JP7252923B2 - Electrode sheet manufacturing method - Google Patents

Electrode sheet manufacturing method Download PDF

Info

Publication number
JP7252923B2
JP7252923B2 JP2020141658A JP2020141658A JP7252923B2 JP 7252923 B2 JP7252923 B2 JP 7252923B2 JP 2020141658 A JP2020141658 A JP 2020141658A JP 2020141658 A JP2020141658 A JP 2020141658A JP 7252923 B2 JP7252923 B2 JP 7252923B2
Authority
JP
Japan
Prior art keywords
laminated
longitudinal direction
composite
electrode sheet
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020141658A
Other languages
Japanese (ja)
Other versions
JP2022037492A (en
Inventor
洸太 中村
健吾 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020141658A priority Critical patent/JP7252923B2/en
Publication of JP2022037492A publication Critical patent/JP2022037492A/en
Application granted granted Critical
Publication of JP7252923B2 publication Critical patent/JP7252923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極シートの製造方法に関する。 The present invention relates to a method for manufacturing an electrode sheet.

特許文献1には、長手方向に延びる帯状の集電箔のうち電極合材層が積層された積層集電箔部と電極合材層とを有する帯状の合材積層部、及び、集電箔のうち、電極合材層が積層されることなく、合材積層部に対して幅方向の両側に隣り合って長手方向に延びる帯状の一対の非合材積層部、を備える電極シートの製造方法が開示されている。具体的には、延伸工程において、小径部と大径部を有する延伸ロールに対し、合材積層部が小径部に対向すると共に、非合材積層部が大径部に圧接する態様で、電極シートを延伸ロールに巻き付けて、非合材積層部を長手方向に延伸させる。その後、ロールプレス工程において、延伸工程を行った電極シートについて、合材積層部をロールプレスして、電極合材層を圧密化すると共に積層集電箔部を長手方向に圧延する。 Patent Document 1 discloses a strip-shaped composite laminated part having a laminated collector foil part in which an electrode composite material layer is laminated and an electrode composite material layer of a strip-shaped current collector foil extending in the longitudinal direction, and a current collector foil Among them, the method for producing an electrode sheet comprising a pair of strip-shaped non-composite material laminated portions extending in the longitudinal direction adjacent to both sides in the width direction of the composite material laminated portion without being laminated with the electrode composite material layer. is disclosed. Specifically, in the stretching step, with respect to a stretching roll having a small diameter portion and a large diameter portion, the composite material laminated portion faces the small diameter portion, and the non-compound laminated portion is pressed against the large diameter portion. The sheet is wrapped around a stretching roll to stretch the non-composite laminate in the longitudinal direction. After that, in the roll-pressing step, the electrode sheet subjected to the stretching step is roll-pressed to compact the electrode mixture layer and roll the laminated collector foil portion in the longitudinal direction.

特開2017-228349号公報JP 2017-228349 A

ところで、特許文献1の製造方法では、延伸工程による非合材積層部の長手方向への伸び率と、ロールプレス工程による積層集電箔部(集電箔のうち合材積層部に含まれる部位)の長手方向への伸び率を同程度にすることで、電極シートに発生する皺を低減する。このため、例えば、合材積層部の電極合材層の圧縮率を高めるためにロールプレス工程におけるプレス力を高めることで、ロールプレスによる合材積層部の集電箔の伸び率が大きくなる場合(例えば、伸び率が0.8%以上になる場合)には、延伸工程において、集電箔に掛ける張力を大きくして、非合材積層部の延伸量を大きくする必要がある。しかしながら、延伸工程において、集電箔に掛ける張力を大きくすることで、非合材積層部の破断が発生する虞があった。例えば、ロールプレス工程によって積層集電箔部の長手方向への伸び率が0.8%以上になる場合に、非合材積層部の長手方向への伸び率を、ロールプレス工程による積層集電箔部の長手方向への伸び率と同等とするために、延伸工程において、非合材積層部の長手方向への伸び率が0.8%になるように集電箔に掛ける張力を設定して、非合材積層部を延伸したときには、非合材積層部の破断が発生する虞があった。 By the way, in the manufacturing method of Patent Document 1, the elongation rate in the longitudinal direction of the non-composite material laminated portion in the stretching process and the laminated current collector foil portion (the portion included in the composite material laminated portion of the current collector foil) in the roll press process ) to reduce the wrinkles generated in the electrode sheet by making the elongation rate in the longitudinal direction about the same. For this reason, for example, when the pressing force in the roll-pressing process is increased in order to increase the compressibility of the electrode mixture layer in the composite material lamination portion, the elongation rate of the current collector foil in the composite lamination portion due to roll pressing increases. (For example, when the elongation rate is 0.8% or more), it is necessary to increase the tension applied to the current collector foil in the stretching step to increase the amount of stretching of the non-composite laminated portion. However, increasing the tension applied to the current collector foil in the stretching process may cause breakage of the non-composite laminated portion. For example, when the elongation in the longitudinal direction of the laminated current collector foil is 0.8% or more by the roll pressing process, the elongation in the longitudinal direction of the non-composite laminated part is In order to equalize the elongation rate in the longitudinal direction of the foil part, the tension applied to the current collector foil was set so that the elongation rate in the longitudinal direction of the non-composite laminated part was 0.8% in the stretching process. Therefore, when the non-composite material laminate portion is stretched, there is a possibility that the non-composite material laminate portion may be broken.

本発明は、かかる現状に鑑みてなされたものであって、非合材積層部の破断が発生し難く、且つ、電極シートに発生する皺を低減することができる電極シートの製造方法を提供することを目的とする。 The present invention has been devised in view of such circumstances, and provides a method for manufacturing an electrode sheet in which breakage of the non-composite laminated portion is less likely to occur and wrinkles occurring in the electrode sheet can be reduced. for the purpose.

本発明の一態様は、長手方向に延びる帯状の集電箔のうち電極合材層が積層された積層集電箔部と、前記電極合材層と、を有する帯状の合材積層部、及び、前記集電箔のうち、前記電極合材層が積層されることなく、前記合材積層部に対して前記長手方向に直交する幅方向の両側に隣り合って前記長手方向に延びる帯状の一対の非合材積層部、を備える電極シートの製造方法であって、前記電極シートについて、前記合材積層部を前記長手方向にロールプレスして、前記電極合材層を圧密化すると共に前記積層集電箔部を前記長手方向に圧延するロールプレス工程と、前記ロールプレス工程を行った前記電極シートについて、250℃以上、且つ、前記非合材積層部の融点未満の温度範囲で、前記一対の非合材積層部をアニールするアニール工程と、前記アニール工程を行った前記電極シートについて、前記一対の非合材積層部を前記長手方向に延伸させる非合材積層部延伸工程と、を備え、 前記ロールプレス工程による前記積層集電箔部の前記長手方向への伸び率は、0.8%以上1.0%以下であり、前記アニール工程を行った前記非合材積層部の破断伸び率は1.0%よりも大であり、非合材積層部延伸工程による前記非合材積層部の前記長手方向への伸び率を、0.8%以上1.0%以下の範囲内の値とする電極シートの製造方法である。 According to one aspect of the present invention, a strip-shaped composite lamination portion includes a laminated collector foil portion in which an electrode composite material layer is laminated among strip-shaped current collector foils extending in the longitudinal direction, and the electrode composite material layer, and a pair of belt-shaped current collector foils extending in the longitudinal direction adjacent to both sides in the width direction orthogonal to the longitudinal direction with respect to the composite material laminated portion without the electrode composite material layer being laminated thereon; , wherein the electrode sheet is roll-pressed in the longitudinal direction to densify the electrode mixture layer and the laminate A roll-pressing step of rolling the current collecting foil portion in the longitudinal direction, and the electrode sheet subjected to the roll-pressing step is subjected to the pair of and a non-composite laminate stretching step of stretching the pair of non-composite laminates in the longitudinal direction of the electrode sheet subjected to the annealing step. The elongation rate in the longitudinal direction of the laminated current collector foil portion in the roll pressing step is 0.8% or more and 1.0% or less, and the elongation at break of the non-composite laminated portion subjected to the annealing step. is greater than 1.0%, and the elongation rate in the longitudinal direction of the non-composite laminated portion in the non-composite laminated portion stretching step is within the range of 0.8% or more and 1.0% or less. It is a method of manufacturing an electrode sheet with a value .

上述の製造方法では、合材積層部と非合材積層部とを有する電極シートについて、以下の工程を順に行う。まず、ロールプレス工程において、合材積層部を長手方向にロールプレスして、電極合材層を圧密化すると共に、積層集電箔部(集電箔のうち合材積層部に含まれる部位)を長手方向に圧延する。 In the manufacturing method described above, the electrode sheet having the composite material laminate portion and the non-composite material laminate portion is sequentially subjected to the following steps. First, in a roll-pressing step, the composite material lamination portion is roll-pressed in the longitudinal direction to consolidate the electrode composite material layer, and the laminated current collector foil portion (a portion of the current collector foil included in the composite lamination portion). is rolled longitudinally.

その後、アニール工程において、ロールプレス工程を行った電極シートのうち、一対の非合材積層部をアニールする。具体的には、250℃以上、且つ、非合材積層部の融点Tm未満の範囲内の温度(すなわち、250℃以上Tm未満の温度範囲)で、一対の非合材積層部を加熱してアニール処理する。このような温度範囲で非合材積層部をアニール処理することで、非合材積層部が長手方向に伸び易くなり、さらには、非合材積層部の破断伸び率を高めることができる。なお、破断伸び率とは、非合材積層部を長手方向に引き伸ばすことによって非合材積層部が破断するときの、非合材積層部の長手方向の伸び率である。換言すれば、長手方向へ非合材積層部の引き伸ばしを開始してから非合材積層部が破断するまでの間における非合材積層部の長手方向の伸び率である。 After that, in the annealing step, the pair of non-compound laminated portions of the electrode sheet subjected to the roll-pressing step are annealed. Specifically, the pair of non-composite laminated parts is heated at a temperature within the range of 250 ° C. or higher and less than the melting point Tm of the non-composite laminated part (that is, the temperature range of 250 ° C. or higher and lower than Tm). Anneal. Annealing the non-composite laminated part in such a temperature range makes it easier to extend the non-composite laminated part in the longitudinal direction, and further increases the elongation at break of the non-composite laminated part. The elongation at break is the longitudinal elongation rate of the non-composite laminated portion when the non-composite laminated portion is broken by stretching the non-composite laminated portion in the longitudinal direction. In other words, it is the longitudinal elongation rate of the non-composite laminated part from when the non-composite laminated part starts to be stretched in the longitudinal direction until the non-composite laminated part breaks.

次に、非合材積層部延伸工程において、アニール工程を行った電極シートのうち、一対の非合材積層部を長手方向に延伸させる。これにより、ロールプレス工程において長手方向に伸ばされた積層集電箔部(集電箔のうち合材積層部に含まれる部位)に加えて、一対の非合材積層部も長手方向に伸ばすことができる。これによって、電極シートの幅方向の全体にわたって集電箔を長手方向に伸ばすことができるので、電極シート(集電箔)に発生する皺を低減することができる。さらには、先のアニール工程によって非合材積層部の破断伸び率を高めているので、非合材積層部延伸工程において、非合材積層部の破断が発生し難くなる。 Next, in the non-composite laminate portion stretching step, the pair of non-composite laminate portions of the electrode sheet subjected to the annealing step are stretched in the longitudinal direction. As a result, in addition to the laminated current collector foil portion (a portion of the current collector foil included in the composite material laminated portion) that has been longitudinally stretched in the roll pressing process, the pair of non-compound laminated portions can also be longitudinally extended. can be done. As a result, the current collector foil can be stretched in the longitudinal direction over the entire width of the electrode sheet, so wrinkles occurring in the electrode sheet (current collector foil) can be reduced. Furthermore, since the breaking elongation of the non-compound laminated portion is increased by the preceding annealing step, breakage of the non-composite laminated portion is less likely to occur in the non-compound laminated portion stretching step.

なお、非合材積層部延伸工程としては、例えば、「アニール工程を行った電極シートの集電箔に対し長手方向に張力を掛けた状態で、小径部及びその軸方向両側に隣接する一対の大径部を有する延伸ロールに対し、合材積層部が小径部に対向すると共に、一対の非合材積層部が一対の大径部にそれぞれ圧接する態様で、電極シートを延伸ロールに巻き付けて、一対の非合材積層部を長手方向に延伸させる」工程を挙げることができる。 In addition, as the non-composite laminated portion stretching step, for example, "a pair of small-diameter portions and a pair of adjacent ones on both sides in the axial direction are stretched in a state in which tension is applied in the longitudinal direction to the current collector foil of the electrode sheet that has been annealed. The electrode sheet is wound around the stretching roll in such a manner that the composite material laminated portion faces the small diameter portion of the stretching roll having the large diameter portion, and the pair of non-composite material laminated portions are in pressure contact with the pair of large diameter portions. and stretching the pair of non-composite laminated parts in the longitudinal direction.

上述の製造方法では、ロールプレス工程による積層集電箔部(集電箔のうち合材積層部に含まれる部位)の長手方向への伸び率を、0.8%以上1.0%以下の範囲内の値としている。すなわち、ロールプレス工程において、電極シートの合材積層部を長手方向にロールプレスして、電極合材層を圧密化すると共に、積層集電箔部を長手方向に圧延することによって、積層集電箔部の長手方向への伸び率を0.8%以上1.0%以下の範囲内の値にする。なお、電極シートの合材積層部をロールプレスすることによって、積層集電箔部の長手方向への伸び率が0.8%以上1.0%以下の範囲内の値になる場合とは、従来に比べて、プレス圧を高めて、電極合材層の圧密化の程度を大きくする場合である。 In the manufacturing method described above, the elongation rate in the longitudinal direction of the laminated collector foil portion (the portion of the collector foil included in the composite laminated portion) in the roll press process is set to 0.8% or more and 1.0% or less. The value is within the range. That is, in the roll-pressing step, the electrode sheet composite laminated portion is roll-pressed in the longitudinal direction to consolidate the electrode composite layer, and the laminated collector foil portion is rolled in the longitudinal direction to obtain the laminated collector foil. The elongation rate of the foil portion in the longitudinal direction is set to a value within the range of 0.8% or more and 1.0% or less. In addition, the case where the elongation rate in the longitudinal direction of the laminated current collector foil portion becomes a value within the range of 0.8% or more and 1.0% or less by roll-pressing the composite material laminated portion of the electrode sheet, This is the case where the press pressure is increased to increase the degree of compaction of the electrode mixture layer compared to the conventional case.

ところで、上述の製造方法では、前述したように、非合材積層部延伸工程を行う前に、アニール工程において一対の非合材積層部をアニールすることで、非合材積層部の破断伸び率を高めている。具体的には、250℃以上、且つ、非合材積層部の融点未満の範囲内の温度で、一対の非合材積層部を加熱してアニール処理することで、非合材積層部の破断伸び率を1.0%よりも大きくする。 By the way, in the above-described manufacturing method, as described above, the breaking elongation rate of the non-composite laminated portion is increased by annealing the pair of non-composite laminated portions in the annealing step before performing the non-composite laminated portion stretching step. is increasing. Specifically, the pair of non-composite laminated parts are heated and annealed at a temperature of 250 ° C. or higher and less than the melting point of the non-composite laminated part, so that the non-composite laminated part is broken. Make the elongation greater than 1.0%.

これにより、非合材積層部延伸工程において、非合材積層部を破断させることなく、一対の非合材積層部を長手方向に延伸させて、それぞれの非合材積層部の長手方向への伸び率を、0.8%以上1.0%以下の範囲内の値とすることが可能となる。これにより、ロールプレス工程によって積層集電箔部の長手方向への伸び率を0.8%以上1.0%以下の範囲内の値とした場合でも、非合材積層部延伸工程を行うことによって、積層集電箔部の長手方向への伸び率と非合材積層部の長手方向への伸び率との差を十分に小さくすることが可能になり(例えば、両者の伸び率を同等にすることが可能になり)、電極シート(集電箔)に発生する皺を低減することが可能になる。 As a result, in the non-composite laminated part stretching step, the pair of non-composite laminated parts are stretched in the longitudinal direction without breaking the non-composite laminated parts, and each non-composite laminated part is stretched in the longitudinal direction. It becomes possible to set the elongation rate to a value within the range of 0.8% or more and 1.0% or less. As a result, even when the elongation in the longitudinal direction of the laminated current collector foil portion is set to a value within the range of 0.8% or more and 1.0% or less by the roll pressing step, the non-composite laminated portion stretching step can be performed. Therefore, it is possible to sufficiently reduce the difference between the longitudinal elongation rate of the laminated current collector foil portion and the longitudinal elongation rate of the non-composite laminated portion (for example, It is possible to reduce the wrinkles that occur in the electrode sheet (current collector foil).

実施形態にかかる電極シートの製造装置の概略図である。1 is a schematic view of an electrode sheet manufacturing apparatus according to an embodiment; FIG. 実施形態にかかる電極シート(正極シート)の平面図である。1 is a plan view of an electrode sheet (positive electrode sheet) according to an embodiment; FIG. 図2のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB of FIG. 2; 実施形態にかかる電極シートの製造方法の流れを示すフローチャートである。4 is a flow chart showing the flow of the method for manufacturing an electrode sheet according to the embodiment. 実施形態にかかるロールプレス工程を説明する図である。It is a figure explaining the roll press process concerning embodiment. 実施形態にかかるアニール工程を説明する図である。It is a figure explaining the annealing process concerning embodiment. 実施形態にかかる延伸工程を説明する図である。It is a figure explaining the extending|stretching process concerning embodiment. 非合材積層部の加熱温度と破断伸び率との関係を示す図である。It is a figure which shows the relationship between the heating temperature of a non-composite material lamination|stacking part, and a breaking elongation rate.

次に、実施形態にかかる電極シートの製造方法について説明する。なお、本実施形態では、電極シートとして、正極シート155を製造する場合について説明する。図1は、実施形態にかかる電極シートの製造装置10の概略図である。製造装置10は、プレスロール11,12と、加熱装置41,42と、延伸ロール30とを有し、これらがこの順で正極シート155の搬送方向DFの上流側から下流側(図1において左側から右側)に向かって配置されている。 Next, a method for manufacturing the electrode sheet according to the embodiment will be described. In addition, in this embodiment, the case of manufacturing the positive electrode sheet 155 as the electrode sheet will be described. FIG. 1 is a schematic diagram of an electrode sheet manufacturing apparatus 10 according to an embodiment. The manufacturing apparatus 10 has press rolls 11 and 12, heating devices 41 and 42, and a drawing roll 30, which are arranged in this order from the upstream side to the downstream side (the left side in FIG. 1) in the conveying direction DF of the positive electrode sheet 155. to the right).

正極シート155は、図2及び図3に示すように、帯状の合材積層部154と、帯状の一対の非合材積層部153とを備える。このうち、合材積層部154は、長手方向DAに延びる帯状の集電箔151のうち正極合材層152が積層された積層集電箔部151cと、正極合材層152とを有する。一方、一対の非合材積層部153は、集電箔151のうち、正極合材層152が積層されることなく、合材積層部154に対して幅方向DB(長手方向DAに直交する方向)の両側に隣り合って長手方向DAに延びる部位である。なお、集電箔151は、金属箔(具体的には、アルミニウム箔)からなる。 As shown in FIGS. 2 and 3 , the positive electrode sheet 155 includes a strip-shaped composite material laminate portion 154 and a pair of strip-shaped non-compound laminate portions 153 . Of these, the laminated composite material portion 154 has a laminated collector foil portion 151c in which the positive composite material layer 152 of the strip-shaped current collector foil 151 extending in the longitudinal direction DA is laminated, and the positive composite material layer 152 . On the other hand, the pair of non-composite material laminate portions 153 is not laminated with the positive electrode composite material layer 152 of the current collector foil 151, and the composite material laminate portion 154 is arranged in the width direction DB (the direction orthogonal to the longitudinal direction DA). ) extending in the longitudinal direction DA. Note that the collector foil 151 is made of metal foil (specifically, aluminum foil).

以下、電極シートの製造方法について詳細に説明する。なお、ここでは、正極シート155の製造方法について説明するが、負極シートもこれと同様に製造することができる。本実施形態では、製造装置10によって、搬送方向DF(正極シート155の長手方向DAに一致する方向)に搬送される正極シート155に対し、図4に示すステップS1~S3の処理を順に行う。 A method for manufacturing the electrode sheet will be described in detail below. Although the manufacturing method of the positive electrode sheet 155 is described here, the negative electrode sheet can also be manufactured in the same manner. In the present embodiment, the positive electrode sheet 155 conveyed in the conveying direction DF (the direction coinciding with the longitudinal direction DA of the positive electrode sheet 155) is sequentially subjected to steps S1 to S3 shown in FIG.

まず、ステップS1(ロールプレス工程)において、一対のプレスロール11,12によって、合材積層部154をロールプレスして、正極合材層152(電極合材層)を圧密化すると共に、積層集電箔部151c(集電箔151のうち合材積層部154に含まれる部位)を長手方向DAに圧延する(図1及び図5参照)。 First, in step S1 (roll-pressing step), a pair of press rolls 11 and 12 are used to roll-press the composite material laminate portion 154 to consolidate the positive electrode composite material layer 152 (electrode composite material layer). The electrical foil portion 151c (a portion of the current collector foil 151 included in the composite material laminated portion 154) is rolled in the longitudinal direction DA (see FIGS. 1 and 5).

次に、ステップS2(アニール工程)に進み、ステップS1(ロールプレス工程)を行った正極シート155のうち、一対の非合材積層部153をアニールする(図1及び図6参照)。具体的には、加熱装置41,42を用いて、250℃以上、且つ、非合材積層部153(本実施形態では、アルミニウム箔)の融点Tm未満の範囲内の温度(すなわち、250℃以上Tm未満の温度範囲)で、一対の非合材積層部153を加熱してアニール処理する。なお、非合材積層部153を構成するアルミニウム箔の融点Tmは、約660℃である。 Next, proceeding to step S2 (annealing step), the pair of non-composite laminated portions 153 of the positive electrode sheet 155 subjected to step S1 (roll pressing step) are annealed (see FIGS. 1 and 6). Specifically, using the heating devices 41 and 42, the temperature within the range of 250 ° C. or higher and less than the melting point Tm of the non-compound laminated portion 153 (aluminum foil in this embodiment) (that is, 250 ° C. or higher In a temperature range below Tm), the pair of non-composite laminated parts 153 are heated and annealed. Note that the melting point Tm of the aluminum foil forming the non-composite laminated portion 153 is approximately 660°C.

なお、本実施形態では、加熱装置41,42として、誘導加熱装置(IHヒータ)を用いている。加熱装置41は、一対の非合材積層部153のうち一方(図6において右側)の非合材積層部153の表面に対向して配置されており、一方の非合材積層部153を誘導加熱する。具体的には、一方の非合材積層部153を、250℃以上、且つ、非合材積層部153の融点未満の範囲内の温度(アニール温度)に加熱してアニール処理する。また、加熱装置42は、一対の非合材積層部153のうち他方(図6において左側)の非合材積層部153の表面に対向して配置されており、他方の非合材積層部153を誘導加熱する。具体的には、他方の非合材積層部153を、250℃以上、且つ、非合材積層部153の融点未満の範囲内の温度(アニール温度)に加熱してアニール処理する。 In this embodiment, induction heating devices (IH heaters) are used as the heating devices 41 and 42 . The heating device 41 is arranged to face the surface of one of the pair of non-composite laminated parts 153 (on the right side in FIG. 6), and induces the one non-composite laminated part 153 heat up. Specifically, one non-composite material laminate portion 153 is annealed by heating to a temperature (annealing temperature) within a range of 250° C. or more and less than the melting point of the non-composite material laminate portion 153 . In addition, the heating device 42 is arranged to face the surface of the other (left side in FIG. 6) non-composite laminated portion 153 of the pair of non-composite laminated portions 153, and the other non-composite laminated portion 153 is induction-heated. Specifically, the other non-composite material laminate portion 153 is annealed by heating to a temperature (annealing temperature) within a range of 250° C. or more and less than the melting point of the non-composite material laminate portion 153 .

このような温度範囲で非合材積層部153をアニール処理することで、非合材積層部153が長手方向DAに伸び易くなり、さらには、非合材積層部153の破断伸び率(%)を高めることができる。なお、破断伸び率とは、非合材積層部153を長手方向DAに引き伸ばすことによって非合材積層部153が破断するときの、非合材積層部153の長手方向DAの伸び率である。換言すれば、長手方向DAへ非合材積層部153の引き伸ばしを開始してから非合材積層部153が破断するまでの間における非合材積層部153の長手方向DAの伸び率である。 By annealing the non-composite laminated part 153 in such a temperature range, the non-composite laminated part 153 can be easily stretched in the longitudinal direction DA, and the breaking elongation rate (%) of the non-composite laminated part 153 can increase The breaking elongation rate is the elongation rate of the non-compound laminated portion 153 in the longitudinal direction DA when the non-compound laminated portion 153 is broken by stretching the non-compound laminated portion 153 in the longitudinal direction DA. In other words, it is the elongation rate in the longitudinal direction DA of the non-compound laminated portion 153 from the start of stretching of the non-compound laminated portion 153 in the longitudinal direction DA until the non-compound laminated portion 153 breaks.

次いで、ステップS3(非合材積層部延伸工程)に進み、円柱状の小径部31及びその軸方向両側に隣接する一対の大径部35(小径部31と同軸)を有する延伸ロール30を用いて、ステップS2(アニール工程)を行った一対の非合材積層部153を長手方向DAに延伸させる(図1、図7参照)。具体的には、集電箔151に対し長手方向DAに張力を掛けた状態で、合材積層部154が小径部31に対向すると共に、一対の非合材積層部153が一対の大径部35にそれぞれ圧接する態様で、正極シート155を延伸ロール30に抱き角θで巻き付ける。これにより、一対の非合材積層部153に張力を集中させて、非合材積層部153を長手方向DAに延伸させる。なお、図1のP1は、正極シート155の延伸ロール30への巻き付け始め位置であり、P2は、正極シート155の延伸ロール30への巻き付け終わり位置である。 Next, in step S3 (non-composite laminated portion stretching step), a stretching roll 30 having a cylindrical small-diameter portion 31 and a pair of large-diameter portions 35 (coaxial with the small-diameter portion 31) adjacent to both sides in the axial direction is used. Then, the pair of non-composite material laminate portions 153 subjected to step S2 (annealing step) are stretched in the longitudinal direction DA (see FIGS. 1 and 7). Specifically, in a state in which tension is applied to the current collector foil 151 in the longitudinal direction DA, the composite material laminated portion 154 faces the small diameter portion 31, and the pair of non-composite material laminated portions 153 are arranged to face the pair of large diameter portions. The positive electrode sheet 155 is wound around the drawing roll 30 at an embrace angle θ in such a manner that the positive electrode sheet 155 is pressed against the respective 35 . As a result, the tension is concentrated on the pair of non-compound laminated portions 153 to extend the non-compound laminated portions 153 in the longitudinal direction DA. Note that P1 in FIG. 1 is the winding start position of the positive electrode sheet 155 around the stretching roll 30 and P2 is the winding end position of the positive electrode sheet 155 around the stretching roll 30 .

このようにすることで、ステップS1(ロールプレス工程)において長手方向DAに伸ばされた積層集電箔部151c(集電箔151のうち合材積層部154に含まれる部位)に加えて、一対の非合材積層部153も長手方向DAに伸ばすことができる。これによって、正極シート155の幅方向DBの全体にわたって集電箔151を長手方向DAに伸ばすことができるので、正極シート155(集電箔151)に発生する皺を低減することができる。さらには、先のステップS2(アニール工程)によって非合材積層部153の破断伸び率を高めているので、ステップS3において、非合材積層部153の破断が発生し難くなる。 By doing so, in addition to the laminated current collector foil portion 151c (a portion of the current collector foil 151 included in the composite material laminated portion 154) stretched in the longitudinal direction DA in step S1 (roll press step), a pair of can also extend in the longitudinal direction DA. As a result, the current collector foil 151 can be stretched in the longitudinal direction DA over the entire width direction DB of the positive electrode sheet 155, so wrinkles occurring in the positive electrode sheet 155 (current collector foil 151) can be reduced. Furthermore, since the breaking elongation rate of the non-composite material laminated portion 153 is increased by the previous step S2 (annealing step), the non-composite material laminated portion 153 is less likely to break in step S3.

なお、図7は、正極シート155の延伸ロール30への巻き付け始め位置P1における正極シート155及び延伸ロール30の断面を示す図であり、図1のC-C断面図である。本実施形態のステップS3では、図7に示すように、正極シート155の延伸ロール30への巻き付け始めで、一対の非合材積層部153が一対の大径部35にそれぞれ圧接すると共に、合材積層部154が小径部31から離間している。これにより、非合材積層部153に張力を集中させて、非合材積層部153を長手方向DAに延伸させることができる。 7 is a cross-sectional view of the positive electrode sheet 155 and the stretching roll 30 at the winding start position P1 of the positive electrode sheet 155 around the stretching roll 30, and is a cross-sectional view taken along the line CC in FIG. In step S3 of the present embodiment, as shown in FIG. 7, at the start of winding the positive electrode sheet 155 around the stretching roll 30, the pair of non-composite material laminated portions 153 are pressed against the pair of large diameter portions 35, respectively, and are joined together. The material lamination portion 154 is separated from the small diameter portion 31 . As a result, tension can be concentrated on the non-compound laminated portion 153 to stretch the non-compound laminated portion 153 in the longitudinal direction DA.

ところで、本実施形態では、ステップS1(ロールプレス工程)による積層集電箔部151cの長手方向DAへの伸び率を、0.8%以上1.0%以下の範囲内の値としている。具体的には、本実施形態では、電池容量を高めるために、従来に比べて、ロールプレス圧を高めて、正極合材層152の圧密化の程度を大きくしている。このため、ステップS1(ロールプレス工程)による積層集電箔部151cの長手方向DAへの伸び率が、0.8%以上と大きな値になる。 By the way, in the present embodiment, the elongation rate of the laminated collector foil portion 151c in the longitudinal direction DA in step S1 (roll press process) is set to a value within the range of 0.8% or more and 1.0% or less. Specifically, in this embodiment, in order to increase the battery capacity, the roll press pressure is increased to increase the degree of compaction of the positive electrode mixture layer 152 compared to the conventional case. Therefore, the elongation rate of the laminated current collector foil portion 151c in the longitudinal direction DA in step S1 (roll press step) becomes a large value of 0.8% or more.

これに対し、本実施形態では、ステップS3(非合材積層部延伸工程)を行う前に、ステップS2(アニール工程)において、250℃以上、且つ、非合材積層部153の融点未満の範囲内の温度(アニール温度)で、一対の非合材積層部153を加熱してアニール処理する。これにより、非合材積層部153の破断伸び率を1.0%よりも大きくする(詳細には、1.5%以上にする)ことができる。 On the other hand, in the present embodiment, before performing step S3 (non-composite laminated portion stretching step), in step S2 (annealing step), the temperature is 250° C. or higher and less than the melting point of the non-composite laminated portion 153. The pair of non-composite laminated parts 153 are heated and annealed at a temperature within (annealing temperature). Thereby, the breaking elongation rate of the non-composite material laminated portion 153 can be made larger than 1.0% (more specifically, 1.5% or more).

このため、ステップS3において、非合材積層部153を破断させることなく、一対の非合材積層部153を長手方向DAに延伸させて、それぞれの非合材積層部153の長手方向DAへの伸び率を、0.8%以上1.0%以下の範囲内の値とすることが可能となる。これにより、ステップS1によって積層集電箔部151cの長手方向DAへの伸び率を0.8%以上1.0%以下の範囲内の値としても、ステップS3を行うことによって、積層集電箔部151cの長手方向DAへの伸び率と非合材積層部153の長手方向DAへの伸び率との差を十分に小さくすることが可能になり(例えば、両者の長手方向DAへの伸び率を同等にすることが可能になり)、正極シート155(集電箔151)に発生する皺を低減することが可能になる。 For this reason, in step S3, the pair of non-compound laminated portions 153 are stretched in the longitudinal direction DA without breaking the non-compound laminated portions 153, and each non-compound laminated portion 153 is stretched in the longitudinal direction DA. It becomes possible to set the elongation rate to a value within the range of 0.8% or more and 1.0% or less. As a result, even if the elongation rate in the longitudinal direction DA of the laminated current collector foil portion 151c in step S1 is set to a value within the range of 0.8% or more and 1.0% or less, by performing step S3, the laminated current collector foil It is possible to sufficiently reduce the difference between the elongation rate in the longitudinal direction DA of the portion 151c and the elongation rate in the longitudinal direction DA of the non-composite laminated portion 153 (for example, the elongation rate in the longitudinal direction DA of both can be made equal), and wrinkles occurring in the positive electrode sheet 155 (collector foil 151) can be reduced.

以上のようにして製造した正極シート155は、例えば、幅方向DBの中心位置において長手方向DAに切断されて、二次電池の正極として用いられる。具体的には、この正極と負極とセパレータとを捲回(または積層)することによって電極体を形成し、この電極体を電池ケースに収容して、二次電池を製造する。 The positive electrode sheet 155 manufactured as described above is cut, for example, in the longitudinal direction DA at the center position of the width direction DB, and used as a positive electrode of a secondary battery. Specifically, the positive electrode, the negative electrode, and the separator are wound (or laminated) to form an electrode body, and the electrode body is housed in a battery case to manufacture a secondary battery.

<引張試験>
まず、ステップS1~S3の処理を行う前の正極シート155から、非合材積層部153を構成しているアルミニウム箔を、長手方向DAについて一定の長さずつ切り出して、複数の試験片を作製した。次いで、各試験片について、異なるアニール温度(加熱温度)でアニール処理した後、引張試験(長手方向DAへの引張り)を行って、長手方向DAの破断伸び率を測定した。この結果を図8に示す。図8は、非合材積層部153(試験片)の加熱温度(アニール温度)と破断伸び率との関係を示す図である。
<Tensile test>
First, from the positive electrode sheet 155 before the processing of steps S1 to S3, the aluminum foil constituting the non-composite laminated portion 153 is cut out by a certain length in the longitudinal direction DA to prepare a plurality of test pieces. bottom. Next, each test piece was annealed at different annealing temperatures (heating temperatures) and then subjected to a tensile test (pulling in the longitudinal direction DA) to measure the elongation at break in the longitudinal direction DA. The results are shown in FIG. FIG. 8 is a diagram showing the relationship between the heating temperature (annealing temperature) and the elongation at break of the non-compound laminated portion 153 (test piece).

なお、本試験では、各加熱温度(アニール温度)について複数の試験片をアニール処理し、各加熱温度において複数の試験片について引張試験を行っている。従って、図8に示す各加熱温度の破断伸び率は、各加熱温度における複数の試験片の破断伸び率の平均値である。また、本試験では、各試験片をマッフル炉内で1分間加熱することによって、アニール処理を行っている。また、図8における加熱温度20℃のデータは、アニール処理を行うことなく引張試験を行った試験片のデータである。 In this test, a plurality of test pieces were annealed at each heating temperature (annealing temperature), and a tensile test was performed on the plurality of test pieces at each heating temperature. Therefore, the elongation at break at each heating temperature shown in FIG. 8 is the average value of the elongation at break of a plurality of test pieces at each heating temperature. Further, in this test, each test piece was annealed by heating in a muffle furnace for 1 minute. Moreover, the data at the heating temperature of 20° C. in FIG. 8 are the data of the test piece subjected to the tensile test without annealing.

図8に示すように、250℃以上の加熱温度(アニール温度)で非合材積層部153をアニール処理することで、アニール処理を行わない場合に比べて、非合材積層部153の破断伸び率を大きくすることができる。具体的には、250℃以上の加熱温度(アニール温度)で非合材積層部153をアニール処理することで、非合材積層部153の長手方向DAへの破断伸び率を1.0%よりも大きくする(詳細には、破断伸び率を1.5%以上に高める)ことができる。但し、非合材積層部153の溶融を防止するために、アニール温度は、非合材積層部153の融点よりも低い温度にする必要がある。この結果より、250℃以上、且つ、非合材積層部153の融点未満の範囲内の温度(アニール温度)で、非合材積層部153をアニール処理することで、非合材積層部153の長手方向DAへの破断伸び率を高めることができるといえる。 As shown in FIG. 8, by annealing the non-composite material laminate portion 153 at a heating temperature (annealing temperature) of 250° C. or higher, the breaking elongation of the non-composite laminate portion 153 is increased compared to the case where the annealing treatment is not performed. rate can be increased. Specifically, by annealing the non-composite material laminate portion 153 at a heating temperature (annealing temperature) of 250° C. or higher, the breaking elongation rate of the non-composite material laminate portion 153 in the longitudinal direction DA is increased from 1.0% to 1.0%. can also be increased (specifically, elongation at break can be increased to 1.5% or more). However, in order to prevent the non-composite material laminate portion 153 from melting, the annealing temperature must be lower than the melting point of the non-composite material laminate portion 153 . From this result, by annealing the non-composite laminated part 153 at a temperature (annealing temperature) within a range of 250° C. or more and less than the melting point of the non-composite laminated part 153, the non-composite laminated part 153 It can be said that the elongation at break in the longitudinal direction DA can be increased.

<実施例1>
実施例1では、前述のステップS1~S3の処理を順に行って、正極シート155を製造した。なお、正極シート155(集電箔151)の幅寸法は215mmであり、合材積層部154の幅寸法は150mmである。また、ステップS1では、正極シート155の搬送速度を10m/minとし、直径500mmのプレスロール11,12を用いて、線圧を2.3t/cmとしてロールプレスを行っている。このステップS1によって、積層集電箔部151cの長手方向DAへの伸び率が0.8%となった。
<Example 1>
In Example 1, the positive electrode sheet 155 was manufactured by sequentially performing the processes of steps S1 to S3 described above. The width dimension of the positive electrode sheet 155 (current collector foil 151) is 215 mm, and the width dimension of the composite material laminated portion 154 is 150 mm. Further, in step S1, the positive electrode sheet 155 is conveyed at a speed of 10 m/min, and press rolls 11 and 12 having a diameter of 500 mm are used to perform roll pressing at a linear pressure of 2.3 t/cm. By this step S1, the elongation rate of the laminated collector foil portion 151c in the longitudinal direction DA became 0.8%.

また、ステップS2では、アニール温度(加熱温度)を300℃、加熱時間(アニール時間)を20秒間として、一対の非合材積層部153をアニール処理している。このアニール処理により、非合材積層部153の破断伸び率を1.0%よりも大きくする(詳細には、破断伸び率を1.5%以上にする)ことができる(図8参照)。なお、加熱時間は、一対の非合材積層部153が加熱装置41,42の前を通過するのに要する時間である。また、ステップS3では、正極シート155に掛ける張力を50Nとし、延伸ロール30の小径部31と大径部35との半径差を1.0mmとしている。このステップS3によって、非合材積層部153の長手方向DAへの伸び率を0.8%(すなわち、ステップS1によって生じた積層集電箔部151cの伸び率と同等)とした。 Further, in step S2, the pair of non-composite material laminated portions 153 are annealed at an annealing temperature (heating temperature) of 300° C. and a heating time (annealing time) of 20 seconds. By this annealing treatment, the elongation at break of the non-composite laminated portion 153 can be made greater than 1.0% (more specifically, the elongation at break is 1.5% or more) (see FIG. 8). Note that the heating time is the time required for the pair of non-compound laminated portions 153 to pass in front of the heating devices 41 and 42 . In step S3, the tension applied to the positive electrode sheet 155 is set to 50 N, and the difference in radius between the small diameter portion 31 and the large diameter portion 35 of the stretching roll 30 is set to 1.0 mm. By this step S3, the elongation rate of the non-composite material laminated portion 153 in the longitudinal direction DA was set to 0.8% (that is, equivalent to the elongation rate of the laminated collector foil portion 151c generated in step S1).

この実施例1では、ステップS3において、非合材積層部153の破断が発生することはなかった。先のステップS2(アニール工程)によって、非合材積層部153の破断伸び率を1.0%よりも大きくしているからである。また、実施例1の正極シート155について、目視によって皺の有無を調査したところ、皺は見つからなかった。 In this Example 1, no breakage of the non-composite material laminate portion 153 occurred in step S3. This is because the breaking elongation rate of the non-composite material laminated portion 153 is made larger than 1.0% by the previous step S2 (annealing step). Moreover, when the positive electrode sheet 155 of Example 1 was visually inspected for wrinkles, no wrinkles were found.

<比較例1>
比較例1では、実施例1と異なり、ステップS2(アニール工程)、ステップS1(ロールプレス工程)、ステップS3(非合材積層部延伸工程)の順で処理を行って、正極シートを製造した。この比較例1は、実施例1と比較して、ステップ(工程)の順番が異なるだけで、各ステップの条件は同等である。
<Comparative Example 1>
In Comparative Example 1, unlike Example 1, the positive electrode sheet was manufactured by performing the treatments in the order of step S2 (annealing step), step S1 (roll pressing step), and step S3 (stretching step of non-composite laminated portion). . Comparative Example 1 differs from Example 1 only in the order of the steps (processes), and the conditions of each step are the same.

この比較例1では、ステップS2(アニール工程)を行うことによって集電箔151の剛性が低くなった状態で、ステップS1(ロールプレス工程)を行っているので、ステップS1を行うことによって正極シート(非合材積層部)に多数の皺が発生した。さらには、ステップS3において、この皺を起点として非合材積層部153の破断が発生した。この結果より、ロールプレス工程の前にアニール工程を行うのは好ましくないといえる。 In Comparative Example 1, step S1 (roll pressing step) is performed in a state in which the stiffness of the current collector foil 151 is lowered by performing step S2 (annealing step). A large number of wrinkles were generated in the (non-composite laminated part). Furthermore, in step S3, the non-composite laminated portion 153 was broken starting from the wrinkles. From this result, it can be said that it is not preferable to perform the annealing process before the roll press process.

<比較例2>
比較例2では、ステップS2(アニール工程)の処理を行うことなく、ステップS1とステップS3の処理を、この順で行って、正極シートを製造した。但し、比較例2のステップS3では、非合材積層部153の長手方向DAの伸び率を0.8%にするために、集電箔151に対して長手方向DAに掛ける張力を250N(実施例1の5倍の大きさ)にする必要があった。本比較例2では、ステップS2(アニール工程)の処理を行っていないため、ステップS3の処理を行うときに、非合材積層部153が実施例1に比べて伸び難い状態になっているからである。比較例2のステップS3では、大きな張力を集電箔151に掛ける必要があるため、集電箔151が破断することがあった。
<Comparative Example 2>
In Comparative Example 2, the positive electrode sheet was manufactured by performing the processes of steps S1 and S3 in this order without performing the process of step S2 (annealing process). However, in step S3 of Comparative Example 2, the tension applied to the current collector foil 151 in the longitudinal direction DA was 250 N (implementation 5 times the size of Example 1). In Comparative Example 2, since step S2 (annealing step) is not performed, the non-composite laminated portion 153 is in a state where it is difficult to stretch compared to Example 1 when step S3 is performed. is. In step S3 of Comparative Example 2, since it was necessary to apply a large tension to the current collector foil 151, the current collector foil 151 was sometimes broken.

以上において、本発明を実施形態に即して説明したが、本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、実施形態では、ステップS1(ロールプレス工程)による積層集電箔部151cの長手方向DAへの伸び率を、0.8%以上1.0%以下の範囲内の値としたが、1.0%よりも大きな値としても良い。但し、ステップS2(アニール工程)の処理を行った後の非合材積層部153の破断伸び率が約1.5%であるので、ステップS1(ロールプレス工程)による積層集電箔部151cの長手方向DAへの伸び率は、1.5%未満にするのが好ましい。 Although the present invention has been described above with reference to the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the scope of the invention. For example, in the embodiment, the elongation rate in the longitudinal direction DA of the laminated current collector foil portion 151c in step S1 (roll pressing process) was set to a value within the range of 0.8% or more and 1.0% or less. A value greater than 0% may be used. However, since the breaking elongation rate of the non-composite laminated portion 153 after the step S2 (annealing step) is about 1.5%, the laminated collector foil portion 151c in step S1 (roll pressing step) The elongation in the longitudinal direction DA is preferably less than 1.5%.

10 製造装置
11,12 プレスロール
30 延伸ロール
41,42 加熱装置
151 集電箔
151c 積層集電箔部
152 正極合材層(電極合材層)
153 非合材積層部
154 合材積層部
155 正極シート(電極シート)
DA 長手方向
DB 幅方向
10 Manufacturing equipment 11, 12 Press roll 30 Stretching rolls 41, 42 Heating device 151 Current collector foil 151c Laminated current collector foil portion 152 Positive electrode mixture layer (electrode mixture layer)
153 Non-composite laminated portion 154 Composite laminated portion 155 Positive electrode sheet (electrode sheet)
DA Longitudinal direction DB Width direction

Claims (1)

長手方向に延びる帯状の集電箔のうち電極合材層が積層された積層集電箔部と、前記電極合材層と、を有する帯状の合材積層部、及び、
前記集電箔のうち、前記電極合材層が積層されることなく、前記合材積層部に対して前記長手方向に直交する幅方向の両側に隣り合って前記長手方向に延びる帯状の一対の非合材積層部、を備える
電極シートの製造方法であって、
前記電極シートについて、前記合材積層部を前記長手方向にロールプレスして、前記電極合材層を圧密化すると共に前記積層集電箔部を前記長手方向に圧延するロールプレス工程と、
前記ロールプレス工程を行った前記電極シートについて、250℃以上、且つ、前記非合材積層部の融点未満の温度範囲で、前記一対の非合材積層部をアニールするアニール工程と、
前記アニール工程を行った前記電極シートについて、前記一対の非合材積層部を前記長手方向に延伸させる非合材積層部延伸工程と、を備え
前記ロールプレス工程による前記積層集電箔部の前記長手方向への伸び率は、0.8%以上1.0%以下であり、
前記アニール工程を行った前記非合材積層部の破断伸び率は1.0%よりも大であり、
非合材積層部延伸工程による前記非合材積層部の前記長手方向への伸び率を、0.8%以上1.0%以下の範囲内の値とす
電極シートの製造方法。
a strip-shaped composite laminate portion having a laminated collector foil portion in which an electrode composite material layer is laminated among strip-shaped current collector foils extending in the longitudinal direction, and the electrode composite material layer;
Of the current collector foil, a pair of belt-shaped strips extending in the longitudinal direction adjacent to both sides in the width direction orthogonal to the longitudinal direction with respect to the composite material laminated portion without laminating the electrode mixture layer A method for manufacturing an electrode sheet comprising a non-composite laminated portion,
a roll-pressing step of roll-pressing the electrode sheet in the longitudinal direction to densify the electrode mixture layer and roll the laminated collector foil portion in the longitudinal direction;
An annealing step of annealing the pair of non-composite material laminate portions in a temperature range of 250° C. or more and less than the melting point of the non-composite material laminate portion of the electrode sheet subjected to the roll pressing step;
a non-composite laminate portion stretching step of stretching the pair of non-composite laminate portions in the longitudinal direction for the electrode sheet subjected to the annealing step ,
The elongation rate in the longitudinal direction of the laminated current collector foil portion in the roll pressing step is 0.8% or more and 1.0% or less,
The elongation at break of the non-composite laminated portion subjected to the annealing step is greater than 1.0%,
A method for producing an electrode sheet, wherein the elongation rate of the non-composite laminated portion in the longitudinal direction in the non-composite laminated portion stretching step is a value within the range of 0.8% or more and 1.0% or less.
JP2020141658A 2020-08-25 2020-08-25 Electrode sheet manufacturing method Active JP7252923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141658A JP7252923B2 (en) 2020-08-25 2020-08-25 Electrode sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141658A JP7252923B2 (en) 2020-08-25 2020-08-25 Electrode sheet manufacturing method

Publications (2)

Publication Number Publication Date
JP2022037492A JP2022037492A (en) 2022-03-09
JP7252923B2 true JP7252923B2 (en) 2023-04-05

Family

ID=80494637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141658A Active JP7252923B2 (en) 2020-08-25 2020-08-25 Electrode sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP7252923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289861B2 (en) * 2021-02-24 2023-06-12 プライムプラネットエナジー&ソリューションズ株式会社 Electrode sheet manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127799A (en) 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Positive electrode plate for battery, its manufacturing method, and secondary battery
JP2004335374A (en) 2003-05-09 2004-11-25 Denso Corp Manufacturing method of electrode
JP2005093236A (en) 2003-09-17 2005-04-07 Toyota Motor Corp Manufacturing method of sheet electrode
JP2007273390A (en) 2006-03-31 2007-10-18 Denso Corp Manufacturing method of electrode
JP2013073690A (en) 2011-09-26 2013-04-22 Toshiba Corp Press device of electrode, manufacturing apparatus of electrode and manufacturing method of electrode
JP2014116141A (en) 2012-12-07 2014-06-26 Toyota Motor Corp Method of manufacturing strip electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127799A (en) 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Positive electrode plate for battery, its manufacturing method, and secondary battery
JP2004335374A (en) 2003-05-09 2004-11-25 Denso Corp Manufacturing method of electrode
JP2005093236A (en) 2003-09-17 2005-04-07 Toyota Motor Corp Manufacturing method of sheet electrode
JP2007273390A (en) 2006-03-31 2007-10-18 Denso Corp Manufacturing method of electrode
JP2013073690A (en) 2011-09-26 2013-04-22 Toshiba Corp Press device of electrode, manufacturing apparatus of electrode and manufacturing method of electrode
JP2014116141A (en) 2012-12-07 2014-06-26 Toyota Motor Corp Method of manufacturing strip electrode

Also Published As

Publication number Publication date
JP2022037492A (en) 2022-03-09

Similar Documents

Publication Publication Date Title
KR102325939B1 (en) Method for producing metal laminate material
KR101991151B1 (en) Clad material for battery negative electrode lead material, process for production of clad material for battery negative electrode lead material, and battery
JP5173533B2 (en) Roll press machine
KR20130033318A (en) Band type electrode manufacturing apparatus and manufacturing method
JP7252923B2 (en) Electrode sheet manufacturing method
JP5954220B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
CN113439352A (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode plate used for same
US10876192B2 (en) Separator production method
JP2007305322A (en) Battery and its manufacturing method
JP2010173223A (en) Equipment and process for producing unvulcanized rubber sheet
JP2005093236A (en) Manufacturing method of sheet electrode
JP7289861B2 (en) Electrode sheet manufacturing method
JP2010244748A (en) Method for manufacturing electrode plate
JP7371478B2 (en) Manufacturing method of rolled electrode plate
JP7132290B2 (en) Electrode sheet manufacturing method
JP7221918B2 (en) Electrode sheet manufacturing method
WO2017018347A1 (en) Electrode sheet production method
JP2010058156A (en) Apparatus for rolling endless belt-like metallic ring
JPS62292282A (en) Production of welded pipe
JP5110312B2 (en) Membrane-protective layer material continuous joining method and apparatus
US20230096550A1 (en) Producing method of power storage device
JP7303837B2 (en) Manufacturing method of compacted strip electrode plate
JP2002172402A (en) Method for rolling copper-strip
JP2021133369A (en) Manufacturing method for metallic foil
JPS63205904A (en) Manufacture of stationary induction electric apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R150 Certificate of patent or registration of utility model

Ref document number: 7252923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150