JP7248565B2 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP7248565B2
JP7248565B2 JP2019229563A JP2019229563A JP7248565B2 JP 7248565 B2 JP7248565 B2 JP 7248565B2 JP 2019229563 A JP2019229563 A JP 2019229563A JP 2019229563 A JP2019229563 A JP 2019229563A JP 7248565 B2 JP7248565 B2 JP 7248565B2
Authority
JP
Japan
Prior art keywords
battery
motor generator
output
power
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019229563A
Other languages
English (en)
Other versions
JP2021097574A (ja
Inventor
和 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2019229563A priority Critical patent/JP7248565B2/ja
Publication of JP2021097574A publication Critical patent/JP2021097574A/ja
Application granted granted Critical
Publication of JP7248565B2 publication Critical patent/JP7248565B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本開示は、走行用のバッテリを備えた電動車両に関する。
国際公開第2014/057538号(特許文献1)には、車両の衝突を検知または予知した場合に、走行用の電池の放電を行なう車載用蓄電装置が開示されている。
国際公開第2014/057538号
複数の電池が積層されて構成されたバッテリにおいて、たとえば、ある電池に何らかの異常が生じて電池の温度が上昇した場合、当該ある電池と隣接して積層された他の電池の温度上昇を誘発し得る。このような温度上昇の誘発が連鎖して、バッテリの温度が急激に上昇することがある。バッテリの温度が上昇して所定温度を超えた場合には、バッテリの電力を早急に放出させることが望ましい。なお、以下においては、バッテリの温度が所定温度を超えることを「異常発熱」とも称する。
たとえば、走行時にバッテリが異常発熱した場合、モータジェネレータの出力を増加させてバッテリの放電を促進させることが考えられる。しかしながら、この場合には、モータジェネレータの出力の増加によって要求駆動力以上の駆動力が発生するので、要求駆動力に応じた車速を維持できなくなってしまう可能性がある。
本開示は、上記課題を解決するためになされたものであり、その目的は、バッテリが異常発熱した場合に、要求駆動力に応じた車速を維持しつつ、バッテリの電力を早急に放出させることである。
この開示に係る電動車両は、走行用のバッテリと、バッテリの状態を監視する監視ユニットと、バッテリの電力を用いて駆動力を発生させるモータジェネレータと、制動力を発生させるブレーキと、モータジェネレータおよびブレーキを制御する制御装置とを備える。制御装置は、要求される駆動力に基づいてモータジェネレータの出力を決定する。制御装置は、バッテリの温度が所定温度を超えた場合に、モータジェネレータの出力を増加させるとともに、モータジェネレータの出力の増加量に応じた制動力を発生させるようにブレーキを制御する。
上記構成によれば、バッテリの温度が所定温度を超えた場合には、モータジェネレータの出力が増加される。これによって、バッテリの電力の消費量が増加するので、バッテリの電力を早期に放出させることが可能となる。そして、モータジェネレータの出力の増加量に応じた制動力がブレーキにより発生される。これによって、モータジェネレータの出力を増加させたとしても、モータジェネレータの出力を増加させる前の車速(要求駆動力に応じた車速)を維持することができる。
本開示によれば、バッテリが異常発熱した場合に、要求駆動力に応じた車速を維持しつつ、バッテリの電力を早急に放出させることができる。
実施の形態に係る車両の構成を概略的に示す図である。 放電制御を説明するための概念図である。 放電制御に関して、ECUにおいて実行される処理の手順を示すフローチャートである。 放電制御における各機器の出力を調整するためのマップである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<全体構成>
図1は、本実施の形態に係る車両1の構成を概略的に示す図である。図1を参照して、車両1は、バッテリ10と、監視ユニット15と、システムメインリレー(SMR:System Main Relay)20と、電力制御装置(PCU:Power Control Unit)30と、モータジェネレータ41、42と、駆動部51、52と、高圧補機60と、DC/DCコンバータ70と、低圧補機75と、センサユニット80と、ECU(Electronic Control Unit)90とを備える。
バッテリ10は、車両1の駆動電源(すなわち動力源)として車両1に搭載される。バッテリ10は、積層された複数の電池を含んで構成される。電池は、たとえば、ニッケル水素電池、リチウムイオン電池等の二次電池である。また、電池は、正極と負極との間に液体電解質を有する電池であってもよいし、固体電解質を有する電池(全固体電池)であってもよい。
監視ユニット15は、バッテリ10の状態を検出する。具体的には、監視ユニット15は、電圧センサ16と、電流センサ17と、温度センサ18とを含む。電圧センサ16は、バッテリ10の電圧VBを検出する。電流センサ17は、バッテリ10に入出力される電流IBを検出する。温度センサ18は、バッテリ10の温度TBを検出する。各センサは、その検出結果を示す信号をECU90に出力する。なお、電流センサ17の出力は、バッテリ10の充電時には負値を示し、バッテリ10の放電時には正値を示すものとする。
SMR20は、PCU30とバッテリ10とを結ぶ電力線PL,NLに電気的に接続されている。SMR20が閉成状態であると、バッテリ10からPCU30に電力が供給される。SMR20が開放状態であると、バッテリ10からPCU30に電力が供給されない。SMR20は、ECU90からの制御信号に従って、閉成状態と開放状態とを切り替える。
PCU30は、ECU90からの制御信号に応じて、バッテリ10に蓄えられた直流電力を交流電力に変換してモータジェネレータ41,42に供給する。また、PCU30は、モータジェネレータ41,42が発電した交流電力を直流電力に変換してバッテリ10に供給する。具体的には、PCU30は、モータジェネレータ41に対応して設けられるインバータ31と、モータジェネレータ42に対応して設けられるインバータ32と、各インバータに供給される直流電圧をバッテリ10の出力電圧以上に昇圧するコンバータ(図示せず)とを含んで構成される。
駆動部51は、たとえば、フロント駆動輪と、各駆動輪に対応して設けられるブレーキ装置とを含む。駆動部51は、モータジェネレータ41から出力された回転動力を変速し、ディファレンシャルギヤを介してフロント駆動輪へ動力を伝える変速機をさらに含んでもよい。駆動部52は、たとえば、リア駆動輪と、各駆動輪に対応して設けられるブレーキ装置とを含む。駆動部52は、変速機をさらに含んでもよい。
ブレーキ装置は、運転者がブレーキペダル(図示せず)を踏み込むことによって作動し、各駆動輪に制動力を付与するように構成される。具体的には、ブレーキ装置は、運転者のブレーキ操作(ひいては、ブレーキペダル踏力)によって加圧されるマスタシリンダと、各駆動輪に設けられるブレーキ機構と、ブレーキアクチュエータと(いずれも図示せず)を含んで構成される。ブレーキ機構は、マスタシリンダから供給される油圧を利用してキャリパのブレーキパッドをブレーキロータに押し付けて摩擦制動力を発生させるように構成される。ブレーキアクチュエータは、マスタシリンダとブレーキ機構との間に設けられ、ブレーキ機構に加わる油圧を調整可能に構成される。ECU90は、ブレーキアクチュエータを制御することにより、ブレーキ装置(ブレーキ機構)が発生する制動力を制御する。
モータジェネレータ41,42の各々は、交流回転電機であり、たとえば、永久磁石がロータ(図示せず)に埋設された三相交流回転電機である。モータジェネレータ41のロータは、ディファレンシャルギヤを介して(駆動部51が変速機を含む場合には変速機およびディファレンシャルギヤを介して)フロント駆動輪に機械的に接続される。モータジェネレータ42のロータは、ディファレンシャルギヤを介して(駆動部52が変速機を含む場合には変速機およびディファレンシャルギヤを介して)リア駆動輪に機械的に接続される。モータジェネレータ41,42は、PCU30からの交流電力を受けることにより、車両1を走行させるための回転動力を生成する。一方で、車両1を減速させるときや、車両1を停止させるとき、モータジェネレータ41,42は、車両1の運動エネルギーを電気エネルギーに変換する。モータジェネレータ41,42で生成された交流電力は、PCU30によって直流電力に変換されてバッテリ10に供給される。これにより、回生電力をバッテリ10に蓄えることができる。このように、モータジェネレータ41,42は、バッテリ10との間での電力の授受(すなわち、バッテリ10の充放電)を伴なって、車両1の駆動力または制動力を発生するように構成される。
高圧補機60は、電力線PL,NLに接続され、電力線PL、NLから供給される電力で作動する。高圧補機60は、たとえば、空調装置、バッテリ10を昇温するためのヒータ、および、バッテリ10を冷却する冷却装置等である。空調装置は、コンプレッサを含み、ECU90からの制御信号に従ってコンプレッサを作動させて車室内の空調を行なう。ヒータは、電力線PL,NLから供給される電力を用いてジュール熱を発生することによってバッテリ10を加熱する。冷却装置は、コンプレッサを含み、ECU90からの制御信号に従ってコンプレッサを作動させてバッテリ10を冷却する。
DC/DCコンバータ70は、電力線PL、NLと、低電圧線ELとの間に接続される。DC/DCコンバータ70は、電力線PL、NLから供給される電力を降圧して低電圧線ELに供給する。DC/DCコンバータ70は、ECU90によって制御される。なお、DC/DCコンバータ70は、PCU30に内蔵されてもよい。
低圧補機75は、低電圧線ELに接続され、低電圧線ELから供給される電力で作動する。低圧補機75は、たとえば、照明装置、ワイパー装置、オーディオ装置およびナビゲーション装置等である。
センサユニット80は、温度センサ81,82および車速センサ83を含む。温度センサ81は、たとえば、バッテリ10の周辺雰囲気温度TAを検出する。温度センサ82は、たとえば、バッテリ10の高電圧部品の温度TCを検出する。バッテリ10の高電圧部品の温度とは、たとえば、SMR20、バッテリ10の端子に電気的に導通するバスバ、バスバとSMR20を連結する中継端子、またはヒューズ等からなる群のうちの少なくとも1つの部品の温度を指す。上記複数の部品の平均値がバッテリ10の高電圧部品の温度とされてもよい。なお、車両1が、車両外部の電力を用いたバッテリ10の充電が可能に構成される場合には、充電ケーブルの先端に設けられた充電コネクタが接続されるインレットを上記群に含めてもよい。車速センサ83は、車両1の車速を検出する。センサユニット80は、各センサの検出結果をセンサ情報としてECU90に出力する。
ECU90は、CPU(Central Processing Unit)91と、メモリ92と、入出力ポート(図示せず)とを含む。ECU90は、たとえば、バッテリ10を制御するための電池ECU、およびPCU30の動作を制御するためのMG-ECU等、機能毎に複数のECUに分割されていてもよい。メモリ92は、ROM(Read Only Memory)およびRAM(Random Access Memory)を含み、ECU90により実行されるプログラム、および各種の制御に用いられるマップ等を記憶する。CPU91は、ROMに格納されているプログラムをRAMに展開して実行する。CPU91は、各センサからの信号およびメモリ92に記憶されたマップ等に基づいて制御信号を出力するとともに、車両1が所望の状態となるように各機器を制御する。
ECU90は、監視ユニット15から受ける検出結果に基づいて、バッテリ10のSOCを算出する。SOCは、バッテリ10の満充電容量に対する現在の蓄電量を百分率で示したものである。SOCの算出方法としては、たとえば、電流値積算(クーロンカウント)による手法、または、開放電圧(OCV:Open Circuit Voltage)の推定による手法等、種々の公知の手法を採用できる。
ECU90は、アクセル開度等に基づいて、モータジェネレータ41,42に要求される要求駆動力を算出する。ECU90は、算出した要求駆動力に基づいた駆動力がモータジェネレータ41,42から出力されるようにPCU30を制御する。
<放電制御>
ここで、バッテリ10において、たとえば、ある電池に何らかの異常が生じて電池の温度が上昇した場合、当該ある電池と隣接して積層された他の電池の温度上昇を誘発し得る。このような温度上昇の誘発が連鎖して、バッテリ10の温度TBが急激に上昇することがある。バッテリ10の温度TBが上昇して所定温度TBthを超えた場合(異常発熱した場合)には、バッテリ10を放電して電力を早急に放出させることが望ましい。なお、所定温度TBthは、バッテリ10の異常発熱を検知するための閾値であり、たとえばバッテリ10の仕様および実験結果等に基づいて予め設定しておくことができる。所定温度TBthは、ECU90のメモリ92に記憶されている。
本実施の形態に係るECU90は、走行時にバッテリ10の温度TBが所定温度TBthを超えた場合には、放電制御を実行する。放電制御においては、ECU90は、バッテリ10の電力を早急に放出して、バッテリ10のSOCを所定SOCまで低下させる。所定SOCは、異常発熱したある電池が、当該ある電池と隣接して積層された他の電池の温度上昇を誘発する可能性がある電力の下限値未満に設定された電力に対応したSOCである。すなわち、ある電池に異常発熱が生じたとしても、バッテリ10のSOCが所定SOC以下であれば、他の電池の温度上昇を誘発する可能性が小さいといえる。所定SOCは、バッテリ10(電池)の仕様、具体的にはエネルギー量および/または放熱性等に応じて設定することができる。
具体的には、放電制御において、ECU90は、モータジェネレータ41の出力を増加させる。これによって、バッテリ10の電力の消費量が増加するので、バッテリ10の電力を早期に放出させることが可能となる。ただし、モータジェネレータ41の出力の増加によって要求駆動力以上の駆動力が発生するので、要求駆動力に応じた車速を維持できなくなってしまう可能性がある。そこで、ECU90は、モータジェネレータ41の出力の増加量に応じた制動力を発生させるようにモータジェネレータ42を回生動作させる。これによって、モータジェネレータ41の出力を増加させたとしても、モータジェネレータ41の出力を増加させる前の車速(要求駆動力に応じた車速)を維持することができる。なお、モータジェネレータ42によって回生されたエネルギーは、熱エネルギーとして捨てるとともに、モータジェネレータ41、高圧補機60および低圧補機75を作動させて消費することができる。なお、本実施の形態に係るモータジェネレータ42は、本開示に係る「ブレーキ」の一例に相当する。
図2は、放電制御を説明するための概念図である。図2におけるフロント駆動部とは、インバータ31、モータジェネレータ41および駆動部51を含む。リア駆動部とは、インバータ32、モータジェネレータ42および駆動部52を含む。
一例として、バッテリ10の最大出力電力が108kWである場合を考える。また、一例として、フロント駆動部の電力変換効率を約60%、リア駆動部の電力変換効率を約60%、高圧補機60および低圧補機75の電力変換効率を90%と仮定する。そして、現在の車速を維持するためには、20kWの電力を要するものと仮定する。
図2を参照して、放電制御において、モータジェネレータ41の出力を増加させるように、フロント駆動部(具体的にはインバータ31)には120kWの電力が入力され、これによりフロント駆動部からは73kWの電力が出力されている。現在の車速を維持するためには、20kWの電力を要するのであるから、20kWの電力が走行に用いられる。一方、残りの53kW(=73kW-20kW)の電力は、リア駆動部に入力される。
リア駆動部は、53kWの電力を受けて回生ブレーキとして機能する。図2に示されるように、リア駆動部は、53kWの電力を受けて、32kWの回生電力を出力する。ここで、21kW(=53kW-32kW)の電力は熱エネルギーとして捨てることができる。
ECU90は、バッテリ10から供給される電力およびリア駆動部から出力される回生電力を車両1で消費できるように、高圧補機60および低圧補機75を制御する。
図2の例では、バッテリ10から出力される108kWの電力およびリア駆動部から出力される32kWの回生電力が、フロント駆動部、高圧補機60および低圧補機75に供給される。
図3は、放電制御に関して、ECU90において実行される処理の手順を示すフローチャートである。図3のフローチャートの処理は、車両1の走行時において、所定の周期毎にメインルーチンから呼び出されてECU90により実行される。図3のフローチャートの各ステップ(以下ステップを「S」と略す)は、ECU90によるソフトウェア処理によって実現される場合について説明するが、その一部あるいは全部がECU90内に作製されたハードウェア(電気回路)によって実現されてもよい。
図3を参照して、ECU90は、監視ユニット15から検出結果(VB,IB,TB)を取得する(S1)。また、ECU90は、センサユニットからセンサ情報(TA,TC,V)を取得する(S1)。
ECU90は、S1で取得したバッテリ10の温度TBを所定温度TBthと比較する(S3)。バッテリ10の温度TBが所定温度TBth以下である場合(S3においてNO)、ECU90は、バッテリ10に異常発熱は生じていないと判定し、処理をリターンに進める。
一方、バッテリ10の温度TBが所定温度TBthより高い場合(S3においてYES)、ECU90は、バッテリ10に異常発熱が生じていると判定し、S5に処理を進める。
ECU90は、バッテリ10の現在の温度TBに応じた、バッテリ10の最大放電電流IBmaxおよび最大出力電力PBmaxを算出する(S5)。具体的には、ECU90は、最大放電電流IBmaxおよび最大出力電力PBmaxを以下のようにして算出する。
まず、ECU90は、以下の式(1)に従って、バッテリ10の現在の温度TBに応じたバッテリ10の上限温度TBmaxを設定する。
TBmax=TB+ΔTB…(1)
ΔTBは、放電制御において想定されるバッテリ10の上昇温度である。上昇温度ΔTBは、以下の式(2)に従って算出される。
ΔTB={(IBmax)×R-K(TC-TA)}/C…(2)
Rは、バッテリ10の内部抵抗である。内部抵抗の算出には、種々の公知の手法を用いることができる。Kは、バッテリ10の放熱効率(周辺雰囲気への放熱効率)である。放熱効率Kは、たとえば実験等により予め求めておくことができる。
式(2)を式(1)に代入すると、以下の式(3)を得ることができる。
TBmax=TB+{(IBmax)×R-K(TC-TA)}/C…(3)
そして、式(3)より、最大放電電流IBmaxを求めることができる。
IBmax=[{C(TBmax-TB)+K(TC-TA)}/R]1/2…(4)
ECU90は、算出したIBmaxと、S1で取得した電圧VBとを用いて、以下の式(5)に従って最大出力電力PBmaxを算出する。
PBmax=IBmax×VB…(5)
次いで、ECU90は、現在のアクセル開度に基づいた車速Vを維持するために必要な車両出力Pcを算出する(S7)。車両出力Pcは、現在のモータジェネレータ41および/またはモータジェネレータ42への出力指令値から効率に基づくロス分を減算した値の加算値とすることができる。あるいは、現在のモータジェネレータ41および/またはモータジェネレータ42の実際の出力の加算値を車両出力Pcとしてもよい。
次いで、ECU90は、モータジェネレータ41の現在の最大出力トルクTm1maxおよび最大出力電力Pm1maxを算出する(S9)。具体的には、ECU90は、車速Vから駆動輪の回転速度を算出する。そして、ECU90は、算出した駆動輪の回転速度と、モータジェネレータ41から駆動輪までにおける減速比とからモータジェネレータ41の回転速度N1を算出する。そして、ECU90は、モータジェネレータ41の回転速度と最大出力トルクとの関係を示すマップを用いて、現在のモータジェネレータ41の最大出力トルクTm1maxを算出する。ECU90は、最大出力トルクTm1maxを用いて、以下の式(6)に従ってモータジェネレータ41の最大出力電力Pm1maxを算出する。
Pm1max=2×π×Tm1max×N1/60…(6)
次いで、ECU90は、高圧補機60および低圧補機75の最大消費電力Pkを算出する(S11)。なお、以下においては、高圧補機60および低圧補機75を特に区別しない場合には、両者を総称して、単に「補機」とも称する。補機の最大消費電力Pkは、たとえば、仕様等に基づく各補機の消費電力を加算して算出される。
ECU90は、放電制御における、車両1の最大消費電力Pxを以下の式(7)に従って算出する(S13)。
Px=Pm1max+Pk-(Pr×k)…(7)
Prは、モータジェネレータ42に入力される余剰電力である。係数kは、回生ブレーキの電力変換効率を示す係数である。余剰電力Prは、後述の式(8a)および式(8b)に算出式を示す。
ECU90は、バッテリ10の最大出力電力PBmaxと、車両1における最大消費電力Pxとを比較して(S15)、放電制御におけるバッテリ10の上限出力Plimを設定する(S17,S19)。具体的には、最大出力電力PBmaxが最大消費電力Pxよりも大きい場合には(S15においてYES)、ECU90は、上限出力Plimに最大消費電力Pxの値を設定する(S17)。最大出力電力PBmaxが最大消費電力Px以下である場合には(S15においてNO)、ECU90は、上限出力Plimに最大出力電力PBmaxの値を設定する(S19)。
まず、上限出力PlimにPxの値が設定された場合について説明する。S17において上限出力PlimにPxの値を設定すると、ECU90は、以下の式(8a)に従って、余剰電力Prを算出する(S23)。
Pr=Pm1max-Pc…(8a)
余剰電力Prは、モータジェネレータ41の最大出力Pm1maxから現在のアクセル開度に基づいた車速Vを維持するために必要な車両出力Pcを差し引いた値であり、換言すれば、消費すべき電力といえる。
ECU90は、余剰電力Prを用いて、以下の式(9)に従って減速トルクTrを算出する(S25)。
Tr=Pr×60/(2×π×N2)…(9)
N2は、モータジェネレータ42の回転速度である。減速トルクTrは、放電制御において、車両1を制動するためのモータジェネレータ42のトルクとして用いられる。
そして、ECU90は、放電制御を実行する(S27)。放電制御において、ECU90は、車両1における消費電力の収支が上限出力Plim(=Px)となるように各機器を制御する。より具体的には、ECU90は、最大出力トルクTm1maxを出力するようにモータジェネレータ41を力行状態に制御するとともに、減速トルクTrを出力するようにモータジェネレータ42を回生状態に制御する。さらに、ECU90は、補機を作動させて最大消費電力Pkを消費させる。これによって、上限出力Plim(=Px)でバッテリ10の電力が放電される。
バッテリ10から放出された電力Pxは、モータジェネレータ41および補機で消費される。モータジェネレータ41の出力の増加によって要求駆動力以上の駆動力が発生し得るが、モータジェネレータ41の出力の増加量に応じた制動力をモータジェネレータ42によって発生させることによって要求駆動力に応じた車速を維持することができる。
次に、上限出力PlimにPBmaxの値が設定された場合について説明する。S19において上限出力PlimにPBmaxの値を設定すると、ECU90は、車両1の各機器(モータジェネレータ41および補機)の出力を調整する。上限出力PlimにPBmaxの値を設定した場合には、上限出力PlimにPxの値を設定した場合と異なり、車両1の各機器を最大出力で作動させなくてもよい。車両1の各機器は、いずれの機器が作動するのか、あるいは、その作動の程度によって騒音および/または振動等が異なり得る。そのため、機器を作動させることによって車両の乗員に与え得る影響(たとえば不快感)を考慮して、いずれの機器を作動させるか、または、その作動の程度を設定することが望ましい。そこで、ECU90は、車両1の乗員に与える影響に基づいて、各機器の出力を調整して設定する(S21)。
図4は、放電制御における各機器の出力を調整するためのマップである。図4には、各機器の消費電力Pと不快度指数Dとの関係が示されている。機器としては、モータジェネレータ41、ACコンプレッサおよび電気ヒータが例示されている。図4におけるL1は、モータジェネレータ41の消費電力と不快度指数との関係を示している。L2は、ACコンプレッサの消費電力と不快度指数との関係を示している。L3は、電気ヒータの消費電力と不快度指数との関係を示している。不快度指数は、騒音および/または振動等に基づいて、実験あるいは統計等によって定めておくことができる。
図4から認識し得るように、モータジェネレータ41、ACコンプレッサおよび電気ヒータの中では、モータジェネレータ41の作動による不快度指数Dが最も大きい。そのため、各機器の消費電流の総和が上限出力Plim(最大出力電力PBmax)となる範囲において、モータジェネレータ41の消費電力を小さくするように、各機器の出力を調整して設定する。
各機器の出力を調整すると、ECU90は、処理をS23に進めて、以下の式(8b)に従って、余剰電力Prを算出する(S23)。
Pr=Pm-Pc…(8b)
Pmは、S21において設定されたモータジェネレータ41の出力である。そして、ECU90は、算出した余剰電力Prを用いて、上述の式(9)に従って減速トルクTrを算出する(S25)。
そして、ECU90は、放電制御を実行する(S27)。放電制御において、ECU90は、車両1における消費電力の収支が上限出力Plim(=PBmax)となるように各機器を制御する。より具体的には、ECU90は、S21で設定された出力電力Pmに基づくトルクを出力するようにモータジェネレータ41を力行状態に制御するとともに、減速トルクTrを出力するようにモータジェネレータ42を回生状態に制御する。さらに、ECU90は、S21で設定した出力で作動するように補機を制御して電力を消費させる。これによって、上限出力Plim(=PBmax)でバッテリ10の電力が放電されるので、バッテリ10の電力を早期に放出させることが可能となる。
バッテリ10から放出された電力PBmaxは、モータジェネレータ41および補機で消費される。放電制御におけるモータジェネレータ41および補機の出力は、車両1の乗員に与え得る不快度指数を考慮して設定される。これによって、放電制御の実行によって乗員に与える不快感を低減させることができる。また、モータジェネレータ41の出力の増加によって要求駆動力以上の駆動力が発生し得るが、モータジェネレータ41の出力の増加量に応じた制動力をモータジェネレータ42によって発生させることによって要求駆動力に応じた車速を維持することができる。
以上のように、本実施の形態に係る車両1は、バッテリ10の異常発熱を検知した場合には、放電制御を実行する。放電制御においては、車両1は、モータジェネレータ41の出力を増加させてバッテリ10の電力の放電を促進させる。そして、車両1は、モータジェネレータ41の出力の増加量に応じた制動力をモータジェネレータ42によって発生させることにより、要求駆動力に応じた車速を維持する。これによって、要求駆動力に応じた車速を維持しつつ、バッテリ10の電力を早期の放出させることができる。
さらに車両1は、放電制御において、補機を作動させてバッテリ10の放電を促進させる。補機を作動させることによって、バッテリ10の電力をより早期に放出することが可能となる。
さらに車両1は、放電制御において、バッテリ10の最大出力電力PBmaxと車両1における最大消費電力Pxとを考慮する。最大出力電力PBmaxが最大消費電力Pxよりも大きい場合には、車両1は、放電制御において最大消費電力Pxを消費するように各機器を制御する。一方、最大出力電力PBmaxが最大消費電力Px以下である場合には、車両1は、放電制御において最大消費電力PBmaxを消費するように各機器を制御する。この場合には、車両1は、放電制御における各機器の出力を調整する。車両1は、各機器を作動させることにより乗員に与え得る不快感を考慮して各機器の出力を調整する。乗員に与える不快感が小さくなるように各機器の出力を調整して設定することによって、放電制御の実行によって乗員に与える不快感を低減させることができる。
[変形例]
実施の形態においては、モータジェネレータ41の出力の増加量に応じた制動力をモータジェネレータ42によって発生させる例について説明した。しかしながら、制動力を発生させる装置は、モータジェネレータ42に限られない。たとえば、制動力を発生させる装置として、実施の形態に係るモータジェネレータ42に代えて、各駆動輪に設けられたブレーキ装置を用いてもよい。この場合には、モータジェネレータ41の出力の増加量に応じた制動力をブレーキ装置で発生させる。すなわち、余剰電力Pr分を熱エネルギーとして捨てることができる。なお、この場合には、ブレーキ装置は、本開示に係る「ブレーキ」の一例に相当する。
また、制動力を発生させる装置として、実施の形態に係るモータジェネレータ42に加えて各駆動輪に設けられたブレーキ装置を用いてもよい。この場合には、ブレーキ装置により発生される制動力の分、モータジェネレータ42による回生電力を減らすことができる。なお、この場合には、モータジェネレータ42およびブレーキ装置は、本開示に係る「ブレーキ」の一例に相当する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、10 バッテリ、15 監視ユニット、16 電圧センサ、17 電流センサ、18 温度センサ、20 SMR、30 PCU、31,32 インバータ、41,42 モータジェネレータ、51,52 駆動部、60 高圧補機、70 DC/DCコンバータ、75 低圧補機、80 センサユニット、81,82 温度センサ、83 車速センサ、90 ECU、91 CPU、92 メモリ、EL 低電圧線、NL,PL 電力線。

Claims (1)

  1. 走行用のバッテリと、
    前記バッテリの状態を監視する監視ユニットと、
    前記バッテリの電力を用いて駆動力を発生させるモータジェネレータと、
    制動力を発生させるブレーキと、
    前記モータジェネレータおよび前記ブレーキを制御する制御装置とを備え、
    前記制御装置は、
    要求される駆動力に基づいて前記モータジェネレータの出力を決定し、
    前記バッテリの温度が所定温度を超えた場合に、前記モータジェネレータの出力を増加させるとともに、前記モータジェネレータの出力の増加量に応じた制動力を発生させるように前記ブレーキを制御する、電動車両。
JP2019229563A 2019-12-19 2019-12-19 電動車両 Active JP7248565B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019229563A JP7248565B2 (ja) 2019-12-19 2019-12-19 電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019229563A JP7248565B2 (ja) 2019-12-19 2019-12-19 電動車両

Publications (2)

Publication Number Publication Date
JP2021097574A JP2021097574A (ja) 2021-06-24
JP7248565B2 true JP7248565B2 (ja) 2023-03-29

Family

ID=76431826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229563A Active JP7248565B2 (ja) 2019-12-19 2019-12-19 電動車両

Country Status (1)

Country Link
JP (1) JP7248565B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023021614A1 (ja) * 2021-08-18 2023-02-23

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151222A (ja) 2005-11-24 2007-06-14 Toyota Motor Corp 電気自動車の制御装置
JP2016049838A (ja) 2014-08-29 2016-04-11 三菱自動車工業株式会社 回生制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007780A (ja) * 2012-06-21 2014-01-16 Hitachi Constr Mach Co Ltd ハイブリッド式作業車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151222A (ja) 2005-11-24 2007-06-14 Toyota Motor Corp 電気自動車の制御装置
JP2016049838A (ja) 2014-08-29 2016-04-11 三菱自動車工業株式会社 回生制御装置

Also Published As

Publication number Publication date
JP2021097574A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
CN110315998B (zh) 车辆电源系统
CN101395030B (zh) 车辆驱动装置以及车辆驱动装置的控制方法
CN101443978B (zh) 蓄电装置的充放电控制装置和充放电控制方法以及电动车辆
US8886479B2 (en) Charge state detecting device for battery pack and method for detecting charge state
CN110315976B (zh) 车辆电源系统
JP7068893B2 (ja) 車両電源システム
CN110315988B (zh) 车辆电源系统
CN110316019B (zh) 车辆电源系统
JP2017178056A (ja) 車両の走行駆動装置
CN110315999B (zh) 车辆电源系统
CN104553838B (zh) 推进系统
CN108357367A (zh) 一种动力电池加热和冷却控制系统及方法
CN103909922A (zh) 串联式混合动力汽车的整车控制策略
CN102133894A (zh) 一种电动汽车驱动电机系统馈电制动的控制方法
CN108045235B (zh) 一种电动汽车的再生制动系统及其控制方法
CN110316018B (zh) 车辆电源系统
JP7248565B2 (ja) 電動車両
JP7096046B2 (ja) 車両電源システム
JP3991942B2 (ja) 車両の回生制御装置および回生制御方法
JP5961558B2 (ja) 車両の走行制御装置
JP2019213319A (ja) 車両
JP5648581B2 (ja) リチウムイオン電池を搭載した電動カート及び電動カート用リチウムイオン電池の充電方法
KR100579298B1 (ko) 환경 차량의 보조 배터리 충전 제어방법
JP6844460B2 (ja) 二次電池システム
JP2012125051A (ja) 電気自動車の電源制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R151 Written notification of patent or utility model registration

Ref document number: 7248565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151