JP7252027B2 - Curable resin composition for hole filling - Google Patents

Curable resin composition for hole filling Download PDF

Info

Publication number
JP7252027B2
JP7252027B2 JP2019057793A JP2019057793A JP7252027B2 JP 7252027 B2 JP7252027 B2 JP 7252027B2 JP 2019057793 A JP2019057793 A JP 2019057793A JP 2019057793 A JP2019057793 A JP 2019057793A JP 7252027 B2 JP7252027 B2 JP 7252027B2
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
filling
curing
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019057793A
Other languages
Japanese (ja)
Other versions
JP2020158586A (en
Inventor
康代 金沢
ひかる 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Mfg Co Ltd filed Critical Taiyo Ink Mfg Co Ltd
Priority to JP2019057793A priority Critical patent/JP7252027B2/en
Priority to TW109101025A priority patent/TWI831903B/en
Priority to CN202010212164.6A priority patent/CN111748078B/en
Priority to KR1020200036121A priority patent/KR20200115277A/en
Publication of JP2020158586A publication Critical patent/JP2020158586A/en
Application granted granted Critical
Publication of JP7252027B2 publication Critical patent/JP7252027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本発明は、硬化性樹脂組成物、特に、プリント配線基板のスルーホールまたはバイアホールの穴埋め用途としての硬化性樹脂組成物に関する。 TECHNICAL FIELD The present invention relates to a curable resin composition, and more particularly to a curable resin composition for filling through holes or via holes in printed wiring boards.

多層プリント配線基板は、部品の実装密度の上昇および回路配線の複雑化に対応する為に、絶縁性を有する樹脂から構成される絶縁層と、導体パターンがプリントされた導電層とが交互に積層されたものである。そして複数の導電層及び絶縁層を貫通するように、めっきされたスルーホールが形成されている。 Multilayer printed wiring boards are made by alternately laminating insulating layers made of insulating resin and conductive layers printed with conductive patterns, in order to cope with the increase in the mounting density of components and the complexity of circuit wiring. It is what was done. A plated through hole is formed to penetrate through the plurality of conductive layers and insulating layers.

そして必然的に、このスルーホールの穴部を充填するための穴埋め用樹脂組成物の開発が望まれ、その対応する技術の提案もされている。
例えば、特許文献1は、充填性等に優れる穴埋め用樹脂組成物として、液状エポキシ樹脂と、液状フェノール樹脂と、硬化触媒と、2種のフィラーとを含むという技術を開示している。
Inevitably, it is desired to develop a filling resin composition for filling the holes of the through holes, and corresponding techniques have been proposed.
For example, Patent Document 1 discloses a technique of including a liquid epoxy resin, a liquid phenol resin, a curing catalyst, and two types of fillers as a hole-filling resin composition having excellent filling properties.

特開2001-19834号Japanese Patent Application Laid-Open No. 2001-19834

プリント配線基板のスルーホールに穴埋め用樹脂組成物を充填し、硬化させた場合には、通常、その表面は凸状に仕上がる。ところが、未硬化の他の樹脂層、例えば、塗布、乾燥、現像後、熱硬化前の未硬化のソルダーレジスト層が基板上に予め積層されている場合においては、スルーホールに穴埋め用樹脂組成物を充填し、乾燥(予備硬化)、本硬化後、または、乾燥工程無しで本硬化後、当該組成物が上記未硬化のソルダーレジスト層と接触することで、当該組成物の構成成分の一部が当該ソルダーレジスト層へと拡散および浸透してしまうことがある。その結果、スルーホール内に充填されるべき穴埋め用樹脂組成物の容量が全体的に減少して充填量が不十分となり、その硬化後に、スルーホール表面からスルーホール内部側へと陥没するように、その表面に凹みを形成してしまうことがある。 When the through-holes of a printed wiring board are filled with a hole-filling resin composition and cured, the surface is usually finished in a convex shape. However, when another uncured resin layer, for example, an uncured solder resist layer after application, drying, development, and before heat curing is laminated in advance on the substrate, the resin composition for plugging the through holes and after drying (precuring), after main curing, or after main curing without a drying process, the composition is in contact with the uncured solder resist layer, so that a part of the constituent components of the composition may diffuse and permeate into the solder resist layer. As a result, the volume of the hole-filling resin composition to be filled in the through-holes decreases as a whole, resulting in an insufficient filling amount, and after curing, the resin composition collapses from the surface of the through-holes toward the inside of the through-holes. , can form pits on its surface.

この凹みは、その後にめっき工程を行う場合にはめっきの付着不良を、または、さらにソルダーレジスト層を形成させる場合には、その密着不良を引き起こし、ひいては精密なパターンの形成を妨げるおそれもあるため、回避しなければならない課題の一つである。 This dent may cause poor adhesion of the plating in the subsequent plating process, or poor adhesion in the case of forming a solder resist layer, which may hinder the formation of a precise pattern. , is one of the issues that must be avoided.

この点、上記特許文献1に記載されるような、穴埋め用樹脂組成物として、液状エポキシ樹脂と、液状フェノール樹脂と、硬化触媒と、2種のフィラーとを含むという技術を採用しただけでは、上記の様な、未硬化の他の樹脂層、例えば、塗布、乾燥、現像後、熱硬化前の未硬化のソルダーレジスト層が基板上に予め積層されている場合において、スルーホールに穴埋め用樹脂組成物を充填し、乾燥(予備硬化)、本硬化後に生じることがあるスルーホール表面の凹みを十分に防止することができなかった。
そこで本発明者による検討の結果、上記のような穴埋め用樹脂組成物の硬化後の凹みの発生には、ポリアミン型硬化剤を用いて硬化速度を調整することが大きく影響しているとの知見が得られた。
ポリアミン型硬化剤を用いて硬化速度を早めることで、穴埋め用樹脂組成物の溶液のソルダーレジスト層への浸透をより効果的に抑制し得、それによって、硬化後の穴埋め用樹脂組成物の凹みの形成を防止し得ることが明らかとなった。
In this regard, simply adopting the technique of including a liquid epoxy resin, a liquid phenol resin, a curing catalyst, and two types of fillers as a hole-filling resin composition, as described in Patent Document 1, In the case where other uncured resin layers such as those described above, for example, uncured solder resist layers after application, drying, development, and before heat curing are laminated in advance on the substrate, the hole-filling resin is added to the through holes. It was not possible to sufficiently prevent dents on the through-hole surfaces that may occur after filling the composition, drying (precuring), and main curing.
Therefore, as a result of examination by the present inventors, it was found that the adjustment of the curing speed using a polyamine-type curing agent has a great influence on the occurrence of dents after curing of the above-described hole-filling resin composition. was gotten.
By increasing the curing speed using a polyamine-type curing agent, it is possible to more effectively suppress the penetration of the solution of the plugging resin composition into the solder resist layer, thereby reducing the dents in the plugging resin composition after curing. It was found that the formation of

以上の観点から、本発明においては、スルーホール又はバイアホールの穴埋め用樹脂組成物として、2種のエポキシ樹脂と、所定の硬化開始温度のポリアミン型硬化剤を併用することで、より早い硬化速度を有しており、それにより、未硬化の他の樹脂層、例えば、未硬化のソルダーレジスト層と接触した状態で硬化したとしても、その表面が凹むという充填の不良を引き起こすおそれが防止された、新規な穴埋め用樹脂組成物の提供を課題とした。 From the above point of view, in the present invention, as a resin composition for filling through holes or via holes, two types of epoxy resins and a polyamine-type curing agent having a predetermined curing start temperature are used in combination to achieve a faster curing speed. As a result, even if it is cured in contact with another uncured resin layer, for example, an uncured solder resist layer, the surface is dented. , to provide a novel hole-filling resin composition.

即ち、上記課題は、
少なくとも
(A)ビスフェノールE型エポキシ樹脂、
(B)3官能以上のエポキシ樹脂
(C)ポリアミン型硬化剤、および
イミダゾール型硬化剤
を含有し、かつ、JIS-C2161:2010に従い測定された、100℃におけるゲルタイムが、30分以下である、穴埋め用硬化性樹脂組成物によって、解決され得ることが見出された。
このうち好ましい一態様は、(C)ポリアミン型硬化剤が95℃以下の硬化開始温度を有するものである
また、より好ましい態様においては、上記穴埋め用硬化性樹脂組成物が、さらに無機フィラーを含有する。
さらにまた、他の好ましい態様においては、本発明は、上記穴埋め用硬化性樹脂組成物から成る硬化物、および、当該硬化物を有する電子部品にも関する。
That is, the above problem is
at least
(A) a bisphenol E type epoxy resin,
(B) a trifunctional or higher epoxy resin ,
(C) a polyamine-type curing agent , and
Imidazole type curing agent
and the gel time at 100° C. measured according to JIS-C2161:2010 is 30 minutes or less.
Among these, a preferable aspect is that (C) the polyamine-type curing agent has a curing initiation temperature of 95° C. or less .
In a more preferred embodiment, the hole-filling curable resin composition further contains an inorganic filler.
Furthermore, in another preferred embodiment, the present invention also relates to a cured product made of the curable resin composition for hole-filling, and an electronic component having the cured product.

本発明においては、穴埋め用硬化性樹脂組成物(以下、単に硬化性樹脂組成物ともいう)の主成分として、(A)ビスフェノールE型エポキシ樹脂および(B)3官能以上のエポキシ樹脂が用いられると共に、硬化剤として、(C)ポリアミン型の硬化剤が採用されている。さらには、本発明の硬化性樹脂組成物は、JIS-C2161:2010に従い測定された、100℃におけるゲルタイムが、30分以下であるという構成をも有する。
かかる構成の本発明の硬化性樹脂組成物をスルーホールやバイアホールに充填したとき、たとえ未硬化のソルダーレジストなど未硬化の他の樹脂層と接しているとしても、当該組成物の硬化後にその表面に凹みを生ずるという充填不良を引き起こすおそれが抑制され得る。
In the present invention, (A) a bisphenol E type epoxy resin and (B) a trifunctional or higher epoxy resin are used as main components of a curable resin composition for filling holes (hereinafter also simply referred to as a curable resin composition). In addition, (C) a polyamine-type curing agent is employed as a curing agent. Furthermore, the curable resin composition of the present invention also has a gel time of 30 minutes or less at 100° C. measured according to JIS-C2161:2010.
When the curable resin composition of the present invention having such a configuration is filled in a through hole or via hole, even if it is in contact with another uncured resin layer such as an uncured solder resist, after curing the composition It is possible to suppress the risk of causing filling defects such as dents on the surface.

この点は、本発明の硬化性樹脂組成物がポリアミン型硬化剤を用いて硬化速度を調整することにも関連している。詳細は実施例において後述するが、本発明の構成を有する硬化性樹脂組成物は、それ以外の構成を有する硬化性樹脂組成物と比較して、ゲルタイムがより短い、つまり硬化速度がより早いことが認められた。当該組成物は、充填後に速やかに硬化物を形成するため、充填時における未硬化の他の樹脂層、例えば、未硬化のソルダーレジスト層などへの、成分の浸透または拡散が効果的に抑制され得るものと考えられる。
以下、かような本発明の硬化性樹脂組成物の各成分について説明する。
This point is also related to the fact that the curable resin composition of the present invention uses a polyamine-type curing agent to adjust the curing speed. Although details will be described later in Examples, the curable resin composition having the structure of the present invention has a shorter gel time, that is, a faster curing speed, than curable resin compositions having other structures. was accepted. Since the composition quickly forms a cured product after filling, penetration or diffusion of components into other uncured resin layers, such as uncured solder resist layers, during filling is effectively suppressed. considered to be obtained.
Each component of the curable resin composition of the present invention will be described below.

[(A)ビスフェノールE型エポキシ樹脂]
プリント配線基板のスルーホール等の穴埋め用途に用いられる樹脂組成物は、通常、液状樹脂組成物(穴埋めインキ)として使用されるため、無溶剤でペースト状にするために、液状のエポキシ樹脂、特に、硬化後の穴埋め材が、機械的、電気的、化学的性質に優れ、接着性も良好であることから、熱硬化型のエポキシ樹脂組成物が広く使用されている。
[(A) Bisphenol E epoxy resin]
A resin composition used for filling holes such as through holes in printed wiring boards is usually used as a liquid resin composition (filling ink). A thermosetting epoxy resin composition is widely used because the hole-filling material after curing has excellent mechanical, electrical and chemical properties and also has good adhesiveness.

そのなかでも、本発明においては、粘度が低く、かつ耐熱性が高いために、穴埋め用途の樹脂としてより適するビスフェノールE型エポキシ樹脂を採用している。 Among them, the present invention employs a bisphenol E type epoxy resin which is more suitable as a resin for plugging holes due to its low viscosity and high heat resistance.

ビスフェノールE型エポキシ樹脂としては、例えば、EPOX MK R710又はR1710(エア・ウォーター社製)などを使用することができる。これらはいずれも結晶化しにくく、保存安定性が良好であるため、好ましい材料である。 As the bisphenol E type epoxy resin, for example, EPOX MK R710 or R1710 (manufactured by Air Water) can be used. These materials are preferable because they are less likely to crystallize and have good storage stability.

この(A)ビスフェノールE型エポキシ樹脂の含有量は、硬化性樹脂組成物の全質量に基づき、1%~40%であり、好ましくは5%~30%である。 The content of (A) bisphenol E type epoxy resin is 1% to 40%, preferably 5% to 30%, based on the total mass of the curable resin composition.

[(B)3官能以上のエポキシ樹脂]
本発明において用いられる(B)3官能以上のエポキシ樹脂は、1分子中に3個以上のエポキシ基を有する樹脂とも解される。
本発明においては、この(B)3官能以上のエポキシ樹脂をも併用したことによって、より迅速な硬化を可能としている。
[(B) Trifunctional or higher epoxy resin]
The (B) trifunctional or higher epoxy resin used in the present invention is understood to be a resin having 3 or more epoxy groups in one molecule.
In the present invention, by also using (B) a trifunctional or higher functional epoxy resin, more rapid curing is possible.

このような(B)3官能以上のエポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂(特に、トリグリシジルアミノフェノール型エポキシ樹脂)、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジグリシジルフタレート樹脂、脂環式エポキシ樹脂、アルコールエーテル型エポキシ樹脂を挙げることができる。(B)3官能以上のエポキシ樹脂の具体的な製品としては、例えば、アデカレジンEP-3980S(ADEKA社製)、アデカレジンEP-3950S(ADEKA社製)、jER-630(三菱ケミカル株式会社製)が挙げられる。 Examples of (B) trifunctional or higher epoxy resins include phenol novolac type epoxy resins, alkylphenol novolak type epoxy resins, liquid aminophenol type epoxy resins (in particular, triglycidylaminophenol type epoxy resins), and naphthalene type epoxy resins. Resins, dicyclopentadiene type epoxy resins, glycidylamine type epoxy resins, trihydroxyphenylmethane type epoxy resins, tetraphenylolethane type epoxy resins, diglycidyl phthalate resins, alicyclic epoxy resins, alcohol ether type epoxy resins. can be done. (B) Specific products of tri- or more functional epoxy resins include, for example, Adeka Resin EP-3980S (manufactured by ADEKA), Adeka Resin EP-3950S (manufactured by ADEKA), and jER-630 (manufactured by Mitsubishi Chemical Corporation). mentioned.

これらの中で、液状のアミノフェノール型エポキシ樹脂、とりわけ、トリグリシジルアミノフェノール型エポキシ樹脂が好ましい。 Among these, liquid aminophenol-type epoxy resins, particularly triglycidylaminophenol-type epoxy resins, are preferred.

この(B)3官能以上のエポキシ樹脂の含有量は、硬化性樹脂組成物の全質量に基づき、3%~30%であり、好ましくは5%~20%である。 The content of the (B) tri- or higher functional epoxy resin is 3% to 30%, preferably 5% to 20%, based on the total mass of the curable resin composition.

[(C)ポリアミン型硬化剤]
本発明においては、硬化剤としてポリアミン型のものが用いられ、例えば、変性脂肪族ポリアミン、変性芳香族ポリアミンなどを挙げることができる。
変性脂肪族ポリアミン類としては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン又はペンタエチレンヘキサミンの変性ポリアミン等が挙げられる。
また、変性芳香族ポリアミン類としては、フェニレンジアミン又はキシリレンジアミンの変性ポリアミン等が挙げられる。
[(C) Polyamine Curing Agent]
In the present invention, a polyamine type curing agent is used, and examples thereof include modified aliphatic polyamines and modified aromatic polyamines.
Examples of modified aliphatic polyamines include modified polyamines of ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, and pentaethylenehexamine.
Examples of modified aromatic polyamines include modified polyamines of phenylenediamine and xylylenediamine.

このうち、より早い硬化速度という観点から、95℃以下の硬化開始温度を有するものが好ましく、80℃以下の硬化開始温度を有するものがなお好ましい。 Among these, from the viewpoint of faster curing speed, those having a curing initiation temperature of 95° C. or lower are preferred, and those having a curing initiation temperature of 80° C. or lower are more preferred.

(C)ポリアミン型硬化剤の具体的な製品としては、例えば、フジキュアーFXR-1020(T&K TOKA社製)、フジキュアーFXR-1081(T&K TOKA社製)が挙げられる。 Specific products of the (C) polyamine curing agent include, for example, Fujicure FXR-1020 (manufactured by T&K TOKA) and Fujicure FXR-1081 (manufactured by T&K TOKA).

本発明における(C)ポリアミン型硬化剤は、これら単独でも、又は場合により2種以上を用いても良い。 The (C) polyamine-type curing agent in the present invention may be used alone or in combination of two or more.

また、(C)ポリアミン型硬化剤の含有量としては、(A)ビスフェノールE型エポキシ樹脂、および、(B)3官能以上のエポキシ樹脂と反応して、十分な硬化が達成できるように調節されることが好ましい。 In addition, the content of (C) polyamine type curing agent is adjusted so that sufficient curing can be achieved by reacting with (A) bisphenol E type epoxy resin and (B) trifunctional or higher epoxy resin. preferably.

その含有量は、本発明の硬化性樹脂組成物中の(A)ビスフェノールE型エポキシ樹脂、(B)3官能以上のエポキシ樹脂、および、含まれる場合にはその他のエポキシ樹脂の全質量に基づき、0.5%~30質量%であり、好ましくは1%~20質量%である。0.5%~30質量%の範囲内であれば、硬化性樹脂組成物の低温での硬化性に優れるだけでなく、保存安定性も良好である。 The content is based on the total mass of (A) bisphenol E type epoxy resin, (B) trifunctional or higher epoxy resin, and other epoxy resins if contained in the curable resin composition of the present invention. , 0.5% to 30% by mass, preferably 1% to 20% by mass. Within the range of 0.5% to 30% by mass, not only is the curability of the curable resin composition excellent at low temperatures, but storage stability is also good.

[イミダゾール型硬化剤]
本発明においては、(C)ポリアミン型硬化剤に加えて、従来用いられてきたイミダゾール型硬化剤を併用してもよい。この場合、硬化性樹脂組成物から成る硬化物の耐熱性がより向上するため好ましい。
なお、硬化開始温度の低いイミダゾール型硬化剤を用いてゲルタイムを早く調節しても、ポリアミン型硬化剤を用いたときの凹み発生防止効果は得られない。
[Imidazole type curing agent]
In the present invention, in addition to (C) the polyamine-type curing agent, a conventionally used imidazole-type curing agent may be used in combination. In this case, the heat resistance of the cured product made of the curable resin composition is further improved, which is preferable.
Even if the gel time is adjusted quickly by using an imidazole-type curing agent with a low curing initiation temperature, the effect of preventing the generation of dents when using a polyamine-type curing agent cannot be obtained.

イミダゾール型硬化剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンのイソシアヌル酸付加体(イミダゾールの1位のNにイソシアヌル酸が付加)等が挙げられる。 Examples of imidazole-type curing agents include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6-[2' -Methylimidazolyl-(1′)]-ethyl-s-triazine isocyanuric acid adduct (isocyanuric acid is added to N at the 1-position of imidazole).

また、その市販品の例としては、2MZ、2MZ-P、2PZ、2PZ-PW、2P4MZ、C11Z-CNS、2PZ-CNS、2PZCNS-PW、2MZ-A、2MZA-PW、C11Z-A、2E4MZ-A、2MA-OK、2MAOK-PW、2PZ-OK、2MZ-OK、2PHZ、2PHZ-PW、2P4MHZ、2P4MHZ-PW、2E4MZ・BIS、VT、VT-OK、MAVT、MAVT-OK(四国化成工業社製)を挙げることができる。 Examples of the commercial products include 2MZ, 2MZ-P, 2PZ, 2PZ-PW, 2P4MZ, C11Z-CNS, 2PZ-CNS, 2PZCNS-PW, 2MZ-A, 2MZA-PW, C11Z-A, 2E4MZ- A, 2MA-OK, 2MAOK-PW, 2PZ-OK, 2MZ-OK, 2PHZ, 2PHZ-PW, 2P4MHZ, 2P4MHZ-PW, 2E4MZ BIS, VT, VT-OK, MAVT, MAVT-OK (Shikoku Kasei Co., Ltd.) made) can be mentioned.

これらイミダゾール型硬化剤は、2種類以上を併用することももちろん可能である。
また、イミダゾール型硬化剤の含有量は、本発明の硬化性樹脂組成物中の(A)ビスフェノールE型エポキシ樹脂、(B)3官能以上のエポキシ樹脂、および、含まれる場合にはその他のエポキシ樹脂の全質量に基づき、0.5%~12質量%であり、好ましくは1%~10質量%である。
It is of course possible to use two or more of these imidazole-type curing agents in combination.
In addition, the content of the imidazole type curing agent is determined by (A) the bisphenol E type epoxy resin, (B) the trifunctional or higher epoxy resin, and other epoxy resins in the curable resin composition of the present invention. 0.5% to 12% by weight, preferably 1% to 10% by weight, based on the total weight of the resin.

[無機フィラー]
本発明の硬化性樹脂組成物には、通常の樹脂組成物に用いられる無機フィラーをさらに含有させることができる。
具体的には、例えば、シリカ、硫酸バリウム、炭酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、アルミナ、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、タルク、ノイブルグ珪土、有機ベントナイト等の非金属フィラーや、銅、金、銀、パラジウム、シリコン等の金属フィラーを挙げることができる。
本発明の硬化性樹脂組成物においては、これら無機フィラーは単独で用いてもよく、または2種以上を併用してもよい。
[Inorganic filler]
The curable resin composition of the present invention can further contain an inorganic filler that is used in ordinary resin compositions.
Specifically, for example, silica, barium sulfate, calcium carbonate, silicon nitride, aluminum nitride, boron nitride, alumina, magnesium oxide, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, talc, Neuburg silica, organic bentonite. and metal fillers such as copper, gold, silver, palladium and silicon.
In the curable resin composition of the present invention, these inorganic fillers may be used alone or in combination of two or more.

これらのうち、低い体積膨張性と印刷性に優れるシリカや、低い体積膨張性と研磨性に優れる炭酸カルシウムが好適である。
シリカはとしては、非晶質、結晶のいずれであってもよく、これらの混合物でもよい。特に非晶質(溶融)シリカが好ましい。また、炭酸カルシウムとしては、天然の重質炭酸カルシウム、合成の沈降炭酸カルシウムのいずれであってもよい。特に、研磨性に優れる炭酸カルシウムが好適である。
Among these, silica with low volume expansion and excellent printability, and calcium carbonate with low volume expansion and excellent polishability are suitable.
Silica may be amorphous, crystalline, or a mixture thereof. Amorphous (fused) silica is particularly preferred. Calcium carbonate may be either natural heavy calcium carbonate or synthetic precipitated calcium carbonate. Calcium carbonate, which is excellent in polishability, is particularly suitable.

このような無機フィラーの形状は、球状、針状、板状、鱗片状、中空状、不定形状、六角状、キュービック状、薄片状等が挙げられるが、無機フィラーの高充填の観点から球状が好ましい。 Examples of the shape of such inorganic fillers include spherical, needle-like, plate-like, scale-like, hollow, irregular, hexagonal, cubic, and flaky shapes. preferable.

また、これら無機フィラーの平均粒径は、0.1~25μmが好ましい。平均粒径が0.1μm以上であれば、比表面積が小さくフィラー同士の凝集作用の効果により良好に分散し、またフィラーの充填量を増やすことが容易である。一方、25μm以下であれば、スルーホールへの充填性が良くなり、さらに、穴埋めした部分に導電層を形成したときに平滑性が良くなるという効果がある。より好ましくは、1~10μmである。
なお、平均粒径とは、平均一次粒径を意味する。平均粒径(D50)は、レーザー回折/散乱法により測定することができる。
Moreover, the average particle size of these inorganic fillers is preferably 0.1 to 25 μm. If the average particle size is 0.1 μm or more, the specific surface area is small and the particles are dispersed satisfactorily due to the effect of cohesion between the fillers, and it is easy to increase the filling amount of the filler. On the other hand, if the thickness is 25 μm or less, there is an effect that the through hole can be easily filled, and smoothness is improved when the conductive layer is formed in the filled portion. More preferably, it is 1 to 10 μm.
In addition, the average particle size means an average primary particle size. The average particle size (D50) can be measured by a laser diffraction/scattering method.

これら無機フィラーの含有量は、本発明の硬化性樹脂組成物中の(A)ビスフェノールE型エポキシ樹脂、(B)3官能以上のエポキシ樹脂、および、含まれる場合にはその他のエポキシ樹脂の全質量に基づき、300%以下であり、好ましくは250%以下である。300%以下であれば、硬化性樹脂組成物を液状ペースト化することが容易であって、良好な印刷性および穴埋め性が得られるほか、硬化物が十分に低い体積膨張性を示すとともに、良好な研磨性をも示す。 The content of these inorganic fillers is the total amount of (A) bisphenol E type epoxy resin, (B) trifunctional or higher epoxy resin, and other epoxy resins, if contained, in the curable resin composition of the present invention. Based on mass, it is 300% or less, preferably 250% or less. If it is 300% or less, it is easy to turn the curable resin composition into a liquid paste, and in addition to obtaining good printability and hole-filling properties, the cured product exhibits sufficiently low volume expansion, and good It also exhibits good abrasiveness.

[その他の成分]
本発明の硬化性樹脂組成物には、さらに必要とされる特性に応じて上記成分以外のその他の成分を含有させることももちろんできる。
そのような成分として、例えば、ホウ酸エステル化合物、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の熱重合禁止剤、クレー、カオリン、有機ベントナイト、モンモリロナイト等の公知慣用の増粘剤もしくはチキソトロピー剤、シリコーン系、フッ素系、高分子系等の消泡剤および/またはレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤のような公知慣用の添加剤類が挙げられる。
[Other ingredients]
The curable resin composition of the present invention can of course contain other components in addition to the components described above, depending on the required properties.
Such components include, for example, boric acid ester compounds, hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol, phenothiazine and other known and commonly used thermal polymerization inhibitors, clay, kaolin, organic bentonite, montmorillonite and other known and commonly used thermal polymerization inhibitors. Thickeners or thixotropic agents, antifoaming agents such as silicone-based, fluorine-based and polymer-based antifoaming agents and/or leveling agents, adhesion-imparting agents such as imidazole-based, thiazole-based, triazole-based and silane coupling agents Customary additives can be mentioned.

[硬化物]
本発明の硬化性樹脂組成物は、従来より採用されている方法、例えばスクリーン印刷法、ロールコーティング法、ダイコーティング法等を利用してプリント配線基板のバイアホールやスルーホール等の穴部に容易に充填することができる。このとき、穴部から少しはみ出るように凸状に完全に充填される。次いで、穴部が本発明の硬化性樹脂組成物で充填されたプリント配線板を、例えば、70℃~110℃で10分~120分程度乾燥し(予備硬化)、約120~180℃で約10~180分程度加熱して(本硬化)、硬化性樹脂組成物を硬化させることによって、硬化物となすことができる。
上記のようにして本発明の硬化性樹脂組成物を硬化させた後、プリント配線板の表面からはみ出した硬化物の不要部分を、公知の物理研磨方法により除去し、平坦化してもよい。その後、表面の配線層を所定パターンにパターニングして、所定の回路パターンが形成されてもよい。なお、必要に応じて過マンガン酸カリウム水溶液などにより硬化物の表面粗化を行った後、無電解めっきなどにより硬化物上に配線層を形成してもよい。
[Cured product]
The curable resin composition of the present invention can be easily applied to holes such as via holes and through holes of printed wiring boards using conventional methods such as screen printing, roll coating, and die coating. can be filled to At this time, the convex shape is completely filled so as to slightly protrude from the hole. Next, the printed wiring board in which the holes are filled with the curable resin composition of the present invention is dried, for example, at 70° C. to 110° C. for about 10 minutes to 120 minutes (precuring), and dried at about 120° C. to 180° C. for about 10 minutes to 120 minutes. By heating for about 10 to 180 minutes (main curing) to cure the curable resin composition, a cured product can be obtained.
After curing the curable resin composition of the present invention as described above, unnecessary portions of the cured product protruding from the surface of the printed wiring board may be removed by a known physical polishing method to planarize. Thereafter, the wiring layer on the surface may be patterned into a predetermined pattern to form a predetermined circuit pattern. If necessary, the surface of the cured product may be roughened with an aqueous solution of potassium permanganate or the like, and then a wiring layer may be formed on the cured product by electroless plating or the like.

[電子部品]
また、本発明は、上記硬化物を有する電子部品をも提供する。
本発明の硬化性樹脂組成物を用いることによって、高い品質、耐久性及び信頼性が維持された電子部品が提供される。
なお、本発明において電子部品とは、電子回路に使用する部品を意味し、プリント配線板、トランジスタ、発光ダイオード、レーザーダイオード等の能動部品の他抵抗、コンデンサ、インダクタ、コネクタ等の受動部品も含まれる。
[Electronic parts]
The present invention also provides an electronic component having the cured product.
By using the curable resin composition of the present invention, electronic components that maintain high quality, durability and reliability are provided.
In the present invention, electronic components refer to components used in electronic circuits, including active components such as printed wiring boards, transistors, light-emitting diodes, and laser diodes, as well as passive components such as resistors, capacitors, inductors, and connectors. be

本発明によれば、プリント配線基板のスルーホールの穴埋め用硬化性樹脂組成物として、たとえ他の樹脂層、例えばソルダーレジスト層が存在しているとしても、充填の不具合を起こさずに、硬化後に表面の凹みを生じない組成物を提供し得る。従って、そのようなスルーホールの穴埋めの不具合に起因する精密なパターンの形成に悪影響を与えるおそれが低い。 According to the present invention, as a curable resin composition for filling through holes of a printed wiring board, even if another resin layer, for example, a solder resist layer is present, it does not cause filling problems after curing. A composition that does not produce surface depressions can be provided. Therefore, there is little possibility that the formation of a precise pattern due to such defects in filling through holes will be adversely affected.

図1は、プリント配線基板のスルーホールに対して、穴埋め用硬化性樹脂組成物を充填したときの状態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a state in which through-holes of a printed wiring board are filled with a curable resin composition for hole-filling. 図2は、プリント配線基板のスルーホールに対して、本発明の穴埋め用硬化性樹脂組成物を充填し、硬化させたときの状態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a state in which through holes of a printed wiring board are filled with the hole-filling curable resin composition of the present invention and cured. 図3は、プリント配線基板のスルーホールに対して、従来の穴埋め用硬化性樹脂組成物を充填し、硬化させたときの状態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a state in which through holes of a printed wiring board are filled with a conventional hole-filling curable resin composition and cured.

以下、実施例および比較例を示して本発明について具体的に説明するが、本発明が以下の実施例に限定されるものでないことは言うまでもない。
なお、他に特に但書が無い限り、示される「部」および「%」は質量に基づくものとする。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but it goes without saying that the present invention is not limited to the following examples.
Unless otherwise specified, "parts" and "%" are based on mass.

下記のとおりに、実施例1~4、ならびに、比較例1および2の硬化剤組成物を作製した。 Curing agent compositions of Examples 1-4 and Comparative Examples 1 and 2 were prepared as follows.

<実施例1>
ビスフェノールE型エポキシ樹脂(EPOX MK R710;エア・ウォーター社製)50部、ビスフェノールA型エポキシ樹脂(jER-828;三菱ケミカル株式会社製)10部、3官能以上のエポキシ樹脂(トリグリシジルアミノフェノール)(jER-630;三菱ケミカル株式会社製)40部、95℃以下の硬化開始温度を有するポリアミン型硬化剤2(フジキュアーFXR-1081;T&K TOKA社製)6部、イミダゾール型硬化剤(2MZA-PW;四国化成工業株式会社製)6部、無機フィラーとして超微粒子重質炭酸カルシウム(ソフトン1800;備北粉化工業株式会社製)150部および非晶質シリカ(SO-C2;アドマテックス株式会社製)50部を予備混合し、その後、3本ロールミルで分散混合させて、実施例1の硬化性樹脂組成物を得た。
<Example 1>
Bisphenol E type epoxy resin (EPOX MK R710; manufactured by Air Water) 50 parts, bisphenol A type epoxy resin (jER-828; manufactured by Mitsubishi Chemical Corporation) 10 parts, trifunctional or higher epoxy resin (triglycidylaminophenol) (jER-630; manufactured by Mitsubishi Chemical Corporation) 40 parts, polyamine type curing agent 2 having a curing initiation temperature of 95 ° C. or less (Fujicure FXR-1081; manufactured by T & K TOKA) 6 parts, imidazole type curing agent (2MZA-PW ; Shikoku Kasei Kogyo Co., Ltd.) 6 parts, ultrafine ground calcium carbonate as an inorganic filler (Softon 1800; Bihoku Funka Kogyo Co., Ltd.) 150 parts and amorphous silica (SO-C2; Admatechs Co., Ltd.) 50 parts were preliminarily mixed, and then dispersed and mixed by a three-roll mill to obtain a curable resin composition of Example 1.

<実施例2>
95℃以下の硬化開始温度を有するポリアミン型硬化剤2の代わりに、95℃以下の硬化開始温度を有するポリアミン型硬化剤1(フジキュアーFXR-1020;T&K TOKA社製)を用いた他は実施例1と同様にして、実施例2の硬化性樹脂組成物を得た。
<Example 2>
Instead of polyamine curing agent 2 having a curing initiation temperature of 95 ° C. or less, polyamine curing agent 1 having a curing initiation temperature of 95 ° C. or less (Fujicure FXR-1020; manufactured by T&K TOKA) is used. A curable resin composition of Example 2 was obtained in the same manner as in Example 1.

<実施例3>
95℃以下の硬化開始温度を有するポリアミン型硬化剤2の代わりに、95℃以下の硬化開始温度を有するポリアミン型硬化剤1(フジキュアーFXR-1020;T&K TOKA社製)20部を用い、かつ、イミダゾール型硬化剤を用いなかった他は実施例1と同様にして、実施例3の硬化性樹脂組成物を得た。
<Example 3>
20 parts of polyamine curing agent 1 (Fujicure FXR-1020; manufactured by T&K TOKA) having a curing initiation temperature of 95°C or lower instead of polyamine curing agent 2 having a curing initiation temperature of 95°C or lower, and A curable resin composition of Example 3 was obtained in the same manner as in Example 1, except that the imidazole-type curing agent was not used.

<実施例4>
ビスフェノールA型エポキシ樹脂を用いなかった他は実施例3と同様にして、実施例4の硬化性樹脂組成物を得た。
<Example 4>
A curable resin composition of Example 4 was obtained in the same manner as in Example 3, except that the bisphenol A type epoxy resin was not used.

<比較例1>
ビスフェノールA型エポキシ樹脂(jER-828;三菱ケミカル株式会社製)100部、イミダゾール型硬化剤(2MZA-PW;四国化成工業株式会社製)6部、無機フィラーとして超微粒子重質炭酸カルシウム(ソフトン1800;備北粉化工業株式会社製)150部および非晶質シリカ(SO-C2;アドマテックス株式会社製)50部を予備混合し、その後、3本ロールミルで分散混合させて、比較例1の硬化性樹脂組成物を得た。
<Comparative Example 1>
Bisphenol A type epoxy resin (JER-828; manufactured by Mitsubishi Chemical Corporation) 100 parts, imidazole type curing agent (2MZA-PW; manufactured by Shikoku Kasei Kogyo Co., Ltd.) 6 parts, ultrafine ground calcium carbonate as an inorganic filler (Softon 1800 ; manufactured by Bihoku Funka Kogyo Co., Ltd.) and 50 parts of amorphous silica (SO-C2; manufactured by Admatechs Co., Ltd.) are premixed, and then dispersed and mixed with a three-roll mill to cure Comparative Example 1. A flexible resin composition was obtained.

<比較例2>
ビスフェノールE型エポキシ樹脂(EPOX MK R710;エア・ウォーター社製)50部、ビスフェノールA型エポキシ樹脂(jER-828;三菱ケミカル株式会社製)10部、3官能以上のエポキシ樹脂(トリグリシジルアミノフェノール)(jER-630;三菱ケミカル株式会社製)40部、95℃超の硬化開始温度を有するポリアミン型硬化剤(フジキュアーFXR-1030;T&K TOKA社製)6部、イミダゾール型硬化剤(2MZA-PW;四国化成工業株式会社製)6部、充填材として超微粒子重質炭酸カルシウム(ソフトン1800;備北粉化工業株式会社製)150部および非晶質シリカ(SO-C2;アドマテックス株式会社製)50部を予備混合し、その後、3本ロールミルで分散混合させて、比較例2の硬化性樹脂組成物を得た。
<Comparative Example 2>
Bisphenol E type epoxy resin (EPOX MK R710; manufactured by Air Water) 50 parts, bisphenol A type epoxy resin (jER-828; manufactured by Mitsubishi Chemical Corporation) 10 parts, trifunctional or higher epoxy resin (triglycidylaminophenol) (jER-630; manufactured by Mitsubishi Chemical Corporation) 40 parts, polyamine curing agent having a curing initiation temperature of over 95 ° C. (Fujicure FXR-1030; manufactured by T & K TOKA) 6 parts, imidazole curing agent (2MZA-PW; Shikoku Kasei Kogyo Co., Ltd.) 6 parts, ultrafine ground calcium carbonate (Softon 1800; Bihoku Funka Kogyo Co., Ltd.) 150 parts and amorphous silica (SO-C2; Admatechs Co., Ltd.) 50 as a filler The parts were pre-mixed and then dispersed and mixed by a three-roll mill to obtain a curable resin composition of Comparative Example 2.

これら実施例1~4、ならびに、比較例1および2の組成を下記の表1に示す。 The compositions of Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 0007252027000001
*1:EPOX MK R710(エア・ウォーター社製)
*2:jER-828(三菱ケミカル株式会社製)
*3:jER-630(三菱ケミカル株式会社製)トリグリシジルアミノフェノール(3官能エポキシ樹脂)
*4:フジキュアーFXR-1020(T&K TOKA社製)
*5:フジキュアーFXR-1081(T&K TOKA社製)
*6:フジキュアーFXR-1030(T&K TOKA社製)
*7:2MZA-PW(四国化成工業株式会社製 ※硬化開始温度100℃以上)
*8:ソフトン1800(備北粉化工業株式会社製)
*9:SO-C2(アドマテックス株式会社製)
Figure 0007252027000001
*1 : EPOX MK R710 (manufactured by Air Water)
*2 : jER-828 (manufactured by Mitsubishi Chemical Corporation)
* 3 : jER-630 (manufactured by Mitsubishi Chemical Corporation) triglycidylaminophenol (trifunctional epoxy resin)
*4 : Fujicure FXR-1020 (manufactured by T&K TOKA)
*5 : Fujicure FXR-1081 (manufactured by T&K TOKA)
*6 : Fujicure FXR-1030 (manufactured by T&K TOKA)
* 7 : 2MZA-PW (manufactured by Shikoku Kasei Co., Ltd. * Curing start temperature 100 ° C or higher)
*8 : Softon 1800 (manufactured by Bihoku Funka Kogyo Co., Ltd.)
*9 : SO-C2 (manufactured by Admatechs Co., Ltd.)

<試験例1>
実施例1~4、ならびに比較例1および2のそれぞれの硬化性樹脂組成物について、そのゲルタイムを測定することによって、硬化速度の速さに関する試験を行った。
<Test Example 1>
For each of the curable resin compositions of Examples 1 to 4 and Comparative Examples 1 and 2, the curing speed was tested by measuring the gel time.

JIS-C2161:2010に規定された熱板法に準拠して、ホットプレート型ゲル化試験機(GT-D;株式会社ユーカリ技研製)を用いてゲルタイムの測定を行った。 The gel time was measured using a hot plate type gelation tester (GT-D; manufactured by Eucalyptus Giken Co., Ltd.) in accordance with the hot plate method specified in JIS-C2161:2010.

実施例1~4、ならびに比較例1および2のそれぞれの硬化性樹脂組成物をシリンジで0.5mL量りとった試料を、100℃に設定したゲル化試験機のホットプレート上に載置し、かき混ぜ針をホットプレート面に対して90度の角度に維持しながら、針先で90±10回/分の速度で円状に試料をかき混ぜた。このとき、かき混ぜ針が回転できなくなったり、あるいは針先に試料が粘着しなくなる等、試料がゲル状になったときを終点とし、試料を載置してから終点までの時間を測定した。この操作を3回繰り返し、それらの平均時間をゲルタイムとした。それぞれの硬化性樹脂組成物のゲルタイムは、表2に示されるとおりであった。 0.5 mL of each curable resin composition of Examples 1 to 4 and Comparative Examples 1 and 2 was measured with a syringe, placed on a hot plate of a gelation tester set at 100 ° C., While maintaining the stirring needle at a 90 degree angle to the hot plate surface, the sample was stirred circularly with the tip of the needle at a rate of 90±10 times/minute. At this time, the end point was when the sample became gelatinous such that the stirring needle could not be rotated or the sample stopped sticking to the tip of the needle, and the time from placing the sample to the end point was measured. This operation was repeated three times, and the average time was taken as the gel time. The gel time of each curable resin composition was as shown in Table 2.

<試験例2>
実施例1~4、ならびに比較例1および2のそれぞれの硬化性樹脂組成物について、スルーホールに充填後、硬化させたときの表面の凹みの有無に関する試験を行った。
<Test Example 2>
The curable resin compositions of Examples 1 to 4 and Comparative Examples 1 and 2 were tested for the presence or absence of dents on the surface when cured after filling through holes.

試験方法
図1に示すように、パターン形成された多層プリント配線基板1のスルーホール2部分以外に、ソルダーレジスト組成物3(製品名:PSR-4000 G23K;太陽インキ製造株式会社製)を、乾燥膜厚が20μmになるようにスクリーン印刷で全面塗布した後、80℃で30分間乾燥し、室温まで放冷した。そしてこの基板を、30℃の1wt%炭酸ナトリウム水溶液により、スプレー圧0.2MPaの条件で、90秒間現像を行い、パターンを得た。なお、図1~3中の符号4は銅めっきを示す。
Test method As shown in FIG. 1, a solder resist composition 3 (product name: PSR-4000 G23K; manufactured by Taiyo Ink Mfg. Co., Ltd.) was applied to the patterned multilayer printed wiring board 1 other than through holes 2, and dried. After coating the entire surface by screen printing so as to have a film thickness of 20 μm, it was dried at 80° C. for 30 minutes and allowed to cool to room temperature. Then, this substrate was developed with a 1 wt % sodium carbonate aqueous solution at 30° C. under conditions of a spray pressure of 0.2 MPa for 90 seconds to obtain a pattern. Reference numeral 4 in FIGS. 1 to 3 indicates copper plating.

次に、得られた評価用多層プリント配線基板1のスルーホール2に、実施例1~4の硬化性樹脂組成物5、ならびに比較例1および2のそれぞれの硬化性樹脂組成物5’をスクリーン印刷法により充填し、ラックに立て掛けて基板が載置面に対して90度±10度の角度となるように載置した状態で、熱風循環式乾燥炉(製品名:DF610;ヤマト科学株式会社製)にて、80℃で60分間乾燥し(予備硬化)、その後、150℃で30分加熱する(本硬化)ことにより、それぞれの硬化性樹脂組成物を硬化させた。 Next, the curable resin compositions 5 of Examples 1 to 4 and the curable resin compositions 5' of Comparative Examples 1 and 2 were screened into the through holes 2 of the obtained multilayer printed wiring board 1 for evaluation. Filled by a printing method, placed on a rack so that the substrate is at an angle of 90 degrees ± 10 degrees with respect to the mounting surface, and placed in a hot air circulation drying oven (product name: DF610; Yamato Scientific Co., Ltd.) (manufacturer) at 80° C. for 60 minutes (precuring) and then heated at 150° C. for 30 minutes (main curing) to cure each curable resin composition.

硬化後の基板断面の光学顕微鏡観察(倍率:200倍)を行い、硬化性樹脂組成物を充填したスルーホール2の穴部の充填性評価を下記の評価基準により行った。
凹み無:スルーホール2の表面6が平滑であって、その表面上より下方に凹みが発生していない(図2参照)。尚、表面6の表面上より下方に凹みが発生していても、その凹みがスルーホール内部に達していないものも、凹み無しとする。
凹み有:スルーホール2の表面6において、その表面上よりスルーホール内部側に向かって大きな凹み7が発生している(図3参照)。
結果を下記表2に示す。
The cross section of the cured substrate was observed with an optical microscope (magnification: 200), and the fillability of the through hole 2 filled with the curable resin composition was evaluated according to the following evaluation criteria.
No dent: The surface 6 of the through hole 2 is smooth, and no dent occurs below the surface (see FIG. 2). Even if a dent is generated below the surface of the surface 6, the dent that does not reach the inside of the through hole is also regarded as no dent.
Concave: On the surface 6 of the through hole 2, a large concave 7 is formed from the surface toward the inside of the through hole (see FIG. 3).
The results are shown in Table 2 below.

Figure 0007252027000002
Figure 0007252027000002

<結果>
実施例1~4の硬化性樹脂組成物については、ゲルタイムがより短く、かつ、硬化後の表面の凹みも観察されなかった。
これに対して、比較例1および2の硬化性樹脂組成物については、ゲルタイムがより長く、図3に示すように、表面に顕著な凹み7が観察された。これは、長いゲルタイム、つまり遅い硬化速度に起因して、組成物中の成分の一部が、それと接触しているソルダーレジスト層3に浸透または拡散してしまい、その容量を失ったためと考えられる。
また実施例1~4の硬化性樹脂組成物について270℃での5サイクルのリフロー後にクラックがなく、穴埋め用硬化性樹脂組成物として問題ないことを確認した。
<Results>
For the curable resin compositions of Examples 1 to 4, the gel time was shorter, and no dents were observed on the surface after curing.
On the other hand, the curable resin compositions of Comparative Examples 1 and 2 had a longer gel time, and as shown in FIG. This is thought to be due to the long gel time, that is, the slow curing speed, causing some of the components in the composition to permeate or diffuse into the solder resist layer 3 in contact with it and lose its capacity. .
In addition, it was confirmed that the curable resin compositions of Examples 1 to 4 had no cracks after 5 cycles of reflow at 270° C., and that there was no problem as a curable resin composition for filling holes.

1 プリント配線基板 2 スルーホール 3 ソルダーレジスト組成物 4 銅めっき 5 実施例1~4の硬化性樹脂組成物 5’ 比較例1および2の硬化性樹脂組成物 6 スルーホール表面 7 凹み 1 printed wiring board 2 through hole 3 solder resist composition 4 copper plating 5 curable resin compositions of Examples 1 to 4 5' curable resin compositions of Comparative Examples 1 and 2 6 through hole surface 7 dent

Claims (5)

少なくとも
(A)ビスフェノールE型エポキシ樹脂、
(B)3官能以上のエポキシ樹脂
(C)ポリアミン型硬化剤、および
イミダゾール型硬化剤
を含有し、かつ、JIS-C2161:2010に従い測定された、100℃におけるゲルタイムが、30分以下である、穴埋め用硬化性樹脂組成物。
at least
(A) a bisphenol E type epoxy resin,
(B) a trifunctional or higher epoxy resin ,
(C) a polyamine-type curing agent , and
Imidazole type curing agent
and has a gel time at 100° C. of 30 minutes or less, as measured according to JIS-C2161:2010.
前記(C)ポリアミン型硬化剤が、95℃以下の硬化開始温度を有する、請求項1に記載の穴埋め用硬化性樹脂組成物 The curable resin composition for hole-filling according to claim 1, wherein the (C) polyamine-type curing agent has a curing initiation temperature of 95°C or less . さらに無機フィラーを含有する、請求項1または2に記載の穴埋め用硬化性樹脂組成物。 The curable resin composition for hole-filling according to claim 1 or 2 , further comprising an inorganic filler. 請求項1~のうちいずれか1項に記載の穴埋め用硬化性樹脂組成物から成る、硬化物。 A cured product comprising the hole-filling curable resin composition according to any one of claims 1 to 3 . 請求項に記載の硬化物を有する、電子部品。 An electronic component comprising the cured product according to claim 4 .
JP2019057793A 2019-03-26 2019-03-26 Curable resin composition for hole filling Active JP7252027B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019057793A JP7252027B2 (en) 2019-03-26 2019-03-26 Curable resin composition for hole filling
TW109101025A TWI831903B (en) 2019-03-26 2020-01-13 Curing resin composition for hole filling
CN202010212164.6A CN111748078B (en) 2019-03-26 2020-03-24 Curable resin composition for pore-filling
KR1020200036121A KR20200115277A (en) 2019-03-26 2020-03-25 Curable resin composition for filling in a hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057793A JP7252027B2 (en) 2019-03-26 2019-03-26 Curable resin composition for hole filling

Publications (2)

Publication Number Publication Date
JP2020158586A JP2020158586A (en) 2020-10-01
JP7252027B2 true JP7252027B2 (en) 2023-04-04

Family

ID=72641866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057793A Active JP7252027B2 (en) 2019-03-26 2019-03-26 Curable resin composition for hole filling

Country Status (4)

Country Link
JP (1) JP7252027B2 (en)
KR (1) KR20200115277A (en)
CN (1) CN111748078B (en)
TW (1) TWI831903B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872430A (en) * 2019-11-29 2020-03-10 陕西生益科技有限公司 High CTI resin composition, prepreg, laminated board and metal foil-clad laminated board
TWI810590B (en) * 2021-06-18 2023-08-01 陳冠宇 Circuit board and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098053A1 (en) 2017-11-14 2019-05-23 株式会社弘輝 Resin composition for reinforcement and electronic component device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739600B2 (en) 1999-07-06 2006-01-25 太陽インキ製造株式会社 Liquid thermosetting resin composition and method for permanently filling printed wiring board using the same
JP3565118B2 (en) * 1999-11-25 2004-09-15 松下電工株式会社 Epoxy resin composition for semiconductor encapsulation
JP5948784B2 (en) * 2011-10-13 2016-07-06 三菱レイヨン株式会社 Epoxy resin composition
WO2016117237A1 (en) * 2015-01-21 2016-07-28 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product and printed wiring board
JP2017179185A (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Epoxy resin composition for sealing semiconductor, and semiconductor device
DE102016106031A1 (en) * 2016-04-01 2017-10-05 Dr. Neidlinger Holding Gmbh Heat-curing two-component epoxy resin
KR20180003354A (en) * 2016-06-30 2018-01-09 코오롱인더스트리 주식회사 Thermosetting epoxy resin composition having fast-curing property, low-viscosity and high thermal-resistance
CN108203497B (en) * 2016-12-20 2021-04-13 太阳油墨(苏州)有限公司 Epoxy resin composition for filling holes in printed wiring board, cured product, and printed wiring board using same
JP7098881B2 (en) * 2017-03-31 2022-07-12 住友ベークライト株式会社 Thermosetting resin compositions, resin films with carriers, prepregs, printed wiring boards and semiconductor devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098053A1 (en) 2017-11-14 2019-05-23 株式会社弘輝 Resin composition for reinforcement and electronic component device

Also Published As

Publication number Publication date
CN111748078A (en) 2020-10-09
CN111748078B (en) 2024-05-17
JP2020158586A (en) 2020-10-01
TW202100653A (en) 2021-01-01
KR20200115277A (en) 2020-10-07
TWI831903B (en) 2024-02-11

Similar Documents

Publication Publication Date Title
JP5238342B2 (en) Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
JP6570259B2 (en) Resin composition, insulating film, and semiconductor device
JP7159158B2 (en) Thermosetting resin composition, cured product thereof, and printed wiring board
JP5758463B2 (en) Epoxy resin composition, hole filling composition, and printed wiring board using the same
JP7441928B2 (en) Thermosetting resin filler, its cured product and multilayer printed wiring board
JP5901923B2 (en) Thermosetting resin filler and printed wiring board
JP7252027B2 (en) Curable resin composition for hole filling
TW202014466A (en) Solvent-free resin composition and uses of the same
WO2022202939A1 (en) Curable resin composition
JP5739631B2 (en) Thermosetting resin filler
JP2012069879A (en) Thermosetting resin filler
WO2014153911A1 (en) Thermosetting resin composition and printed circuit board filled with same
JP2014236140A (en) Ink for solder resist and hardened material thereof, and printed wiring board arranged by using the hardened material
JP6198483B2 (en) Thermosetting resin composition and printed wiring board
WO2024181495A1 (en) Curable resin composition
JP5636240B2 (en) Thermosetting resin filler
TW202342636A (en) Curable resin composition
JP2019112610A (en) Thermosetting resin filler, cured product of the same, and multilayer printed wiring board
JP2024146833A (en) CURABLE RESIN COMPOSITION AND METHOD FOR PRODUCING PRINTED WIRING BOARD USING THE CURABLE RESIN COMPOSITION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7252027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350