JP2010244748A - Method for manufacturing electrode plate - Google Patents

Method for manufacturing electrode plate Download PDF

Info

Publication number
JP2010244748A
JP2010244748A JP2009089901A JP2009089901A JP2010244748A JP 2010244748 A JP2010244748 A JP 2010244748A JP 2009089901 A JP2009089901 A JP 2009089901A JP 2009089901 A JP2009089901 A JP 2009089901A JP 2010244748 A JP2010244748 A JP 2010244748A
Authority
JP
Japan
Prior art keywords
foil
active material
electrode plate
material layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089901A
Other languages
Japanese (ja)
Inventor
Yozo Uchida
陽三 内田
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009089901A priority Critical patent/JP2010244748A/en
Publication of JP2010244748A publication Critical patent/JP2010244748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode plate for obtaining an electrode plate with distortion or kink of a non-coated part restrained and with large mechanical strength at an end part. <P>SOLUTION: The method for manufacturing the electrode plate, made up by providing an active material layer at least on one face of a metal foil, includes a coating process of forming an active material layer by coating active material paste at least on one face of a belt-like metal foil (hereinafter called a foil) with a non-coated part left at an end part in a width direction, a heat treatment process of heating the foil with the active material layer formed up to a temperature higher than an annealing temperature of the foil and lower than a melting temperature of an ingredient of the active material layer, and a rolling process of pressurizing the foil in a thickness direction while conveying it in a length direction after the heat treatment process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,例えば二次電池等の電極板として用いられるものであって,金属製の集電箔に電極ペーストが塗工されているシート状の電極板を製造する製造方法に関する。さらに詳細には,ペーストを塗工した後に圧延する工程を含む電極板の製造方法に関するものである。   The present invention relates to a manufacturing method for manufacturing a sheet-like electrode plate that is used as an electrode plate of a secondary battery, for example, and in which an electrode paste is applied to a metal current collector foil. More specifically, the present invention relates to a method for manufacturing an electrode plate including a step of rolling after applying a paste.

従来より,例えばリチウムイオン二次電池等において,シート状の電極板が使用されている。アルミニウム箔や銅箔にペースト状の活物質を塗工して圧延することにより,正負それぞれの電極板が製造される。正負の電極板は,例えばセパレータを挟んで重ねて捲回され,電解液に浸漬されて用いられる。   Conventionally, sheet-like electrode plates have been used in, for example, lithium ion secondary batteries. The positive and negative electrode plates are manufactured by applying and rolling a paste-like active material on aluminum foil or copper foil. The positive and negative electrode plates are used by being wound, for example, with a separator interposed therebetween and immersed in an electrolytic solution.

従来の製造方法では,帯状の集電箔の幅方向両端部を残して電極ペーストを塗工し,加圧ロール等に通すことにより圧延する。その後,幅を半分に切断してから捲回していた。しかし,ペーストの塗工箇所と両端部の非塗工箇所とで圧延による伸び量が異なり,電極板が湾曲するという問題点があった。それに対し,本出願人は,圧延工程と切断工程との間に,非塗工箇所を加熱しつつ張力を加える工程を設けることにより歪みを緩和する方法を提案した(特許文献1参照)。   In the conventional manufacturing method, the electrode paste is applied while leaving both end portions in the width direction of the belt-shaped current collector foil, and rolled by passing through a pressure roll or the like. Then, it was wound after cutting the width in half. However, there is a problem in that the electrode plate is curved because the elongation amount due to rolling differs between the paste-coated part and the non-coated part at both ends. On the other hand, the present applicant has proposed a method of reducing the strain by providing a step of applying tension while heating the non-coated portion between the rolling step and the cutting step (see Patent Document 1).

特開2005−93236号公報JP 2005-93236 A

しかしながら,前記した製造方法によって電極板の強い湾曲は解消されたものの,加熱により非塗工箇所の集電箔に波打ち状のよれが発生する場合がある。このようになると,この非塗工箇所の機械的強度が低下するという問題点があった。この非塗工箇所において,例えば電極端子等と接合されるものでは,端子の接合強度にも影響があることが分かってきた。そこで,歪みを抑制しつつ,端部の機械的強度を損なわない電極板の製造方法が望まれていた。   However, although the strong bending of the electrode plate has been eliminated by the above-described manufacturing method, there is a case where a wavy undulation occurs in the current collecting foil at the non-coated portion due to heating. If it became like this, there existed a problem that the mechanical strength of this non-coating location fell. It has been found that, in this non-coated portion, for example, what is bonded to an electrode terminal or the like has an influence on the bonding strength of the terminal. Therefore, there has been a demand for a method of manufacturing an electrode plate that suppresses distortion and does not impair the mechanical strength of the end portion.

本発明は,前記した従来の電極板の製造方法が有する問題点を解決するためになされたものである。すなわちその課題とするところは,非塗工部の歪みやよれが抑制されているとともに,端部の機械的強度が大きい電極板を得られる電極板の製造方法を提供することにある。   The present invention has been made to solve the problems of the above-described conventional electrode plate manufacturing method. That is, an object of the present invention is to provide an electrode plate manufacturing method capable of obtaining an electrode plate in which distortion and distortion of the non-coated portion are suppressed and the end portion has high mechanical strength.

この課題の解決を目的としてなされた本発明の電極板の製造方法は,金属箔の少なくとも一面に活物質層を設けてなる電極板の製造方法であって,帯状の金属箔(以下,箔という)の少なくとも一面に,幅方向の端部に非塗工部を残しつつ,活物質のペーストを塗工して活物質層を形成する塗工工程と,活物質層が形成された箔を,箔の焼き鈍し温度より高く,活物質層の成分の溶融温度より低い温度に加熱する熱処理工程と,熱処理工程後に,箔を長手方向に搬送しつつ,箔の厚さ方向に加圧する圧延工程とを有するものである。   The electrode plate manufacturing method of the present invention made for the purpose of solving this problem is an electrode plate manufacturing method in which an active material layer is provided on at least one surface of a metal foil, and is a strip-shaped metal foil (hereinafter referred to as a foil). ) On at least one surface of the width direction, leaving an uncoated portion at the end in the width direction, coating the active material paste to form an active material layer, and a foil on which the active material layer is formed, A heat treatment step of heating to a temperature higher than the annealing temperature of the foil and lower than the melting temperature of the components of the active material layer, and a rolling step of pressing the foil in the thickness direction while conveying the foil in the longitudinal direction after the heat treatment step. It is what you have.

本発明の電極板の製造方法によれば,金属箔に活物質を塗工した後,圧延工程の前に熱処理工程を行う。この熱処理により,金属箔が焼き鈍しされた状態となる。そして,軟らかく伸びやすくなる。従って,その後に圧延工程を行っても,活物質と同程度に金属箔もその全体がほぼ均一に容易に伸びる。従って,塗工部と非塗工部とでの伸びの違いによる歪みや,非塗工部のみが大きく伸びることによるよれ等の発生を防止して,良好な電極板を得ることができる。従って,捲回等により非塗工部が重ねられた端部の機械的強度が大きく,電極端子を溶接等によって取り付けた場合にも,十分な接合強度を得ることができる。なお,箔の焼き鈍し温度とは,箔を形成する金属に再結晶もしくは相転移等の歪み解放過程が起こる最低の温度のことである。   According to the method for manufacturing an electrode plate of the present invention, after the active material is applied to the metal foil, the heat treatment step is performed before the rolling step. By this heat treatment, the metal foil is annealed. And it becomes soft and easy to stretch. Therefore, even if a rolling process is performed after that, the entire metal foil is stretched almost uniformly and easily as much as the active material. Accordingly, it is possible to prevent the occurrence of distortion due to the difference in elongation between the coated portion and the non-coated portion, and the occurrence of kinking due to the large elongation of only the non-coated portion, thereby obtaining a good electrode plate. Therefore, the mechanical strength of the end portion where the non-coated portion is overlapped by winding or the like is large, and sufficient bonding strength can be obtained even when the electrode terminal is attached by welding or the like. The annealing temperature of the foil is the lowest temperature at which a strain releasing process such as recrystallization or phase transition occurs in the metal forming the foil.

電極板としてリチウムイオン二次電池の正極板を製造する場合には,金属箔としてアルミニウム箔を,活物質としてリチウムイオン二次電池の正極活物質を,それぞれ使用する。さらに,熱処理工程での加熱温度は,150〜400℃の範囲内の温度とする。
電極板としてリチウムイオン二次電池の負極板を製造する場合には,金属箔として銅箔を,活物質としてリチウムイオン二次電池の負極活物質を,それぞれ使用する。さらに,熱処理工程での加熱温度は,110〜300℃の範囲内の温度とする。
When manufacturing a positive electrode plate of a lithium ion secondary battery as an electrode plate, an aluminum foil is used as a metal foil, and a positive electrode active material of a lithium ion secondary battery is used as an active material. Furthermore, the heating temperature in the heat treatment step is set to a temperature within the range of 150 to 400 ° C.
When manufacturing a negative electrode plate of a lithium ion secondary battery as an electrode plate, a copper foil is used as a metal foil, and a negative electrode active material of a lithium ion secondary battery is used as an active material. Furthermore, the heating temperature in the heat treatment step is set to a temperature within the range of 110 to 300 ° C.

さらに本発明では,塗工工程では,箔の幅方向の両端部を残して塗工し,塗工工程より後で,かつ,熱処理工程より前に,箔を幅方向の一箇所で長手方向に切断する切断工程を有することが望ましい。
このようにすれば,塗工が容易である。そして,歪みのない状態で切断できるので,容易にかつ適切に切断することができる。
Further, in the present invention, in the coating process, coating is performed leaving both ends in the width direction of the foil, and the foil is longitudinally arranged at one place in the width direction after the coating process and before the heat treatment process. It is desirable to have a cutting step for cutting.
In this way, coating is easy. And since it can cut | disconnect in a state without distortion, it can cut | disconnect easily and appropriately.

本発明の電極板の製造方法によれば,非塗工部の歪みやよれが抑制されているとともに,端部の機械的強度が大きい電極板を得られる。   According to the method for manufacturing an electrode plate of the present invention, an electrode plate can be obtained in which distortion and twist of the non-coated portion are suppressed and the mechanical strength of the end portion is large.

本形態に係る工程図である。It is process drawing which concerns on this form. 塗工工程が終了した状態を示す説明図である。It is explanatory drawing which shows the state which the coating process was complete | finished. 切断工程が終了した状態を示す説明図である。It is explanatory drawing which shows the state which the cutting process completed. 熱処理工程を示す説明図である。It is explanatory drawing which shows the heat processing process. 圧延工程を示す説明図である。It is explanatory drawing which shows a rolling process.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオン二次電池に用いられる電極板を製造するための製造方法に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a manufacturing method for manufacturing an electrode plate used in a lithium ion secondary battery.

本形態では,リチウムイオン二次電池の正極に使用される電極板の製造方法を例にとって本発明を説明する。この電極板は,例えばアルミニウム等の金属箔の両面に,リチウムイオンを吸蔵・放出可能な正極活物質の層が設けられているものである。正極活物質としては,例えば,ニッケル酸リチウム(LiNiO2),マンガン酸リチウム(LiMnO2),コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物などが用いられる。 In the present embodiment, the present invention will be described by taking as an example a method for manufacturing an electrode plate used for a positive electrode of a lithium ion secondary battery. In this electrode plate, for example, layers of a positive electrode active material capable of inserting and extracting lithium ions are provided on both surfaces of a metal foil such as aluminum. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ).

本形態による電極板の製造方法は,図1にその工程図を示すように,準備工程(S1),塗工工程(S2),切断工程(S3),熱処理工程(S4),圧延工程(S5)の順に行うものである。まず,金属箔,ペースト状にした活物質をそれぞれ準備する(準備工程)。金属箔としては,製造する電極板の2倍の幅を有する帯状のアルミニウム箔を準備する。この準備工程は,従来と同様ものとすればよい。   As shown in the process diagram of FIG. 1, the manufacturing method of the electrode plate according to this embodiment includes a preparation step (S1), a coating step (S2), a cutting step (S3), a heat treatment step (S4), and a rolling step (S5). ). First, a metal foil and a paste-form active material are prepared (preparation process). As the metal foil, a strip-shaped aluminum foil having a width twice that of the electrode plate to be manufactured is prepared. This preparation process may be the same as the conventional one.

次に,図2に示すように,アルミニウム箔10の両面に活物質20を塗工し,塗工済みアルミニウム箔30を製造する(塗工工程)。この工程では,アルミニウム箔10の幅方向(図中上下方向)の両端部に,表裏両面とも,適切な幅の非塗工部12を残す。この非塗工部12は,後に溶接等によって電極端子が取り付けられる箇所である。   Next, as shown in FIG. 2, the active material 20 is coated on both surfaces of the aluminum foil 10 to produce a coated aluminum foil 30 (coating process). In this step, uncoated portions 12 having an appropriate width are left on both the front and back surfaces at both ends of the aluminum foil 10 in the width direction (vertical direction in the drawing). This non-coating part 12 is a place where an electrode terminal is attached later by welding or the like.

次に,塗工済みアルミニウム箔30の幅方向の中央部を,長手方向に切断する(切断工程)。これにより,図3に示すように,同形の2枚の塗工済みアルミニウム箔31,32が得られる。なお,アルミニウム箔10に活物質20を塗工した後,この工程までの間には,熱や圧力を加えていないので,アルミニウム箔10に湾曲等の歪みが新たに生じる理由はない。従って,容易に適切な分断が可能である。   Next, the central portion in the width direction of the coated aluminum foil 30 is cut in the longitudinal direction (cutting step). Thereby, as shown in FIG. 3, two coated aluminum foils 31 and 32 having the same shape are obtained. It should be noted that since no heat or pressure is applied after the active material 20 is applied to the aluminum foil 10 until this step, there is no reason for new distortion such as bending in the aluminum foil 10. Therefore, appropriate division can be easily performed.

次に,図4に示すように,切断済みの塗工済みアルミニウム箔31,32に対して熱処理工程を行う。すなわち,加圧せず単に加熱する。例えば,幅方向(図4中奥行き方向)に,塗工済みアルミニウム箔31,32の幅(図3中で上下方向の大きさ)より幅広の加熱ローラ40を用いて加熱する。この工程によりアルミニウム箔10が,アルミニウムの焼き鈍し温度(再結晶もしくは相転移等の歪み解放過程が起こる最低の温度)より高く,塗工した活物質20の層の成分の溶融温度より低い温度まで加熱されるように,加熱ローラ40の温度を調整する。予熱は不要である。また,加熱後にも特段の冷却手段は不要である。大気放冷すればよい。これにより,ゆっくりと冷却されるので,アルミニウム箔10が軟らかく,伸びやすくなる。一方,活物質20には,特段の影響を与えることはない。   Next, as shown in FIG. 4, a heat treatment process is performed on the cut and coated aluminum foils 31 and 32. That is, it is simply heated without applying pressure. For example, the heating roller 40 is heated in the width direction (depth direction in FIG. 4) wider than the width of the coated aluminum foils 31 and 32 (size in the vertical direction in FIG. 3). By this step, the aluminum foil 10 is heated to a temperature higher than the annealing temperature of aluminum (the lowest temperature at which a strain releasing process such as recrystallization or phase transition occurs) and lower than the melting temperature of the components of the coated active material 20 layer. As described above, the temperature of the heating roller 40 is adjusted. No preheating is required. Also, no special cooling means is required after heating. It only has to be allowed to cool to the atmosphere. Thereby, since it cools slowly, the aluminum foil 10 becomes soft and becomes easy to extend. On the other hand, the active material 20 is not particularly affected.

本形態では,加熱ローラ40の温度は,150℃以上,400℃以下が好ましい。例えば,300℃程度が適している。150℃より低い温度では,効果が小さい。また,400℃より高い温度では,活物質20の層の成分が溶けるおそれがある。そして,図4に示すように,例えば直径50cm程度の加熱ローラにアルミニウム箔31,32を載せて,周速5m/min程度で走行させることにより,アルミニウム箔の各箇所について10秒程度加熱する。   In this embodiment, the temperature of the heating roller 40 is preferably 150 ° C. or higher and 400 ° C. or lower. For example, about 300 ° C. is suitable. At temperatures below 150 ° C, the effect is small. Further, at a temperature higher than 400 ° C., the components of the layer of the active material 20 may be dissolved. Then, as shown in FIG. 4, for example, aluminum foils 31 and 32 are placed on a heating roller having a diameter of about 50 cm and run at a peripheral speed of about 5 m / min, whereby each portion of the aluminum foil is heated for about 10 seconds.

次に,図5に示すように,2つの圧延ローラ50の間を通過させることにより圧延する(圧延工程)。これにより,活物質20の層が圧縮されて緻密な状態となるとともに,アルミニウム箔10に確実に圧着される。活物質20の層は,例えば,圧延前に1.15g/cm3程度であったものが,2.29g/cm3程度となる。また,電極板が,長手方向に1〜3%程度延伸される。これにより,本形態による電極板の製造方法は終了である。 Next, as shown in FIG. 5, it rolls by passing between the two rolling rollers 50 (rolling process). Thereby, the layer of the active material 20 is compressed and becomes a dense state, and is securely crimped to the aluminum foil 10. The layer of the active material 20 is, for example, about 1.29 g / cm 3 before rolling, but is about 2.29 g / cm 3 . Further, the electrode plate is stretched by about 1 to 3% in the longitudinal direction. Thereby, the manufacturing method of the electrode plate according to the present embodiment is completed.

本形態では,この圧延工程の前に熱処理工程を行っているので,アルミニウム箔10が,熱処理前と比較してかなり軟らかくなっている。そして,塗工されている活物質20の層と比べてもそんなに変わらない程度に伸びやすくなっている。そのため,活物質20の層の厚さにより,圧延ローラ50によって直接圧接されない非塗工部12においても,塗工されている範囲とほぼ同様に伸びる。従って,圧延工程を行っても,アルミニウム箔10に湾曲やよれが発生することはない。   In this embodiment, since the heat treatment process is performed before this rolling process, the aluminum foil 10 is considerably softer than before the heat treatment. And it becomes easy to extend to such an extent that it does not change so much as compared with the layer of the active material 20 being coated. Therefore, depending on the thickness of the active material 20, the non-coated portion 12 that is not directly pressed by the rolling roller 50 extends almost in the same manner as the coated area. Accordingly, even when the rolling process is performed, the aluminum foil 10 is not bent or twisted.

なお,本形態では,切断工程を,塗工工程と熱処理工程との間に配置したが,熱処理工程の後で行ってもよい。またあるいは,圧延工程の後で行うこともできる。本形態の製造方法によれば,アルミニウム箔10の変形が発生しないので,切断工程の順序を自由に選択できる。   In this embodiment, the cutting process is arranged between the coating process and the heat treatment process, but may be performed after the heat treatment process. Alternatively, it can be performed after the rolling process. According to the manufacturing method of the present embodiment, since the aluminum foil 10 is not deformed, the order of the cutting steps can be freely selected.

なお,負極用の電極板についても,同様の製造方法によって適切に製造することができる。負極用の電極板は,銅箔にリチウムイオンを吸蔵・放出可能な負極活物質を塗布したものである。負極活物質として,非晶質炭素,難黒鉛化炭素,易黒鉛化炭素,黒鉛等の炭素系物質が用いられる。そして,負極板の場合には,加熱処理工程における加熱ローラの温度は,110〜300℃の範囲内が好ましい。例えば190℃程度が適している。また,活物質による層の密度は,圧延前に0.75g/cm3程度であったものが,圧延工程によって1.41g/cm3程度となった。 Note that the electrode plate for the negative electrode can be appropriately manufactured by the same manufacturing method. The negative electrode plate is a copper foil coated with a negative electrode active material capable of inserting and extracting lithium ions. As the negative electrode active material, carbon-based materials such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite are used. In the case of the negative electrode plate, the temperature of the heating roller in the heat treatment step is preferably in the range of 110 to 300 ° C. For example, about 190 ° C. is suitable. Further, the density of the layer made of the active material was about 0.75 g / cm 3 before rolling, but became about 1.41 g / cm 3 by the rolling process.

このようにして製造した正負の電極板を,セパレータを介して捲回または積層し,それぞれの非塗工部12に電極端子を溶接する。本形態で製造した電極板では,金属箔に強い湾曲が生じていないので,歪み無く容易に捲回または積層することが出来る。さらに,非塗工部12によれが発生していないので,電極端子の溶接は容易であり,溶接箇所は十分な機械的強度を有したものとなる。   The positive and negative electrode plates manufactured in this way are wound or laminated through a separator, and electrode terminals are welded to the respective non-coated portions 12. In the electrode plate manufactured in this embodiment, since the metal foil does not have a strong curve, it can be easily wound or laminated without distortion. Furthermore, since no deflection is generated by the non-coated portion 12, the electrode terminal can be easily welded, and the welded portion has sufficient mechanical strength.

以上詳細に説明したように,本形態の製造方法によれば,金属箔に活物質を塗工した後,圧延前に熱処理を行う。従って,金属箔のうち活物質が塗工されていない範囲においても,活物質による層と同程度に伸びやすい状態とすることができる。従って,圧延工程後においても,金属箔に湾曲やよれの発生が抑止されている。これにより,非塗工部の歪みやよれを抑制しつつ,端部の機械的強度を損なわない製造方法となっている。   As described above in detail, according to the manufacturing method of this embodiment, after the active material is applied to the metal foil, heat treatment is performed before rolling. Therefore, even in the range where the active material is not coated in the metal foil, the metal foil can be easily stretched to the same extent as the layer made of the active material. Therefore, even after the rolling process, the metal foil is prevented from being bent or twisted. Thereby, it is a manufacturing method which does not impair the mechanical strength of an edge part, suppressing the distortion and distortion of a non-coating part.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば本発明は,リチウムイオン二次電池に限らず,各種の電池の電極板の製造方法に適用可能である。また,集電箔に用いる金属や電極ペーストの材質は適宜選択可能である。活物質層は,金属箔の片面のみに設けたものでもよい。片面にのみ塗工したものでは,金属箔側を加熱ローラに接触させるとよい。また例えば,熱処理工程の処理方法や処理時間は,電極板の材質や大きさに応じて,適宜変更可能なものである。また,電極板に適した幅の金属箔を用意して幅方向の一方のみに非塗工部を残すように塗工すれば,切断工程は不要である。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, the present invention is applicable not only to lithium ion secondary batteries but also to methods for manufacturing electrode plates for various batteries. In addition, the metal used for the current collector foil and the material of the electrode paste can be appropriately selected. The active material layer may be provided only on one side of the metal foil. In the case of coating only on one side, the metal foil side should be in contact with the heating roller. Further, for example, the processing method and processing time of the heat treatment process can be changed as appropriate according to the material and size of the electrode plate. In addition, if a metal foil having a width suitable for the electrode plate is prepared and applied so that an uncoated portion is left only in one side in the width direction, a cutting step is unnecessary.

10 アルミニウム箔
20 活物質
S2 塗工工程
S3 切断工程
S4 熱処理工程
S5 圧延工程
10 Aluminum foil 20 Active material S2 Coating process S3 Cutting process S4 Heat treatment process S5 Rolling process

Claims (4)

金属箔の少なくとも一面に活物質層を設けてなる電極板の製造方法において,
帯状の金属箔(以下,箔という)の少なくとも一面に,幅方向の端部に非塗工部を残しつつ,活物質のペーストを塗工して活物質層を形成する塗工工程と,
前記活物質層が形成された前記箔を,前記箔の焼き鈍し温度より高く,前記活物質層の成分の溶融温度より低い温度に加熱する熱処理工程と,
前記熱処理工程後に,前記箔を長手方向に搬送しつつ,前記箔の厚さ方向に加圧する圧延工程とを有することを特徴とする電極板の製造方法。
In an electrode plate manufacturing method comprising an active material layer on at least one surface of a metal foil,
A coating step of forming an active material layer by applying an active material paste on at least one surface of a strip-shaped metal foil (hereinafter referred to as a foil), leaving an uncoated portion at the end in the width direction;
A heat treatment step of heating the foil on which the active material layer is formed to a temperature higher than an annealing temperature of the foil and lower than a melting temperature of components of the active material layer;
A method of manufacturing an electrode plate, comprising: a rolling step of pressing the foil in the thickness direction while conveying the foil in the longitudinal direction after the heat treatment step.
アルミニウム箔の少なくとも一面に活物質層を設けてなる電極板の製造方法において,
帯状のアルミニウム箔(以下,箔という)の少なくとも一面に,幅方向の端部に非塗工部を残しつつ,リチウムイオン二次電池の正極活物質のペーストを塗工して活物質層を形成する塗工工程と,
前記活物質層が形成された前記箔を,150〜400℃の範囲内の温度に加熱する熱処理工程と,
前記熱処理工程後に,前記箔を長手方向に搬送しつつ,前記箔の厚さ方向に加圧する圧延工程とを有することを特徴とする電極板の製造方法。
In an electrode plate manufacturing method comprising an active material layer on at least one surface of an aluminum foil,
Form the active material layer by applying the positive electrode active material paste of the lithium ion secondary battery, leaving the uncoated part at the end in the width direction on at least one side of the strip-shaped aluminum foil (hereinafter referred to as foil) Coating process,
A heat treatment step of heating the foil on which the active material layer is formed to a temperature within a range of 150 to 400 ° C .;
A method of manufacturing an electrode plate, comprising: a rolling step of pressing the foil in the thickness direction while conveying the foil in the longitudinal direction after the heat treatment step.
銅箔の少なくとも一面に活物質層を設けてなる電極板の製造方法において,
帯状の銅箔(以下,箔という)の少なくとも一面に,幅方向の端部に非塗工部を残しつつ,リチウムイオン二次電池の負極活物質のペーストを塗工して活物質層を形成する塗工工程と,
前記活物質層が形成された前記箔を,110〜300℃の範囲内の温度に加熱する熱処理工程と,
前記熱処理工程後に,前記箔を長手方向に搬送しつつ,前記箔の厚さ方向に加圧する圧延工程とを有することを特徴とする電極板の製造方法。
In an electrode plate manufacturing method comprising an active material layer on at least one surface of a copper foil,
Form the active material layer by applying the negative electrode active material paste of the lithium ion secondary battery, leaving the uncoated part at the end in the width direction on at least one side of the strip-shaped copper foil (hereinafter referred to as foil) Coating process,
A heat treatment step of heating the foil on which the active material layer is formed to a temperature within a range of 110 to 300 ° C .;
A method of manufacturing an electrode plate, comprising: a rolling step of pressing the foil in the thickness direction while conveying the foil in the longitudinal direction after the heat treatment step.
請求項1から請求項3までのいずれか1つに記載の電極板の製造方法において,
前記塗工工程では,前記箔の幅方向の両端部を残して塗工し,
前記塗工工程より後で,かつ,前記熱処理工程より前に,前記箔を幅方向の一箇所で長手方向に切断する切断工程を有することを特徴とする電極板の製造方法。
In the manufacturing method of the electrode plate as described in any one of Claim 1- Claim 3,
In the coating step, coating is performed leaving both ends in the width direction of the foil,
A method for producing an electrode plate, comprising: a cutting step of cutting the foil in the longitudinal direction at one place in the width direction after the coating step and before the heat treatment step.
JP2009089901A 2009-04-02 2009-04-02 Method for manufacturing electrode plate Pending JP2010244748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089901A JP2010244748A (en) 2009-04-02 2009-04-02 Method for manufacturing electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089901A JP2010244748A (en) 2009-04-02 2009-04-02 Method for manufacturing electrode plate

Publications (1)

Publication Number Publication Date
JP2010244748A true JP2010244748A (en) 2010-10-28

Family

ID=43097556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089901A Pending JP2010244748A (en) 2009-04-02 2009-04-02 Method for manufacturing electrode plate

Country Status (1)

Country Link
JP (1) JP2010244748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254595A (en) * 2012-06-05 2013-12-19 Hirano Tecseed Co Ltd Device and method for manufacturing web
JP2015026562A (en) * 2013-07-29 2015-02-05 株式会社豊田自動織機 Band-like electrode manufacturing method and band-like electrode cutting device
JP2016122490A (en) * 2014-12-24 2016-07-07 株式会社豊田自動織機 Electrode manufacturing method and electrode manufacturing apparatus
JP2017191678A (en) * 2016-04-12 2017-10-19 株式会社豊田自動織機 Method for manufacturing electrode material
US11329272B2 (en) 2016-10-07 2022-05-10 Lg Energy Solution, Ltd. Method of manufacturing electrode for secondary battery comprising pre-slitting process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273390A (en) * 2006-03-31 2007-10-18 Denso Corp Manufacturing method of electrode
JP2007305322A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273390A (en) * 2006-03-31 2007-10-18 Denso Corp Manufacturing method of electrode
JP2007305322A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254595A (en) * 2012-06-05 2013-12-19 Hirano Tecseed Co Ltd Device and method for manufacturing web
JP2015026562A (en) * 2013-07-29 2015-02-05 株式会社豊田自動織機 Band-like electrode manufacturing method and band-like electrode cutting device
JP2016122490A (en) * 2014-12-24 2016-07-07 株式会社豊田自動織機 Electrode manufacturing method and electrode manufacturing apparatus
JP2017191678A (en) * 2016-04-12 2017-10-19 株式会社豊田自動織機 Method for manufacturing electrode material
US11329272B2 (en) 2016-10-07 2022-05-10 Lg Energy Solution, Ltd. Method of manufacturing electrode for secondary battery comprising pre-slitting process

Similar Documents

Publication Publication Date Title
JP4954585B2 (en) Method for producing electrode for lithium ion battery
JP5596183B2 (en) Electrode manufacturing method and battery manufacturing method
JP6475404B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
CN105917511B (en) Laminating method
KR102499324B1 (en) Rolling Device for Secondary Battery
CN106058135A (en) Clad material for battery negative electrode lead material, method of manufacturing clad material for battery negative electrode lead material and battery
JP6021508B2 (en) Electrode manufacturing method and battery manufacturing method
JP2012079592A (en) Press method of electrode foil for battery
JPWO2013161726A1 (en) Aluminum alloy foil for electrode current collector, method for producing the same, and lithium ion secondary battery
JP2010244748A (en) Method for manufacturing electrode plate
TWI683013B (en) Rolled copper foil for secondary battery negative electrode current collector, secondary battery negative electrode and secondary battery using the copper foil, and method for producing rolled copper foil for secondary battery negative electrode current collector
JP2005093236A (en) Manufacturing method of sheet electrode
JP3683134B2 (en) Manufacturing method of sheet electrode
JP4238630B2 (en) Electrode manufacturing method
JP2005190787A (en) Electrode plate for nonaqueous electrolyte secondary battery and its manufacturing method
JP2012059472A (en) Method for manufacturing secondary battery electrode
JP2011023129A (en) Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor
JP2014114480A (en) Electrode collector aluminum alloy foil and method for manufacturing the same
JP2010212143A (en) Electrode manufacturing method and electrode manufacturing device
JP2012052204A (en) Aluminum alloy foil for lithium-ion battery electrode material, and electrode material using the same
JPWO2020137436A1 (en) Electrode manufacturing method
JP2013211145A (en) Power storage device, secondary battery, and manufacturing method of power storage device
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP2018076590A (en) Aluminum alloy foil for electrode collector body and manufacturing method therefor
JP2014143008A (en) Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119