JP7243579B2 - 数値制御装置と数値制御装置の制御方法 - Google Patents

数値制御装置と数値制御装置の制御方法 Download PDF

Info

Publication number
JP7243579B2
JP7243579B2 JP2019203066A JP2019203066A JP7243579B2 JP 7243579 B2 JP7243579 B2 JP 7243579B2 JP 2019203066 A JP2019203066 A JP 2019203066A JP 2019203066 A JP2019203066 A JP 2019203066A JP 7243579 B2 JP7243579 B2 JP 7243579B2
Authority
JP
Japan
Prior art keywords
involute curve
base circle
involute
point
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203066A
Other languages
English (en)
Other versions
JP2021077074A (ja
Inventor
太樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2019203066A priority Critical patent/JP7243579B2/ja
Priority to CN202011216448.9A priority patent/CN112783097A/zh
Publication of JP2021077074A publication Critical patent/JP2021077074A/ja
Application granted granted Critical
Publication of JP7243579B2 publication Critical patent/JP7243579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34083Interpolation general

Description

本発明は、数値制御装置と数値制御装置の制御方法に関する。
特許文献1が開示する工作機械は、始点と終点の間においてインボリュート補間を実行可能である。工作機械は、インボリュート曲線の回転方向、終点の座標、始点からみた基礎円の中心位置、基礎円の半径を指令する。工作機械は、インボリュート曲線上の位置を表す式から、基礎円の中心位置に対して角度が増加するのに比例して速度の増加が少なくなるように角分配量の増分を算出する。工作機械は、一周期の分配移動量は十分小さいという仮定に基づき、微分計算により補間経路上の現在の位置における基礎円に対する接線ベクトルのノルムを求めて角分配量を計算する。故に工作機械は接線方向の速度が角度に関わらず一定になるように主軸を移動する。
特許文献2が開示する工作機械は、二個のインボリュート曲線のうち一方の第一のインボリュート曲線の始点から他方の第二のインボリュート曲線の終点迄のインボリュート曲線の補間を実行する工作機械を開示する。工作機械は、第一のインボリュート曲線の始点から第二のインボリュート曲線の終点迄の間を滑らかに接続する。故に工作機械は、始点と終点が同一のインボリュート曲線にないインボリュート補間を実行できる。
特開平1-2106号公報 特開平1-57313号公報
上記特許文献1に記載の工作機械は一周期の分配移動量が大きい場合、インボリュート補間経路の現在の位置における基礎円に対する接線ベクトルのノルムが変化するので、計算誤差が大きくなる可能性がある。計算誤差が大きくなると、補間経路上の速度誤差が大きくなる可能性がある。
上記特許文献2に記載の工作機械は、始点を通る第一のインボリュート曲線と、終点を通る第二のインボリュート曲線の誤差であるインボリュート誤差が大きい場合に、接線ベクトルの計算誤差が大きくなる可能性がある。工作機械は、計算誤差が大きくなると補間経路上の速度誤差が大きくなる可能性がある。
本発明の目的は、インボリュート補間における補間経路上の速度誤差を低減できる数値制御装置と数値制御装置の制御方法を提供することである。
請求項1の数値制御装置は、基礎円の中心座標、前記基礎円の半径、始点、及び終点を指定する指令情報によって設定し、前記始点と前記終点の間をインボリュート曲線でつなぐインボリュート補間により曲線加工を実行する工作機械の動作を制御する数値制御装置において、前記指令情報に基づき、前記インボリュート曲線のパラメータを導出する導出部と、前記導出部が導出した前記パラメータに基づき、前記基礎円に基づく曲線であって前記始点を通過する第一インボリュート曲線と、前記基礎円に基づく曲線であって前記終点を通過する第二インボリュート曲線との間の距離であるインボリュート誤差を算出する誤差算出部と、現在位置から前記インボリュート曲線上を指令速度で処理周期時間だけ移動したときの移動量である第一分配移動量を算出する第一分配移動量算出部と、前記第一分配移動量算出部が算出した前記第一分配移動量を、前記誤差算出部が算出した前記インボリュート誤差に基づく補正値で補正することにより、前記基礎円に基づく曲線であって前記現在位置を通過する第三インボリュート曲線上を前記処理周期時間だけ移動したときの移動量である第二分配移動量を算出する第二分配移動量算出部と、前記現在位置から前記第三インボリュート曲線上の弧長が前記第二分配移動量となる角分配量を算出する角分配量算出部と、前記角分配量算出部が算出した前記角分配量に基づき、前記インボリュート曲線上における前記処理周期時間で移動する補間点を算出する補間点算出部と、前記補間点算出部が算出した前記補間点に従って主軸を移動する移動制御部とを備えたことを特徴とする。
上記数値制御装置は、現在位置からインボリュート曲線上を指令速度で処理周期時間だけ移動したときの移動量である第一分配移動量を取得する。数値制御装置は、第一分配移動量を、インボリュート誤差に基づく補正値で補正することにより、現在位置を通過する第三インボリュート曲線上を処理周期時間だけ移動したときの移動量である第二分配移動量を算出する。数値制御装置は、現在位置から第三インボリュート曲線上の弧長が第二分配移動量になる角分配量を算出する。数値制御装置は、算出した角分配量に基づき、インボリュート曲線上における処理周期時間で移動する補間点を算出する。数値制御装置は、算出した補間点に従って主軸を移動する。故に数値制御装置は、インボリュート補間において補間経路上の速度誤差を低減できる。
請求項2の数値制御装置では、前記補正値は、前記誤差算出部が算出した前記インボリュート誤差と、前記第一インボリュート曲線と前記第二インボリュート曲線のうち弧長が短い方のインボリュート曲線の弧長とに基づく値であるとよい。数値制御装置では、補正値は、インボリュート誤差と、第一インボリュート曲線と第二インボリュート曲線のうち弧長が短い方のインボリュート曲線の弧長とに基づく値である。故に、数値制御装置は、インボリュート誤差の影響を低減できるため、インボリュート補間において補間経路上の速度誤差を低減できる。
請求項3の数値制御装置では、前記パラメータは、前記始点から前記インボリュート曲線の前記基礎円に向けて引いた接線の接点と前記基礎円の中心位置とを結ぶ始点直線と、前記主軸が延びる延伸方向に対して直交する基準直線とがなす始点角度と、前記終点から前記インボリュート曲線の前記基礎円に向けて引いた接線の接点と前記基礎円の前記中心位置とを結ぶ終点直線と、前記基準直線とがなす終点角度と、前記第一インボリュート曲線と前記基礎円との接点と前記基礎円の前記中心位置とを結ぶ前記始点直線と、前記基準直線とがなす始点基準角度と、前記第二インボリュート曲線と前記基礎円との接点と前記基礎円の前記中心位置とを結ぶ前記終点直線と、前記基準直線とがなす終点基準角度との情報を含み、前記始点角度、前記始点基準角度に基づき、前記インボリュート曲線が前記基礎円に対して離間する離間方向に移動した際に何れの方向に回転するかを形状方向として特定する形状方向特定部と、前記始点角度、前記終点角度に基づき、前記インボリュート曲線上を前記主軸が前記基礎円に対して接近する接近方向及び前記基礎円に対して離間する前記離間方向のうち何れの方向に移動するかを特定する移動方向特定部とを備えるとよい。数値制御装置は、始点角度、終点角度に基づき、インボリュート曲線上を主軸が接近方向及び離間方向のうち何れの方向に移動するかを特定できる。
請求項4の数値制御装置では、前記始点角度と前記終点角度との角度の大小を比較する比較部を備え、前記形状方向特定部は、前記始点角度が前記始点基準角度よりも大きいと判断した場合、前記インボリュート曲線が前記基礎円に対して離間する前記離間方向に移動した場合に移動する方向である前記形状方向が反時計回りであると特定する第一形状特定部と、前記始点角度が前記始点基準角度よりも小さいと判断した場合、前記インボリュート曲線が前記基礎円に対して離間する前記離間方向に移動した場合に移動する方向である前記形状方向が時計回りであると特定する第二形状特定部を備え、前記移動方向特定部は、前記形状方向特定部が前記時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より小さいと判断した場合、前記主軸が前記接近方向に移動すると特定する第一特定部と、前記形状方向特定部が前記時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より大きいと判断した場合、前記主軸が前記離間方向に移動すると特定する第二特定部と、前記形状方向特定部が前記反時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より小さいと判断した場合、前記主軸が前記離間方向に移動すると特定する第三特定部と、前記形状方向特定部が前記反時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より大きいと判断した場合、前記主軸が前記接近方向に移動すると特定する第四特定部とを備えるとよい。数値制御装置は、回転方向が時計回り又は反時計回りの何れかを特定する。数値制御装置は、始点角度と終点角度との角度の大小を比較する。数値制御装置は、特定した時計回り又は反時計回りの何れかの回転方向と、始点角度と終点角度との角度の大小とに基づき、主軸が接近方向及び離間方向の何れに移動するかを特定できる。
請求項5の数値制御装置の制御方法は、基礎円の中心座標、前記基礎円の半径、始点、及び終点を指定する指令情報によって設定し、前記始点と前記終点の間をインボリュート曲線でつなぐインボリュート補間により曲線加工を実行可能な工作機械の動作を制御する数値制御装置の制御方法において、前記指令情報に基づき、前記インボリュート曲線のパラメータを導出する導出ステップと、前記導出ステップが導出した前記パラメータに基づき、前記基礎円に基づく曲線であって前記始点を通過する第一インボリュート曲線と、前記基礎円に基づく曲線であって前記終点を通過する第二インボリュート曲線との間の距離であるインボリュート誤差を算出する誤差算出ステップと、現在位置から前記インボリュート曲線上を指令速度で処理周期時間だけ移動したときの移動量である第一分配移動量を算出する第一分配移動量算出ステップと、前記第一分配移動量算出ステップが算出した前記第一分配移動量を、前記誤差算出ステップが算出した前記インボリュート誤差に基づく補正値で補正することにより、前記基礎円に基づく曲線であって前記現在位置を通過する第三インボリュート曲線上を前記処理周期時間だけ移動したときの移動量である第二分配移動量を算出する第二分配移動量算出ステップと、前記現在位置から前記第三インボリュート曲線上の弧長が前記第二分配移動量となる角分配量を算出する角分配量算出ステップと、前記角分配量算出ステップが算出した前記角分配量に基づき、前記インボリュート曲線上における前記処理周期時間で移動する補間点を算出する補間点算出ステップと、前記補間点算出ステップが算出した前記補間点に従って主軸を移動する移動制御ステップとを備えたことを特徴とする。
数値制御装置は上記ステップを実行することにより、請求項1に記載の数値制御装置と同じ効果を得ることができる。
工作機械1の電気的構成を示すブロック図。 インボリュート曲線ICのインボリュート補間の概要を示す図。 時計回り且つ離間方向にインボリュート曲線IC上を主軸が移動する時を示す図。 反時計回り且つ離間方向にインボリュート曲線IC上を主軸が移動する時を示す図。 インボリュート曲線ICのパラメータと形状方向及び主軸の移動方向との関係を示す図表。 主処理の流れ図。 移動方向特定処理の流れ図。 現在位置Pnと補間点Pn+1との位置関係を示す図。
本発明の実施形態を説明する。図1に示す数値制御装置29は、工作機械1の動作を制御することで、テーブル(図示略)上面に保持した被削材(図示略)の切削加工を行う。工作機械1の左右方向、前後方向、上下方向は、夫々X軸方向、Y軸方向、Z軸方向である。
図1を参照し、工作機械1の構成を説明する。工作機械1は、例えばテーブル上面に保持した被削材に対し、Z軸方向に延びる主軸に装着した工具をX軸方向、Y軸方向、Z軸方向に移動して加工(例えばドリル加工、タップ加工、側面加工等)を行う縦型工作機械である。工作機械1は図示しない主軸機構、主軸移動機構、工具交換装置等を備える。主軸機構は主軸モータ54を備え、工具を装着した主軸を回転する。主軸移動機構は、Z軸モータ53、X軸モータ51、Y軸モータ52を更に備え、テーブル(図示略)上面に支持した被削材に対し相対的に主軸をXYZの各送り軸の方向に夫々移動する。工具交換装置はマガジンモータ55を備え、複数の工具を収納する工具マガジン(図示略)を駆動し、主軸に装着した工具を他の工具と交換する。
図1を参照し、工作機械1の電気的構成を説明する。図1に示す如く、工作機械1は操作盤13、数値制御装置29、駆動回路201~205、X軸モータ51、Y軸モータ52、Z軸モータ53、主軸モータ54、マガジンモータ55等を備える。操作盤13はカバー(図示略)の前面右部に設ける。操作盤13は、表示部15と操作部24を備える。表示部15は、加工プログラムの選択、加工プログラムの加工条件の設定等を行う為の各種設定画面を表示する。操作部24は各種動作の設定等を工作機械1に入力する為に、作業者が使用する。作業者は表示部15を確認しながら操作部24を操作することで、工作機械1の各種動作、被削材の加工条件等を設定する。
数値制御装置29はCPU31、ROM32、RAM33、記憶装置39、インタフェイス34、35を備える。CPU31は工作機械1の制御を司る。ROM32は後述の主処理を行うプログラムを記憶する。RAM33は種々のデータ等を一時的に記憶する。記憶装置39は、被削材の加工を行う加工プログラム等を記憶する。
表示部15、操作部24はインタフェイス34を介してCPU31に接続する。CPU31はインタフェイス35を介して駆動回路201~205に接続する。駆動回路201~205は制御対象であるX軸モータ51、Y軸モータ52、Z軸モータ53、主軸モータ54、マガジンモータ55に接続する。X軸モータ51、Y軸モータ52、Z軸モータ53、主軸モータ54、マガジンモータ55はエンコーダ51a~55aを備える。
エンコーダ51a~55aはX軸モータ51、Y軸モータ52、Z軸モータ53、主軸モータ54、マガジンモータ55の駆動軸の回転位置等を検出し、検出結果を駆動回路201~205に出力する。CPU31は駆動回路201~203によるエンコーダ51a~53aの回転位置等の検出結果に基づきX軸モータ51、Y軸モータ52、Z軸モータ53のX、Y、Z軸の座標値を検出可能である。X、Y、Z軸の座標値は、主軸の位置情報である。CPU31は駆動回路204によるエンコーダ54aの回転位置等の検出結果に基づき主軸モータ54の回転位置を検出可能である。CPU31は、該位置情報等に基づき、各駆動回路201~204を制御して被削材の加工を行う。
図2~図5を参照し、インボリュート補間を説明する。図2に示す如く、数値制御装置29はインボリュート補間により曲線加工を実行可能である。インボリュート補間は指令情報に基づき設定し、例えば始点Psと終点Peの間をインボリュート曲線ICでつなぐ。
指令情報は加工プログラムの制御指令で設定する情報である。インボリュート補間を設定する指令情報は、インボリュート補間を実行する平面、インボリュート曲線ICの回転方向、終点Peの座標、基礎円Cの半径、主軸の移動速度等を指定し、例えば「G17G03.2X-Y-I-J-R-F-;」で指定する。インボリュート曲線ICの回転方向とは、基礎円Cに対して主軸が時計回り(CW)又は反時計回り(CCW)に移動する際の回転方向を意味する。G17はX-Y平面を指定する指令である。なお、Z-X平面を指定する指令はG18、Y-Z平面を指定する指令はG19である。G03.2は、インボリュート曲線ICの回転方向を反時計回り(CCW)とする指令である。なお、回転方向を時計回り(CW)とする指令はG02.2である。X-Y-は、インボリュート曲線ICの終点Peの座標、I-J-は、始点Psから見た基礎円Cの中心位置Oの座標(以下「基礎円中心座標(X、Y)」という。)、R-は、基礎円Cの半径(以下「基礎円半径R」という。)、F-は主軸の移動速度(以下、「指令速度F」という。)を指定する。始点Psの座標は始点座標(Xs、Ys)、終点Peの座標は終点座標(Xe、Ye)とする。
図2に示すインボリュート曲線ICは、始点Psから終点Pe迄の移動において、反時計回りに主軸が移動する場合を示す。即ち、インボリュート曲線ICの回転方向が反時計回りである。ここで、図2のインボリュート曲線ICは、通常のインボリュート曲線とは異なる。始点Psと終点Peを通過するインボリュート曲線を描ける場合が理想的であるが、始点Psを通過する第一インボリュート曲線IC1は終点Peを通らず、終点Peを通過する第二インボリュート曲線IC2は始点Psを通過しない。該時、インボリュート曲線ICは、必ず後述のインボリュート誤差Dが生じる。故に、インボリュート誤差Dを許容したのがインボリュート曲線ICとなる。
図2を参照し、インボリュート曲線ICのパラメータを説明する。インボリュート曲線ICのパラメータは、後述する主処理(図6参照)の中で、インボリュート曲線IC上の補間点を計算する際に使用する。該パラメータは加工プログラムの指令情報から導出し、例えば基礎円Cの中心位置Oの座標、基準始点P1、基準終点P2、始点角度θs、終点角度θe、始点基準角度θ1、終点基準角度θ2等である。
基礎円Cの中心位置Oの座標は基礎円中心座標(X、Y)である。始点角度θsは、始点直線lsとX軸とがなす角度である。始点直線lsは始点Psからインボリュート曲線ICの基礎円Cに向けて引いた接線の接点Pscと、基礎円Cの中心位置Oとを結ぶ直線である。終点角度θeは、終点直線leとX軸とがなす角度である。終点直線leは、終点Peからインボリュート曲線ICの基礎円Cに向けて引いた接線の接点Pecと、基礎円Cの中心位置Oとを結ぶ直線である。
始点基準角度θ1は、始点直線l1とX軸とがなす角度である。始点直線l1は基準始点P1と、基礎円Cの中心位置Oとを結ぶ直線である。基準始点P1は第一インボリュート曲線IC1と基礎円Cとの接点である。基準始点P1の座標は基準始点座標(X1、Y1)である。
終点基準角度θ2は、終点直線l2とX軸とがなす角度である。終点直線l2は基準終点P2と、基礎円Cの中心位置Oとを結ぶ直線である。基準終点P2は第二インボリュート曲線IC2と基礎円Cとの交点である。基準終点P2の座標は基準終点座標(X2、Y2)である。主軸の現在位置Pnの座標は、座標値(Xn、Yn)で定義する。角分配移動量θnは、分配n周期目の現在位置Pnの分配量を示す。角分配移動量θnは直線lnとX軸とがなす角度である。直線lnは、現在位置Pnから基礎円Cに対する接線との接点Pncと、中心位置Oとを結ぶ直線である。
図3、図4を参照し、インボリュート曲線ICの形状方向を説明する。図3に示すインボリュート曲線ICの形状方向は基礎円Cの基準始点P1から糸をほどく時の回転方向が時計回りである。該時、糸をほどく時の回転方向は、「インボリュート曲線ICの形状方向が時計回りである」という。図4に示すインボリュート曲線ICの回転方向は基礎円Cの基準始点P1から糸をほどく時の回転方向が反時計回りである。該時、糸をほどく時の回転方向は、「インボリュート曲線ICの形状方向が反時計回りである」という。
図3に示す如く、始点Psを通過する第一インボリュート曲線IC1は終点Peを通過する第二インボリュート曲線IC2よりも内側にある。インボリュート曲線ICの形状方向は時計回りである。該時、主軸はインボリュート曲線IC上を、時計回り且つ基礎円Cに対して離間する離間方向に始点Psから終点Pe迄移動する。
図4に示す如く、始点Psを通過する第一インボリュート曲線IC1は、終点Peを通過する第二インボリュート曲線IC2よりも内側にある。インボリュート曲線ICの形状方向は反時計回りである。主軸はインボリュート曲線IC上を、反時計回り方向且つ基礎円Cに対して離間する離間方向に始点Psから終点Pe迄移動する。
図示しないが、図3における始点Ps、終点Peの位置関係が入れ替わる場合がある。つまり、形状方向が時計回りで、且つ始点Psを通過する第一インボリュート曲線IC1は、終点Peを通過する第二インボリュート曲線IC2よりも基礎円Cに対して外側にある場合がある。該時、主軸はインボリュート曲線IC上を、反時計回り方向且つ基礎円Cに対して接近する接近方向に始点Psから終点Pe迄移動する。図示しないが、図4における始点Ps、終点Peの位置関係が入れ替わる場合がある。つまり、形状方向が反時計回りで、且つ、始点Psを通過する第一インボリュート曲線IC1は終点Peを第二インボリュート曲線IC2よりも外側にある場合がある。該時、主軸はインボリュート曲線IC上を、時計回り方向且つ基礎円Cに対して接近する接近方向に始点Psから終点Pe迄移動する。
数値制御装置29は、図5に示す表を参照することで、始点基準角度θ1、始点角度θsとの関係に基づき、インボリュート曲線ICの形状方向を特定し、且つ始点角度θs、終点角度θeとの関係に基づき、主軸が基礎円Cに対して接近方向及び離間方向のうち何れの方向に移動するか特定可能である。なお、数値制御装置29は、以下の始点角度θsと終点角度θeとの比較では、X軸に対して時計回りに移動した時の角度で比較する。
図5に示す如く、始点角度θsが始点基準角度θ1より小さい時、インボリュート曲線ICの形状方向は時計回りである。一方、始点角度θsが始点基準角度θ1より大きい時、インボリュート曲線ICの形状方向は反時計回りである。又、始点角度θsが始点基準角度θ1より小さく且つ終点角度θeが始点角度θsより大きい時、主軸は、形状方向が時計回りであるインボリュート曲線IC上を、基礎円Cに対して接近する接近方向に移動する。又、始点角度θsが始点基準角度θ1より小さく且つ終点角度θeが始点角度θsより小さい時、主軸は、形状方向が時計回りであるインボリュート曲線IC上を、基礎円Cに対して離間する離間方向に移動する(図3参照)。
始点角度θsが始点基準角度θ1より大きく且つ終点角度θeが始点角度θsより大きい時、主軸は、形状方向が反時計回りであるインボリュート曲線IC上を、基礎円Cに対して離間する離間方向に移動する(図4参照)。始点角度θsが始点基準角度θ1より大きく且つ終点角度θeが始点角度θsより小さい時、主軸は、形状方向が反時計回りであるインボリュート曲線IC上を、基礎円Cに対して接近する接近方向に移動する。
図6~図8を参照し、主処理を説明する。工作機械1に電源を投入すると、CPU31はROM32に記憶したプログラムを読み出して、主処理を実行する(図6参照)。主処理を実行時、CPU31は記憶装置39に記憶した加工プログラムのうち、作業者が選択した加工プログラムを受け付けたか否か判断する(S1)。作業者は、操作部24を操作することで、加工プログラムを入力し、決定ボタン(図示略)を押す。該時、CPU31は加工プログラムを受け付けたと判断する。加工プログラムを受け付けていないと判断した場合(S1:NO)、CPU31は処理をS1に戻す。作業者が操作部24を操作して加工プログラムを決定すると、加工プログラムを受け付けたと判断し(S1:YES)、CPU31は受け付けた加工プログラムの一行を解釈する(S3)。
CPU31は解釈した加工プログラムの制御指令が、インボリュート補間を指定する制御指令か否か判断する(S5)。例えば、解釈した制御指令が工具交換指令であった場合、インボリュート補間ではないので(S5:NO)、CPU31は解釈した制御指令を実行する(S7)。
CPU31は解釈した行が終了指令か判断する(S9)。終了指令の時(S9:YES)、CPU31は主処理を終了する。終了指令でないと判断した時(S9:NO)、CPU31は処理をS3に戻し、加工プログラムの次の一行を解釈する。
制御指令がインボリュート補間の制御指令であると判断した時(S5:YES)、CPU31はインボリュート補間を指示する指令情報に基づき、インボリュート曲線ICのパラメータを導出する(S11)。CPU31は上記の通り、基礎円中心座標(X、Y)、始点基準角度θ1、終点基準角度θ2、始点角度θs、終点角度θe等のパラメータを導出する。
CPU31は移動方向特定処理を実行する(S13)。移動方向特定処理では、CPU31はS11の処理で導出したパラメータのうち、始点角度θs、終点角度θe、始点基準角度θ1、終点基準角度θ2等のパラメータ等を参照する。
図7に示す如く、CPU31は始点角度θs、始点基準角度θ1の大小の比較を行う(S101)。始点角度θsが始点基準角度θ1よりも大きいと判断した時(S101:YES)、CPU31はインボリュート曲線ICの形状方向が時計回りであると特定する(S103)。
次いで、CPU31は始点角度θsと終点角度θeの大小を比較する(S105)。始点角度θsが終点角度θeよりも小さいと判断した時(S105:YES)、CPU31はインボリュート曲線IC上を移動する主軸の移動する方向が、基礎円Cに対して接近する接近方向であると特定する(S107)。該時、CPU31は形状方向が時計回りのインボリュート曲線IC上を、反時計回り方向且つ接近方向への主軸の移動を特定する(図5参照)。CPU31は処理を主処理に戻してS15の処理を実行する。
一方、始点角度θsが終点角度θeよりも大きいと判断した時(S105:NO)、CPU31はインボリュート曲線IC上を移動する主軸の移動方向が、基礎円Cに対して離間する離間方向であると特定する(S109)。該時、CPU31は形状方向が時計回りのインボリュート曲線IC上を、時計回り方向且つ離間方向への主軸の移動を特定する(図5参照)。該時、CPU31は処理を主処理に戻してS15の処理を実行する。
一方、始点角度θsが始点基準角度θ1より小さいと判断した時(S101:NO)、CPU31はインボリュート曲線ICの形状方向が基礎円Cに対して反時計回り方向であることを特定する(S111)。CPU31は始点角度θsと終点角度θeの大小を比較する(S113)。始点角度θsが終点角度θeより小さいと判断した時(S113:YES)、CPU31はインボリュート曲線IC上を移動する主軸の移動方向が、基礎円Cに対して離間する離間方向であると特定する(S115)。該時、CPU31は形状方向が反時計回りのインボリュート曲線IC上を、反時計回り方向且つ離間方向への主軸の移動を特定する(図5参照)。該時、CPU31は処理を主処理に戻してS15の処理を実行する。
始点角度θsが終点角度θeより大きいと判断した時(S113:NO)、CPU31はインボリュート曲線ICを移動する主軸の移動方向が、基礎円Cに対して接近する接近方向であると特定する(S117)。該時、CPU31は形状方向が反時計回りのインボリュート曲線IC上を、時計回り方向且つ接近方向への主軸の移動を特定する(図5参照)。CPU31は主処理に戻り、S15の処理を実行する。
CPU31は、導出したパラメータに基づき、インボリュート誤差Dを算出する(S15)。インボリュート誤差Dは、始点Psを通過する第一インボリュート曲線IC1と、終点Peを通過する第二インボリュート曲線IC2との間の距離である。CPU31はインボリュート誤差Dを基礎円半径R、始点基準角度θ1、終点基準角度θ2の各値を以下に示す式(1)に代入することで、インボリュート誤差Dを算出する。
Figure 0007243579000001
CPU31は、第一分配移動量Δl(図8参照)を算出する(S15)。以下の説明では、説明の便宜上、形状方向が反時計回りのインボリュート曲線IC上を、反時計回り方向且つ基礎円Cに対して離間する離間方向に主軸が移動する場合を想定して説明する。図8に示すインボリュート曲線ICはインボリュート曲線の一例であり、想定しうる他のインボリュート曲線の補間を実行する場合についても適用可能である。
第一分配移動量Δlは、主軸の現在位置Pnからインボリュート曲線IC上を指令速度Fで処理周期時間だけ移動したときの移動量である。処理周期時間とは、例えば現在位置Pnから次の補間点Pn+1までの移動時間である。故に第一分配移動量Δlは所定の定数である。
CPU31は、インボリュート誤差Dを補正する為の補正値lratを算出する(S17)。CPU31は以下の式(2-1)~式(2-4)を用いて補正値lratを算出する。CPU31は式(2-1)を用いてインボリュート誤差Dと弧長Lの値を代入して補正値lratを算出する。CPU31は式(2-2)を用いて、始点Psを通る第一インボリュート曲線IC1の弧長L1を算出する。CPU31は式(2-3)を用いて、終点Peを通る第二インボリュート曲線IC2の弧長L2を算出する。CPU31は式(2-4)を用いて、弧長L1と弧長L2のうち短い方を弧長Lとして選択する。式(2-4)により選択した弧長Lは式(2-1)に代入する。故に補正値lratは、算出したインボリュート誤差Dと、第一インボリュート曲線IC1と第二インボリュート曲線IC2のうち弧長が短い方のインボリュート曲線ICの弧長Lとに基づく値である。
式(2-1)~式(2-4)は、近似計算であり、算出する補正値lratに計算誤差が発生する。ここで、長い方の弧長Lを使用する時、演算結果の誤差は真値よりも大きい側となる。又、短い方の弧長Lを使用する時、演算結果の誤差は、真値よりも大きい側又は小さい側となる。故にCPU31は計算誤差がある時の主軸の移動動作を安全側で動作する為、演算結果の誤差が小さくなる短い弧長Lを選択する。ここで、安全側とは、誤差が大きい時、速度指令値が大きくなりすぎないことを意味する。即ち、式(2-1)による補正値lratの演算では、小さい弧長Lを使用することで、演算結果の誤差を小さく見積もることが可能である。該時、補正値lratの誤差が小さな値となるので、長い方を弧長Lとして補正値lratを演算した時よりも速度が小さくなる。
式(2-2)の演算において、CPU31はインボリュート曲線ICの形状方向が反時計回りで且つ終点角度θeが始点基準角度θ1よりも小さい時、又は、インボリュート回転の形状方向が時計回りで且つ終点角度θeが始点基準角度θ1よりも大きい時、式(2-2)のθeにθ1を代入する。故に、式(2-2)の演算において、(θe-θ1)2の演算結果は0となる。故に数値制御装置29は、計算誤差を最小限に抑えることができる。
式(2-3)の演算において、CPU31は、インボリュート曲線ICの形状方向が反時計回りで且つ始点角度θsが終点基準角度θ2よりも小さい時、又は、インボリュート曲線ICの形状方向が時計回りで且つ始点角度θsが終点基準角度θ2よりも大きい時、式(2-3)のθeにθ2を代入する。故に、式(2-3)の演算において、(θe-θ2)2の演算結果は0となる。故に数値制御装置29は、計算誤差を最小限に抑えることができる。
Figure 0007243579000002
CPU31は、算出した第一分配移動量Δlを、インボリュート誤差Dに基づく補正値lratで補正することにより、第二分配移動量Δl'を算出する(S21)。該時、CPU31は以下の式(3)を用いて、補正値lratを使用して第二分配移動量Δl'を算出する。第二分配移動量Δl'(図8参照)は、現在位置Pnを通過する第三インボリュート曲線IC3上を処理周期時間だけ移動したときの移動量である。故にCPU31はインボリュート誤差Dの影響を低減できる。なお、第三インボリュート曲線IC3は、第一インボリュート曲線IC1と第二インボリュート曲線IC2の間にある曲線である。
Figure 0007243579000003
CPU31は、現在位置Pnから第三インボリュート曲線IC3(図8参照)上の弧長が第二分配移動量Δl'となる角分配量Δθnを算出する(S23)。CPU31は以下の式(4-1)~(4-4)により角分配量Δθnを算出する。なお、主軸が始点Psにある時、第三インボリュート曲線IC3は第一インボリュート曲線IC1と同一の曲線となる。式(4-1)による演算結果は、基礎円Cから離間する離間方向に主軸が移動する時に使用する(図5参照)。式(4-2)による演算結果は、基礎円Cに接近する接近方向に主軸が移動する時に使用する(図5参照)。ここで、CPU31は角度θorat、角分配移動量θn、始点角度θs、始点基準角度θ1を、式(4-3)に代入することで角度θ(θn)を算出する。CPU31は始点角度θs、終点角度θe,始点基準角度θ1、終点基準角度θ2を式(4-4)に代入することで角度θoratを算出する。
Figure 0007243579000004
CPU31は、算出した角分配量Δθnに基づき、補間点Pn+1に関する角分配移動量θn+1(図8参照)を算出する(S25)。CPU31は、以下の式(5-1)、式(5-2)により補間点Pn+1の角分配移動量θn+1を算出する。ここで、CPU31は始点角度θsが終点角度θeより大きい時、角分配移動量θn+1の値として、式(5-1)による算出結果を用いる。又、CPU31は始点角度θsが終点角度θeより小さい時、角分配移動量θn+1の値として、式(5-2)の値を用いる。
図8に示す如く、補間点Pn+1は、インボリュート曲線IC上の点であり、且つ現在位置Pnから主軸が移動する次の位置を示す。角分配移動量θn+1は、分配n+1周期目の分配量を示す。角分配移動量θn+1は、直線ln+1と、X軸とがなす角度である。直線ln+1は、接点P+1'から基礎円Cに向けて引いた接線との接点Pnc+1と中心位置Oとを結ぶ直線である。接点Pn+1'は第三インボリュート曲線IC3上を、現在位置PnからΔl'の分だけ移動した位置にある。
Figure 0007243579000005
CPU31は、算出した角分配移動量θn+1に基づき、インボリュート曲線IC上における処理周期時間で移動する補間点Pn+1を算出する(S27)。補間点Pn+1の補間点座標(Xn+1、Yn+1)は、以下に示す式(6-1)~(6-3)により計算する。CPU31は、式(6-1)、式(6-2)に、基礎円半径R、角分配移動量θn+1、角度θ(θn+1)を代入することで補間点座標(Xn+1、Yn+1)を算出する。CPU31は、始点基準角度θ1、終点基準角度θ2、始点角度θs、終点角度θe、角分配移動量θn+1を式(6-3)に代入することで角度θ(θn+1)を算出する。ここで、角分配移動量θn+1は、θs<θn+1≦θeの範囲である。
Figure 0007243579000006
CPU31は、算出した補間点Pn+1に従って主軸を移動する(S29)。該時、第三インボリュート曲線IC3は補間点Pn+1を通過する曲線である。CPU31は主軸が終点Peにあるか否か判断する(S31)。
主軸は終点Peにないと判断した時(S31:NO)、CPU31は処理をS23に戻す。CPU31は、主軸が終点Peに移動するまで、S23~S29の処理を繰り返す。即ち、CPU31は、角分配移動量θn+1が終点角度θeに到達するまで、補間点毎に各処理周期での角分配量Δθnを算出する。又、CPU31は、各処理周期で算出した角分配量Δθnに基づき、インボリュート曲線IC上の補間点Pn+1を算出して、インボリュート補間を実行する。故に、CPU31は、始点Psを通る第一インボリュート曲線IC1と、終点Peを通る第二インボリュート曲線IC2のインボリュート誤差Dを許容して、インボリュート補間を実行できる。
主軸が終点Peにあると判断した時(S31:YES)、CPU31は処理をS9に進める。該時、第三インボリュート曲線IC3は、第二インボリュート曲線IC2と同一の軌道となる。
以上説明したように、CPU31は、インボリュート補間を指示する指令情報に基づき、インボリュート曲線ICのパラメータを導出する(S11)。CPU31は、導出したパラメータに基づき、始点Psを通過する第一インボリュート曲線IC1と、終点Peを通過する第二インボリュート曲線IC2との間の距離であるインボリュート誤差Dを算出する(S15)。CPU31は、現在位置Pnからインボリュート曲線IC上を指令速度Fで処理周期時間だけ移動したときの移動量である第一分配移動量Δlを算出する(S19)。CPU31は、算出した第一分配移動量Δlを、算出したインボリュート誤差Dに基づく補正値lratで補正することにより、現在位置Pnを通過する第三インボリュート曲線IC3上を処理周期時間だけ移動したときの移動量である第二分配移動量Δl'を算出する(S21)。CPU31は、現在位置Pnから第三インボリュート曲線IC3上の弧長が第二分配移動量Δl'となる角分配量Δθnを算出する(S23)。CPU31は、算出した角分配量Δθnに基づき、インボリュート曲線IC上における処理周期時間で移動する補間点Pn+1を算出する(S27)。CPU31は、算出した補間点Pn+1に従って主軸を移動する(S29)。故にCPU31は、インボリュート補間において補間経路上の速度誤差を低減できる。CPU31は、速度誤差を低減できる、インボリュート補間を実行する際に、精度よく被削材の加工を実行できる。
本発明は上記実施形態に限らない。上記実施形態の工作機械1は、主軸がZ軸方向に延びる縦型工作機械であるが、本発明は主軸が水平方向に延びる横型工作機械にも適用できる。上記実施形態では、X-Y平面においてインボリュート補間処理を実行したがこれに限らず、Y-Z平面、Z-X平面においてインボリュート補間を実行してもよい。補正値lratは、弧長L1、L2のうち短い方の弧長Lを用いて算出したが、長い方の弧長Lを用いて算出してもよい。この場合においても、数値制御装置29は、インボリュート補間において補間経路上の速度誤差を低減できる。数値制御装置29は、補間点Pn+1の算出と主軸の移動を繰り返してインボリュート補間を実行したがこれに限らない。数値制御装置29は、全ての補間点を算出した後に、主軸を始点Psから終点Pe迄移動してもよい。
Z軸方向は本発明の延伸方向の一例である。X軸方向は本発明の基準直線の一例である。図6のS11の処理を実行するCPU31は本発明の導出部の一例である。S15の処理を実行するCPU31は本発明の誤差算出部の一例である。S19の処理を実行するCPU31は本発明の第一分配移動量算出部の一例である。S21の処理を実行するCPU31は本発明の第二分配移動量算出部の一例である。S23の処理を実行するCPU31は本発明の角分配量算出部の一例である。S27の処理を実行するCPU31は本発明の補間点算出部の一例である。S29の処理を実行するCPU31は本発明の移動制御部の一例である。
S13の処理を実行するCPU31は本発明の形状方向特定部の一例である。図7のS107、S109、S115、S117の処理を実行するCPU31は本発明の移動方向特定部の一例である。S105、S113の処理を実行するCPU31は本発明の比較部の一例である。S111の処理を実行するCPU31は本発明の第一形状特定部の一例である。S103の処理を実行するCPU31は本発明の第二形状特定部の一例である。S107の処理を実行するCPU31は本発明の第一特定部の一例である。S109の処理を実行するCPU31は本発明の第二特定部の一例である。S115の処理を実行するCPU31は本発明の第三特定部の一例である。S117の処理を実行するCPU31は本発明の第四特定部の一例である。
1 :工作機械
29 :数値制御装置
31 :CPU
32 :ROM
33 :RAM
39 :記憶装置
IC、IC1、IC2、IC3 :インボリュート曲線
D :インボリュート誤差
Δl :第一分配移動量
Δl' :第二分配移動量
θn、θn+1 :角分配移動量
Δθn :角分配量
Pn :現在位置
Pn+1 :補間点
L、L1、L2 :弧長
C :基礎円
O :中心位置
ls、l1 :始点直線
le、l2 :終点直線
P1、P2、Pec、Psc :接点
θs :始点角度
θe :終点角度
θ1 :始点基準角度
θ2 :終点基準角度

Claims (5)

  1. 基礎円の中心座標、前記基礎円の半径、始点、及び終点を指定する指令情報によって設定し、前記始点と前記終点の間をインボリュート曲線でつなぐインボリュート補間により曲線加工を実行する工作機械の動作を制御する数値制御装置において、
    記指令情報に基づき、前記インボリュート曲線のパラメータを導出する導出部と、
    前記導出部が導出した前記パラメータに基づき、前記基礎円に基づく曲線であって前記始点を通過する第一インボリュート曲線と、前記基礎円に基づく曲線であって前記終点を通過する第二インボリュート曲線との間の距離であるインボリュート誤差を算出する誤差算出部と、
    現在位置から前記インボリュート曲線上を指令速度で処理周期時間だけ移動したときの移動量である第一分配移動量を算出する第一分配移動量算出部と、
    前記第一分配移動量算出部が算出した前記第一分配移動量を、前記誤差算出部が算出した前記インボリュート誤差に基づく補正値で補正することにより、前記基礎円に基づく曲線であって前記現在位置を通過する第三インボリュート曲線上を前記処理周期時間だけ移動したときの移動量である第二分配移動量を算出する第二分配移動量算出部と、
    前記現在位置から前記第三インボリュート曲線上の弧長が前記第二分配移動量となる角分配量を算出する角分配量算出部と、
    前記角分配量算出部が算出した前記角分配量に基づき、前記インボリュート曲線上における前記処理周期時間で移動する補間点を算出する補間点算出部と、
    前記補間点算出部が算出した前記補間点に従って主軸を移動する移動制御部と
    を備えたことを特徴とする数値制御装置。
  2. 前記補正値は、前記誤差算出部が算出した前記インボリュート誤差と、前記第一インボリュート曲線と前記第二インボリュート曲線のうち弧長が短い方のインボリュート曲線の弧長とに基づく値であること
    を特徴とする請求項1に記載の数値制御装置。
  3. 前記パラメータは、
    前記始点から前記インボリュート曲線の前記基礎円に向けて引いた接線の接点と前記基礎円の中心位置とを結ぶ始点直線と、前記主軸が延びる延伸方向に対して直交する基準直線とがなす始点角度と、
    前記終点から前記インボリュート曲線の前記基礎円に向けて引いた接線の接点と前記基礎円の前記中心位置とを結ぶ終点直線と、前記基準直線とがなす終点角度と、
    前記第一インボリュート曲線と前記基礎円との接点と前記基礎円の前記中心位置とを結ぶ前記始点直線と、前記基準直線とがなす始点基準角度と、
    前記第二インボリュート曲線と前記基礎円との接点と前記基礎円の前記中心位置とを結ぶ前記終点直線と、前記基準直線とがなす終点基準角度
    との情報を含み、
    前記始点角度、前記始点基準角度に基づき、前記インボリュート曲線が前記基礎円に対して離間する離間方向に移動した際に何れの方向に回転するかを形状方向として特定する形状方向特定部と、
    前記始点角度、前記終点角度に基づき、前記インボリュート曲線上を前記主軸が前記基礎円に対して接近する接近方向及び前記基礎円に対して離間する前記離間方向のうち何れの方向に移動するかを特定する移動方向特定部と
    を備えることを特徴とする請求項1又は2に記載の数値制御装置。
  4. 前記始点角度と前記終点角度との角度の大小を比較する比較部
    を備え、
    前記形状方向特定部は、
    前記始点角度が前記始点基準角度よりも大きいと判断した場合、前記インボリュート曲線が前記基礎円に対して離間する前記離間方向に移動した場合に移動する方向である前記形状方向が反時計回りであると特定する第一形状特定部と、
    前記始点角度が前記始点基準角度よりも小さいと判断した場合、前記インボリュート曲線が前記基礎円に対して離間する前記離間方向に移動した場合に移動する方向である前記形状方向が時計回りであると特定する第二形状特定部を備え、
    前記移動方向特定部は、
    前記形状方向特定部が前記時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より小さいと判断した場合、前記主軸が前記接近方向に移動すると特定する第一特定部と、
    前記形状方向特定部が前記時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より大きいと判断した場合、前記主軸が前記離間方向に移動すると特定する第二特定部と、
    前記形状方向特定部が前記反時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より小さいと判断した場合、前記主軸が前記離間方向に移動すると特定する第三特定部と、
    前記形状方向特定部が前記反時計回りであると特定し、且つ、前記比較部により前記始点角度が前記終点角度より大きいと判断した場合、前記主軸が前記接近方向に移動すると特定する第四特定部と
    を備えることを特徴とする請求項3に記載の数値制御装置。
  5. 基礎円の中心座標、前記基礎円の半径、始点、及び終点を指定する指令情報によって設定し、前記始点と前記終点の間をインボリュート曲線でつなぐインボリュート補間により曲線加工を実行可能な工作機械の動作を制御する数値制御装置の制御方法において、
    記指令情報に基づき、前記インボリュート曲線のパラメータを導出する導出ステップと、
    前記導出ステップが導出した前記パラメータに基づき、前記基礎円に基づく曲線であって前記始点を通過する第一インボリュート曲線と、前記基礎円に基づく曲線であって前記終点を通過する第二インボリュート曲線との間の距離であるインボリュート誤差を算出する誤差算出ステップと、
    現在位置から前記インボリュート曲線上を指令速度で処理周期時間だけ移動したときの移動量である第一分配移動量を算出する第一分配移動量算出ステップと、
    前記第一分配移動量算出ステップが算出した前記第一分配移動量を、前記誤差算出ステップが算出した前記インボリュート誤差に基づく補正値で補正することにより、前記基礎円に基づく曲線であって前記現在位置を通過する第三インボリュート曲線上を前記処理周期時間だけ移動したときの移動量である第二分配移動量を算出する第二分配移動量算出ステップと、
    前記現在位置から前記第三インボリュート曲線上の弧長が前記第二分配移動量となる角分配量を算出する角分配量算出ステップと、
    前記角分配量算出ステップが算出した前記角分配量に基づき、前記インボリュート曲線上における前記処理周期時間で移動する補間点を算出する補間点算出ステップと、
    前記補間点算出ステップが算出した前記補間点に従って主軸を移動する移動制御ステップと
    を備えたことを特徴とする数値制御装置の制御方法。
JP2019203066A 2019-11-08 2019-11-08 数値制御装置と数値制御装置の制御方法 Active JP7243579B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019203066A JP7243579B2 (ja) 2019-11-08 2019-11-08 数値制御装置と数値制御装置の制御方法
CN202011216448.9A CN112783097A (zh) 2019-11-08 2020-11-04 数值控制装置和数值控制装置的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203066A JP7243579B2 (ja) 2019-11-08 2019-11-08 数値制御装置と数値制御装置の制御方法

Publications (2)

Publication Number Publication Date
JP2021077074A JP2021077074A (ja) 2021-05-20
JP7243579B2 true JP7243579B2 (ja) 2023-03-22

Family

ID=75750306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203066A Active JP7243579B2 (ja) 2019-11-08 2019-11-08 数値制御装置と数値制御装置の制御方法

Country Status (2)

Country Link
JP (1) JP7243579B2 (ja)
CN (1) CN112783097A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031911B2 (ja) 1999-06-01 2000-04-10 株式会社奥田製作所 地震時ロック装置に使用するケーシングとそのケーシングを用いた収納ボックス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319586B1 (en) * 1987-06-24 1995-03-08 Fanuc Ltd. Involute interpolation speed control method
WO1988010456A1 (en) * 1987-06-24 1988-12-29 Fanuc Ltd Involute interpolation method
JPS6457313A (en) * 1987-08-27 1989-03-03 Fanuc Ltd Involute interpolation system
JPH02199509A (ja) * 1989-01-30 1990-08-07 Fanuc Ltd インボリュート補間速度制御方式
JP2619532B2 (ja) * 1989-06-28 1997-06-11 ファナック株式会社 インボリュート補間誤差補正方式
CN103926877B (zh) * 2014-04-08 2018-02-09 江门市新会区向日葵科技有限公司 一种多轴联动数控系统及其加工方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031911B2 (ja) 1999-06-01 2000-04-10 株式会社奥田製作所 地震時ロック装置に使用するケーシングとそのケーシングを用いた収納ボックス

Also Published As

Publication number Publication date
CN112783097A (zh) 2021-05-11
JP2021077074A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
EP2258516B1 (en) Method and system for automated software control of waterjet orientation parameters
JP6140130B2 (ja) 工具及び被加工物を保護する数値制御装置
CN105807721B (zh) 数值控制装置及其控制方法
JP5079165B2 (ja) 数値制御装置及び数値制御方法
JP5032081B2 (ja) 工作機械における加工制御方法及び加工情報作成方法
JP6646027B2 (ja) ポストプロセッサ装置、加工プログラム生成方法、cnc加工システム及び加工プログラム生成用プログラム
JP4902815B1 (ja) 数値制御装置
WO2014068667A1 (ja) 加工プログラム作成方法および装置
JP2004164328A (ja) 一人camシステムおよび一人camプログラム
CN109725602B (zh) 数值控制装置及方法、cnc机床、计算机可读信息记录介质
EP1508843B1 (en) Numerical control apparatus
JP5019001B2 (ja) 数値制御方法及びその装置
WO2014196066A1 (ja) 数値制御装置
JP3599800B2 (ja) 数値制御工作機械の主軸法線方向制御方法
JP4503326B2 (ja) 工具経路データ生成装置及びこれを備えた制御装置
JP7243579B2 (ja) 数値制御装置と数値制御装置の制御方法
JP4639058B2 (ja) ねじ切り加工装置
US20160209824A1 (en) Numerical controller controlling machining tool based on skiving instruction
US10365629B2 (en) Numerical controller and movement control method for tool that maximizes synthetic movement velocity in a cutting feed by rotating the table to a selected angle
JP7414851B2 (ja) ロボットの制御装置、ロボットシステム、制御方法、及びコンピュータプログラム
JP4451708B2 (ja) 誤加工防止装置および誤加工防止方法
JP7331596B2 (ja) 数値制御装置と制御方法
JP7131454B2 (ja) 数値制御装置、工作機械、制御プログラム、及び記憶媒体
WO2021182305A1 (ja) 数値制御装置
JP7175340B2 (ja) 工作機械、情報処理装置および情報処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150