JP7252735B2 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP7252735B2
JP7252735B2 JP2018206787A JP2018206787A JP7252735B2 JP 7252735 B2 JP7252735 B2 JP 7252735B2 JP 2018206787 A JP2018206787 A JP 2018206787A JP 2018206787 A JP2018206787 A JP 2018206787A JP 7252735 B2 JP7252735 B2 JP 7252735B2
Authority
JP
Japan
Prior art keywords
porous layer
electrolyte secondary
aqueous electrolyte
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018206787A
Other languages
English (en)
Other versions
JP2020072041A (ja
Inventor
一郎 有瀬
力 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2018206787A priority Critical patent/JP7252735B2/ja
Priority to KR1020217015729A priority patent/KR20210082491A/ko
Priority to PCT/JP2019/043096 priority patent/WO2020091060A1/ja
Publication of JP2020072041A publication Critical patent/JP2020072041A/ja
Application granted granted Critical
Publication of JP7252735B2 publication Critical patent/JP7252735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水電解液二次電池に関する。
非水電解液二次電池、特にリチウム二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。
非水電解液二次電池として、例えば、特許文献1に記載されたような板状の無機フィラーを含有し、空孔率が60~90%である多孔質層を多孔質基材の少なくとも一面に積層させた非水系二次電池用セパレータを備える非水電解液二次電池が知られている。
特開2010-108753号公報(2010年5月13日公開)
しかしながら、前述のような従来技術には、エージング後の充電容量に関して改善の余地があった。
本発明の一態様は前記の問題点に鑑みてなされたものであり、エージング後の充電容量を向上させた非水電解液二次電池を提供することを目的とする。
本発明は、以下の構成を包含している:
<1>無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
前記多孔質層の表面の無機フィラーの投影像のアスペクト比が、1.4~4.0の範囲であり、
前記多孔質層は、広角X線回折法により測定したときの、互いに直交する任意の回折面(hkl)および(abc)のピーク強度であるI(hkl)およびI(abc)が、下式(1)および(2)の関係を満たす、非水電解液二次電池:
(hkl)>I(abc)・・・(1)
1.5≦(I(hkl)/I(abc))の最大値≦300・・・(2)。
<2>前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に積層されている、<1>に記載の非水電解液二次電池。
<3>前記正極板は遷移金属を含み、前記負極板は黒鉛を含む、<1>または<2>に記載の非水電解液二次電池。
<4>前記多孔質層に含まれる前記樹脂は、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上である、<1>~<3>のいずれか1つに記載の非水電解液二次電池。
<5>前記ポリアミド系樹脂がアラミド樹脂である、<4>に記載の非水電解液二次電池。
本発明の一態様によれば、エージング後の充電容量を向上させた非水電解液二次電池が提供される。
無機フィラーを含む多孔質層における、無機フィラーの配向性が大きい場合(左図)および無機フィラーの配向性が小さい場合(右図)の、当該多孔質層の構造を表す模式図である。 本発明の一実施形態における多孔質層の表面の、無機フィラーの投影像を示す模式図である。
本発明の一実施形態に関して以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
〔1.本発明の一態様に係る非水電解液二次電池〕
本発明の一態様に係る非水電解液二次電池は、無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
前記多孔質層の表面の無機フィラーの投影像のアスペクト比が、1.4~4.0の範囲であり、
前記多孔質層の、広角X線回折法により測定した、互いに直交する任意の回折面(hkl)、(abc)のピーク強度:I(hkl)およびI(abc)が下式(1)を満たし、
下式(2)で算出されるピーク強度比の最大値の範囲が、1.5~300の範囲である:
(hkl) > I(abc)・・・(1)
(hkl) / I(abc)・・・(2)。
界面障壁エネルギーの和が前述の範囲にある正極板および負極板の組み合わせによれば、充放電サイクルの過程において、正極活物質層内および負極活物質層内の活物質表面におけるイオンおよび電荷の移動が均一化される。そのため、活物質全体の反応性が適度かつ均一になり、活物質層内の構造変化や活物質自体の劣化が抑制される。
無機フィラーのアスペクト比と配向度とが前述の条件を満たす多孔質層は、イオンの透過性が高い。そのため、例えばセパレータの塗工層として用いられた場合には、良好なイオン透過性を有するセパレータを提供することができる。
以上の部材を選択することによって、本発明の一態様に係る非水電解液二次電池は、エージング後の充電容量が向上するという、新たな効果を得るに至った。ここで、エージングとは、非水電解液二次電池を組み立てた後、最初に行う数サイクルの充放電のことを意味する。
前記の効果は、多孔質層中のイオン透過性が良好であり、かつ、電極内のイオン分布が均一である部材を組み合わせたことに起因すると考えられる。つまり、このような組み合わせの結果、エージング過程におけるイオンの分布が適度に均一であり、さらに電極全体に電解液が浸透するようになる。そのため、エージング後の電池容量が向上すると推定される。
エージングの条件は、当業者によって適宜設定されうる。以下に一例として、エージング後の充電容量の測定方法を説明する。なお、以下の説明において、「1C」とは、1時間率の放電容量による定格容量を、1時間で放電する電流値を意味する。「CC-CV充電」とは、所定の電圧に到達するまで一定の電流で充電し、その後、前記所定の電圧が維持されるように電流を低下させながら充電する充電方法を意味する。「CC放電」とは、一定の電流を維持しながら、所定の電圧に達するまで放電する放電方法を意味する。
1.(初回充放電工程)組み立ての完了した非水電解液二次電池に、(i)電圧範囲:2.7~4.1V、充電電流値:0.2CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:0.2CでCC放電を行う。この充放電サイクルは、25℃にて実施する。
2.(ガス抜き工程)初回充放電後の非水電解液用二次電池から、ラミネートパウチの内部に正負極板が存在しない余白部分(ガスだまり部)を、再シール箇所を残して切断する。その後、真空シーラーでラミネートパウチ内を真空にして、初回充放電により発生した余剰なガス成分を除去する。さらに、ラミネートパウチを再度圧着シールする。
3.(エージング充放電)ガス抜き工程を経た非水電解液二次電池に、(i)電圧範囲:2.7~4.1V、充電電流値:0.2CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:0.2CでCC放電を行う。前記のサイクルを1サイクルとして、3サイクルのエージング充放電を行う。この充放電サイクルは、25℃にて実施する。
4.(エージング後の充電容量)エージング充放電を経た非水電解液二次電池に、(i)電圧範囲:2.7~4.1V、充電電流値:1CでCC-CV充電を行い(終止電流条件:0.02C)、次いで(ii)放電電流値:0.2CでCC放電を行う。前記のサイクルを1サイクルとして、3サイクルの充放電を行う。この充放電サイクルは、55℃にて実施する。本工程における3サイクル目の充電容量を、「エージング後の充電容量」とする。
本発明の一態様に係る非水電解液二次電池のエージング後の充電容量は、18mAh以上が好ましく、18.5mAh以上がより好ましい。
〔2.正極板および負極板〕
[正極板]
本発明の一実施形態に係る非水電解液二次電池における正極板は、前記正極板および後述する負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和が5000J/mol以上であれば特に限定されない。例えば、正極活物質層として、正極活物質、導電剤および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極板が、このような正極板に含まれる。なお、正極板は、正極集電体の両面上に正極合剤を担持してもよく、正極集電体の片面上に正極合剤を担持してもよい。
前記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、遷移金属酸化物が好ましく、当該遷移金属酸化物として、例えば、V、Mn、Fe、Co、Ni等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。前記リチウム複合酸化物のうち、平均放電電位が高いことから、ニッケル酸リチウム、コバルト酸リチウム等のα-NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネル等のスピネル型構造を有するリチウム複合酸化物がより好ましい。当該リチウム複合酸化物は、種々の金属元素を含んでいてもよく、複合ニッケル酸リチウムがさらに好ましい。
さらに、Ti、Zr、Ce、Y、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選択される少なくとも1種の金属元素のモル数とニッケル酸リチウム中のNiのモル数との和に対して、前記少なくとも1種の金属元素の割合が0.1~20モル%となるように当該金属元素を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル特性に優れるのでさらにより好ましい。中でもAlまたはMnを含み、かつ、Ni比率が85%以上、さらに好ましくは90%以上である活物質が、当該活物質を含む正極板を備える非水電解液二次電池の高容量での使用におけるサイクル特性に優れることから、特に好ましい。
前記導電剤としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料等が挙げられる。前記導電剤は、1種類のみを用いてもよく、例えば人造黒鉛とカーボンブラックとを混合して用いる等、2種類以上を組み合わせて用いてもよい。
前記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルの共重合体、エチレン-テトラフルオロエチレンの共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、およびポリプロピレン等の熱可塑性樹脂、アクリル樹脂、並びに、スチレンブタジエンゴムが挙げられる。尚、結着剤は、増粘剤としての機能も有している。
正極合剤を得る方法としては、例えば、正極活物質、導電剤および結着剤を正極集電体上で加圧して正極合剤を得る方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得る方法;等が挙げられる。
前記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
シート状の正極板の製造方法、即ち、正極集電体に正極合剤を担持させる方法としては、例えば、正極合剤となる正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、乾燥して得られたシート状の正極合剤を加圧して正極集電体に固着する方法;等が挙げられる。
正極活物質の粒径は、例えば、体積当たりの平均粒径(D50)によって表される。正極活物質の体積当たりの平均粒径は、通常、0.1~30μm程度の値となる。正極活物質の体積当たりの平均粒径(D50)は、レーザー回折式粒度分布計(島津製作所製、商品名:SALD2200)を用いて測定することができる。
正極活物質のアスペクト比(長軸径/短軸径)は、通常、1~100程度の値となる。正極活物質のアスペクト比は、無機フィラーを平面上に配置した状態で、配置面の垂直上方から観察したSEM像において、厚み方向に重なりあわない粒子100個の、短軸の長さ(短軸径)と長軸の長さ(長軸径)との比の平均値として表す方法を用いて測定することができる。
正極活物質層の空隙率は、通常、10~80%程度の値となる。正極活物質層の空隙率(ε)は、正極活物質層の密度ρ(g/m)、正極活物質層を構成する物質(例えば正極活物質、導電剤、結着剤など)の各々の質量組成(重量%)b、b、・・・b、および当該物質の各々の真密度(g/m)をc、c、・・・cから、下記式に基づいて算出することができる。ここで、前記物質の真密度には、文献値を用いてもよいし、ピクノメーター法を用いて測定された値を用いてもよい。
ε=1-{ρ×(b/100)/c+ρ×(b/100)/c+・・・ρ×(b/100)/c}×100。
正極活物質層に占める正極活物質の割合は、通常、70重量%以上である。
集電体上に正極活物質を含む正極合剤を塗工する塗工ライン速度は10~200m/分の範囲であり、塗工時の塗工ライン速度は、正極活物質を塗工する装置を適宜設定することにより、調節できる。
[負極板]
本発明の一実施形態に係る非水電解液二次電池における負極板は、前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和が5000J/mol以上であれば特に限定されない。例えば、負極活物質層として、負極活物質、導電剤および結着剤を含む負極合剤を負極集電体上に担持したシート状の負極板が、このような負極板に含まれる。なお、負極板は、負極集電体の両面上に負極合剤を担持してもよく、負極集電体の片面上に負極合剤を担持してもよい。
シート状の負極板には、好ましくは前記導電剤、および、前記結着剤が含まれる。
前記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;正極板よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物;アルカリ金属と合金化するAl、Pb、Sn、Bi、Siなどの金属、アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi)、リチウム窒素化合物(Li3-xN(M:遷移金属))等が挙げられる。前記負極活物質のうち、電位平坦性が高く、また平均放電電位が低いために正極板と組み合わせた場合に大きなエネルギー密度が得られることから、黒鉛を含むものが好ましく、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましい。また、黒鉛とシリコンの混合物であってもよく、その黒鉛を構成するCに対するSiの比率が5%以上である負極活物質が好ましく、10%以上である負極活物質がより好ましい。
負極合剤を得る方法としては、例えば、負極活物質を負極集電体上で加圧して負極合剤を得る方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得る方法;等が挙げられる。
前記負極集電体としては、例えば、Cu、Ni、ステンレス等が挙げられ、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
シート状の負極板の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法;等が挙げられる。前記ペーストには、好ましくは前記導電剤、および、前記結着剤が含まれる。
負極活物質の体積当たりの平均粒径(D50)は、通常、0.1~30μm程度の値となる。
負極活物質のアスペクト比(長軸径/短軸径)は、通常、1~10程度の値となる。
負極活物質層の空隙率は、通常、10~60%程度の値となる。
負極活物質層に占める活物質の割合は、通常、70重量%以上であり、好ましくは80%以上、さらに好ましくは90%以上である。
集電体上に負極活物質を含む負極合剤を塗工する塗工ライン速度は10~200m/分の範囲であり、塗工時の塗工ライン速度は、負極活物質を塗工する装置を適宜設定することにより、調節できる。
前記負極活物質の粒径、アスペクト比、空隙率、負極活物質層に占める割合、および塗工ロール速度の決定方法は、[正極板]で説明した方法と同じである。
[界面障壁エネルギーの和]
本発明の一実施形態における正極板および負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、界面障壁エネルギーの和は5000J/mol以上である。前記界面障壁エネルギーの和は、5100J/mol以上であることが好ましく、5200J/mol以上であることがより好ましい。
界面障壁エネルギーの和を5000J/mol以上とすることにより、活物質層内の活物質表面における、イオンおよび電荷の移動は均一化され、結果として活物質層全体の反応性が適度であり、かつ均一になる。これにより、活物質層内の構造変化や活物質自体の劣化が抑制されると考えられる。
逆に、界面障壁エネルギーの和が5000J/molより小さい場合は、活物質層内の反応性が不均一になることにより、活物質層内の局所的な構造変化や、部分的な活物質の劣化(ガスの発生等)を生じると考えられる。
以上の理由により、界面障壁エネルギーの和が5000J/mol以上である正極板および負極板の組み合わせを用いることによって、本発明の一実施形態に係る非水電解液二次電池は、エージング後の充電容量が向上する、という効果を奏するようになる。
界面障壁エネルギーの和の上限は、特に限定されない。ただし、過剰に高い界面障壁エネルギーの和は、活物質表面でのイオンおよび電荷の移動を阻害し、結果として充放電に伴う活物質の酸化還元反応が生じにくくなるので、好ましくない。一例として、界面障壁エネルギーの和の上限は、15,000J/mol程度である。
前記に説明した、界面障壁エネルギーの和は、以下の手順に従って正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーの和として測定・算出される。
(1)正極板および負極板を、直径15mmの円盤状に切断する。併せて、ポリオレフィン多孔質フィルムを直径17mmの円盤状に切断し、これをセパレータとする。
(2)エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジエチルカーボネート(DEC)が、体積比で3/5/2である混合溶媒を調製する。前記混合溶媒に、LiPFを1mol/Lとなるように溶解させて、電解液を調製する。
(3)CR2032型の電槽に、底側から順に、負極板、セパレータ、正極板、SUS板(直径:15.5mm、厚み:0.5mm)、ウェーブワッシャーを積層する。その後、電解液を注液し、蓋を閉めて、コイン電池を作製する。
(4)作製したコイン電池を恒温槽内に設置する。交流インピーダンス装置(FRA 1255B、ソーラトロン社製)およびセルテストシステム(1470E)を用いて、周波数:1MHz~0.1Hz、電圧振幅:10mVの条件で、ナイキストプロットを測定する。なお、恒温槽の温度は、50℃、25℃、5℃または-10℃とする。
(5)得られたナイキストプロットの半円弧(または扁平円の弧)の直径から、各温度における、正極板および負極板の電極活物質界面上の抵抗r+rを求める。ここで、抵抗r+rは、正極および負極のイオン移動に伴う抵抗と、正極および負極の電荷移動に伴う抵抗の和である。この半円弧は完全に2つの円弧に分離されている場合もあるし、二つの円が重なりあった扁平円の場合もある。下記の式(3)および式(4)に従って、正極活物質の界面障壁エネルギーと負極活物質との界面障壁エネルギーの和を算出する。
k=1/(r+r2)=Aexp(-Ea/RT) ・・・式(3)
ln(k)=ln{1/(r+r)}=ln(A)-Ea/RT ・・・式(4)
Ea:正極活物質と負極活物質との界面障壁エネルギーの和(J/mol)
k:移動定数
+r:抵抗(Ω)
A:頻度因子
R:気体定数=8.314J/mol/K
T:恒温槽の温度(K)。
ここで、式(4)は、式(3)の両辺の自然対数を取った式である。式(4)において、ln{1/(r+r)}は、1/Tの一次関数となっている。したがって、式(4)に、それぞれの温度における抵抗の値を代入した点をプロットし、当該プロットから最小二乗法によって得られる近似直線の傾きから、Ea/Rが求められる。この値に、気体定数Rを代入すれば、界面障壁エネルギーの和Eaを算出できる。
なお、頻度因子Aは、温度変化によって変動しない固有の値である。この値は、電解液バルクのリチウムイオンのモル濃度などに依存して決定される。式(4)に即すると、頻度因子Aは、(1/T)=0の場合のln(1/r)の値であり、前記近似直線に基づいて算出することができる。
界面障壁エネルギーの和は、例えば、正極活物質と負極活物質との粒径比によって制御することができる。正極活物質と負極活物質との粒径比、(負極活物質の粒径/正極活物質の粒径)の値は、好ましくは6.0以下である。(負極活物質の粒径/正極活物質の粒径)の値が大きくなり過ぎると、界面障壁エネルギーの和が小さくなり過ぎる傾向にある。
〔3.多孔質層〕
本発明の一実施形態における多孔質層は、無機フィラーと、樹脂とを含む多孔質層であって、当該多孔質層の表面(以下、「多孔質層表面」と称する場合がある)の無機フィラーの投影像のアスペクト比が、1.4~4.0の範囲であり、前記多孔質層の、広角X線回折法により測定した、互いに直交する任意の回折面(hkl)、(abc)のピーク強度:I(hkl)およびI(abc)が下式(1)を満たし、下式(2)で算出されるピーク強度比の最大値の範囲が、1.5~300の範囲である事を特徴とする。
(hkl) > I(abc) ・・・(1)、
(hkl) / I(abc) ・・・(2)。
本発明の一実施形態において、多孔質層は、非水電解液二次電池を構成する部材として、ポリオレフィン多孔質フィルムと、正極板および負極板の少なくともいずれか一方との間に配置され得る。前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に形成され得る。或いは、前記多孔質層は、正極板および負極板の少なくともいずれか一方の活物質層上に形成され得る。或いは、前記多孔質層は、ポリオレフィン多孔質フィルムと、正極板および負極板の少なくともいずれか一方との間に、これらと接するように配置されてもよい。ポリオレフィン多孔質フィルムと正極板および負極板の少なくともいずれか一方との間に配置される多孔質層は1層でもよく2層以上であってもよい。多孔質層は、樹脂を含む絶縁性の多孔質層であることが好ましい。
ポリオレフィン多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、ポリオレフィン多孔質フィルムにおける正極板と対向する面に積層される。より好ましくは、当該多孔質層は、正極板と接する面に積層される。
上述の「多孔質層の表面の無機フィラーの投影像のアスペクト比」および上述の「式(2)で算出されるピーク強度比の最大値」は、共に、多孔質層における無機フィラーの配向性を表す指標である。ここで、前記配向性が高い場合と、前記配向性が低い場合の、多孔質層における無機フィラーの様態の模式図を図1に示す。図1の左図が、無機フィラーを含む多孔質層における、フィラーの配向性が大きく異方性が高い場合の当該多孔質層の構造を表す模式図であり、図1の右図が、無機フィラーの配向性が小さく異方性が低い場合の当該多孔質層の構造を表す模式図である。
本発明の一実施形態における多孔質層は、無機フィラーと、樹脂とを含む。多孔質層は、内部に多数の細孔を有し、これら細孔が連結された構造となっており、一方の面から他方の面へと気体或いは液体が通過可能となった層である。また、本発明の一実施形態における多孔質層が後述する非水電解液二次電池用積層セパレータを構成する部材として使用される場合、前記多孔質層は、当該積層セパレータの最外層として、電極と接する層となり得る。
本発明の一実施形態における多孔質層に用いられる樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。
多孔質層に用いられる樹脂としては、例えば、ポリオレフィン;(メタ)アクリレート系樹脂;含フッ素樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエステル系樹脂;ゴム類;融点またはガラス転移温度が180℃以上の樹脂;水溶性ポリマー;ポリカーボネート、ポリアセタール、ポリエーテルエーテルケトン等が挙げられる。
上述の樹脂のうち、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーが好ましい。
ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、及びエチレン-プロピレン共重合体等が好ましい。
含フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体、フッ化ビニリデン-フッ化ビニル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、及びエチレン-テトラフルオロエチレン共重合体等、並びに、前記含フッ素樹脂の中でもガラス転移温度が23℃以下である含フッ素ゴムを挙げることができる。
ポリアミド系樹脂としては、芳香族ポリアミドおよび全芳香族ポリアミドなどのアラミド樹脂が好ましい。
アラミド樹脂としては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。
ポリエステル系樹脂としては、ポリアリレートなどの芳香族ポリエステルおよび液晶ポリエステルが好ましい。
ゴム類としては、スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニル等を挙げることができる。
融点又はガラス転移温度が180℃以上の樹脂としては、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド等を挙げることができる。
水溶性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等を挙げることができる。
なお、多孔質層に用いられる樹脂としては、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
前記樹脂の中でも、多孔質層が正極板に対向して配置される場合には、電池作動時の酸化劣化による、非水電解液二次電池のレート特性や抵抗特性等の各種性能を維持し易いため、含フッ素樹脂が好ましい。
本発明の一実施形態における多孔質層は、無機フィラーを含む。その含有量の下限値は、前記フィラーと、本発明の一実施形態における多孔質層を構成する樹脂との総重量に対して、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。一方、本発明の一実施形態における多孔質層における、無機フィラーの含有量の上限値は、99重量%以下であることが好ましく、98重量%以下であることがより好ましい。前記フィラーの含有量が、50重量%以上であることが耐熱性の観点から好ましく、前記フィラーの含有量が、99重量%以下であることがフィラー間の密着性の観点から好ましい。無機フィラーを含有することで、前記多孔質層を含むセパレータの滑り性や耐熱性を向上し得る。無機フィラーとしては、非水電解液に安定であり、かつ、電気化学的に安定なフィラーであれば特に限定されない。電池の安全性を確保する観点からは、耐熱温度が150℃以上のフィラーが好ましい。
前記無機フィラーは、特に限定されないが、通常、絶縁性フィラーである。前記無機フィラーは、好ましくは、アルミニウム元素、亜鉛元素、カルシウム元素、ジルコニウム元素、ケイ素元素、マグネシウム元素、バリウム元素、およびホウ素元素からなる群から選ばれる少なくとも1種の元素を含む無機物であり、好ましくはアルミニウム元素を含む無機物である。また、無機フィラーは、好ましくは前記元素の酸化物を含む。
具体的には、無機フィラーとして、チタン酸化物、アルミナ(Al)、酸化亜鉛(ZnO)、酸化カルシウム(CaO)、酸化ジルコニア(ZrO)、シリカ、マグネシア、酸化バリウム、酸化ホウ素、マイカ、ワラストナイト、アタパルジャイト、ベーマイト(アルミナ1水和物)などを挙げることができる。前記無機フィラーとしては、1種類のフィラーを単独で使用してもよく、2種類以上のフィラーを組み合わせて使用してもよい。
本発明の一実施形態における多孔質層における無機フィラーは、アルミナおよび板状フィラーを含むことが好ましい。前記板状フィラーとしては、上で挙げた元素の酸化物のうち、例えば、酸化亜鉛(ZnO)、マイカおよびベーマイトからなる群より選ばれる1以上のフィラーを挙げることができる。
前記無機フィラーの体積平均粒子径は、良好な接着性と滑り性の確保、および積層体の成形性の観点から、0.01μm~10μmの範囲であることが好ましい。その下限値としては0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。その上限値としては5μm以下がより好ましく、1μm以下がさらに好ましい。
前記無機フィラーの形状は、任意であり、特に限定されない。前記無機フィラーの形状は、粒子状であり得、例えば、球形状;楕円形状;板状;棒状;不定形状;繊維状;ピーナッツ状および/またはテトラポット状のように球状や柱状の単一粒子が熱融着した形状;の何れでもよい。電池の短絡防止の観点から、前記無機フィラーは、板状の粒子、および/または、凝集していない一次粒子であることが好ましく、イオン透過の観点からは、多孔質中の粒子が最密充填され難く、粒子間に空隙が形成され易い、瘤、へこみ、くびれ、隆起もしくは膨らみを有する、樹枝状、珊瑚状、もしくは房(ふさ)状などの不定形状;繊維状;ピーナッツ状および/またはテトラポット状のように単一粒子が熱融着した形状;が好ましく、特に、ピーナッツ状および/またはテトラポット状のように球状や柱状の単一粒子が熱融着した形状が、さらに好ましい。
フィラーは、多孔質層の表面に微細な凹凸を形成することで滑り性を向上させ得るものであるが、フィラーが板状の粒子および/または凝集していない一次粒子である場合には、フィラーによって多孔質層の表面に形成される凹凸がより微細になり、多孔質層と電極との接着性がより良好となる。
本発明の一実施形態における多孔質層に含まれる、無機フィラーを構成する酸化物の酸素原子質量百分率は、10%~50%であることが好ましく、20%~50%であることがより好ましい。本発明において、「酸素原子質量百分率」とは、酸化物全体の総質量に対する、当該酸化物中の酸素原子の質量の比を百分率で表したものを意味する。例えば、酸化亜鉛の場合、亜鉛の原子量:65.4、酸素の原子量:16.0より酸化亜鉛(ZnO)の分子量が65.4+16.0=81.4であることから、酸化亜鉛中の酸素原子質量百分率は16.0/81.4×100=20(%)である。
前記酸化物の酸素原子質量百分率が上述の範囲であることは、後述する多孔質層の製造方法にて使用する塗工液中の溶媒または分散媒と、前記無機フィラーとの親和性を好適に保ち、前記無機フィラー間を適切な距離に保つことにより、塗工液の分散性を良好にすることができ、その結果、「多孔質層の表面の、無機フィラーの投影像のアスペクト比」および「多孔質層の配向度」を適切な規定範囲に制御することができる面において好ましい。
本発明の一実施形態における多孔質層に含まれる、無機フィラー自体のアスペクト比は、無機フィラーを平面上に配置した状態で、配置面の垂直上方から観察したSEM像において、厚み方向に重なりあわない粒子100個の、短軸の長さ(短軸径)と長軸の長さ(長軸径)との比の平均値として表される。前記無機フィラー自体のアスペクト比は、1~10であることが好ましく、1.1~8であることがより好ましく、1.2~5であることがさらに好ましい。無機フィラー自体のアスペクト比が上述の範囲であることによって、後述する方法にて本発明の一実施形態における多孔質層を形成した際に、得られる多孔質層において、当該フィラーの配向性や、多孔質層表面におけるフィラーの分布の均一性を好ましい範囲に制御することができる。
本発明の一実施形態における多孔質層は、上述の無機フィラーおよび樹脂以外のその他の成分を含んでいてもよい。前記その他の成分としては、例えば、界面活性剤やワックス、バインダー樹脂などを挙げることができる。また、前記その他の成分の含有量は、多孔質層全体の重量に対して、0重量%~50重量%であることが好ましい。
本発明の一実施形態における多孔質層の平均膜厚は、電極との接着性および高エネルギー密度を確保する観点から、多孔質層一層当たり、0.5μm~10μmの範囲であることが好ましく、1μm~5μmの範囲であることがより好ましい。
多孔質層の単位面積当たりの目付は、多孔質層の強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。多孔質層の単位面積当たりの目付は、多孔質層一層当たり、0.5~20g/mであることが好ましく、0.5~10g/mであることがより好ましい。
多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができる。多孔質層の目付が前記範囲を超える場合には、非水電解液二次電池が重くなる傾向がある。
多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20~90体積%であることが好ましく、30~80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、非水電解液二次電池は、充分なイオン透過性を得ることができる。
[多孔質層表面の無機フィラーの投影像のアスペクト比]
本発明の一実施形態における多孔質層は、当該多孔質層の表面の、無機フィラーの投影像のアスペクト比が、1.4~4.0の範囲であり、1.5~2.3の範囲であることが好ましい。ここで、前記アスペクト比は、走査型電子顕微鏡(SEM)を使用して、多孔質層の真上、すなわち鉛直上方から、その表面の電子顕微鏡写真であるSEM画像を撮影し、その写真から無機フィラーの投影像を作成し、当該無機フィラーの投影像の長軸の長さ/短軸の長さの比率を算出することによって求められる値である。なお、長軸の長さを長軸径、短軸の長さを短軸径とも称する。すなわち、前記アスペクト比とは、多孔質層の表面における無機フィラーを、多孔質層の真上方向から観測した場合に観測される当該無機フィラーの形状を示す。
なお、上述の多孔質層表面のSEM画像から作成される無機フィラーの投影像の模式図を図2に示す。
前記アスペクト比の具体的な測定法としては、例えば、以下の(1)~(4)に示す工程からなる方法が挙げられる。なお、多孔質層の「表面」とは、多孔質層の真上からSEMによって観察可能な多孔質層の面をいう。
(1)多孔質層を基材上に積層させてなる積層体において、当該積層体の多孔質側の真上から日本電子製 電界放出形走査電子顕微鏡JSM-7600Fを用いて加速電圧5kVでSEM表面観察(反射電子像)を行い、SEM画像を得る工程。
(2)工程(1)にて得られたSEM画像上にOHPフィルムを載せ、当該SEM画像に写っている無機フィラーの粒子の輪郭に沿って敷き写した投影像を作成し、該投影像をデジタルスチルカメラにより撮影する工程。
(3)工程(2)にて得られた写真のデータをコンピュータに取り込み、アメリカ国立衛生研究所(NIH:National Institues of Health)が発行する画像解析のフリーソフトIMAGEJを用いて、前記フィラー粒子100個の各々のアスペクト比を算出する工程。なお、ここで前記フィラー粒子を1粒子ずつ楕円形に近似させ、長軸径と短軸径を算出し、長軸径を短軸径で除した値をアスペクト比とする。
(4)工程(3)にて得られたそれぞれの粒子の投影像のアスペクト比の平均値を算出し、その値を多孔質層表面の無機フィラーの投影像のアスペクト比とする工程。
前記多孔質層表面の無機フィラーの投影像のアスペクト比は、多孔質層、特にその表面における無機フィラーの分布の均一性を示す指標である。前記アスペクト比が1に近いということは、多孔質層表面の構成材の形状ならびに分布が均一であり、密に充填されやすい。一方、前記アスペクト比が大きいことは、多孔質層の表面構造における構成成分の配置が不均一になり、結果として、多孔質層表面開口部の形状並びに分布の均一性が低下することを示す。
前記アスペクト比が4.0より大きい場合には、多孔質層、特にその表面開口部の形状並びに分布の均一性が、過度に低下するため、前記多孔質層を組み込んだ非水電解液二次電池において、電池作動時の多孔質層の電解液受入能力が低下する箇所が生じ、その結果、当該非水電解液二次電池のレート特性が低下すると考えられる。一方、前記アスペクト比が1.4未満である場合には、多孔質層、特にその表面の無機フィラーの分布が、過度に均一化された構造となり、結果として多孔質層の表面開口部面積が小さくなるため、前記多孔質層を組み込んだ非水電解液二次電池において、電池作動時の多孔質層の電解液受入能力が低下し、その結果、当該非水電解液二次電池の電池レート特性が低下すると考えられる。
[多孔質層の配向度]
本発明の一実施形態における多孔質層は、広角X線回折法により測定した、当該多孔質層における互いに直交する任意の回折面(hkl)、(abc)のピーク強度:I(hkl)およびI(abc)が下式(1)を満たし、かつ、下式(2)で算出されるピーク強度比の最大値の範囲が、1.5~300の範囲であることが好ましく、1.5~250の範囲であることがより好ましい。
(hkl) > I(abc)・・・(1)、
(hkl) / I(abc)・・・(2)。
以下、本明細書において、前記式(2)で算出されるピーク強度比の最大値を、「多孔質層の配向度」とも称する。
前記ピーク強度I(hkl)およびI(abc)、並びに、ピーク強度比I(hkl) / I(abc)を測定する方法は、特に限定されないが、例えば、以下の(1)~(3)に示す工程からなる方法を挙げることができる。
(1)多孔質層を基材上に積層させてなる積層体(積層多孔質フィルム)を2cm角に切り取り、測定用サンプルを作製する工程。
(2)工程(1)にて得られた測定用サンプルを、当該サンプルにおける多孔質層側を測定面として、Al製ホルダーに取り付け広角X線回折法(2θ―θスキャン法)でX線プロファイルを測定する工程。なお、前記X線プロファイルを測定する装置および測定条件は、特に限定されないが、例えば、装置として理学電機社製RU-200R(回転対陰極型)を使用し、X線源にCuKα線を用い、出力は50KV-200mA、スキャン速度2°/minにて測定する方法が挙げられる。
(3)工程(2)にて得られるX線プロファイルに基づき、多孔質層の広角X線回折測定における、お互いに直交する任意の回折面(hkl)、(abc)のピーク強度 I(hkl)およびI(abc)が前記式(1)を満たす場合に、前記式(2)で算出されるピーク強度比を算出し、そのピーク強度比の最大値、すなわち多孔質層の配向度を算出する工程。
なお、多孔質層の配向度の算出において、互いに直交する回折面を用いることにより、基材面に対して水平方向の向きと、法線方向の向きとの両方が決定されることが重要である。
前記式(2)にて示されるピーク強度比の最大値は、多孔質層内部の配向度を示す指標である。前記式(2)にて示されるピーク強度比が小さいことは、多孔質層の内部構造における配向度が低いことを示し、前記式(2)にて示されるピーク強度比が大きいことは、多孔質層の内部構造における配向度が高いことを示す。
前記式(2)にて示されるピーク強度比の最大値が300より大きい場合には、多孔質層内部構造の異方性が過度に高い構造となり、多孔質層内部のイオン透過流路長が長くなるため、その結果、前記多孔質層を組み込んだ非水電解液二次電池において、多孔質層のイオン透過抵抗が増加し、当該非水電解液二次電池のエージング後の充電容量が低下すると考えられる。
一方、前記式(2)にて示されるピーク強度比の最大値が1.5未満である場合には、1.5以上のピーク強度比を有する多孔質層を用いたケースに比べて、前記多孔質層を組み込んだ非水電解液二次電池において、電極から供給されるイオンを高速で透過させる為、電極からのイオン供給が律速となり(つまり、電極表面でイオンが枯渇する)、電池作動電流値条件である限界電流が小さくなるため、結果として、当該非水電解液二次電池の電池レート特性が低下すると考えらえられる。
[多孔質層の製造方法]
本発明の一実施形態における多孔質層の製造方法としては、特に限定されないが、例えば、基材上に、以下に示す工程(1)~(3)の何れかの1つの工程を用いて、前記無機フィラーと、前記樹脂とを含む多孔質層を形成する方法を挙げることができる。以下に示す工程(2)および工程(3)の場合においては、前記樹脂を析出させた後にさらに乾燥させ、溶媒を除去することによって、製造され得る。工程(1)~(3)における塗工液は、前記無機フィラーが分散しており、かつ、前記樹脂が溶解している状態であってもよい。なお、前記溶媒は、樹脂を溶解させる溶媒であるとともに、樹脂または無機フィラーを分散させる分散媒であるとも言える。
(1)前記無機フィラーおよび前記樹脂を含む塗工液を、基材上に塗工し、前記塗工液中の溶媒を乾燥除去することによって多孔質層を形成させる工程。
(2)前記無機フィラーおよび前記樹脂を含む塗工液を、前記基材の表面に塗工した後、その基材を前記樹脂に対して貧溶媒である、析出溶媒に浸漬することによって、前記樹脂を析出させ、多孔質層を形成する工程。
(3)前記無機フィラーおよび前記樹脂を含む塗工液を、前記基材の表面に塗工した後、低沸点有機酸を用いて、前記塗工液の液性を酸性にすることによって、前記樹脂を析出させ、多孔質層を形成する工程。
前記基材には、後述するポリオレフィン多孔質フィルムの他に、その他のフィルム、正極板および負極板などを用いることができる。
前記溶媒は基材に悪影響を及ぼさず、前記樹脂を均一かつ安定に溶解し、前記無機フィラーを均一かつ安定に分散させる溶媒であることが好ましい。前記溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、アセトンおよび水等が挙げられる。
前記析出溶媒としては、例えば、イソプロピルアルコールまたはt-ブチルアルコールを用いることが好ましい。
前記工程(3)において、低沸点有機酸としては、例えば、パラトルエンスルホン酸、酢酸等を使用することができる。
また、本発明の一実施形態における多孔質層の配向性、すなわち、「多孔質層表面の無機フィラーの投影像のアスペクト比」および「多孔質層の配向度」を制御する方法として、以下に示すように、多孔質層の製造に使用する、前記無機フィラーおよび前記樹脂を含む塗工液の固形分濃度、並びに、前記塗工液を基材上に塗工する際の塗工せん断速度を調節することを挙げることができる。
前記塗工液の好適な固形分濃度は、フィラーの種類などによって変化し得るが、一般には、20重量%より大きく40重量%以下であることが好ましい。前記固形分濃度が上述の範囲であることは、前記塗工液の粘度を適切に保ち、その結果、「多孔質層表面の無機フィラーの投影像のアスペクト比」および「多孔質層の配向度」を上述の好適な範囲に制御することができるため好ましい。
前記塗工液を基材上に塗工する際の塗工せん断速度は、フィラーの種類などによって変化し得るが、一般には、2s-1以上であることが好ましく、4s-1~50s-1であることがより好ましい。
ここで、例えば、前記無機フィラーとして、ピーナッツ状および/またはテトラポット状のように球状や柱状の単一粒子が熱融着した形状、球形状、楕円形状、板状、棒状、または、不定形状の形状を有する無機フィラーを用いた場合、前記塗工せん断速度を大きくすると、高せん断力が無機フィラーにかかるため、異方性が高くなる傾向がある。一方、前記塗工せん断速度を小さくするとせん断力が無機フィラーにかからないため、等方的に配向する傾向がある。
一方、前記無機フィラーが繊維径の長いワラストナイトのような長繊維径無機フィラーである場合には、前記塗工せん断速度を大きくすると、長繊維どうしが絡みあう、あるいはドクターブレードの刃に長繊維がひっかかるためばらばらの配向になり、異方性が低くなる傾向がある。一方、前記塗工せん断速度を小さくすると、長繊維が互いおよびドクターブレードの刃にひっかからないので、配向しやすくなり、異方性は高くなる傾向がある。
〔4.ポリオレフィン多孔質フィルム〕
本発明の一実施形態における非水電解液二次電池は、ポリオレフィン多孔質フィルムを備えていてもよい。以下では、ポリオレフィン多孔質フィルムを単に「多孔質フィルム」と称することがある。前記多孔質フィルムは、ポリオレフィン系樹脂を主成分とし、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体および液体を通過させることが可能となっている。前記多孔質フィルムは、単独で非水電解液二次電池用セパレータとなり得る。また、上述の多孔質層が積層された非水電解液二次電池用積層セパレータの基材ともなり得る。
前記ポリオレフィン多孔質フィルムの少なくとも一方の面上に、前記多孔質層が積層されてなる積層体を、本明細書において、「非水電解液二次電池用積層セパレータ」または「積層セパレータ」とも称する。また、本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムの他に、接着層、耐熱層、保護層等のその他の層をさらに備えていてもよい。
多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、前記ポリオレフィンには、重量平均分子量が5×10~15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていると、非水電解液二次電池用セパレータの強度が向上するのでより好ましい。
熱可塑性樹脂である前記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンおよび1-ヘキセン等の単量体を重合してなる、単独重合体または共重合体が挙げられる。前記単独重合体としては、例えばポリエチレン、ポリプロピレン、ポリブテンを挙げることができる。また、前記共重合体としては、例えばエチレン-プロピレン共重合体を挙げることができる。
このうち、過大電流が流れることをより低温で阻止することができるため、ポリエチレンがより好ましい。なお、この過大電流が流れることを阻止することをシャットダウンともいう。前記ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられる。このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。
多孔質フィルムの膜厚は、4~40μmであることが好ましく、5~30μmであることがより好ましく、6~15μmであることがさらに好ましい。
多孔質フィルムの単位面積当たりの目付は、強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。ただし、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができるように、前記目付は、4~20g/mであることが好ましく、4~12g/mであることがより好ましく、5~10g/mであることがさらに好ましい。
多孔質フィルムの透気度は、ガーレ値で30~500sec/100mLであることが好ましく、50~300sec/100mLであることがより好ましい。多孔質フィルムが前記透気度を有することにより、充分なイオン透過性を得ることができる。多孔質フィルムに上述の多孔質層を積層させた非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30~1000sec/100mLであることが好ましく、50~800sec/100mLであることがより好ましい。非水電解液二次電池用積層セパレータは、前記透気度を有することにより、非水電解液二次電池において、充分なイオン透過性を得ることができる。
多孔質フィルムの空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止する機能を得ることができるように、20~80体積%であることが好ましく、30~75体積%であることがより好ましい。また、多孔質フィルムが有する細孔の孔径は、充分なイオン透過性を得ることができ、かつ、正極板および負極板への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。
[ポリオレフィン多孔質フィルムの製造方法]
前記ポリオレフィン多孔質フィルムの製造方法は特に限定されるものではない。例えば、ポリオレフィン系樹脂と、無機充填剤および可塑剤等の孔形成剤と、任意で酸化防止剤等を混練した後に押し出すことで、シート状のポリオレフィン樹脂組成物を作製する。適当な溶媒にて当該孔形成剤を当該シート状のポリオレフィン樹脂組成物から除去した後、当該孔形成剤が除去されたポリオレフィン樹脂組成物を延伸することで、ポリオレフィン多孔質フィルムを製造することができる。
上記無機充填剤としては、特に限定されるものではなく、無機フィラー、具体的には炭酸カルシウム等が挙げられる。上記可塑剤としては、特に限定されるものではなく、流動パラフィン等の低分子量の炭化水素が挙げられる。
具体的には、以下に示すような工程を含む方法を挙げることができる。
(A)超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリエチレンと、炭酸カルシウムまたは可塑剤等の孔形成剤と、酸化防止剤とを混練してポリオレフィン樹脂組成物を得る工程、
(B)得られたポリオレフィン樹脂組成物を一対の圧延ローラで圧延し、速度比を変えた巻き取りローラで引っ張りながら段階的に冷却し、シートを成形する工程、
(C)得られたシートの中から適当な溶媒にて孔形成剤を除去する工程、
(D)孔形成剤が除去されたシートを適当な延伸倍率にて延伸する工程。
[非水電解液二次電池用積層セパレータの製造方法]
本発明の一実施形態における非水電解液二次電池用積層セパレータの製造方法としては、例えば、上述の「多孔質層の製造方法」において、前記塗工液を塗布する基材として、上述のポリオレフィン多孔質フィルムを使用する方法を挙げることができる。
〔5.非水電解液〕
本発明の一実施形態に係る非水電解液二次電池に含まれ得る非水電解液は、一般に非水電解液二次電池に使用される非水電解液であれば特に限定されない。前記非水電解液としては、例えば、リチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩およびLiAlCl等が挙げられる。前記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
非水電解液を構成する有機溶媒としては、例えば、カーボネート類、エーテル類、エステル類、ニトリル類、アミド類、カーバメート類および含硫黄化合物、並びにこれらの有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒等が挙げられる。前記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
〔6.非水電解液二次電池の製造方法〕
本発明の一実施形態に係る非水電解液二次電池を製造する方法として、例えば、前記正極板、非水電解液二次電池用積層セパレータ、および負極板をこの順で配置して非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、減圧しつつ密閉する方法を挙げることができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
〔各種物性の測定方法〕
以下の製造例および比較例に係る非水電解液二次電池の各種物性を、以下の方法で測定した。
(1)膜厚(単位:μm)
ポリオレフィン多孔質フィルムおよび多孔質層の膜厚は、株式会社ミツトヨ製の高精度デジタル測長機(VL-50)を用いて測定した。多孔質層の膜厚は、各々の積層体において多孔質層が形成されている部分の膜厚から、多孔質層が形成されていない部分の膜厚を引いた値とした。
(2)多孔質層の表面の無機フィラーの投影像のアスペクト比の測定
実施例および比較例にて製造されたポリオレフィン多孔質フィルムと多孔質層とからなる積層体の多孔質層側から、日本電子製 電界放出形走査電子顕微鏡JSM-7600Fを用い、加速電圧5kVでSEM表面観察(反射電子像)を行い、電子顕微鏡写真(SEM画像)を得た。
得られたSEM画像上にOHPフィルムを載せ、無機フィラーの粒子の輪郭に沿って敷き写した投影像を作成し、該投影像をデジタルスチルカメラにより撮影した。得られた写真のデータをコンピュータに取り込み、アメリカ国立衛生研究所(NIH:National Institues of Health)が発行する画像解析のフリーソフトIMAGEJを用いて、粒子100個の各々のアスペクト比を算出し、その平均を多孔質層における多孔質層表面の無機フィラーの投影像のアスペクト比(以下、表面フィラーアスペクト比とも称する)とした。ここでフィラー1粒子ずつを楕円形に近似させ、長軸径と短軸径を算出し、長軸径を短軸径で除した値をフィラー1個当たりのアスペクト比とした。
(3)ピーク強度比(I(hkl)/I(abc))の最大値の測定(多孔質層の配向度の測定)
実施例および比較例にて製造されたポリオレフィン多孔質フィルムと多孔質層とからなる積層体を2cm角に切り取り、測定用サンプルを得た。得られた測定用サンプルを、当該サンプルにおける多孔質層を測定面として、Al製ホルダーに取り付け広角X線回折法(2θ―θスキャン法)でX線プロファイルを測定した。装置として理学電機社製RU-200R(回転対陰極型)を使用し、X線源にCuKα線を用い、出力は50KV-200mA、スキャン速度2°/minにて測定した。得られたX線プロファイルに基づき、多孔質層の広角X線回折測定における、直交する任意の回折面(hkl)および(abc)のピーク強度 I(hkl)およびI(abc)が下式(1)を満たす場合の、I(hkl)/I(abc)で算出されるピーク強度比を算出し、そのピーク強度比の最大値を算出した。
(hkl)> I(abc)・・・(1)。
(4)界面障壁エネルギーの和
〔2〕の[界面障壁エネルギーの和]の項目にて説明した方法に基づき、界面障壁エネルギーの和を測定した。
(5)エージング後の充電容量
〔1〕にて説明した方法に基づき、エージング後の充電容量を測定した。
〔実施例1〕
[多孔質層および非水電解液二次電池用積層セパレータの作製]
(ポリオレフィン多孔質フィルムの作製)
ポリオレフィンとして、ポリエチレンを用いてポリオレフィン多孔質フィルムを作製した。具体的には、超高分子量ポリエチレン粉末(340M、三井化学株式会社製)70重量部と、重量平均分子量1000のポリエチレンワックス(FNP-0115、日本精鑞株式会社製)30重量部とを混合して混合ポリエチレンを得た。得られた混合ポリエチレン100重量部に対して、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ株式会社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ株式会社製)0.1重量部、およびステアリン酸ナトリウム1.3重量部を加え、さらに、全体積に占める割合が38体積%となるように、平均粒子径0.1μmの炭酸カルシウム(丸尾カルシウム株式会社製)を加えた。この組成物を粉末のまま、ヘンシェルミキサーで混合した後、二軸混練機で溶融混練することにより、ポリエチレン樹脂組成物を得た。次いで、このポリエチレン樹脂組成物を、表面温度が150℃に設定された一対のローラにて圧延することにより、シートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%を配合)に浸漬させることで、炭酸カルシウムを溶解して除去した。続いて、当該シートを105℃で6倍に延伸することにより、ポリエチレン製のポリオレフィン多孔質フィルム1を作製した。ポリオレフィン多孔質フィルム1は、空隙率:53%、目付:7g/m、膜厚:16μmであった。
(塗工液の調製)
無機フィラーとして、酸素原子質量百分率が20%である六角板状酸化亜鉛(堺化学工業株式会社製、商品名:XZ-100F)を用いた。前記無機フィラーの粒子径は、D10=0.2μm、D50=0.4μm、D90=2.1μmであった。また、前記無機フィラーの比表面積は7.3m/gであった。
無機フィラーの体積基準の粒度分布の算出は、島津製作所製 レーザー回折式粒度分布計SALD2200を使用して、D10、D50、D90を測定することにより行った(D50、D10、D90とは、それぞれ、体積基準による積算分布が50%になる値の粒子径、10%になる値の粒子径、90%になる値の粒子径のことである)。無機フィラーの比表面積は、定容法を用いて窒素による吸着脱離等温線を測定し、BET法から算出した。
結着剤として、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ株式会社製;商品名「KYNAR2801」)を用いた。
無機フィラー、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体および溶媒(関東化学株式会社製 N-メチル‐2-ピロリジノン)を、下記割合となるように混合した。すなわち無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体10重量部を混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が37重量%となるように、溶媒を混合した。得られた混合液を、薄膜旋回型高速ミキサー(プライミクス(株)製フィルミク(登録商標))で攪拌・混合して、均一な塗工液1を得た。
(多孔質層および非水電解液二次電池用積層セパレータの作製)
得られた塗工液1を、ポリオレフィン多孔質フィルム1の片面に、ドクターブレード法により、塗工せん断速度3.9s-1にて塗工し、塗膜を形成させた。その後、前記塗膜を、65℃にて20分間かけて乾燥させることで、多孔質層を形成させた。このようにして、非水電解液二次電池用積層セパレータ1を得た。多孔質層の目付は7g/mであり、厚みは4μmであった。また、非水電解液二次電池用積層セパレータ1の表面フィラーアスペクト比は1.43、多孔質層の配向度は1.6(I(002)/I(110))であった。
[非水電解液二次電池の作製]
(正極板)
正極合剤(LiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比:92/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。LiNi0.5Mn0.3Co0.2の体積基準の平均粒径(D50)は、5μmであった。前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように切り取って、正極板1を得た。正極板1の正極活物質層の厚さは、38μmであった。
(負極板)
負極合剤(天然黒鉛/スチレン-1,3-ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1))が、負極集電体(銅箔)の片面に積層された負極板を得た。天然黒鉛の体積基準の平均粒径(D50)は、15μmであった。前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように切り取って、負極板1を得た。負極板1の負極活物質層の厚さは、38μmであった。
(非水電解液二次電池の組み立て)
正極板1、負極板1および非水電解液二次電池用積層セパレータ1を使用して、以下に示す方法にて非水電解液二次電池を製造した。
ラミネートパウチ内で、正極板1、非水電解液二次電池用積層セパレータ1および負極板1を、この順に積層することにより、非水電解液二次電池用部材1を得た。このとき、正極板1の正極活物質層における主面の全部が、負極板1の負極活物質層における主面の範囲に含まれるように(主面に重なるように)、正極板1および負極板1を配置した。また、非水電解液二次電池用積層セパレータ1の多孔質層側の面を、正極板1の正極活物質層に対向させた。
続いて、非水電解液二次電池用部材1を、予め作製していた、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に、非水電解液を0.23mL注入した。前記非水電解液は、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFを1mol/Lとなるように溶解することにより、調製した。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池1を作製した。
その後前述の方法にて、非水電解液二次電池1の電池特性の測定を行った。その結果を表1に示す。
〔実施例2〕
[非水電解液二次電池の作製]
以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ2を得た。
・無機フィラーの原料として、球状アルミナ(住友化学株式会社製、商品名AA03)および合成雲母(株式会社和光純薬製、商品名:非膨潤性合成雲母、平板状粒子)を用いた。これらの原料を50重量部ずつ、乳鉢で混合した混合物(酸素原子質量百分率45%)を無機フィラーとした。前記無機フィラーの粒子径は、D10=0.5μm、D50=4.2μm、D90=11.5μmであった。また、前記無機フィラーの比表面積は4.5m/gであった。
・無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が30重量%となるように溶媒を混合して塗工液2を調製した。
・塗工液2を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度7.9s-1にて塗工した。
非水電解液二次電池用積層セパレータ2の表面フィラーアスペクト比は1.45、多孔質層の配向度は224(I(002)/I(040))であった。
非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ2を使用して、実施例1と同様に非水電解液二次電池2を作製した。その後前述の方法にて、非水電解液二次電池2の電池特性の測定を行った。その結果を表1に示す。
〔実施例3〕
[非水電解液二次電池の作製]
以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ3を得た。
・無機フィラーとして、酸素原子質量百分率42%であるワラストナイト(林化成株式会社製、商品名:ワラストナイト VM-8N、繊維状粒子)を用いた。前記無機フィラーの粒子径は、D10=2.4μm、D50=10.6μm、D90=25.3μmであった。また、前記無機フィラーの比表面積は1.3m/gであった。
・無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように溶媒を混合して、塗工液3を調製した。
・塗工液3を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度7.9s-1にて塗工した。
非水電解液二次電池用積層セパレータ3の表面フィラーアスペクト比は2.48、多孔質層の配向度は99(I(202)/I(040))であった。
非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ3を使用して、実施例1と同様に非水電解液二次電池3を作製した。その後前述の方法にて、非水電解液二次電池3の電池特性の測定を行った。その結果を表1に示す。
〔実施例4〕
[非水電解液二次電池用積層セパレータの作製]
以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ4を得た。
・無機フィラーの原料として、αアルミナ(住友化学株式会社製、商品名:AKP3000)および六角板状酸化亜鉛(堺化学工業株式会社製、商品名:XZ-1000F)を用いた。そして、αアルミナを99重量部、六角板状酸化亜鉛を1重量部、乳鉢で混合した混合物(酸素原子質量百分率47%)を、無機フィラーとした。前記無機フィラーの粒子径は、D10=0.4μm、D50=0.8μm、D90=2.2μmであった。また、前記無機フィラーの比表面積は4.5m/gであった。
・無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように溶媒を混合して塗工液4を調製した。
・塗工液4を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度39.4s-1にて塗工した。
非水電解液二次電池用積層セパレータ4の表面フィラーアスペクト比は1.73、多孔質層の配向度は4.0(I(300)/I(006))であった。
[非水電解液二次電池の作製]
(正極板)
正極合剤(LiCoO/導電剤/PVDF(重量比:100/5/3))が、正極集電体(アルミニウム箔)の片面に積層された正極板を得た。前記正極板を、正極活物質層が積層された部分の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が積層されていない部分が残るように切り取って、正極板2を得た。正極板2の正極活物質層の厚さは、38μmであった。
(非水電解液二次電池の組み立て)
非水電解液二次電池用積層セパレータ1の代わりに非水電解液二次電池用積層セパレータ4を使用し、正極板1の代わりに正極板2を使用して、実施例1と同様に非水電解液二次電池4を作製した。その後前述の方法にて、非水電解液二次電池4の電池特性の測定を行った。その結果を表1に示す。
〔比較例1〕
[非水電解液二次電池の作製]
以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ5を得た。
・無機フィラーとして、酸素原子質量百分率48%であるアタパルジャイト(林化成株式会社製、商品名:ATTAGEL#50)を用いた。前記無機フィラーの粒子径は、D10=0.4μm、D50=2.0μm、D90=3.3μmであった。また、前記無機フィラーの比表面積は235.0m/gであった。
・無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が17重量%となるように溶媒を混合して塗工液5を調製した。
・塗工液5を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度1.3s-1で塗工した。
非水電解液二次電池用積層セパレータ5の表面フィラーアスペクト比は4.27、多孔質層の配向度は2.0(I(200)/I(040))であった。
非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ5を使用して、実施例1と同様に非水電解液二次電池5を作製した。その後前述の方法にて、非水電解液二次電池5の電池特性の測定を行った。その結果を表1に示す。
〔比較例2〕
[非水電解液二次電池の作製]
以下の変更点の他は、実施例1と同様にして、非水電解液二次電池用積層セパレータ6を得た。
・無機フィラーとして、酸素原子質量百分率44%であるマイカ(和光純薬製、商品名:非膨潤性雲母)を用いた。前記無機フィラーの粒子径は、D10=0.5μm、D50=5.5μm、D90=12.1μmであった。また、前記無機フィラーの比表面積は3.2m/gであった。
・無機フィラー90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体を10重量部混合すると共に、得られる混合液における固形分(無機フィラーおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が20重量%となるように溶媒を混合した塗工液6を調製した。
・塗工液6を、ポリオレフィン多孔質フィルム1の片面に、塗工せん断速度0.4-1で塗工した。
非水電解液二次電池用積層セパレータ6の表面フィラーアスペクト比は1.67、多孔質層の配向度は367(I(002)/I(040))であった。
非水電解液二次電池用積層セパレータ1の代わりに、非水電解液二次電池用積層セパレータ6を使用して、実施例1と同様に非水電解液二次電池6を作製した。その後前述の方法にて、非水電解液二次電池6の電池特性の測定を行った。その結果を表1に示す。
〔比較例3〕
[非水電解液二次電池の作製]
(負極板)
負極合剤(人造球晶黒鉛/導電剤/PVDF(重量比85/15/7.5))が、負極集電体(銅箔)の片面に積層された負極板を得た。前記負極板を、負極活物質層が積層された部分の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が積層されていない部分が残るように切り取って、負極板2を得た。負極板2の負極活物質層の厚さは、36μmであった。
(非水電解液二次電池の組み立て)
非水電解液二次電池用積層セパレータ1の代わりに非水電解液二次電池用積層セパレータ4を使用し、負極板1の代わりに負極板2を使用して、実施例1と同様に非水電解液二次電池7を作製した。その後前述の方法にて、非水電解液二次電池7の電池特性の測定を行った。その結果を表1に示す。
Figure 0007252735000001
(結果)
表1より、(i)表面フィラーアスペクト比の要件、(ii)多孔質層の配向度の要件、および(iii)界面障壁エネルギーの和の要件、の3つを充足する非水電解液二次電池においては、エージング後の充電容量の向上が見られた。一方、前記条件を1つでも満たさない非水電解二次電池では、エージング後の充電容量の向上が見られなかった。
〔参考例:界面障壁エネルギーの制御〕
正極活物質と負極活物質との粒径比を調節した正極板および負極板を作製し、界面障壁エネルギーの和を測定した。具体的には、実施例1とは同じ組成のままで、活物質の粒径を以下のように変更した、正極板および負極板を作製した。この正極板および負極板を用いて、界面障壁エネルギーを測定した結果を表2に示す。
Figure 0007252735000002
(結果)
実施例1における正極板および負極板と、参考例における正極板および負極板とは、組成が一致している。しかし、正極活物質と負極活物質との粒径比((負極活物質の粒径/正極活物質の粒径)の値)は、実施例1では3であったのに対し、参考例では24.7であった。そして、界面障壁エネルギーの和は、実施例1では9069J/molであったのに対し、参考例では4228J/molに過ぎなかった。
この実験結果から、界面障壁エネルギーの和を制御するためには、例えば、正極活物質と負極活物質との粒径比を調節することが有効であることが示された。もちろん、界面障壁エネルギーの和の制御は、他の方法によっても成しうるものである。
本発明の一態様に係る非水電解液二次電池は、エージング後の充電容量が向上している。そのため、パーソナルコンピュータ、携帯電話および携帯情報端末などに用いる電池、ならびに、車載用電池として好適に利用することができる。

Claims (5)

  1. 無機フィラーと樹脂とを含む多孔質層、正極板、および負極板を備え、
    前記正極板および前記負極板を直径15.5mmの円盤状に加工し、濃度1MのLiPFのエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液に浸して測定したときの、正極活物質の界面障壁エネルギーと負極活物質の界面障壁エネルギーとの和が5000J/mol以上であり、
    前記多孔質層の表面の無機フィラーの投影像のアスペクト比が、1.4~4.0の範囲であり、
    前記多孔質層の、広角X線回折法により測定した、互いに直交する任意の回折面(hkl)、(abc)のピーク強度:I(hkl)およびI(abc)が下式(1)を満たし、
    下式(2)で算出されるピーク強度比の最大値の範囲が、1.5~300の範囲であり、
    前記LiPF のエチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネート溶液における、エチレンカーボネート/エチルメチルカーボネート/ジエチルカーボネートの体積比は3/5/2である、非水電解液二次電池。
    (hkl) > I(abc)・・・(1)
    (hkl) / I(abc)・・・(2)
  2. 前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に積層されている、請求項1に記載の非水電解液二次電池。
  3. 前記正極板は遷移金属を含み、前記負極板は黒鉛を含む、請求項1または2に記載の非水電解液二次電池。
  4. 前記多孔質層に含まれる前記樹脂は、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上である、請求項1~3のいずれか1項に記載の非水電解液二次電池。
  5. 前記ポリアミド系樹脂がアラミド樹脂である、請求項4に記載の非水電解液二次電池。
JP2018206787A 2018-11-01 2018-11-01 非水電解液二次電池 Active JP7252735B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018206787A JP7252735B2 (ja) 2018-11-01 2018-11-01 非水電解液二次電池
KR1020217015729A KR20210082491A (ko) 2018-11-01 2019-11-01 비수 전해액 이차 전지
PCT/JP2019/043096 WO2020091060A1 (ja) 2018-11-01 2019-11-01 非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206787A JP7252735B2 (ja) 2018-11-01 2018-11-01 非水電解液二次電池

Publications (2)

Publication Number Publication Date
JP2020072041A JP2020072041A (ja) 2020-05-07
JP7252735B2 true JP7252735B2 (ja) 2023-04-05

Family

ID=70462105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206787A Active JP7252735B2 (ja) 2018-11-01 2018-11-01 非水電解液二次電池

Country Status (3)

Country Link
JP (1) JP7252735B2 (ja)
KR (1) KR20210082491A (ja)
WO (1) WO2020091060A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086990A (ja) 2006-09-08 2008-04-17 Toray Ind Inc 塗布方法および塗布装置
JP2013120710A (ja) 2011-12-08 2013-06-17 Sumitomo Chemical Co Ltd 二次電池用電極の製造方法、二次電池用塗料の製造方法、二次電池用電極、二次電池
WO2013146811A1 (ja) 2012-03-27 2013-10-03 東レ株式会社 積層多孔質フィルムおよび蓄電デバイス用セパレータ
WO2015049824A1 (ja) 2013-10-02 2015-04-09 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2017107848A (ja) 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308118B2 (ja) 2008-10-30 2013-10-09 帝人株式会社 非水系二次電池用セパレータ、その製造方法、および非水系二次電池
JP6572558B2 (ja) * 2015-02-27 2019-09-11 住友金属鉱山株式会社 非水系電解質二次電池用正極電極とこれに用いられる正極活物質、及びこれを利用した二次電池
KR101918448B1 (ko) * 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
JP6507217B1 (ja) * 2017-12-19 2019-04-24 住友化学株式会社 非水電解液二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086990A (ja) 2006-09-08 2008-04-17 Toray Ind Inc 塗布方法および塗布装置
JP2013120710A (ja) 2011-12-08 2013-06-17 Sumitomo Chemical Co Ltd 二次電池用電極の製造方法、二次電池用塗料の製造方法、二次電池用電極、二次電池
WO2013146811A1 (ja) 2012-03-27 2013-10-03 東レ株式会社 積層多孔質フィルムおよび蓄電デバイス用セパレータ
WO2015049824A1 (ja) 2013-10-02 2015-04-09 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2017107848A (ja) 2015-11-30 2017-06-15 住友化学株式会社 非水電解液二次電池用セパレータ

Also Published As

Publication number Publication date
JP2020072041A (ja) 2020-05-07
KR20210082491A (ko) 2021-07-05
WO2020091060A1 (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
CN111682148B (zh) 非水电解液二次电池用绝缘性多孔层
JP6567126B2 (ja) 非水電解液二次電池用絶縁性多孔質層
JP7257773B2 (ja) 捲回型非水電解液二次電池
JP7132823B2 (ja) 非水電解液二次電池
JP7160636B2 (ja) 非水電解液二次電池
US20190190077A1 (en) Nonaqueous electrolyte secondary battery
JP7134065B2 (ja) 非水電解液二次電池
JP7252735B2 (ja) 非水電解液二次電池
JP7133440B2 (ja) 非水電解液二次電池
JP7096755B2 (ja) 非水電解液二次電池
JP6507217B1 (ja) 非水電解液二次電池
JP7515652B2 (ja) 非水電解液二次電池
US20190190078A1 (en) Nonaqueous electrolyte secondary battery
JP7158246B2 (ja) 非水電解液二次電池
JP7189687B2 (ja) 非水電解液二次電池用多孔質層
JP6978273B2 (ja) 水系塗料
US20190190061A1 (en) Nonaqueous electrolyte secondary battery
JP2020074276A (ja) 非水電解液二次電池用セパレータの製造方法
JP2019079810A (ja) 組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R150 Certificate of patent or registration of utility model

Ref document number: 7252735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150