタガスは、50%の酸素および50%のアルゴンを含む。一実装例において、スパッタ堆積の温度は、250℃~350℃とすることができる。一実装例において、第1の透明導電層220は、10kW~15kWの電力で、スパッタ堆積によって実行することができる。
一実装例において、基板210と第2の透明導電層220との間に中間層を堆積させることができる。一実装例において、中間層は、反射防止層などの絶縁層を含むことができる。反射防止層は、酸化シリコン、酸化ニオブ、またはこれらの任意の組み合わせを含むことができる。特定の実装例において、中間層は、反射の低減を補助するために使用することができる、反射防止層とすることができる。反射防止層は、下層(下層の屈折率は、およそ2.0とすることができる)と、ArまたはN2などのクリーンで乾燥した空気または不活性ガス(多くのガスは、およそ1.0の屈折率を有する)との間の屈折率を有することができる。一実装例において、反射防止層は、1.4~1.6の範囲の屈折率を有することができる。反射防止層は、好適な屈折率を有する絶縁材料を含むことができる。特定の実装例において、反射防止層は、シリカを含むことができる。反射防止層の厚さは、薄くて十分な反射防止特性を提供するように選択することができる。反射防止層の厚さは、エレクトロクロミック層130および対向電極層140の屈折率に少なくとも部分的に依存することができる。中間層の厚さは、20nm~100nmの範囲とすることができる。
動作320で、図2Bに示すように、第1の透明導電層220上にエレクトロクロミック層230を堆積させることができる。エレクトロクロミック層230は、上記のエレクトロクロミック層130と同様であり得る。一実装例において、エレクトロクロミック層230の堆積は、23℃~400℃の温度で、酸素およびアルゴンを含むスパッタガス中で、タングステンのスパッタ堆積によって実行することができる。一実装例において、スパッタガスは、40%~80%の酸素および20%~60%のアルゴンを含む。一実装例において、スパッタガスは、50%の酸素および50%のアルゴンを含む。一実装例において、スパッタ堆積の温度は、100℃~350℃である。一実装例において、スパッタ堆積の温度は、200℃~300℃である。追加的に、タングステンの堆積は、100%の酸素を含むスパッタガス中でスパッタ堆積させることができる。
動作330で、図2Cに示すように、陰極電気化学層230上に陽極電気化学層240を堆積させることができる。一実装例において、陽極電気化学層240は、対向電極とすることができる。陽極電気化学層240は、上記の陽極電気化学層140と同様であり得る。一実装例において、陽極電気化学層240の堆積は、20℃~50℃の温度で、酸素およびアルゴンを含むスパッタガス中で、ニッケルおよびリチウムのスパッタ堆積によって実行することができる。一実装例において、スパッタガスは、60%~80%の酸素および20%~40%のアルゴンを含む。一実装例において、スパッタ堆積の温度は、22℃~32℃である。
動作340で、図2Dに示すように、陽極電気化学層240上に第2の透明導電層250を堆積させることができる。第2の透明導電層250は、上記の第2の透明導電層150と同様であり得る。一実装例において、第2の透明導電層250の堆積は、5kW~20kWの電力で、20℃~50℃の温度で、酸素およびアルゴンを含むスパッタガス中で、スパッタ堆積によって実行することができる。一実装例において、スパッタガスは、1%~10%の酸素および90%~99%のアルゴンを含む。一実装例において、スパッタガスは、8%の酸素および92%のアルゴンを含む。一実装例において、スパッタ堆積の温度は、22℃~32℃である。一実装例において、第2の透明導電層250を堆積させた後に、基板210、第1の透明導電層220、陰極電気化学層230、陽極電気化学層240、および第2の透明導電層250を、2分~10分にわたって300℃~500℃の温度で加熱することができる。一実装例において、第2の透明導電層250の上に追加の層を堆積させることができる。
上記のスタックの堆積の後に、パターンを決定することができる。パターンは、第1の領域および第2の領域を含むことができる。第1の領域は、第1の抵抗率を有することができ、第2の領域は、第2の抵抗率を有することができる。動作350で、図2Eに示すように、第1の透明導電層220をパターン化することができる。一実施形態において、400nm~700nmの波長を有する短パルスレーザ260を、基板110を通して指向させて、第1の透明導電層220をパターン化する。一実施形態において、図7に示すように、短パルスレーザを、基板110および支持ラミネート層712を通して指向させて、第1の透明導電層220をパターン化することができる。一実施形態において、500nm~550nmの波長を有する短パルスレーザ260を、基板110を通して指向させて、第1の透明導電層220をパターン化する。レーザ260の波長および持続時間は、デバイス200内の熱の蓄積を防止するように選択される。一実施形態において、基板210は、影響を受けないままであり、一方で、第1の透明導電層220をパターン化することができる。別の実施形態において、基板210および支持ラミネート層712は、影響を受けないままであり、一方で、第1の透明導電層220をパターン化することができる。基板210と第1の透明導電層220との間に層を含む一実施形態において、短パルスレーザ260は、第1の透明導電層220に到達し、それをパターン化するまで、基板210およびそれに続く層を通して指向させることができる。第1の透明導電層220をパターン化することは、基板210、陰極電気化学層230、陽極電気化学層240、および第2の透明導電層250を完全な形のまま維持しながら行うことができる。別の実施形態において、第1の透明導電層220をパターン化することは、基板210、陰極電気化学層230、陽極電気化学層240、第2の透明導電層250、支持ラミネート層712、およびラミネート層711を完全な形のまま維持しながら行うことができる。別の実施形態において、レーザ260は、他のいずれの層にも影響を及ぼすことなく、第1の透明導電層220に到達するまで、第2の透明導電層250、陽極電気化学層240、および陰極電気化学層230を通してレーザビームを指向させることによって第1の透明導電層230をパターン化するように指向させることができる。さらに別の実施形態において、レーザ260は、他のいずれの層にも影響を及ぼすことなく、第1の透明導電層220に到達するまで、ラミネート層711、第2の透明導電層250、陽極電気化学層240、および陰極電気化学層230を通してレーザビームを指向させることによって第1の透明導電層230をパターン化するように指向させることができる。
一実施形態において、短パルスレーザ260は、500nm~550nmの波長を有することができる。一実施形態において、短パルスレーザ260は、50フェムト秒~1秒の持続時間にわたって発射する。レーザ260の波長は、基板210と比較して、レーザ260のエネルギーが第1の透明導電層220によって吸収されるように選択することができる。一実施形態において、短パルスレーザ260は、デバイス200にわたって移動させて、パターンを形成することができる。一実施形態において、パターンは、第1の抵抗率および第2の抵抗率を含むことができる。短パルスレーザ260は、いかなる材料もスタックから除去することなく、第1の透明導電層220の材料を変換して、抵抗率を変化させることができる。すなわち、短パルスレーザ260は、決定されたパターンに対応する第1の領域を標的にして、その領域の抵抗率を変化させ、一方で、第1の透明導電層の残部を同じままにする。その場合、結果として生じるパターンは、図2Fに示すように、第1の抵抗率および第2の抵抗率を含むことができる。パターン化の前に、第1の透明導電層220は、均一な抵抗率を有することができる。パターン化の後に、第1の透明導電層220は、第1の抵抗率および第2の抵抗率を含むパターンを有することができる。一実施形態において、第1の領域は、第1の抵抗率を有することができ、第2の領域は、第2の抵抗率を有することができる。一実施形態において、第1の領域および第2の領域は、同じ組成の材料を有することができる。一実施形態において、第1の抵抗率は、第2の抵抗率よりも大きい。一実施形態において、第1の抵抗率は、第2の抵抗率よりも小さい。一実施形態において、第1の抵抗率は、15Ω/sq~100Ω/sqとすることができる。一実施形態において、第1の透明導電層220は、第1および第2の抵抗率を含むことができ、一方で、第2の透明導電層250は、単一の抵抗率を含むことができる。すべての層を基板210に堆積させた後にデバイスをパターン化することは、製造コストを低減させる。さらに、パターン化されたデバイスは、パネルの中央から端まで見たときに、より均一で均質な高速遷移を有する。
図4Aおよび図4Bは、様々な実施形態による、第1の透明導電層220の概略上面図である。第1の透明導電層220は、第1の領域422および第2の424を含む、パターンを有することができる。一実施形態において、第1の領域422は、第1の抵抗率を有することができ、第2の領域424は、第2の抵抗率を有することができる。一実装例において、パターンは、第1の透明導電層220にわたって変化する。一実施形態において、パターンは、幾何学形状を含むことができる。一実施形態において、パターンは、第1の透明導電層220の中央に向かってサイズを減少させることができ、透明導電層220の両端部に向かってサイズを増加させることができる。一実施形態において、第1の領域422は、図4Aに示すように、第2の領域424よりも小さくすることができる。別の実施形態において、第1の領域422は、図2Bに示すように、第2の領域424よりも大きくすることができる。一実施形態において、第1の領域422は、第1の透明導電層220の一方の縁部から第1の透明導電層220の反対側の縁部へと増加するように、累進的にすることができる。
電気化学デバイスのいずれかは、その後に、絶縁ガラスユニットの一部として処理することができる。図5は、本開示の実装例による、絶縁グレージングユニット500の概略図である。絶縁ガラスユニット500は、第1のパネル505と、第1のパネル505に結合された電気化学デバイス520と、第2のパネル510と、第1のパネル505と第2のパネル510との間のスペーサ515と、を含むことができる。第1のパネル505は、ガラスパネル、サファイアパネル、酸窒化アルミニウムパネル、またはスピネルパネルとすることができる。別の実装例において、第1のパネルは、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、または上述のコポリマーなどの、透明ポリマーを含むことができる。第1のパネル505は、可撓性であるか、またはそうでない場合がある。特定の実装例において、第1のパネル505は、フロートガラスまたはホウケイ酸ガラスとすることができ、厚さ2mm~20mmの範囲の厚さを有することができる。第1のパネル505は、熱処理パネル、熱強化パネル、またはテンパーパネルとすることができる。一実装例において、電気化学デバイス520は、第1のパネル505に結合される。別の実装例において、電気化学デバイス520は、基板525上にあり、基板525は、第1のパネル505に結合される。一実装例において、第1のパネル505と電気化学デバイス520との間に積層中間層530が配置され得る。一実装例において、第1のパネル505と電気化学デバイス520を含む基板525との間に積層中間層530が配置され得る。電気化学デバイス520は、基板525の第1の側521とすることができ、積層中間層530は、基板の第2の側522に結合することができる。第1の側521は、第2の側522と平行で、かつその反対側とすることができる。
第2のパネル510は、ガラスパネル、サファイアパネル、酸窒化アルミニウムパネル、またはスピネルパネルとすることができる。別の実装例において、第2のパネルは、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、または上述のコポリマーなどの、透明ポリマーを含むことができる。第2のパネルは、可撓性であるか、またはそうでない場合がある。特定の実装例において、第2のパネル510は、フロートガラスまたはホウケイ酸ガラスとすることができ、厚さ5mm~30mmの範囲の厚さを有することができる。第2のパネル510は、熱処理パネル、熱強化パネル、またはテンパーパネルとすることができる。一実施形態において、第1のパネル505と第2のパネル510との間にスペーサ515があり得る。別の実施形態において、基板525と第2のパネル510との間にスペーサ515がある。さらに別の実施形態において、電気化学デバイス520と第2のパネル510との間にスペーサ515がある。
別の実装例において、絶縁ガラスユニット500は、追加の層をさらに含むことができる。絶縁ガラスユニット500は、第1のパネルと、第1のパネル505に結合された電気化学デバイス520と、第2のパネル510と、第1のパネル505と第2のパネル510との間のスペーサ515と、第3のパネルと、第1のパネル505と第2のパネル510との間の第2のスペーサと、を含むことができる。一実装例において、電気化学デバイスは、基板上にあり得る。基板は、積層中間層を使用して第1のパネルに結合させることができる。第1のスペーサは、基板と第3のパネルとの間にあり得る。一実装例において、基板は、一方の側で第1のパネルに結合され、他方の側で第3のパネルから離間されている。すなわち、第1のスペーサは、電気化学デバイスと第3のパネルとの間にあり得る。第2のスペーサは、第3のパネルと第2のパネルとの間にあり得る。そのような一実施形態において、第3のパネルは、第1のスペーサと第2のスペーサとの間にある。すなわち、第3のパネルは、第1の側で第1のスペーサに結合され、第1の側の反対側の第2の側で第2のスペーサに結合される。
上記の、図で例示した実装例は、長方形状のデバイスに限定されない。むしろ、説明および図は、デバイスの断面図を表すことのみを意味し、いかなる様態においても、そのようなデバイスの形状を限定することを意味しない。例えば、デバイスは、長方形以外の形状(例えば、三角形構造、円形構造、円弧形構造など)で形成することができる。さらなる例の場合、デバイスは、三次元的(例えば、凸状、凹状など)に成形され得る。
図7は、改善されたフィルム構造を有する、積層された電気化学デバイス700の断面図を例示する。例示を明瞭にする目的で、電気化学デバイス700は、可変透過デバイスである。電気化学デバイス700は、上でより詳細に説明した電気化学デバイス100と同様であってもよい。電気化学デバイス700は、基板110および基板110を覆うスタックを含むことができる。電気化学デバイス700はまた、ラミネート層711および支持ラミネート層712を含み得る。一実装例において、電気化学デバイス700は、支持ラミネート層712を伴わずに、ラミネート層711を含み得る。スタックは、第1の透明導体層120と、陰極電気化学層130と、陽極電気化学層140と、第2の透明導体層150と、を含むことができる。一実施形態において、スタックはまた、陰極電気化学層130と陽極電気化学層140との間にイオン伝導層も含むことができる。
一実装例において、ラミネート層711および支持ラミネート層712は、ガラス基板、サファイア基板、酸窒化アルミニウム基板、またはスピネル基板を含み得る。別の実装例において、ラミネート層711および支持ラミネート層712は、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、または上述のコポリマーなどの、透明ポリマーを含むことができる。ラミネート層711および支持ラミネート層712は、可撓性であっても、可撓性でなくてもよい。特定の実装例において、ラミネート層711は、支持ラミネート層712と等しい厚さを有し得る。一実装例において、ラミネート層711は、0.5mm~5mmの厚さを有し得る。一実装例において、支持ラミネート層712は、1mm~25mmの厚さを有し得る。
多くの異なる態様および実装例が可能である。これらの態様および実装例のうちのいくつかを以下で説明する。本明細書を読んだ後、当業者は、これらの態様および実装例が例示にすぎず、本発明の範囲を限定しないことを理解されよう。例示的な実装例は、以下に列記したもののうちのいずれか1つ以上に従うことができる。
実施形態1.電気化学デバイスを形成する方法であって、方法は、基板および基板を覆うスタックを提供することを含むことができる。スタックは、基板の上の第1の透明導電層と、第1の透明導電層の上の陰極電気化学層と、エレクトロクロミック層の上の陽極電気化学層と、陽極電気化学層を覆う第2の透明導電層と、を含むことができる。本方法は、第1の透明導電層の第1のパターンを決定することをさらに含み得る。第1のパターンは、第1の領域および第2の領域を含むことができる。第1の領域および第2の領域は、同じ材料を含み得る。本方法はまた、第1の領域から材料を除去することなく、第1の透明導電層の第1の領域をパターン化することを含むことができる。パターン化の後、第1の領域は、第1の抵抗率を有することができ、第2の領域は、第2の抵抗率を有することができる。
実施形態2.第1の透明導電層をパターン化して第1の抵抗率および第2の抵抗率を形成することが、基板を通してパターン化され得る、実施形態1に記載の方法。
実施形態3.第1の透明導電層をパターン化して第1の抵抗率および第2の抵抗率を形成することが、アクティブスタックを形成した後にパターン化され得る、実施形態1に記載の方法。
実施形態4.第1の透明導電層をパターン化することが、400nm~700nmの波形を有する短パルスレーザを使用することを含む、実施形態1に記載の方法。
実施形態5.短パルスレーザが、500nm~550nmの波長を有する、実施形態1に記載の方法。
実施形態6.短パルスレーザを、50フェムト秒~1秒の持続時間にわたって発射する、実施形態1に記載の方法。
実施形態7.第1の抵抗率が、第2の抵抗率よりも大きい、実施形態1に記載の方法。
実施形態8.第1の抵抗率が、15Ω/sq~100Ω/sqである、実施形態1に記載の方法。
実施形態9.基板が、ガラス、サファイア、酸窒化アルミニウム、スピネル、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、上述のコポリマー、フロートガラス、ホウケイ酸ガラス、またはこれらの任意の組み合わせを含む、実施形態1に記載の方法。
実施形態10.スタックが、陰極電気化学層と陽極電気化学層との間にイオン伝導層をさらに備える、実施形態1に記載の方法。
実施形態11.イオン伝導層が、リチウム、ナトリウム、水素、ジュウテリウム、カリウム、カルシウム、バリウム、ストロンチウム、マグネシウム、酸化リチウム、Li2WO4、タングステン、ニッケル、炭酸リチウム、水酸化リチウム、過酸化リチウム、またはこれらの任意の組み合わせを含む、実施形態10に記載の方法。
実施形態12.陰極電気化学層が、エレクトロクロミック材料を含む、実施形態1に記載の方法。
実施形態13.エレクトロクロミック材料が、WO、V、MoO、Nb、TiO、CuO、Ni、NiO、Ir、Cr、Co、Mn、混合酸化物(例えば、W-Mo酸化物、W-V酸化物)、リチウム、アルミニウム、ジルコニウム、リン、窒素、フッ素、塩素、臭素、ヨウ素、アスタチン、ホウ素、リチウムを含むもしくは含まないホウ酸塩、リチウムを含むもしくは含まない酸化タンタル、リチウムを含むもしくは含まないランタニド系材料、別のリチウム系セラミック材料、またはこれらの任意の組み合わせを含む、実施形態12に記載の方法。
実施形態14.第1の透明導電層が、酸化インジウム、酸化インジウムスズ、ドープ酸化インジウム、酸化スズ、ドープ酸化スズ、酸化亜鉛、ドープ酸化亜鉛、酸化ルテニウム、ドープ酸化ルテニウム、銀、金、銅、アルミニウム、およびこれらの任意の組み合わせを含む、実施形態1に記載の方法。
実施形態15.第2の透明導電層が、酸化インジウム、酸化インジウムスズ、ドープ酸化インジウム、酸化スズ、ドープ酸化スズ、酸化亜鉛、ドープ酸化亜鉛、酸化ルテニウム、ドープ酸化ルテニウム、およびこれらの任意の組み合わせを含む、実施形態1に記載の方法。
実施形態16.陽極電気化学層が、WO、V、MoO、Nb、TiO、CuO、Ir、Cr、Co、Mn、Ta、ZrO、HfO、Sbなどの無機金属酸化物の電気化学的に活性な材料、リチウムを含むもしくは含まないランタニド系材料、別のリチウム系セラミック材料、酸化ニッケル(NiO、Ni、もしくはこれら2つの組み合わせ)、およびLi、窒素、Na、H、もしくは別のイオン、任意のハロゲン、またはこれらの任意の組み合わせを含む、実施形態1に記載の方法。
実施形態17.基板および基板の上の第1の透明導電層を含む、電気化学デバイス。第1の透明導電層は、材料を含み、材料は、第1の抵抗率および第2の抵抗率を有する。電気化学デバイスはまた、第2の透明導電層、第1の透明導電層と第2の透明導電層との間の陽極電気化学層、および第1の透明導電層と第2の透明導電層との間の陰極電気化学層を含み得る。
実施形態18.第1の透明導電層から材料が除去されない、実施形態17に記載の電気化学デバイス。
実施形態19.絶縁グレージングユニットは、第1のパネルおよび第1のパネルに結合された電気化学デバイスを含むことができる。電気化学デバイスは、基板および基板上に配置された第1の透明導電層を含むことができる。第1の透明導電層は、材料を含み、材料は、第1の抵抗率および第2の抵抗率を有する。電気化学デバイスはまた、第1の透明導電層を覆う陰極電気化学層と、陰極電気化学層を覆う陽極電気化学層と、第2の透明導電層と、を含むことができる。絶縁グレージングユニットはまた、第2のパネルおよび第1のパネルと第2のパネルとの間に配置されたスペーサ枠も含むことができる。
実施形態20.電気化学デバイスが、第1のパネルと第2のパネルとの間にある、実施形態19に記載の絶縁グレージングユニット。
実施例を提供して、パターン化された層のない他の電気化学デバイスと比較したときの、パターン化されたITO層を有する電気化学デバイスの性能を実証する。以下の様々な実施例について、上記の様々な実施形態に従ってサンプル1(S1)を形成した。比較試料のサンプル2(S2)は、パターン化されたITO層のない一実施形態であると理解される。
図6は、様々なサンプルS1およびS2の保持電圧のグラフである。図6の例示は、サンプルが透明から淡色に移行するときの保持電圧でのサンプルを示す。図5で分かるように、S1は、均質なパターンを有し、一方で、S2は、変化するパターンを有する。S1サンプルの場合、保持中の中央から縁部への違いは、80%を超えて低減された。
上記の一般的な説明または例で説明した機能のすべてが必要なわけではなく、特定の機能の一部は必要でない場合があり、説明した機能に加えて1つ以上の機能を実施することができることに留意されたい。さらにまた、機能が記載される順序は、必ずしも実施される順序ではない。
明確にするために、本明細書で別々の実装例の文脈で説明されている特定の特徴は、単一の実装例において組み合わせて提供することもできる。逆に、簡潔にするために単一の実装例の文脈で説明されている様々な特徴は、別々にまたは任意の副組み合わせで提供することもできる。さらに、範囲で述べられた値への言及は、その範囲内のありとあらゆる値を含む。
利益、他の利点、および問題に対する解決策は、特定の実装例に関して上記で説明されている。しかしながら、利益、利点、問題の解決策、および任意の利益、利点、もしくは解決策が発生またはより顕著になる可能性のある任意の特徴は、いずれかまたはすべての特許請求の範囲の重要な、必須の、または本質的な特徴として解釈されるべきではない。
本明細書に記載された実装例の詳述および例示は、様々な実装例の構造の一般的な理解を提供することを意図する。明細書および例示は、本明細書に記載の構造または方法を使用する装置およびシステムのすべての要素および特徴の網羅的かつ包括的な説明として役立つことを意図するものではない。別個の実装例はまた、単一の実装例において組み合わせて提供されてもよく、逆に、簡潔にするために、単一の実装例の文脈で説明される様々な特徴もまた、別個にまたは任意の副組み合わせで提供されてもよい。さらに、範囲で述べられた値への言及は、その範囲内のありとあらゆる値を含む。本明細書を読んだだけで、多くの他の実装例が当業者には明らかであり得る。本開示の範囲から逸脱することなく、構造的置換、論理的置換、または別の変更を行うことができるように、本開示から他の実装例が使用され、かつ導出され得る。したがって、本開示は限定的ではなく、例示的とみなされるべきである。

Claims (9)

  1. 電気化学デバイスを形成する方法であって、前記方法が、
    基板および前記基板を覆うスタックを提供するステップであって、前記スタックが、
    前記基板の上の第1の透明導電層、
    前記第1の透明導電層の上の陰極電気化学層、
    前記陰極電気化学層の上の陽極電気化学層、および
    前記陽極電気化学層を覆う第2の透明導電層
    を含む、ステップと、
    前記第1の透明導電層の第1のパターンを決定するステップであって、前記第1のパターンが、第1の領域および第2の領域を含み、前記第1の領域および前記第2の領域が、同じ材料を含む、ステップと、
    前記第1の領域から前記材料を除去することなく、前記第1の透明導電層にレーザを指向させることによって、前記第1の透明導電層の前記第1の領域をパターン化するステップと
    を含み、前記第1の領域をパターン化した後に、前記第1の領域が、第1の抵抗率を有し、前記第2の領域が、第2の抵抗率を有し、
    前記第1の抵抗率および前記第2の抵抗率を形成するために前記第1の透明導電層をパターン化するステップが、前記スタックを形成した後に、前記基板を通して前記第1の透明導電層にレーザを指向させることによって、パターン化される、方法。
  2. 前記基板が、ガラス、サファイア、酸窒化アルミニウム、スピネル、ポリアクリル酸化合物、ポリアルケン、ポリカーボネート、ポリエステル、ポリエーテル、ポリエチレン、ポリイミド、ポリスルホン、ポリスルフィド、ポリウレタン、ポリビニルアセテート、別の好適な透明ポリマー、上述のコポリマー、フロートガラス、ホウケイ酸ガラス、またはこれらの任意の組み合わせを含む、請求項1に記載の方法。
  3. 前記スタックが、前記陰極電気化学層と前記陽極電気化学層との間にイオン伝導層をさらに備える、請求項1に記載の方法。
  4. 前記イオン伝導層が、リチウム、ナトリウム、水素、ジュウテリウム、カリウム、カルシウム、バリウム、ストロンチウム、マグネシウム、酸化リチウム、LiWO、タングステン、ニッケル、炭酸リチウム、水酸化リチウム、過酸化リチウム、またはこれらの任意の組み合わせを含む、請求項に記載の方法。
  5. 前記陰極電気化学層が、エレクトロクロミック材料を含む、請求項1に記載の方法。
  6. 前記エレクトロクロミック材料が、WO、V、MoO、Nb、TiO、CuO、Ni、NiO、Ir、Cr、Co、Mn、混合酸化物(例えば、W-Mo酸化物、W-V酸化物)、リチウム、アルミニウム、ジルコニウム、リン、窒素、フッ素、塩素、臭素、ヨウ素、アスタチン、ホウ素、リチウムを含むもしくは含まないホウ酸塩、リチウムを含むもしくは含まない酸化タンタル、リチウムを含むもしくは含まないランタニド系材料、別のリチウム系セラミック材料、またはこれらの任意の組み合わせを含む、請求項に記載の方法。
  7. 前記第1の透明導電層が、酸化インジウム、酸化インジウムスズ、ドープ酸化インジウム、酸化スズ、ドープ酸化スズ、酸化亜鉛、ドープ酸化亜鉛、酸化ルテニウム、ドープ酸化ルテニウム、銀、金、銅、アルミニウム、およびこれらの任意の組み合わせを含む、請求項1に記載の方法。
  8. 前記第2の透明導電層が、酸化インジウム、酸化インジウムスズ、ドープ酸化インジウム、酸化スズ、ドープ酸化スズ、酸化亜鉛、ドープ酸化亜鉛、酸化ルテニウム、ドープ酸化ルテニウム、およびこれらの任意の組み合わせを含む、請求項1に記載の方法。
  9. 前記陽極電気化学層が、機金属酸化物の電気化学的に活性な材料、リチウムを含むもしくは含まないランタニド系材料、リチウムを含む前記ランタニド系材料以外の別のリチウム系セラミック材料、酸化ニッケル(NiO、Ni、もしくはこれら2つの組み合わせ)、i、窒素、Na、H、意のハロゲン、またはこれらの任意の組み合わせを含む、請求項1に記載の方法。
JP2021556411A 2019-03-20 2020-03-17 見込み生産のパターン化された透明導電層 Active JP7254958B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962821125P 2019-03-20 2019-03-20
US62/821,125 2019-03-20
PCT/US2020/023219 WO2020190979A1 (en) 2019-03-20 2020-03-17 Made-to-stock patterned transparent conductive layer

Publications (2)

Publication Number Publication Date
JP2022525656A JP2022525656A (ja) 2022-05-18
JP7254958B2 true JP7254958B2 (ja) 2023-04-10

Family

ID=72516303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021556411A Active JP7254958B2 (ja) 2019-03-20 2020-03-17 見込み生産のパターン化された透明導電層

Country Status (6)

Country Link
US (1) US20200301228A1 (ja)
EP (1) EP3942360A4 (ja)
JP (1) JP7254958B2 (ja)
CN (1) CN113574449A (ja)
TW (1) TWI734419B (ja)
WO (1) WO2020190979A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725667B (zh) 2018-12-28 2021-04-21 美商塞奇電致變色公司 形成電化學裝置之方法
CN116457721A (zh) * 2020-12-21 2023-07-18 Sage电致变色显示有限公司 用于制造包括一个或多个电致变色装置的母板的设备和方法
CN117916658A (zh) * 2021-09-07 2024-04-19 Sage电致变色显示有限公司 包括集成电子器件模块的隔热玻璃窗单元
WO2023039443A1 (en) * 2021-09-07 2023-03-16 Sage Electrochromics, Inc. Insulated glazing unit including an integrated sensor
US20230109428A1 (en) * 2021-10-06 2023-04-06 Sage Electrochromics, Inc. Electromagnetic Communication Enhancements Through Transparent Conductive Layers on a Substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267834A (ja) 2005-03-25 2006-10-05 Ricoh Co Ltd エレクトロクロミック表示素子
WO2014121809A1 (en) 2013-02-06 2014-08-14 Isoclima S.P.A. Window construction
JP2015527614A (ja) 2012-08-08 2015-09-17 キネストラル・テクノロジーズ・インコーポレイテッドKinestral Technologies,Inc. 複合電気導電層を有したエレクトロクロミック多層デバイス
JP2017522592A (ja) 2014-06-17 2017-08-10 セイジ・エレクトロクロミクス,インコーポレイテッド 耐湿性エレクトロクロミックデバイス
JP2018525226A (ja) 2015-06-19 2018-09-06 ジェンテックス コーポレイション 第2の面のレーザーアブレーション

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012060A (ja) * 1996-06-26 1998-01-16 Casio Comput Co Ltd 透明導電膜の形成方法
US6597489B1 (en) * 1999-06-30 2003-07-22 Gentex Corporation Electrode design for electrochromic devices
US8013270B2 (en) * 2006-10-06 2011-09-06 Sony Corporation Laser processing apparatus, laser processing method, manufacturing method of wiring substrate, manufacturing method of display apparatus and wiring substrate
JP5409369B2 (ja) * 2006-10-12 2014-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤベースの透明導電体およびその適用
FR2942665B1 (fr) * 2009-03-02 2011-11-04 Saint Gobain Dispositif electrocommandable a coloration/decoloration homogene sur toute la surface
US8164818B2 (en) * 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
BR112013020151A2 (pt) * 2011-02-09 2016-11-08 Kinestral Technologies Inc dispositivos eletrocrômicos de multicamadas com comutação espacialmente coordenada
SG11201402879XA (en) * 2011-12-12 2014-07-30 View Inc Thin-film devices and fabrication
JP6162717B2 (ja) * 2011-12-21 2017-07-12 スリーエム イノベイティブ プロパティズ カンパニー 銀ナノワイヤベースの透明な導電性コーティングのレーザーパターニング
WO2013173070A1 (en) * 2012-05-18 2013-11-21 3M Innovative Properties Company Corona patterning of overcoated nanowire transparent conducting coatings
US20150153622A1 (en) * 2013-12-03 2015-06-04 Sage Electrochromics, Inc. Methods for producing lower electrical isolation in electrochromic films
JP2015133272A (ja) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 透明導電膜付き基材と、このパターニング方法及び、これを用いた透明タッチパネル
EP3158391A4 (en) * 2014-06-17 2018-03-07 Sage Electrochromics, Inc. Controlled switching for electrochromic devices
US9625783B2 (en) * 2014-07-31 2017-04-18 Sage Electrochromics, Inc. Controlled heating for electrochromic devices
CN107209432B (zh) * 2014-12-19 2021-09-03 唯景公司 减少电致变色装置中汇流条下方的缺陷
CN108291424B (zh) * 2015-10-29 2020-06-12 唯景公司 用于光学可切换装置的控制器
EP3559736A4 (en) * 2016-12-22 2020-07-15 Sage Electrochromics, Inc. DEVICE WITH AN ELECTROCHROM, CONFIGURED DEVICE FOR MAINTAINING A CONTINUOUSLY LEVELED TRANSMISSION STATE
CN110337716A (zh) * 2017-02-27 2019-10-15 Sage电致变色显示有限公司 包括基板和透明导电层的电气设备及形成电气设备的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267834A (ja) 2005-03-25 2006-10-05 Ricoh Co Ltd エレクトロクロミック表示素子
JP2015527614A (ja) 2012-08-08 2015-09-17 キネストラル・テクノロジーズ・インコーポレイテッドKinestral Technologies,Inc. 複合電気導電層を有したエレクトロクロミック多層デバイス
WO2014121809A1 (en) 2013-02-06 2014-08-14 Isoclima S.P.A. Window construction
JP2017522592A (ja) 2014-06-17 2017-08-10 セイジ・エレクトロクロミクス,インコーポレイテッド 耐湿性エレクトロクロミックデバイス
JP2018525226A (ja) 2015-06-19 2018-09-06 ジェンテックス コーポレイション 第2の面のレーザーアブレーション

Also Published As

Publication number Publication date
TWI734419B (zh) 2021-07-21
TW202105025A (zh) 2021-02-01
US20200301228A1 (en) 2020-09-24
CN113574449A (zh) 2021-10-29
WO2020190979A1 (en) 2020-09-24
EP3942360A4 (en) 2022-11-16
EP3942360A1 (en) 2022-01-26
JP2022525656A (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
JP7254958B2 (ja) 見込み生産のパターン化された透明導電層
JP7256871B2 (ja) 電気活性デバイス及び方法
JP5420818B2 (ja) 改善されたイオン伝導体層を有するエレクトロクロミック素子
US12013622B2 (en) Made-to-stock patterned transparent conductive layer
JP2007108750A5 (ja)
US10996535B1 (en) Electrochromic device with buffer layer(s)
CN112470065B (zh) 电化学设备及其形成方法
KR102010754B1 (ko) 전기변색소자
US20220121077A1 (en) Electrochromic device including a means for mechanical resistance and a process of forming the same
US20220260884A1 (en) Controlled reflectance in electrochromic devices
US20230089440A1 (en) Communication enabled pattern in electrochromic devices
KR20190118120A (ko) 전기변색필름
US20230092228A1 (en) Cloaking pattern in electrochromic devices
US12066734B1 (en) Electrochromic device having various uses
KR102170911B1 (ko) 일렉트로크로믹 디바이스의 제조방법 및 그에 의한 일렉트로크로믹 디바이스
TW202244579A (zh) 用於製造包含一或更多電致變色裝置的主機板之設備及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7254958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150