JP7240874B2 - MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR - Google Patents

MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR Download PDF

Info

Publication number
JP7240874B2
JP7240874B2 JP2018244760A JP2018244760A JP7240874B2 JP 7240874 B2 JP7240874 B2 JP 7240874B2 JP 2018244760 A JP2018244760 A JP 2018244760A JP 2018244760 A JP2018244760 A JP 2018244760A JP 7240874 B2 JP7240874 B2 JP 7240874B2
Authority
JP
Japan
Prior art keywords
magnetic
less
magnetic domain
domain
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018244760A
Other languages
Japanese (ja)
Other versions
JP2020107715A (en
Inventor
広明 坂本
圭司 岩田
昌男 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2018244760A priority Critical patent/JP7240874B2/en
Publication of JP2020107715A publication Critical patent/JP2020107715A/en
Application granted granted Critical
Publication of JP7240874B2 publication Critical patent/JP7240874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、発電用磁歪素子、その製造方法、および発電装置に関する。 The present invention relates to a magnetostrictive element for power generation, a method for manufacturing the same, and a power generator.

近年発展しているモノのインターネット(Internet of Things、以下「IoT」と略す)の利用においては、モノとインターネットとの接続のために、センサ、電源、および無線通信装置等が一体となった無線センサモジュールを使用する。このような無線センサモジュールの電源として、電池交換や充電作業等の人手による定期的なメンテナンスの必要なしに、設置場所の環境で発生しているエネルギーから電力を発生させることが可能な発電装置の開発が望まれている。 In the use of the Internet of Things (hereafter abbreviated as "IoT"), which has been developing in recent years, a wireless system that integrates a sensor, a power supply, a wireless communication device, etc. is used to connect things and the Internet. Use a sensor module. As a power source for such wireless sensor modules, there is no need for periodic manual maintenance such as battery replacement or charging work, and a power generation device that can generate power from the energy generated in the environment of the installation site. Development is desired.

このような発電装置の一例が、磁歪の逆効果である逆磁歪を使用した磁歪式振動発電装置である。逆磁歪とは、磁歪材料に振動などの応力が加えられたときに、磁歪材料の磁化が変化する現象である。磁歪式振動発電は、振動により磁歪材料に応力を加えて、逆磁歪効果により発生する磁化の変化を、電磁誘導の法則により、磁歪素子の周囲に巻かれたコイルに起電力を発生させるものである。 An example of such a power generator is a magnetostrictive vibration power generator that uses inverse magnetostriction, which is the opposite effect of magnetostriction. Inverse magnetostriction is a phenomenon in which the magnetization of a magnetostrictive material changes when stress such as vibration is applied to the magnetostrictive material. Magnetostrictive vibration power generation applies stress to the magnetostrictive material due to vibration, and the change in magnetization caused by the inverse magnetostrictive effect generates an electromotive force in the coil wound around the magnetostrictive element according to the law of electromagnetic induction. be.

従来、磁歪材料の発電性能を高めるためには、その磁歪量を増加させる方法が試みられてきた。これは、磁歪量が大きいほど、磁歪材料に引っ張り応力と圧縮応力を交互に負荷した場合、逆磁歪を利用した磁束密度の変化(ΔB)が大きくなり、発電出力も大きくなるからである。磁歪材料の磁歪量を増加させる方法の1つが、磁歪材料の結晶構造を制御する方法である。従来開発されたFe-Co合金およびFe-Ga合金の基本的な格子構造はbcc構造であり、<100>方位の磁歪量が最大となる。そのため、圧延、再結晶法などでゴス方位{110}<100>の集合組織を揃える方法や、単結晶から<100>方位に切り出す方法が実施されている。 Conventionally, in order to improve the power generation performance of magnetostrictive materials, attempts have been made to increase the amount of magnetostriction. This is because the greater the magnetostriction, the greater the change in magnetic flux density (ΔB) using reverse magnetostriction and the greater the power output when tensile stress and compressive stress are alternately applied to the magnetostrictive material. One method of increasing the magnetostriction of a magnetostrictive material is to control the crystal structure of the magnetostrictive material. The basic lattice structure of conventionally developed Fe--Co alloys and Fe--Ga alloys is the bcc structure, and the <100> orientation has the maximum magnetostriction. Therefore, a method of aligning the Goss orientation {110}<100> texture by rolling, recrystallization, or the like, or a method of cutting a single crystal into <100> orientation has been implemented.

例えば、磁歪材料のFe-Ga合金について、特許文献1は、Al、Be、B等から選択した一種以上の付加元素を含む、Fe-Ga合金シ-トの形成方法が開示されている。当該形成方法においては、パック圧延法で、磁歪量の大きな{110}<001>方位(ゴス方位)の集合組織を製造する。また、特許文献2は、Fe-Ga合金に炭化物(NbC)を微細分散させて結晶組織を微細化し、圧延加工性を改善した磁歪材料が開示されている。 For example, regarding the Fe--Ga alloy of the magnetostrictive material, Patent Document 1 discloses a method of forming an Fe--Ga alloy sheet containing one or more additional elements selected from Al, Be, B and the like. In this forming method, a texture of {110}<001> orientation (Goss orientation) having a large amount of magnetostriction is produced by a pack rolling method. Further, Patent Document 2 discloses a magnetostrictive material in which carbide (Nb 2 C) is finely dispersed in an Fe—Ga alloy to refine the crystal structure and improve rolling workability.

磁歪材料のFe-Co合金については、特許文献3は、Coの原子%が56~80%である、磁歪量が60ppm以上の、Fe-Co合金の塊状バルク、薄板、薄帯合金が開示されている。さらに特許文献4は、67~87質量%のCoと、1質量%以下のNb、Mo、V、TiおよびCrから選ばれる1種以上とを溶解および凝固させる、熱間圧延、冷間圧延、および熱処理を含むFe-Co合金の製造方法が開示されている。 Regarding the Fe—Co alloy of the magnetostrictive material, Patent Document 3 discloses an Fe—Co alloy massive bulk, thin plate, and ribbon alloy with a Co atomic % of 56 to 80% and a magnetostriction of 60 ppm or more. ing. Furthermore, Patent Document 4 discloses that 67 to 87% by mass of Co and 1% by mass or less of one or more selected from Nb, Mo, V, Ti and Cr are melted and solidified, hot rolling, cold rolling, and a method of making Fe—Co alloys including heat treatment.

米国特許出願公開第2008/0115864号明細書U.S. Patent Application Publication No. 2008/0115864 米国特許出願公開第2015/0028724号明細書U.S. Patent Application Publication No. 2015/0028724 特開2013-177664号公報JP 2013-177664 A 国際公開第2015/083821号WO2015/083821

上記特許文献1や特許文献2に記載のFe-Ga合金は、脆性であるため、加工性が低い。また、通常の熱延や冷延では製造困難であるため、量産性に劣る。更に、Ga元素はCo元素に比べて高価格であるため、原料コストが高く、材料価格も高価になるといった問題もある。 The Fe—Ga alloys described in Patent Document 1 and Patent Document 2 are brittle and thus have low workability. Moreover, since it is difficult to manufacture by normal hot rolling or cold rolling, it is inferior in mass productivity. Furthermore, since the Ga element is more expensive than the Co element, there is also the problem that the raw material cost is high and the material price is also high.

一方、特許文献3や特許文献4に記載のFe-Co合金は、通常の熱延、冷延による加工が可能であることから、量産性に優れており、材料価格もFe-Ga合金に比べて安価である。しかし、磁歪量は少なく、発電用素子として使用した際には、発電出力が低いといった問題がある。 On the other hand, the Fe—Co alloys described in Patent Documents 3 and 4 can be processed by normal hot rolling and cold rolling, so they are excellent in mass productivity, and the material price is also lower than that of the Fe—Ga alloy. and cheap. However, the amount of magnetostriction is small, and when used as an element for power generation, there is a problem that the power output is low.

このように従来の磁歪材料の合金設計では、発電出力を大きくするためには磁歪量を向上させる必要がある。そして磁歪量の高い合金(Fe-Ga合金)は、脆いため加工性が低く、量産が困難であり、高価格である。また、量産性や価格を優先すると、磁歪量が低くなり、発電出力の向上が難しいという問題がある。 Thus, in the conventional alloy design of magnetostrictive materials, it is necessary to improve the magnetostriction amount in order to increase the power generation output. Alloys with a high magnetostriction (Fe--Ga alloys) are brittle and thus have low workability, are difficult to mass-produce, and are expensive. Moreover, if mass productivity and price are prioritized, the amount of magnetostriction becomes low, and there is a problem that it is difficult to improve the power generation output.

また、従来の発電用磁歪素子においては、応力に対する磁区の変化を、磁歪素子全体にわたって一様に実施することは難しく、磁束密度変化ΔBに寄与できない部位が磁歪素子中に存在していた。これは、従来の磁歪素子の磁区構造が素子全体にわたって均一ではなく、場所によって異なっているためである。 Further, in the conventional magnetostrictive element for power generation, it is difficult to uniformly change the magnetic domain with respect to the stress over the entire magnetostrictive element, and there are portions in the magnetostrictive element that cannot contribute to the magnetic flux density change ΔB. This is because the magnetic domain structure of the conventional magnetostrictive element is not uniform over the entire element, but differs from place to place.

本発明は、上記事情に鑑みてなされたものであり、磁歪発電に用いるための、発電出力が高く、且つ安定的な量産が可能な、発電用磁歪素子、その製造方法、および当該発電用磁歪素子を用いた発電装置を提供する。 The present invention has been made in view of the above circumstances, and a magnetostrictive element for power generation that has a high power output and can be stably mass-produced for use in magnetostrictive power generation, a method for manufacturing the same, and the magnetostrictive element for power generation A power generator using the element is provided.

上記課題に鑑み、本発明の第一は、下記の発電用磁歪素子である。
[1] Fe系磁歪合金からなる板状の発電用磁歪素子であって、
前記発電用磁歪素子の表面および裏面の少なくとも1つの面が、180°磁壁を含む第1磁区および90°磁壁を含む第2磁区が存在する磁性面であり、前記磁性面の面積に対する、前記磁性面に存在する第1磁区の総面積の割合が0%以上70%以下であり、且つ第2磁区の総面積の割合が50%以上100%以下であり、前記磁性面における第2磁区の分布が、前記磁性面全体に渡って均一であり、
前記第1磁区の総面積の割合、前記第2磁区の総面積の割合、および前記第2磁区の分布は、前記発電用磁歪素子の前記磁性面を交流磁場で消磁し、その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により測定した値である、発電用磁歪素子。
[2] 前記磁性面が、磁区変更用表面処理部を有し、前記磁区変更用表面処理部の総面積は、前記磁性面の面積に対して、0.5%以上10%以下である、[1]に記載の発電用磁歪素子。
[3] 前記磁区変更用表面処理部が、凹部および残留応力部から選ばれる少なくとも1種である、[2]に記載の発電用磁歪素子。
[4] 前記磁区変更用表面処理部が、凹部である、[3]に記載の発電用磁歪素子。
[5] 前記凹部の深さが、前記発電用磁歪素子の厚みtに対して0.03t以上0.4t以下である、[4]に記載の発電用磁歪素子。
[6] 複数の前記凹部が点列状に配置されている、または前記凹部が線状である、[4]または[5]に記載の発電用磁歪素子。
[7] 前記磁区変更用表面処理部が、残留応力部である、[3]に記載の発電用磁歪素子。
[8] 前記磁性面における、表面上の前記残留応力部の範囲が、50μm以上500μm以下である、[7]に記載の発電用磁歪素子。
[9] 前記残留応力部の深さが、前記発電用磁歪素子の厚みtに対して0.1t以上0.7t以下である、[7]または[8]に記載の発電用磁歪素子。
[10] 前記Fe系磁歪合金が、Fe-Ga系合金、Fe-Co系合金、またはFe-Al系合金である、[1]~[9]のいずれかに記載の発電用磁歪素子。
[11] 前記Fe系磁歪合金の飽和磁歪値λsが、20×10-6以上である、[1]~[10]のいずれかに記載の発電用磁歪素子。
In view of the above problems, the first aspect of the present invention is the following magnetostrictive element for power generation.
[1] A plate-shaped magnetostrictive element for power generation made of an Fe-based magnetostrictive alloy,
At least one of the front and back surfaces of the magnetostrictive element for power generation is a magnetic surface on which a first magnetic domain including a 180° domain wall and a second magnetic domain including a 90° domain wall are present, and the magnetic field with respect to the area of the magnetic surface The ratio of the total area of the first magnetic domains present on the surface is 0% or more and 70% or less, and the ratio of the total area of the second magnetic domains is 50% or more and 100% or less, and the distribution of the second magnetic domains on the magnetic surface is uniform over the entire magnetic surface,
The ratio of the total area of the first magnetic domain, the ratio of the total area of the second magnetic domain, and the distribution of the second magnetic domain are obtained by demagnetizing the magnetic surface of the magnetostrictive element for power generation with an alternating magnetic field and then demagnetizing A magnetostrictive element for power generation, which is a value measured by a magneto-optical method with no external stress applied to the surface.
[2] The magnetic surface has a magnetic domain altering surface treatment portion, and the total area of the magnetic domain altering surface treatment portion is 0.5% or more and 10% or less of the area of the magnetic surface. The magnetostrictive element for power generation according to [1].
[3] The magnetostrictive element for power generation according to [2], wherein the magnetic domain altering surface treatment portion is at least one selected from concave portions and residual stress portions.
[4] The magnetostrictive element for power generation according to [3], wherein the magnetic domain altering surface treatment portion is a concave portion.
[5] The magnetostrictive element for power generation according to [4], wherein the depth of the concave portion is 0.03t or more and 0.4t or less with respect to the thickness t of the magnetostrictive element for power generation.
[6] The magnetostrictive element for power generation according to [4] or [5], wherein the plurality of recesses are arranged in a dotted line, or the recesses are linear.
[7] The magnetostrictive element for power generation according to [3], wherein the magnetic domain altering surface treatment portion is a residual stress portion.
[8] The magnetostrictive element for power generation according to [7], wherein the residual stress portion on the surface of the magnetic surface has a range of 50 μm or more and 500 μm or less.
[9] The magnetostrictive element for power generation according to [7] or [8], wherein the residual stress portion has a depth of 0.1 t or more and 0.7 t or less with respect to the thickness t of the magnetostrictive element for power generation.
[10] The magnetostrictive element for power generation according to any one of [1] to [9], wherein the Fe-based magnetostrictive alloy is an Fe--Ga-based alloy, an Fe--Co-based alloy, or an Fe--Al-based alloy.
[11] The magnetostrictive element for power generation according to any one of [1] to [10], wherein the Fe-based magnetostrictive alloy has a saturation magnetostriction value λs of 20×10 −6 or more.

本発明の第二は、下記の発電用磁歪素子の製造方法である。
[12] Fe系磁歪合金からなる板状磁歪材料を提供し、前記板状磁歪材料の表面および裏面の少なくとも1つの面に磁区変更用表面処理を行って、表面処理済みの磁性面を得る、ことを含み、
前記磁性面には、180°磁壁を含む第1磁区および90°磁壁を含む第2磁区が存在し、前記磁性面の面積に対する、前記磁性面に存在する第1磁区の総面積の割合が0%以上70%以下であり、且つ第2磁区の総面積の割合が50%以上100%以下であり、前記磁性面における第2磁区の分布は、前記磁性面全体に渡って均一であり、
前記第1磁区の総面積の割合、前記第2磁区の総面積の割合、および前記第2磁区の分布は、前記板状磁歪材料の前記磁性面を交流磁場で消磁し、その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により測定した値である、発電用磁歪素子の製造方法。
[13] 前記磁区変更用表面処理が、凹部の形成および残留応力の付与から選ばれる少なくとも1種である、[12]に記載の製造方法。
A second aspect of the present invention is the following method for manufacturing a magnetostrictive element for power generation.
[12] providing a plate-shaped magnetostrictive material made of an Fe-based magnetostrictive alloy, and subjecting at least one of the front and back surfaces of the plate-shaped magnetostrictive material to a surface treatment for changing the magnetic domain to obtain a surface-treated magnetic surface; including
The magnetic surface has a first magnetic domain including a 180° domain wall and a second magnetic domain including a 90° domain wall, and the ratio of the total area of the first magnetic domains present on the magnetic surface to the area of the magnetic surface is 0. % or more and 70% or less, and the ratio of the total area of the second magnetic domains is 50% or more and 100% or less, and the distribution of the second magnetic domains on the magnetic surface is uniform over the entire magnetic surface,
The percentage of the total area of the first magnetic domains, the percentage of the total area of the second magnetic domains, and the distribution of the second magnetic domains are obtained by demagnetizing the magnetic surface of the plate-shaped magnetostrictive material with an alternating magnetic field and then demagnetizing the magnetic A method for manufacturing a magnetostrictive element for power generation, which is a value measured by a magneto-optical method with no external stress applied to the surface.
[13] The manufacturing method according to [12], wherein the magnetic domain altering surface treatment is at least one selected from formation of recesses and application of residual stress.

本発明の第三は、下記の発電装置である。
[14] [1]~[11]のいずれかに記載の発電用磁歪素子を含む、発電装置。
A third aspect of the present invention is the following power generator.
[14] A power generator comprising the magnetostrictive element for power generation according to any one of [1] to [11].

本発明によれば、発電出力が高く、且つ安定的な量産が可能な、磁歪発電に用いるための発電用磁歪素子、その製造方法、および当該発電用磁歪素子を用いた発電装置が提供される。 According to the present invention, a power generating magnetostrictive element for use in magnetostrictive power generation, which has a high power output and is capable of stable mass production, a method for manufacturing the same, and a power generator using the power generating magnetostrictive element are provided. .

表面処理部(凹部)を有する磁歪素子の磁性面を示す模式図である。FIG. 2 is a schematic diagram showing a magnetic surface of a magnetostrictive element having surface-treated portions (recesses);

上述したように、磁歪発電装置においては、磁歪素子の磁歪量が大きいほど、磁歪材料に引っ張り応力と圧縮応力を交互に負荷した場合、逆磁歪を利用した磁束密度の変化(ΔB)が大きくなり、発電出力も大きくなる。そのため、従来、磁歪素子の発電性能を高めるために、その磁歪量を増加させる方法が試みられてきた。具体的には、結晶方位を所定の方向に揃えることで、ΔBを大きくすること目的とした技術が検討されてきた。 As described above, in the magnetostrictive power generator, the greater the amount of magnetostriction of the magnetostrictive element, the greater the change in magnetic flux density (ΔB) using reverse magnetostriction when tensile stress and compressive stress are alternately applied to the magnetostrictive material. , the power output also increases. Therefore, in the past, attempts have been made to increase the amount of magnetostriction in order to improve the power generation performance of magnetostrictive elements. Specifically, techniques aimed at increasing ΔB by aligning crystal orientations in a predetermined direction have been studied.

これに対して本発明者は、結晶方位を所定の方向に揃えてΔBを大きくする方法ではなく、磁歪材料の磁区構造を制御することによってΔBを大きくする方法を着想した。具体的には、磁歪素子の表面および裏面の少なくとも1つの面(磁性面)の面積に対する、180°磁壁を含む第1磁区の総面積の割合が0%以上70%以下であり、90°磁壁を含む第2磁区の総面積の割合が50%以上100%以下であり、且つ第2磁区の分布が磁性面全体に渡って均一であると、逆磁歪を利用したΔBが大きくなり、発電出力も大きくなることを見出した。 In response to this, the present inventors conceived a method of increasing ΔB by controlling the magnetic domain structure of the magnetostrictive material, instead of aligning the crystal orientations in a predetermined direction to increase ΔB. Specifically, the ratio of the total area of the first magnetic domain including the 180° domain wall to the area of at least one surface (magnetic surface) of the front surface and the back surface of the magnetostrictive element is 0% or more and 70% or less, and the 90° domain wall When the ratio of the total area of the second magnetic domain including the also found to be larger.

更に本発明者は、磁歪材料の磁性面の第1磁区および第2磁区を上述した条件を満たすように制御するための表面処理を含む、発電用磁歪素子の製造方法を見出した。本発明の製造方法によって、磁歪量の低い磁歪材料、例えば、Fe-Co合金、の発電出力を増加させることが可能となる。 Furthermore, the present inventor has found a method of manufacturing a magnetostrictive element for power generation, which includes surface treatment for controlling the first magnetic domain and the second magnetic domain of the magnetic surface of the magnetostrictive material so as to satisfy the above conditions. The manufacturing method of the present invention makes it possible to increase the power generation output of a magnetostrictive material with a low magnetostriction amount, such as an Fe—Co alloy.

以下に、例示的な実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。 The present invention will be described below with reference to exemplary embodiments, but the present invention is not limited to the following embodiments.

1.発電用磁歪素子
本発明は、Fe系磁歪合金からなる板状の発電用磁歪素子に関する。
本発明において「発電用磁歪素子」(以下、しばしば、「磁歪素子」と略す場合もある)とは、磁歪特性、即ち、磁場の印加による形状変化(即ち、歪み)、を示す磁性材料で構成された、逆磁歪に基づく発電が可能な磁歪材料を意味する。
1. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-like magnetostrictive element for power generation made of an Fe-based magnetostrictive alloy.
In the present invention, the “magnetostrictive element for power generation” (hereinafter sometimes abbreviated as “magnetostrictive element”) is composed of a magnetic material that exhibits magnetostrictive properties, that is, shape change (i.e., strain) due to the application of a magnetic field. It means a magnetostrictive material capable of generating electricity based on reverse magnetostriction.

本発明の磁歪素子は、板状の磁歪素子の表面および裏面の少なくとも1つの面が、180°磁壁を含む第1磁区および90°磁壁を含む第2磁区が存在する、磁性面である。さらに、当該磁性面の面積に対する、第1磁区の総面積の割合(以下、しばしば、「第1磁区の割合」と略す場合もある)は0%以上70%以下であり、且つ第2磁区の総面積の割合(以下、しばしば、「第2磁区の割合」と略す場合もある)は50%以上100%以下である。尚、本発明において、板状の磁歪素子の表面および裏面は、最も面積の広い面を意味し、より面積の狭い側面は含まないものとする。 In the magnetostrictive element of the present invention, at least one of the front and back surfaces of the plate-shaped magnetostrictive element is a magnetic surface on which a first magnetic domain including a 180° domain wall and a second magnetic domain including a 90° domain wall are present. Furthermore, the ratio of the total area of the first magnetic domain to the area of the magnetic surface (hereinafter sometimes abbreviated as "the ratio of the first magnetic domain") is 0% or more and 70% or less, and the ratio of the second magnetic domain The ratio of the total area (hereinafter sometimes abbreviated as "second magnetic domain ratio") is 50% or more and 100% or less. In the present invention, the front and back surfaces of the plate-shaped magnetostrictive element mean the surfaces with the widest area, and do not include side surfaces with smaller areas.

磁性体の磁区構造においては、磁区と磁区の間にある原子の磁気モーメントが少しずつ連続的に反転する空間が存在し、隣り合う磁区の磁化の方向が180°の場合を「180°磁壁」、90°の場合を「90°磁壁」とする。また、180°磁壁を含む磁区を第1磁区とし、90°磁壁を含む磁区を第2磁区とする。尚、磁区の中には、180°磁壁および90°磁壁の両方を含むものが存在する、即ち、第1磁区でもあり、第2磁区でもある磁区が存在する。よって、各磁区の割合は、それぞれ独立に、磁性面の面積に対して求めた値であり、第1磁区の割合と第2磁区の割合との合計が100%を超える場合も考えられる。 In the magnetic domain structure of a magnetic material, there is a space between the magnetic domains in which the magnetic moment of the atoms is continuously reversed little by little. , 90° is referred to as a “90° domain wall”. A magnetic domain including a 180° domain wall is defined as a first magnetic domain, and a magnetic domain including a 90° domain wall is defined as a second magnetic domain. Note that some magnetic domains include both 180° domain walls and 90° domain walls, that is, there are domains that are both the first magnetic domain and the second magnetic domain. Therefore, the ratio of each magnetic domain is a value independently obtained with respect to the area of the magnetic surface, and the sum of the ratio of the first magnetic domain and the ratio of the second magnetic domain may exceed 100%.

また、磁区の割合の分母となる「磁性面の面積」とは、磁性面の凹凸などを考慮しない、2次元の寸法から求められる面積である。よって、磁性面に後述する磁区変更用表面処理部として溝などの凹部が存在する場合、「磁性面の面積」は、当該溝の内壁の面積を含めた表面積ではない。例えば、磁歪素子の形状が長方形であれば、長手方向の寸法と短手方向の寸法の積として求められる面積である。 The "area of the magnetic surface", which is the denominator of the ratio of magnetic domains, is the area obtained from two-dimensional dimensions without considering the irregularities of the magnetic surface. Therefore, in the case where the magnetic surface has recesses such as grooves as surface treatment portions for altering magnetic domains, which will be described later, the "area of the magnetic surface" is not the surface area including the area of the inner walls of the grooves. For example, if the shape of the magnetostrictive element is rectangular, the area is obtained as the product of the dimension in the longitudinal direction and the dimension in the lateral direction.

第1磁区および第2磁区の割合が上記要件を満たすと発電出力が向上する理由は明確ではないが、次のように推定される。 Although the reason why the power generation output is improved when the ratio of the first magnetic domain and the second magnetic domain satisfies the above requirements is not clear, it is presumed as follows.

180°磁壁を含む第1磁区は、180°磁壁と平行方向に引っ張り応力が負荷されても磁化の方向が変化しないため、発電に寄与することができない。よって、磁歪素子に引っ張り応力と圧縮応力とが交互に作用したときに、その応力の半分が活用されないことになる。したがって、第1磁区の割合が70%を超えると、磁歪素子の発電能力が低下する。更に、90°磁壁を含む第2磁区には、圧縮応力が180°磁壁に平行に負荷された際に、第1磁区の磁化方向の変化を助ける作用がある。しかし、この作用は、第1磁区の割合が70%を超えると減少する傾向にある。このような理由から、本発明においては、第1磁区の割合は0%以上70%以下であり、10%以上50%以下が好ましい。第1磁区の割合が50%以下になると、発電能力が更に向上するため好ましい。また、第1磁区が10%以上であると、ΔBを高める効果がより効果的に発揮される。 The first magnetic domain including the 180° domain wall cannot contribute to power generation because its magnetization direction does not change even if a tensile stress is applied in a direction parallel to the 180° domain wall. Therefore, when tensile stress and compressive stress are alternately applied to the magnetostrictive element, half of the stress is not utilized. Therefore, when the ratio of the first magnetic domain exceeds 70%, the power generation capacity of the magnetostrictive element is lowered. In addition, the second magnetic domain containing the 90° domain wall has the effect of helping the change in the magnetization direction of the first magnetic domain when a compressive stress is applied parallel to the 180° domain wall. However, this effect tends to decrease when the first domain fraction exceeds 70%. For these reasons, in the present invention, the ratio of the first magnetic domain is 0% or more and 70% or less, preferably 10% or more and 50% or less. If the ratio of the first magnetic domain is 50% or less, the power generation capacity is further improved, which is preferable. Further, when the first magnetic domain is 10% or more, the effect of increasing ΔB is exhibited more effectively.

一方、第2磁区は、180°磁壁と平行方向に引っ張り応力が負荷されて第1磁区の磁化が変化しない場合でも、磁化を変化させることができるため、発電に寄与することができる。よって、第2磁区の割合が多いほど、発電効率が向上する。更に、第2磁区による第1磁区の磁化方向の変化を助ける作用は、第2磁区の割合が50%以上でなければ、発電効率を向上させるのに十分な効果は達成されない傾向にある。このような理由から、本発明においては、第2磁区の割合を50%以上100%以下であり、70%以上100%以下が好ましい。第2磁区の割合が70%以上になると、第2磁区による第1磁区の磁化方向の変化を助ける効果がさらに向上する。 On the other hand, the second magnetic domain can change its magnetization even when a tensile stress is applied in the direction parallel to the 180° domain wall and the magnetization of the first magnetic domain does not change, so it can contribute to power generation. Therefore, the greater the ratio of the second magnetic domain, the more the power generation efficiency is improved. Furthermore, the effect of helping the second magnetic domain to change the magnetization direction of the first magnetic domain tends not to achieve a sufficient effect of improving the power generation efficiency unless the ratio of the second magnetic domain is 50% or more. For these reasons, in the present invention, the ratio of the second magnetic domain is 50% or more and 100% or less, preferably 70% or more and 100% or less. When the ratio of the second magnetic domain is 70% or more, the effect of helping the change of the magnetization direction of the first magnetic domain by the second magnetic domain is further improved.

第1磁区の総面積の割合、および第2磁区の総面積の割合は、発電用磁歪素子の磁性面を交流磁場で消磁し、その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により測定した値である。具体的には、以下の方法で測定した。 The ratio of the total area of the first magnetic domain and the ratio of the total area of the second magnetic domain are obtained by demagnetizing the magnetic surface of the magnetostrictive element for power generation with an alternating magnetic field, and then applying no external stress to the demagnetized magnetic surface. It is the value measured by the magneto-optical method in the state. Specifically, it was measured by the following method.

第1磁区および第2磁区は磁場や応力によって変化するため、磁歪素子に交流磁場をかけて、その磁場の大きさが零になるまで徐々に弱め、消磁する。その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により磁区を観察する。観察された画像のコントラストや、そのコントラストの形状等から、180°磁壁と90°磁壁の位置を判定し、第1磁区および第2磁区のそれぞれの領域を求める。
尚、磁区の割合の定義は次の通りである。
第1磁区の割合は、磁歪素子の片側の面の全面積をSo、Soの中の第1磁区の総面積をS1とした場合、S1/So×100(%)で定義する。
第2磁区の割合は、磁歪素子の片側の面の全面積をSo、Soの中の第2磁区の総面積をS2とした場合、S2/So×100(%)で定義する。
Since the first magnetic domain and the second magnetic domain change depending on the magnetic field and stress, an alternating magnetic field is applied to the magnetostrictive element, and the magnitude of the magnetic field is gradually weakened until it becomes zero, thereby demagnetizing the magnetostrictive element. After that, magnetic domains are observed by a magneto-optical method with no external stress applied to the demagnetized magnetic surface. The positions of the 180° domain wall and the 90° domain wall are determined from the contrast of the observed image, the shape of the contrast, and the like, and the respective regions of the first magnetic domain and the second magnetic domain are obtained.
The definition of the ratio of magnetic domains is as follows.
The ratio of the first magnetic domain is defined as S1/So×100 (%) where So is the total area of one side of the magnetostrictive element and S1 is the total area of the first magnetic domain in So.
The ratio of the second magnetic domain is defined as S2/So×100(%) where So is the total area of one side of the magnetostrictive element and S2 is the total area of the second magnetic domain in So.

第1磁区の割合および第2磁区の割合の定義について、図1を参照しながら具体的に説明する。図1は、凹部1を表面処理部として有する磁性面10を示す模式図である。図中の距離aは磁歪素子の長手方向の寸法であり、距離bは磁歪素子の短手方向の寸法である。よって、磁歪素子の片側の面の全面積Soはa×bとなる。 The definition of the proportion of the first magnetic domain and the proportion of the second magnetic domain will be specifically described with reference to FIG. FIG. 1 is a schematic diagram showing a magnetic surface 10 having concave portions 1 as surface-treated portions. The distance a in the drawing is the lengthwise dimension of the magnetostrictive element, and the distance b is the widthwise dimension of the magnetostrictive element. Therefore, the total area So of one surface of the magnetostrictive element is a×b.

次に、図中の矢印は磁区内の磁化方向を表す。上述したように、180°磁壁を含む領域には第1磁区(180°磁区)が存在し、90°磁壁を含む領域には第2磁区(90°磁区)が存在する。磁性面10においては、太い斜め線で表される90°磁壁5のみを含む領域2には第2磁区のみが存在し、一方、太い直線で表される180°磁壁4および90°磁壁5の両方を含む領域3には、第1磁区と第2磁区の両方が存在する。よって、第1磁区の総面積S1は、領域3の総面積に等しく、第2磁区の総面積S2は、領域2の総面積と領域3の総面積との合計となる。 Next, the arrows in the figure represent the magnetization directions within the magnetic domains. As described above, the region containing the 180° domain wall has the first magnetic domain (180° magnetic domain), and the region containing the 90° domain wall has the second magnetic domain (90° magnetic domain). On the magnetic surface 10, only the second magnetic domain exists in the region 2 containing only the 90° domain wall 5 represented by thick diagonal lines, while the 180° domain wall 4 and the 90° domain wall 5 represented by thick straight lines are present. Both the first magnetic domain and the second magnetic domain are present in the region 3 containing both. Therefore, the total area S1 of the first magnetic domain is equal to the total area of region 3, and the total area S2 of the second magnetic domain is the sum of the total area of region 2 and the total area of region 3.

従って、S1/So×100(%)と定義される第1磁区の割合は、
(領域3の総面積)/(a×b)×100(%)であり、
S2/So×100(%)と定義される第2磁区の割合は、
(領域2の総面積+領域3の総面積)/(a×b)×100(%)となる。
尚、後述するように、凹部1から磁区を観察することはできないため、凹部1には矢印を示しておらず、磁区の割合の計算にも、凹部1の面積は含まれない。
Therefore, the ratio of the first magnetic domain defined as S1/So×100 (%) is
(Total area of region 3) / (a × b) × 100 (%),
The ratio of the second magnetic domain defined as S2/So×100 (%) is
(total area of region 2+total area of region 3)/(a×b)×100(%).
As will be described later, since the magnetic domain cannot be observed from the concave portion 1, the concave portion 1 is not indicated with an arrow, and the area of the concave portion 1 is not included in the calculation of the ratio of magnetic domains.

磁区の面積の割合およびその分布は、実際に磁気光学的方法によって求めることもできる。この方法で第1磁区と第2磁区の割合を測定する場合には、磁歪素子の磁性面の全面に渡って観察する必要はなく、任意の領域を代表領域として選定し、選定した代表領域をSo相当領域として、その代表領域の中で第1磁区と第2磁区の割合をそれぞれ前記した方法で求めればよい。 The area ratio of the magnetic domains and its distribution can also be actually determined by magneto-optical methods. When measuring the ratio of the first magnetic domain and the second magnetic domain by this method, it is not necessary to observe the entire magnetic surface of the magnetostrictive element. As the So-corresponding region, the proportions of the first magnetic domain and the second magnetic domain in the representative region may be obtained by the method described above.

例えば、磁歪素子が板形状であって、磁性面の形状が長方形である場合には、長手方向とそれに垂直な幅方向の中央部近傍の部位、長手方向端部と中央部の間のほぼ中央の部位、および幅方向端部と中央部の間のほぼ中央の部位を代表領域として選定し、これら合計3ヵ所において、それぞれ第1磁区と第2磁区の数が合わせて100個程になるように磁気光学的方法を用いて磁区の割合を観察すれば良い。 For example, when the magnetostrictive element is plate-shaped and the shape of the magnetic surface is rectangular, a portion near the central portion in the longitudinal direction and the width direction perpendicular thereto, or approximately the center between the longitudinal ends and the central portion and the central portion between the width direction end and the central portion are selected as representative regions, and the total number of first magnetic domains and second magnetic domains in each of these three locations is about 100. Then, the ratio of magnetic domains can be observed using a magneto-optical method.

更に磁性面における第2磁区の分布は、前記磁性面全体に渡って均一である。本発明において、磁区の分布が「磁性面全体に渡って均一」であるとは、以下の状態を意味する。第1磁区および第2磁区の割合を求めるために上述した方法で得た、第1磁区と第2磁区を含む磁性面の画像の上に、任意に同じ長さの複数の直線を引くと、その直線の全体が第2磁区上にある場合、その直線の一部が第1磁区上、他の部分が第2磁区上というように、直線が両方の磁区を跨ぐ場合など、撮影した磁区構造によっていくつかのパタ-ンが出てくる。本発明においては、画像上に、同じ長さの5本以上の線を、縦、横、斜めとランダムに配置されるように引き、各直線について、第2磁区を跨ぐパタ-ンを観察し、各直線が第2磁区を跨いだ回数を記録する。このとき、5本の直線の全てについて、第2磁区を跨いだ回数が同一である場合、もしくは第2磁区を跨いだ回数の最大値と最小値が下記式(1)の関係を満たす場合に、第2磁区の分布が「均一」であると判断する。
(N1-N2)/N1≦0.5 (1)
式中、N1は直線が第2磁区を跨いだ回数の最大値、N2は直線が第2磁区を跨いだ回数の最小値である。
Furthermore, the distribution of the second magnetic domains on the magnetic surface is uniform over the entire magnetic surface. In the present invention, the expression that the magnetic domain distribution is "uniform over the entire magnetic surface" means the following state. Drawing a plurality of straight lines of arbitrarily the same length on the image of the magnetic surface containing the first magnetic domain and the second magnetic domain obtained by the method described above for determining the ratio of the first magnetic domain and the second magnetic domain, When the straight line is entirely on the second magnetic domain, part of the straight line is on the first magnetic domain, and the other part is on the second magnetic domain. Some patterns emerge. In the present invention, five or more lines of the same length are drawn on the image so as to be randomly arranged vertically, horizontally, and obliquely, and the pattern of each straight line straddling the second magnetic domain is observed. , record the number of times each straight line straddles the second magnetic domain. At this time, when the number of crossing over the second magnetic domain is the same for all five straight lines, or when the maximum and minimum values of crossing over the second magnetic domain satisfy the relationship of the following formula (1): , determines that the distribution of the second domain is "uniform".
(N1-N2)/N1≦0.5 (1)
In the formula, N1 is the maximum number of times the straight line straddles the second magnetic domain, and N2 is the minimum number of times the straight line straddles the second magnetic domain.

本発明の磁歪素子において、面積割合で50%以上100%以下の第2磁区の分布が磁性面全体に渡って均一であると、外部応力が負荷された場合に、磁歪素子がその全体に渡って発電に寄与する磁化変化を起こすため、発電出力が向上すると考えられる。一方、第2磁区の分布が不均一、例えば、磁性面の端部に多く存在し、中心部に少ない状態では、外部応力が負荷された場合に、磁歪素子の全体の部位に渡って発電に寄与する磁化変化を起こすことができなくなるため、発電出力が低下すると考えられる。 In the magnetostrictive element of the present invention, if the distribution of the second magnetic domains having an area ratio of 50% or more and 100% or less is uniform over the entire magnetic surface, the magnetostrictive element will not spread over the entire magnetic surface when an external stress is applied. It is considered that the generated power output is improved because the magnetization change that contributes to the power generation is caused by the On the other hand, if the distribution of the second magnetic domains is uneven, for example, if there are many at the ends of the magnetic surface and few at the center, when an external stress is applied, power generation will not occur over the entire region of the magnetostrictive element. It is considered that the power generation output decreases because the contributing magnetization change cannot occur.

本発明においては、磁歪素子の1つ面が上述した磁区の割合および分布の要件を満たす磁性面であればよい。しかし、磁歪素子の両面が当該磁性面であってもよい。尚、磁歪素子の両面が磁性面の場合、磁性面はそれぞれ独立に、上述した磁区の要件を満たすものとする。 In the present invention, it is sufficient that one surface of the magnetostrictive element is a magnetic surface that satisfies the above requirements for the ratio and distribution of magnetic domains. However, both sides of the magnetostrictive element may be the magnetic surfaces. If both surfaces of the magnetostrictive element are magnetic surfaces, each magnetic surface independently satisfies the requirements for the magnetic domains described above.

磁歪素子は、その磁性面に、磁区変更用表面処理部を有してもよい。本発明において「磁区変更用表面処理部」(以下、しばしば、「表面処理部」と略す場合もある)とは、磁性面に存在する180°磁壁を含む第1磁区を減少させて、相対的に90°磁壁を含む第2磁区の割合を増加させ得るものである。上述したように、180°磁壁は発電に寄与する効果が弱いが、90°磁壁は発電効率を向上させることが可能であることから、180°磁壁を減少させて、180°磁壁の割合と、90°磁壁の割合とのバランスを整えることで、磁歪素子の発電出力を高めることができる。 The magnetostrictive element may have a magnetic domain altering surface treatment on its magnetic surface. In the present invention, the “surface treatment portion for changing the magnetic domain” (hereinafter sometimes abbreviated as “surface treatment portion”) means that the first magnetic domain including the 180° domain wall existing on the magnetic surface is reduced and relatively It is possible to increase the proportion of the second domain containing the 90° domain wall at . As described above, the 180° domain wall has a weak effect of contributing to power generation, but the 90° domain wall can improve the power generation efficiency. By adjusting the balance with the proportion of the 90° domain wall, the power output of the magnetostrictive element can be increased.

尚、磁区制御を目的とした表面処理部は、一般的な電磁鋼板(即ち、磁歪特性の利用を目的としない電磁鋼板)の表面にも見られることがある。ただし、一般的な電磁鋼板における表面処理部は、騒音の低減を目的として、磁歪量を減らすように磁区を制御するためのものである。そのために、90°磁壁を含む磁区を減らして、180°磁壁を含む磁区を増やすように、表面処理部は設けられる。さらなる表面処理部の目的は、鉄損を減らすために、180°磁壁を含む磁区を細分化することである。よって、電磁鋼板に見られる一般的な表面処理部は、90°磁壁を含む磁区の割合を減少させて、180°磁壁を含む磁区の割合を増やすものであり、本発明における表面処理部とは反対の磁区制御を目的としたものである。 The surface-treated portion intended for magnetic domain control may also be found on the surface of a general electromagnetic steel sheet (that is, an electromagnetic steel sheet not intended to utilize magnetostrictive properties). However, the surface-treated portion in a general electrical steel sheet is for controlling magnetic domains so as to reduce the amount of magnetostriction for the purpose of noise reduction. Therefore, the surface treatment portion is provided so as to reduce the number of magnetic domains including 90° domain walls and increase the number of magnetic domains including 180° domain walls. The purpose of the further surface treatment is to refine the magnetic domains containing the 180° domain walls in order to reduce core losses. Therefore, a general surface-treated portion found in an electrical steel sheet reduces the proportion of magnetic domains containing 90° domain walls and increases the proportion of magnetic domains containing 180° domain walls. It is intended for opposite magnetic domain control.

磁性面に存在する表面処理部の数に特に限定はなく、1つでもよいし、複数でもよい。但し、磁性面に存在する当該表面処理部の総面積が、磁性面の面積に対して、0.5%以上10%以下であることが好ましく、2.0%以上10%以下がより好ましい。尚、表面処理部の面積は、磁性面の表面から確認できる2次元の寸法に基づくものとする。よって、表面処理部が後述する凹部の場合には、凹部の内壁の面積などを「表面処理部の総面積」に加えないものとする。 The number of surface-treated portions present on the magnetic surface is not particularly limited, and may be one or more. However, the total area of the surface-treated portions present on the magnetic surface is preferably 0.5% or more and 10% or less, more preferably 2.0% or more and 10% or less, with respect to the area of the magnetic surface. The area of the surface-treated portion is based on two-dimensional dimensions that can be confirmed from the surface of the magnetic surface. Therefore, when the surface-treated portion is a concave portion to be described later, the area of the inner wall of the concave portion is not added to the "total area of the surface-treated portion."

磁歪素子における表面処理部の総面積が、磁性面の面積に対して0.5%未満であると、第2磁区の割合を50%以上にできない場合がある。特に、第1磁区の割合を70%以下にすることが難しい場合があるため、表面処理部の総面積は0.5%以上であることが好ましい。また、表面処理部の存在による磁区制御の効果は、表面処理部の総面積が10%のときに最大となり、10%超にしても、第1磁区の割合および第2磁区の割合の変化は少なくなる。 If the total area of the surface-treated portions in the magnetostrictive element is less than 0.5% with respect to the area of the magnetic surface, the ratio of the second magnetic domain may not be 50% or more. In particular, it is sometimes difficult to reduce the proportion of the first magnetic domain to 70% or less, so the total area of the surface-treated portion is preferably 0.5% or more. Further, the effect of magnetic domain control due to the presence of the surface-treated portion is maximized when the total area of the surface-treated portion is 10%. less.

このような表面処理部に特に限定はないが、一例として、凹部および残留応力部が挙げられる。 Although there is no particular limitation on such a surface treatment portion, examples thereof include recesses and residual stress portions.

磁歪素子の磁性面に凹部を設けることによって、凹部の側面の静磁エネルギ-が高くなり、そのエネルギーを下げるために凹部の側面に90°磁壁のみで構成される第2磁区が発生すると考えられる。その結果、第2磁区の割合が増加し、発電出力が増加すると考えられる。尚、本発明において第2磁区とは、90°磁壁を含む磁区であるが、当然のことながら、90°磁壁のみで構成される磁区も第2磁区である。90°磁壁のみで構成される第2磁区には180°磁壁は含まれないため、このような90°磁壁のみで構成される磁区を凹部によって30%程度形成させることによって、第1磁区の割合を70%以下に下げることが可能となる。 It is thought that the provision of the concave portion on the magnetic surface of the magnetostrictive element increases the magnetostatic energy of the side surface of the concave portion, and in order to reduce the energy, the second magnetic domain consisting of only the 90° domain wall is generated on the side surface of the concave portion. . As a result, it is considered that the ratio of the second magnetic domain increases and the power generation output increases. In the present invention, the second magnetic domain is a magnetic domain including a 90° domain wall, but naturally a magnetic domain composed only of a 90° domain wall is also the second magnetic domain. Since the second magnetic domain consisting only of the 90° domain wall does not include the 180° domain wall, by forming about 30% of the magnetic domain consisting of only the 90° domain wall with the concave portion, the ratio of the first magnetic domain is reduced. can be reduced to 70% or less.

尚、表面処理部が凹部の場合、凹部の磁区は観察することができないため、上述した第1磁区の割合および第2磁区の割合には、凹部内の磁区は含まれない。よって、第2磁区の割合が100%に達することはない。 If the surface-treated portion is a concave portion, the magnetic domain in the concave portion cannot be observed. Therefore, the ratio of the first magnetic domain and the ratio of the second magnetic domain do not include the magnetic domain in the concave portion. Therefore, the ratio of the second magnetic domain never reaches 100%.

凹部が2以上存在する場合、1つの凹部の開口部の面積に特に限定はないが、磁性面の面積に対して、0.02%以上、より好ましく0.2%以上であることが好ましい。開口部の面積が0.02%未満では、第2磁区の割合を50%以上に増加させる効果が不十分な場合がある。特に、第1磁区を70%以下にすることが困難な場合がある。 When there are two or more recesses, the area of the opening of one recess is not particularly limited, but it is preferably 0.02% or more, more preferably 0.2% or more, relative to the area of the magnetic surface. If the area of the opening is less than 0.02%, the effect of increasing the ratio of the second magnetic domain to 50% or more may be insufficient. In particular, it may be difficult to reduce the first magnetic domain to 70% or less.

凹部の深さに特に限定はないが、磁歪素子の厚みtに対して0.03t以上0.4t以下であることが好ましく、0.1t以上0.4t以下がより好ましい。凹部の深さが0.03t未満では、磁束密度の向上代ΔBを3割以上とすることが難しい場合がある。また、凹部の深さが0.4tを超えても、第1磁区の割合と第2磁区の割合の変化は少なくなる。さらに凹部の深さが0.4tを超えると、磁歪素子自体の強度が低下するため、繰り返し外部応力が負荷された場合に素子自体が破壊してしまう可能性が出てくるため好ましくない。 Although the depth of the concave portion is not particularly limited, it is preferably 0.03 t or more and 0.4 t or less, more preferably 0.1 t or more and 0.4 t or less with respect to the thickness t of the magnetostrictive element. If the depth of the concave portion is less than 0.03t, it may be difficult to increase the magnetic flux density improvement ΔB to 30% or more. Also, even if the depth of the concave portion exceeds 0.4t, the change in the proportion of the first magnetic domain and the proportion of the second magnetic domain is small. Furthermore, if the depth of the concave portion exceeds 0.4t, the strength of the magnetostrictive element itself is lowered, and the element itself may be destroyed when external stress is repeatedly applied, which is not preferable.

凹部は、磁性面の任意の箇所に局所的に存在することでその効果を発揮するが、点列状または線状に配置されていることが好ましい。前記したように、磁性面に凹部を形成すると、磁性面に垂直な凹部の面に磁極が発生し、その磁極を消滅させて静磁エネルギ-を下げるために第2磁区が形成される。この効果は、凹部が磁性面の任意の箇所に局所的に存在することによって発揮されるため、凹部が点列状に配置されていると、隣接する第2磁区の相互作用が有効に働いて第2磁区の割合を効果的に高めることが可能となる。また、凹部が線状、即ち溝状であれば、第2磁区どうしの相互作用を更に高め、第2磁区の割合を更に効果的に高めることが可能となるため更に好ましい。 Although the recesses exert their effects when they are locally present at arbitrary locations on the magnetic surface, they are preferably arranged in a dotted pattern or a linear pattern. As described above, when recesses are formed on the magnetic surface, magnetic poles are generated on the surfaces of the recesses perpendicular to the magnetic surface, and the magnetic poles are extinguished to form the second magnetic domains in order to reduce the static magnetic energy. Since this effect is exerted by the presence of the recesses locally at arbitrary locations on the magnetic surface, when the recesses are arranged in a dotted pattern, the interaction between the adjacent second magnetic domains works effectively. It becomes possible to effectively increase the ratio of the second magnetic domain. Further, if the concave portion is linear, that is, groove-shaped, the interaction between the second magnetic domains can be further enhanced, and the ratio of the second magnetic domains can be further effectively increased, which is more preferable.

点列状または線状の凹部の長手方向の中心線の角度は、発電用磁歪素子の長手方向に対して、0°以上90°以下であることが好ましく、40°以上90°以下であることがより好ましい。このような角度であると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 The angle of the longitudinal center line of the dotted-line or linear recess is preferably 0° or more and 90° or less, and 40° or more and 90° or less with respect to the longitudinal direction of the magnetostrictive element for power generation. is more preferred. With such an angle, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

点列状または線状の凹部が2以上存在する場合、隣接する2つの点列状または線状の凹部のそれぞれの中心線間の距離(即ちピッチ)は、1mm以上7mm以下であることが好ましく、2mm以上7mm以下であることがより好ましい。このようなピッチであると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 When there are two or more dot-sequence or linear recesses, the distance (that is, the pitch) between the center lines of two adjacent dot-sequence or linear recesses is preferably 1 mm or more and 7 mm or less. , 2 mm or more and 7 mm or less. With such a pitch, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

凹部が点列状の場合、同一列中の隣接する2つの凹部の間の距離(即ちピッチ)は、0.1mm以上1.0mm以下であることが好ましく、0.4mm以上1.0mm以下であることがより好ましい。このようなピッチであると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 When the recesses are arranged in a dotted line, the distance (that is, the pitch) between two adjacent recesses in the same row is preferably 0.1 mm or more and 1.0 mm or less, and 0.4 mm or more and 1.0 mm or less. It is more preferable to have With such a pitch, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

凹部が線状の場合、その幅は、10μm以上200μm以下であることが好ましく、50μm以上200μm以下であることがより好ましい。このような幅であると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 When the concave portion is linear, the width thereof is preferably 10 μm or more and 200 μm or less, more preferably 50 μm or more and 200 μm or less. With such a width, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains of the magnetic surface can be made to satisfy the requirements of the present invention.

尚、凹部の開口部の面積、幅や深さなどは、デジタルマイクロスコ-プによって測定することができる。 The area, width and depth of the opening of the recess can be measured using a digital microscope.

表面処理部は残留応力部でもよい。磁歪素子の磁性面に残留応力部が存在することによって、凹部が存在する場合と同様に、本発明の第1磁区と第2磁区とのバランスを制御することができる。具体的には、磁性面に局所応力部を設けると、磁性面の表面に局所的な圧縮応力が導入されて、90°磁壁を含む磁区が発生すると考えられる。その結果、90°磁壁を含む磁区の割合が増加し、発電出力が増加すると考えられる。特に、残留応力の磁性面にほぼ平行な成分が圧縮応力である場合に、第2磁区が形成され易くなる。 The surface treated portion may be a residual stress portion. The presence of the residual stress portion on the magnetic surface of the magnetostrictive element makes it possible to control the balance between the first magnetic domain and the second magnetic domain of the present invention, as in the case of the presence of the recess. Specifically, when a local stress portion is provided on the magnetic surface, local compressive stress is introduced to the surface of the magnetic surface, generating a magnetic domain including a 90° domain wall. As a result, it is thought that the ratio of magnetic domains containing 90° domain walls increases and the power output increases. In particular, when the component of the residual stress that is substantially parallel to the magnetic plane is compressive stress, the formation of the second magnetic domain is facilitated.

尚、表面処理部が残留応力部の場合、凹部とは異なり、残留応力部内の磁区を観察することができる。よって、上述した第1磁区の割合および第2磁区の割合には、残留応力部内の磁区も含まれており、第2磁区の割合が100%になる場合もある。 When the surface-treated portion is the residual stress portion, the magnetic domain in the residual stress portion can be observed unlike the concave portions. Therefore, the above ratio of the first magnetic domain and the ratio of the second magnetic domain include the magnetic domain in the residual stress portion, and the ratio of the second magnetic domain may be 100%.

残留応力部の形状に特に限定はなく、円形または楕円形が好ましい。残留応力部の、磁性面における表面上の範囲(即ち、磁性面表面で観察される残留応力部の直径または長径)にも特に限定はないが、50μm以上500μm以下であることが好ましく、200μm以上500μm以下がより好ましい。残留応力部の範囲が50μm未満では、磁束密度の向上代ΔBを3割以上とすることが難しい場合がある。また、残留応力部の範囲は500μmを超えても、第1磁区の割合と第2磁区の割合の変化は少なくなると考えられる。 The shape of the residual stress portion is not particularly limited, and is preferably circular or elliptical. The surface range of the residual stress portion on the magnetic surface (that is, the diameter or major axis of the residual stress portion observed on the magnetic surface) is not particularly limited, but is preferably 50 μm or more and 500 μm or less, and 200 μm or more. 500 μm or less is more preferable. If the range of the residual stress portion is less than 50 μm, it may be difficult to increase the margin of improvement ΔB of the magnetic flux density to 30% or more. Moreover, even if the range of the residual stress portion exceeds 500 μm, the change in the proportion of the first magnetic domain and the proportion of the second magnetic domain is considered to be small.

残留応力部の深さに特に限定はないが、磁歪素子の厚みtに対して0.1t以上0.7t以下であることが好ましく、0.3t以上0.7t以下がより好ましい。残留応力部の深さが0.1t未満では、磁束密度の向上代ΔBを3割以上とすることが難しい場合がある。また、残留応力部の深さを0.7t超にしても、第1磁区の割合と第2磁区の割合の変化は少なくなると考えられる。 Although the depth of the residual stress portion is not particularly limited, it is preferably 0.1 t or more and 0.7 t or less, more preferably 0.3 t or more and 0.7 t or less, with respect to the thickness t of the magnetostrictive element. If the depth of the residual stress portion is less than 0.1t, it may be difficult to increase the margin of improvement ΔB of the magnetic flux density to 30% or more. Also, even if the depth of the residual stress portion exceeds 0.7t, it is considered that the change in the proportion of the first magnetic domain and the proportion of the second magnetic domain is reduced.

残留応力部の範囲や深さは、X線残留応力測定法によって測定することができる。例えば、試料表面上における残留応力の範囲は、レ-ザを照射した中心位置から試料長手方向、および、幅方向に10μmピッチでずらしながら残留応力を測定し、残留応力の長手方向、および、幅方向の分布を求める。また、深さは、表面から深さ方向に10μmピッチで化学的エッチングを施して掘り下げた位置での残留応力を測定することを繰り返し、残留応力の深さ方向の分布を求める。これらの結果とレ-ザ-が照射されていない部位(例えば、照射部位の中間位置)の残留応力の値を比較して、レ-ザ-が照射されていない部位に対して、±10%以上の変化がある部位を残留応力部とする。 The range and depth of the residual stress portion can be measured by the X-ray residual stress measurement method. For example, the range of residual stress on the sample surface is measured by shifting the residual stress in the longitudinal direction and width direction of the sample at a pitch of 10 μm from the center position where the laser is irradiated. Find the distribution of directions. As for the depth, chemical etching is performed at a pitch of 10 μm in the depth direction from the surface, and residual stress is repeatedly measured at positions dug down to determine the distribution of the residual stress in the depth direction. Comparing these results with the value of the residual stress of the part not irradiated with the laser (for example, the middle position of the irradiated part), ± 10% for the part not irradiated with the laser Let the part with the above change be a residual stress part.

残留応力部は、磁性面の任意の箇所に局所的に存在することでその効果を発揮するが、点列状または線状に配置されていることが好ましい。凹部と同様に、残留応力部によって第2磁区が形成される効果は、残留応力部が点列状に配置されていると、隣接する第2磁区の相互作用が有効に働いて第2磁区の割合を効果的に高めることが可能となる。また、残留応力部が線状であれば、第2磁区どうしの相互作用を更に高め、第2磁区の割合を更に効果的に高めることが可能となるため更に好ましい。 Although the residual stress portion exerts its effect when it is locally present at an arbitrary location on the magnetic surface, it is preferable that the residual stress portion be arranged in a dotted line or a line. Similar to the concave portion, the effect of forming the second magnetic domain by the residual stress portion is that when the residual stress portion is arranged in a dotted pattern, the interaction between the adjacent second magnetic domains works effectively to form the second magnetic domain. It becomes possible to effectively increase the ratio. Further, if the residual stress portion is linear, the interaction between the second magnetic domains can be further enhanced, and the ratio of the second magnetic domains can be further effectively increased, which is more preferable.

点列状または線状の残留応力部の長手方向の中心線の角度は、発電用磁歪素子の長手方向に対して、0°以上90°以下であることが好ましく、40°以上90°以下であることがより好ましい。このような角度であると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 The angle of the longitudinal center line of the dotted or linear residual stress portion is preferably 0° or more and 90° or less, more preferably 40° or more and 90° or less, with respect to the longitudinal direction of the magnetostrictive element for power generation. It is more preferable to have With such an angle, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

点列状または線状の残留応力部が2以上存在する場合、隣接する2つの点列状または線状の残留応力部のそれぞれの中心線間の距離(即ちピッチ)は、1mm以上7mm以下であることが好ましく、2mm以上7mm以下あることがより好ましい。このようなピッチであると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 When there are two or more dot-sequence or linear residual stress portions, the distance (i.e., pitch) between the center lines of two adjacent dot-sequence or linear residual stress portions is 1 mm or more and 7 mm or less. It is preferable that there is, and it is more preferable that there is 2 mm or more and 7 mm or less. With such a pitch, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

残留応力部が点列状の場合、同一列中の隣接する2つの残留応力部の間の距離(即ちピッチ)は、0.1mm以上1mm以下であることが好ましく、0.4mm以上1.0mm以下であることがより好ましい。このようなピッチであると、磁性面の第1磁区の割合、第2磁区の割合、および第2磁区の分布の均一性を本発明の要件を満たすようにすることができる。 When the residual stress portions are in the form of a dotted line, the distance (that is, the pitch) between two adjacent residual stress portions in the same line is preferably 0.1 mm or more and 1 mm or less, and 0.4 mm or more and 1.0 mm. The following are more preferable. With such a pitch, the ratio of the first magnetic domains, the ratio of the second magnetic domains, and the uniformity of the distribution of the second magnetic domains on the magnetic surface can be made to satisfy the requirements of the present invention.

本発明の磁歪素子の磁性面に存在する表面処理部は、1種のみでもよいが、複数種であってもよい。例えば、凹部および残留応力部の両方が、磁歪素子の磁性面に存在してもよい。 The surface-treated portion present on the magnetic surface of the magnetostrictive element of the present invention may be of only one type, or may be of a plurality of types. For example, both recesses and residual stress portions may be present in the magnetic surface of the magnetostrictive element.

本発明の磁歪素子を構成するFe系磁歪合金に特に限定はないが、磁歪特性を有し、磁歪素子としての用途が知られている合金を使用することができる。このような合金系では、圧延法、あるいは、単結晶成長方法によって、結晶方位が制御されたものが知られているが、このような結晶方位が制御された材料の第1磁区の割合および第2磁区の割合を制御することで、更に発電出力を高めることができる。Fe系磁歪合金の具体例としては、比較的安価であり圧延加工が可能なFe-Co系合金、磁歪量が高いが、比較的高価であり、脆性であって圧延が困難なFe-Ga合金、Fe-Al系合金などが挙げられる。 The Fe-based magnetostrictive alloy constituting the magnetostrictive element of the present invention is not particularly limited, but an alloy having magnetostrictive properties and known to be used as a magnetostrictive element can be used. Among such alloy systems, those whose crystal orientation is controlled by a rolling method or a single crystal growth method are known. By controlling the ratio of the two magnetic domains, the power output can be further increased. Specific examples of Fe-based magnetostrictive alloys include Fe--Co-based alloys that are relatively inexpensive and can be rolled, and Fe--Ga alloys that have a high magnetostriction but are relatively expensive, brittle, and difficult to roll. , and Fe—Al alloys.

さらに磁歪素子を構成するFe系磁歪合金は、その飽和磁歪値λsが20×10-6以上であるものが好ましく、50×10-6以上がより好ましい。飽和磁歪値λsが20×10-6未満であると、外部応力が負荷された場合において、逆磁歪効果による磁歪素子内の磁化の変化が起こり難く、発電出力が低下するため好ましくない。一方、飽和磁歪値λsが20×10-6以上あれば、本発明の効果が逆磁歪効果による磁化の変化を助ける作用としてより効果的に働くために、発電出力の向上が期待される。 Further, the Fe-based magnetostrictive alloy forming the magnetostrictive element preferably has a saturation magnetostriction value λs of 20×10 −6 or more, more preferably 50×10 −6 or more. If the saturation magnetostriction value λs is less than 20×10 −6 , the magnetization in the magnetostrictive element is unlikely to change due to the inverse magnetostriction effect when an external stress is applied, which is undesirable because the power generation output decreases. On the other hand, if the saturation magnetostriction value λs is 20×10 −6 or more, the effect of the present invention works more effectively as an effect of assisting the magnetization change due to the inverse magnetostriction effect, so an improvement in power generation output is expected.

尚、飽和磁歪値λsは、歪ゲ-ジ法で飽和磁歪λsを測定することができる。試料の片側の面に、ゲ-ジ長方向が試料に長手方向に平行になるように、歪ゲ-ジを試料のほぼ中心位置に貼りつける。試料の長手方向に磁場を印加して歪の磁場依存性を測定し、歪の値が飽和した時の歪の値をλ、同様に磁場を幅方向に印加して得られた歪をλとし、λs=2/3(λ-λ)から試料のλsを求める。 Incidentally, the saturation magnetostriction value λs can be measured by a strain gauge method. A strain gauge is attached to one side of the sample at approximately the center of the sample so that the length of the gauge is parallel to the longitudinal direction of the sample. Apply a magnetic field in the longitudinal direction of the sample and measure the magnetic field dependence of the strain. and obtain λs of the sample from λs=2/3( λ∥ - λ⊥ ).

磁歪素子の性能を評価するための指標として、磁歪素子に外部応力を負荷した際に生じる素子の磁束密度変化ΔBを用いることができる。ΔB(単位:mTまたはT)の測定方法は以下の通りである。
断面積Sの磁歪素子を巻き数Nのコイルに挿入して、外部応力を負荷する。このとき、時間Δtの間に磁束密度ΔBの変化が生じた場合、コイルにはV=-N(S・ΔB/Δt)の電圧が発生する。したがって、ΔBはコイルに発生した電圧信号の時間積分値として求めることができる。磁歪振動発電素子の性能指標は、Δtの間に発生する総電圧として評価した。すなわち、電圧の時間積分値である磁束密度の変化ΔBとして評価した。ΔBの測定は、コイルに発生する電圧をフラックスメ-タに繋ぐことによって行うことができる。
As an index for evaluating the performance of the magnetostrictive element, the magnetic flux density change ΔB of the element that occurs when an external stress is applied to the magnetostrictive element can be used. A method for measuring ΔB (unit: mT or T) is as follows.
A magnetostrictive element with a cross-sectional area S is inserted into a coil with N turns to apply an external stress. At this time, if the magnetic flux density ΔB changes during the time Δt, a voltage of V=−N (S·ΔB/Δt) is generated in the coil. Therefore, ΔB can be obtained as a time integral value of the voltage signal generated in the coil. The performance index of the magnetostrictive vibration power generation element was evaluated as the total voltage generated during Δt. That is, it was evaluated as a change ΔB in the magnetic flux density, which is the time integrated value of the voltage. ΔB can be measured by connecting the voltage generated in the coil to a flux meter.

2.発電用磁歪素子の製造方法
本発明は、上述した本発明の発電用磁歪素子の製造方法に関する。具体的に、以下の工程を含む製造方法である。
第1工程: Fe系磁歪合金からなる板状磁歪材料を提供する。
第2工程: 板状磁歪材料の少なくとも1つの面に磁区変更用表面処理を行って、表面処理済みの磁性面を得る。
2. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetostrictive element for power generation according to the invention described above. Specifically, the manufacturing method includes the following steps.
First step: providing a plate-shaped magnetostrictive material made of an Fe-based magnetostrictive alloy.
Second step: At least one surface of the plate-shaped magnetostrictive material is subjected to a magnetic domain altering surface treatment to obtain a surface-treated magnetic surface.

第1の工程において、Fe系磁歪合金からなる板状磁歪材料を提供する。出発材料となるFe系磁歪合金に特に限定はなく、本発明の磁歪素子を構成するFe系磁歪合金と同様である。このような合金は、本願の実施例のように、公知の方法で製造することができる。また、第1工程において提供する板状磁歪材料は、発電用磁歪素子用に市販されているものでもよい。このような磁歪素子を後述する第2工程に付すことによって、その発電出力を増加させることもできる。 In the first step, a plate-like magnetostrictive material made of an Fe-based magnetostrictive alloy is provided. The Fe-based magnetostrictive alloy as a starting material is not particularly limited, and is the same as the Fe-based magnetostrictive alloy constituting the magnetostrictive element of the present invention. Such alloys can be produced by known methods, such as the examples herein. Moreover, the plate-like magnetostrictive material provided in the first step may be commercially available for magnetostrictive elements for power generation. By subjecting such a magnetostrictive element to the second step, which will be described later, the power output can be increased.

尚、第1工程で提供する板状磁歪材料の第1磁区および第2磁区の割合に特に限定はなく、第2工程の後に、本発明の磁歪素子の特徴となる磁区の割合および分布の要件を満たし得るものであればよい。 The ratio of the first magnetic domain and the second magnetic domain of the plate-shaped magnetostrictive material provided in the first step is not particularly limited. Anything that satisfies

第2工程において、板状磁歪材料の少なくとも1つの面に磁区変更用表面処理(以下、しばしば、「表面処理」と略す場合もある)を施し、表面処理済みの磁性面を得る。本発明において磁区変更用表面処理とは、磁性面に存在する180°磁壁を含む第1磁区を減少させて、相対的に90°磁壁を含む第2磁区の割合を増加させ得るものであることが好ましい。上述したように、180°磁壁は発電に寄与する効果が弱いが、90°磁壁は発電効率を向上させることが可能であることから、180°磁壁を減少させて、180°磁壁の割合と、90°磁壁の割合とのバランスを整えることで、磁歪素子の発電出力を高めることができる。 In the second step, at least one surface of the plate-shaped magnetostrictive material is subjected to a magnetic domain altering surface treatment (hereinafter sometimes abbreviated as "surface treatment") to obtain a surface-treated magnetic surface. In the present invention, the surface treatment for changing the magnetic domain means that the first magnetic domain including the 180° domain wall present on the magnetic surface can be reduced, and the proportion of the second magnetic domain including the 90° domain wall can be relatively increased. is preferred. As described above, the 180° domain wall has a weak effect of contributing to power generation, but the 90° domain wall can improve the power generation efficiency. By adjusting the balance with the proportion of the 90° domain wall, the power output of the magnetostrictive element can be increased.

第2工程において実施する表面処理に特に限定はないが、凹部の形成および残留応力の付与から選ばれる少なくとも1種であることが好ましい。表面処理は、1種のみでもよいが、複数種であってもかまわない。例えば、凹部の形成と、残留応力の付与を1つの磁性面に対して行うこともできる。 The surface treatment performed in the second step is not particularly limited, but it is preferably at least one selected from formation of recesses and application of residual stress. Only one type of surface treatment may be used, or a plurality of types may be used. For example, the formation of recesses and the application of residual stress can be performed on one magnetic surface.

尚、本発明は、磁歪材料の表面に凹部、あるいは残留応力部を形成させて磁区構造を制御することによって、磁歪素子の発電出力を相対的に向上させるものである。よって、比較的安価であり、圧延加工が可能なFe-Co合金や、比較的高価であり、脆性であって圧延が困難なFe-Ga合金であっても、発電出力を向上させることができる。 The present invention relatively improves the power generation output of the magnetostrictive element by forming recesses or residual stress portions on the surface of the magnetostrictive material to control the magnetic domain structure. Therefore, it is possible to improve the power generation output even with Fe--Co alloys that are relatively inexpensive and can be rolled, or Fe--Ga alloys that are relatively expensive and brittle and difficult to roll. .

板状磁歪材料の少なくとも1つの面に凹部を形成する方法に特に限定はなく、鋼板の表面処理に用いられる公知の方法で凹部を形成することができる。例えば、電解エッチング、化学エッチングや放電加工処理などによって、凹部を形成することができる。 There is no particular limitation on the method of forming the recesses on at least one surface of the plate-shaped magnetostrictive material, and the recesses can be formed by a known method used for surface treatment of steel plates. For example, the recesses can be formed by electrolytic etching, chemical etching, electrical discharge machining, or the like.

本発明の磁歪素子に関連して上述した形状の凹部が形成されるように、上記方法で凹部を形成することが好ましい。例えば、形成させたい凹部の形状と逆形状の凸部の銅電極を作製し、その電極を用いて放電加工処理を行って狙った形状の凹部を形成させる方法では、銅電極の大きさを精度良く作製することで、凹部の幅や深さの寸法を精度良く再現することが可能である。 It is preferable to form the recesses by the above method so that the recesses are formed in the shape described above in relation to the magnetostrictive element of the present invention. For example, in a method in which a copper electrode with a convex portion having a shape opposite to the shape of the concave portion to be formed is produced, and the electrode is used to perform electrical discharge machining to form a concave portion in the desired shape, the size of the copper electrode can be determined with precision. It is possible to accurately reproduce the dimensions of the width and depth of the recess by making it well.

板状磁歪材料の少なくとも1つの面に残留応力部を形成する方法に特に限定はなく、鋼板の表面処理に用いられる公知の残留応力付与方法で実施することができる。例えば、レ-ザの照射によって、残留応力部を形成することができる。 There is no particular limitation on the method of forming the residual stress portion on at least one surface of the plate-shaped magnetostrictive material, and any known residual stress imparting method used for surface treatment of steel plates can be used. For example, the residual stress portion can be formed by laser irradiation.

本発明の磁歪素子に関連して上述した残留応力部が形成されるように、上記方法で残留応力を付与することが好ましい。例えば、レ-ザのスポット径、出力、パルス幅を変えることによって、残留応力が発生している試料表面上での範囲や深さ方向の範囲、残留応力の大きさ等を調整することができる。 Residual stress is preferably applied by the method described above so that the residual stress portion described above in relation to the magnetostrictive element of the present invention is formed. For example, by changing the spot diameter, output, and pulse width of the laser, it is possible to adjust the range on the sample surface where residual stress is generated, the range in the depth direction, the magnitude of residual stress, etc. .

尚、磁区制御を目的とした表面処理は、一般的な電磁鋼板(即ち、磁歪特性の利用を目的としない電磁鋼板)に施すこともある。ただし、一般的な電磁鋼板における表面処理は、騒音の低減を目的として、磁歪量を減らすように磁区を制御するためのものである。そのために、90°磁壁を含む磁区を減らして、180°磁壁を含む磁区を増やすように、表面処理は実施される。さらなる表面処理の目的は、鉄損を減らすために、180°磁壁を含む磁区を細分化することである。よって、電磁鋼板に対して行う一般的な表面処理は、90°磁壁を含む磁区の割合を減少させて、180°磁壁を含む磁区の割合を増やすものであり、本発明において実施する表面処理とは反対の磁区制御を目的としたものである。 Incidentally, the surface treatment for the purpose of magnetic domain control may be applied to a general electromagnetic steel sheet (that is, an electromagnetic steel sheet whose magnetostrictive characteristics are not intended to be used). However, the surface treatment of a general electrical steel sheet is intended to control the magnetic domains so as to reduce the amount of magnetostriction for the purpose of noise reduction. To that end, the surface treatment is performed so as to reduce the magnetic domains containing 90° domain walls and increase the magnetic domains containing 180° domain walls. The purpose of further surface treatments is to refine the magnetic domains containing the 180° domain walls in order to reduce core losses. Therefore, a general surface treatment performed on an electrical steel sheet reduces the proportion of magnetic domains containing 90° domain walls and increases the proportion of magnetic domains containing 180° domain walls. is intended for opposite domain control.

上記工程2の表面処理によって磁性面に形成する表面処理部の総面積は、磁性面の面積に対して、0.5%以上10%以下であることが好ましい。表処理部が複数存在する場合には、その面積の合計値が上記範囲内であることが好ましい。また各表面処理部の面積は、磁性面の表面から確認できる2次元の寸法に基づくものとする。よって、表面処理部が後述する凹部の場合には、その深さや内壁の面積などを「表面処理部の総面積」に加えないものとする。 The total area of the surface-treated portions formed on the magnetic surface by the surface treatment in step 2 is preferably 0.5% or more and 10% or less of the area of the magnetic surface. When there are a plurality of surface-treated portions, the total area thereof is preferably within the above range. The area of each surface-treated portion is based on two-dimensional dimensions that can be confirmed from the surface of the magnetic surface. Therefore, when the surface-treated portion is a concave portion, which will be described later, the depth, the area of the inner wall, etc. shall not be added to the "total area of the surface-treated portion."

当該表面処理によって、表面処理済みの磁性面の面積に対する、180°磁壁を含む第1磁区の総面積の割合が0%以上70%以下であり、且つ90°磁壁を含む第2磁区の総面積の割合が50%以上100%以下であり、且つ第2磁区の分布が、磁性面全体に渡って均一な、磁歪素子を得ることができる。ここで、第1磁区の総面積の割合、第2磁区の総面積の割合、および第2磁区の分布の好ましい数値範囲は、本発明の磁歪素子に関して説明した通りである。また、上記割合および分布は、本発明の磁歪素子に関して説明したのと同様の方法で測定した値である。 By the surface treatment, the ratio of the total area of the first magnetic domain including the 180° domain wall to the area of the surface-treated magnetic surface is 0% or more and 70% or less, and the total area of the second magnetic domain including the 90° domain wall is 50% or more and 100% or less, and the distribution of the second magnetic domains is uniform over the entire magnetic surface. Here, the ratio of the total area of the first magnetic domains, the ratio of the total area of the second magnetic domains, and the preferred numerical ranges of the distribution of the second magnetic domains are as described for the magnetostrictive element of the present invention. Moreover, the above ratio and distribution are values measured by the same method as described for the magnetostrictive element of the present invention.

3.発電装置
本発明は、上述した本発明の発電用磁歪素子を含む発電装置に関する。
本発明の発電装置は、上述した本発明の発電用磁歪素子をその磁歪素子として使用する限り、その構造に特に限定はなく、従来の逆磁歪効果を用いた発電装置と同様の構造とすることができる。
3. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator including the magnetostrictive element for power generation of the present invention described above.
The structure of the power generating device of the present invention is not particularly limited as long as the above-described magnetostrictive element for power generation of the present invention is used as the magnetostrictive element. can be done.

例えば、本発明の磁歪素子と、その周囲に巻かれたコイルと、磁石と、フレームと、フレームに取り付けられた錘とを含む、発電装置が挙げられる。このような装置においては、磁石の磁力線は、フレームと磁歪素子とを通過して、磁気回路を形成する。そして錘の振動によってフレームが振動し、磁歪素子に引張力および圧縮力を加えることで、逆磁歪効果によって磁歪素子の磁化を変化させ、コイルに誘導電流(または誘導電圧)を発生させることができる。 For example, there is a power generator including the magnetostrictive element of the present invention, a coil wound therearound, a magnet, a frame, and a weight attached to the frame. In such a device, the magnetic lines of force of the magnet pass through the frame and the magnetostrictive element to form a magnetic circuit. The vibration of the weight causes the frame to vibrate, and by applying tensile force and compressive force to the magnetostrictive element, the magnetization of the magnetostrictive element is changed by the inverse magnetostrictive effect, and an induced current (or induced voltage) can be generated in the coil. .

このとき、本発明の磁歪素子の磁性面では、180°磁壁の割合と90°磁壁の割合とのバランスが上述したように整っていることから、高い発電出力が得られる。 At this time, on the magnetic surface of the magnetostrictive element of the present invention, the ratio of the 180° domain wall and the ratio of the 90° domain wall are well balanced as described above, so that a high power output can be obtained.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.

(実施例1)
凹部を有するFe-Co合金からなる磁歪素子
(1)合金の製造
純度99.98%の電解鉄および純度99.9%の金属Coを、Fe-70.6質量%Coの組成でア-ク溶解し、200gのボタンインゴットを作製した。ボタンインゴットの形状は、直径60mm、厚み約10mmとした。このボタンインゴットを板厚方向に2ライン切断して、幅が10mm、長さが60mmの角棒状試料に切り出した。その後、角棒状試料をAr雰囲気中で1100℃で1時間保定後、300℃/hで800℃まで降温し、800℃で3時間保定後、50℃/hで室温まで冷却した。このような熱処置を施した角棒状試料を板厚10mmから0.52mmまで冷間圧延し、冷延板を作製した。
(Example 1)
Magnetostrictive element made of Fe—Co alloy having recesses (1) Manufacture of alloy Electrolytic iron with a purity of 99.98% and metal Co with a purity of 99.9% were arc-cured with a composition of Fe-70.6 mass% Co. It melted and the button ingot of 200g was produced. The button ingot had a diameter of 60 mm and a thickness of about 10 mm. This button ingot was cut into two lines in the plate thickness direction, and cut into rectangular rod-shaped samples having a width of 10 mm and a length of 60 mm. After that, the square bar-shaped sample was held at 1100° C. for 1 hour in an Ar atmosphere, cooled to 800° C. at 300° C./h, held at 800° C. for 3 hours, and cooled to room temperature at 50° C./h. The square rod-shaped sample subjected to such heat treatment was cold-rolled from a plate thickness of 10 mm to 0.52 mm to produce a cold-rolled plate.

冷延板から冷延方向に25mm長さ、幅方向に6.5mm幅に複数枚切り出した後、真空中で20℃/分で800℃まで昇温し、800℃で3時間保定後、20℃/分で室温まで冷却して再結晶処理を施した試料を磁区変更用表面処理を施すための試料とした。
得られた試料の飽和磁歪値λsを後述する方法で測定したところ、88×10-6であった。
After cutting a plurality of sheets with a length of 25 mm in the cold rolling direction and a width of 6.5 mm in the width direction from the cold-rolled sheet, the temperature was raised to 800 ° C. at 20 ° C./min in a vacuum, and after holding at 800 ° C. for 3 hours, 20 The sample was cooled to room temperature at a rate of °C/min and subjected to recrystallization treatment, and was used as a sample to be subjected to surface treatment for magnetic domain modification.
The saturation magnetostriction value λs of the obtained sample was measured by the method described later and found to be 88×10 −6 .

(2)凹部の形成
上記(1)で得た、再結晶処理を施した試料の表面に、放電加工処理を用いて溝状の凹部を形成した。具体的には、表に示した凹部の形状(幅および深さ)とは逆形状の凸部の銅電極を作製して、その電極を用いて放電加工処理を行い、表に示したピッチおよび角度となるように、所望の形状の凹部を形成した。
(2) Formation of Concave Grooves were formed on the surface of the recrystallized sample obtained in (1) above by using electrical discharge machining. Specifically, the shape (width and depth) of the recesses shown in the table is opposite to the shape (width and depth) of the recesses. A recess of a desired shape was formed so as to form an angle.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、以下の評価を実施した。
(3) Evaluation method The following evaluations were performed on the samples before surface treatment and the samples after surface treatment.

(3-1)飽和磁歪λsの測定
上記(1)で得た試料に磁区変更用表面処理を施す前に、歪ゲ-ジ法で飽和磁歪λsを測定した。長さ25mm、幅6.5mmの試料の片側の面に、ゲ-ジ長方向が試料に長手方向に平行になるように、歪ゲ-ジを試料のほぼ中心位置に貼りつけた。試料の長手方向に磁場を印加して歪の磁場依存性を測定し、歪の値が飽和した時の歪の値をλ、同様に磁場を幅方向に印加して得られた歪をλとした場合、λs=2/3(λ-λ)から試料のλsを求めた。
(3-1) Measurement of Saturation Magnetostriction λs The saturation magnetostriction λs was measured by the strain gauge method before the sample obtained in (1) above was subjected to the surface treatment for changing the magnetic domain. A strain gauge was attached to one side surface of a sample having a length of 25 mm and a width of 6.5 mm so that the length direction of the gauge was parallel to the longitudinal direction of the sample, approximately at the center position of the sample. Apply a magnetic field in the longitudinal direction of the sample and measure the magnetic field dependence of the strain. When , λs of the sample was obtained from λs=2/3( λ∥λ⊥ ).

(3-2)第1磁区の割合および第2磁区の割合の測定
再結晶熱処理を施した試料、および、磁区変更用表面処理を施した試料の表面をカ-効果磁区観察装置を用いて、長手方向とそれに垂直な幅方向の中央部近傍の部位、長手方向端部と中央部の間のほぼ中央位置、および、幅方向端部と中央部の間のほぼ中央位置、の合計3ヵ所において、それぞれ第1磁区と第2磁区の数が合わせて100個程になるように、それぞれの観察部位のSoに相当する面積を決めた。第1磁区および第2磁区の面積を求めてそれぞれの割合を計算し、3ヵ所の部位の平均値とした。尚、観察の前に50Hzで交流消磁を行って、外部応力が負荷されない状態で観察した。
(3-2) Measurement of first magnetic domain ratio and second magnetic domain ratio At a total of three locations: a location near the center in the longitudinal direction and the width direction perpendicular to it, an approximate center position between the longitudinal ends and the center, and an approximate center position between the width direction ends and the center , the area corresponding to So of each observed portion was determined so that the total number of the first and second magnetic domains was about 100. The areas of the first magnetic domain and the second magnetic domain were obtained, the respective ratios were calculated, and the average value of the three sites was obtained. Before the observation, AC demagnetization was performed at 50 Hz, and the observation was made in a state where no external stress was applied.

(3-3)第2磁区の分布の均一性の評価
カー効果磁区観察装置で撮影した磁区の画像上に、同じ長さの5本の直線を、縦、横、斜めとランダムに配置されるように引いた。具体的には、試料の中心をとおる直線を試料長手方向に1本引き、残りの4本の線を、試料中心を通って、互いに36°になるように引いた。各直線について、第2磁区を跨ぐパタ-ンを観察し、各直線が第2磁区を跨いだ回数を記録した。このとき、5本の直線の全てについて、第2磁区を跨いだ回数が同一である場合、もしくは第2磁区を跨いだ回数の最大値と最小値が下記式(1)の関係を満たす場合に、第2磁区の分布が「均一」であると評価した。
(N1-N2)/N1≦0.5 (1)
式中、N1は直線が第2磁区を跨いだ回数の最大値、N2は直線が第2磁区を跨いだ回数の最小値である。
(3-3) Evaluation of the uniformity of the distribution of the second magnetic domain Five straight lines of the same length are randomly arranged vertically, horizontally, and diagonally on the image of the magnetic domain taken by the Kerr effect magnetic domain observation device. I pulled like Specifically, one straight line passing through the center of the sample was drawn in the longitudinal direction of the sample, and the remaining four lines were drawn through the center of the sample at 36° to each other. For each straight line, the pattern straddling the second magnetic domain was observed, and the number of times each straight line straddled the second magnetic domain was recorded. At this time, when the number of crossing over the second magnetic domain is the same for all five straight lines, or when the maximum and minimum values of crossing over the second magnetic domain satisfy the relationship of the following formula (1): , the distribution of the second magnetic domain was evaluated as "uniform".
(N1-N2)/N1≦0.5 (1)
In the formula, N1 is the maximum number of times the straight line straddles the second magnetic domain, and N2 is the minimum number of times the straight line straddles the second magnetic domain.

(3-4)磁歪素子の性能評価
長さ25mm、幅6.5mmの試料の長手方向に引っ張り応力と圧縮応力を印加し、試料の磁束密度の変化ΔBを測定した。具体的には、内側の空間が、その断面が幅8mm、高さ4mm、長さ10mmのアクリル製のボビンに50μmの銅線を3000ターン巻いたコイルに、長さ25mmの試料を挿入した。次に、試料に25MPaの引っ張り応力を負荷した状態から25MPaの圧縮応力を負荷した状態における磁束密度の変化ΔBを、コイルにフラックスメ-タを繋いで測定した。ただし、圧縮応力負荷の際に試料が反らないように、厚みが1mmのアクリルの板で試料を挟み込んだ。この際にコイルと試料をソレノイドコイルの中に入れて試料に直流のバイアス磁場を印加できるようにして、ΔBが最大になるバイアス磁場のときのΔBを求めた。
(3-4) Performance Evaluation of Magnetostrictive Element A tensile stress and a compressive stress were applied in the longitudinal direction of a sample having a length of 25 mm and a width of 6.5 mm, and a change ΔB in the magnetic flux density of the sample was measured. Specifically, a sample with a length of 25 mm was inserted into a coil formed by winding 3,000 turns of a copper wire of 50 μm around an acrylic bobbin having an inner space of 8 mm in width, 4 mm in height, and 10 mm in length. Next, the change ΔB in the magnetic flux density was measured by connecting a flux meter to the coil when a tensile stress of 25 MPa was applied to a compressive stress of 25 MPa. However, the sample was sandwiched between acrylic plates having a thickness of 1 mm so that the sample would not warp when the compressive stress was applied. At this time, the coil and the sample were placed in a solenoid coil so that a DC bias magnetic field could be applied to the sample, and ΔB was obtained when the bias magnetic field maximized ΔB.

下記表1に、表面処理部である凹部の形状(幅、ピッチ、深さ、角度)とその割合、ならびに第1磁区と第2磁区の割合、第2磁区の均一性、およびΔBを示した。 Table 1 below shows the shape (width, pitch, depth, angle) and ratio of the concave portions that are the surface treatment portions, the ratio of the first magnetic domain to the second magnetic domain, the uniformity of the second magnetic domain, and ΔB. .

Figure 0007240874000001
Figure 0007240874000001

表1の結果らから明らかなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例1の試料は、ΔBが30mTだった。しかし、比較例1と同じ試料に表面処理を施した発明例1-1~1-19においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBが2割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例1-5~1-17では、ΔBは5割以上向上した。 As is clear from the results in Table 1, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of equation (1), which is an index of the uniformity of the distribution of the second magnetic domain, is 0.5. The non-uniform Comparative Example 1 sample greater than 5 had a ΔB of 30 mT. However, in Invention Examples 1-1 to 1-19 in which the same sample as in Comparative Example 1 was surface-treated, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domain is uniform), and ΔB is improved by 20% or more. Furthermore, in invention examples 1-5 to 1-17 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is improved by more than 50%.

これに対して、表面処理は施したものの、形成した溝状凹部の溝幅が5μmと狭く、その狭い溝幅に対して溝ピッチが2.5mmと広い比較例2では、比較例1と比べて、第1磁区の割合は低下し、第2磁区の割合もわずかに増加し、式(1)の値も低下したものの、いずれも本発明の範囲内にならなかった。そしてこのような本発明の範囲外の試料では、ΔBの向上はほとんど認められなかった。 On the other hand, in Comparative Example 2, although the surface treatment was performed, the groove width of the formed groove-shaped recess was as narrow as 5 μm, and the groove pitch was as wide as 2.5 mm with respect to the narrow groove width. As a result, the ratio of the first magnetic domain decreased, the ratio of the second magnetic domain slightly increased, and the value of equation (1) decreased, but none of them fell within the scope of the present invention. In such samples outside the scope of the present invention, almost no improvement in ΔB was observed.

発明例1-1~1-19から明らかなように、試料の長手方向に対する、凹部の長手方向の角度θが10°以上90°以下の範囲内であると、ΔBは2割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例1-1~1-17)であると、角度θが10°以上40°未満の発明例1-18および1-19と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 1-1 to 1-19, ΔB was improved by 20% or more when the angle θ of the longitudinal direction of the recess with respect to the longitudinal direction of the sample was within the range of 10° or more and 90° or less. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 1-1 to 1-17), compared to Invention Examples 1-18 and 1-19 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、凹部の幅が10μm以上200μm以下、ピッチが1mm以上7mm以下、深さが0.03t以上0.4t以下、角度θが10°以上90°以下である発明例1-2~1-11および発明例1-13~1-19は、ΔBは3割以上向上した。このΔBの向上率は、凹部の幅が10μm未満、ピッチが1mm未満、深さが0.03t未満である発明例1-1よりも高かった。さらに凹部の幅が200μmを超え、深さも0.40tを超える発明例1-12と比べて、振動に対する耐久性に優れていた。 In addition, invention examples 1-2 to 1-11 in which the width of the concave portion is 10 μm or more and 200 μm or less, the pitch is 1 mm or more and 7 mm or less, the depth is 0.03 t or more and 0.4 t or less, and the angle θ is 10° or more and 90° or less. And invention examples 1-13 to 1-19 improved ΔB by 30% or more. This improvement rate of ΔB was higher than that of Invention Example 1-1 in which the width of the concave portion was less than 10 μm, the pitch was less than 1 mm, and the depth was less than 0.03 t. Furthermore, compared to Invention Example 1-12, in which the width of the concave portion exceeded 200 μm and the depth exceeded 0.40 t, the durability against vibration was excellent.

凹部の幅が50μm以上200μm以下、ピッチが2mm以上7mm以下、深さが0.1t以上0.4t以下、角度θが40°以上90°以下である発明例1-5~1-11および、発明例1-13~1-17では、ΔBは5割以上向上した。この結果は、凹部の角度θが40°未満であり、第1磁区および第2磁区の割合、ならびに第2磁区の分布(式(1)の値)が本発明の範囲内であるが、好ましい範囲外である発明例1-18および1-19と比べて、優れた値であった。 Invention Examples 1-5 to 1-11 in which the width of the concave portion is 50 μm or more and 200 μm or less, the pitch is 2 mm or more and 7 mm or less, the depth is 0.1 t or more and 0.4 t or less, and the angle θ is 40° or more and 90° or less; In invention examples 1-13 to 1-17, ΔB was improved by 50% or more. As a result, the angle θ of the recess is less than 40°, the ratio of the first magnetic domain and the second magnetic domain, and the distribution of the second magnetic domain (the value of formula (1)) are within the scope of the present invention, but it is preferable. It was an excellent value compared to Inventive Examples 1-18 and 1-19, which were out of range.

更に磁性面の面積に対する凹部の割合が2%未満である発明例1-4と、2%以上である発明例1-5~1-14との比較から、凹部の割合が2%以上であるとΔBは5割以上向上する。また、当該割合が10%以下である発明例1-13と10%を超える発明例1-14との比較から、凹部の割合が10%を超えても、ΔBは発明例1-13ほど増加しないことがわかる。 Furthermore, from a comparison between Invention Example 1-4, in which the ratio of the recesses to the area of the magnetic surface is less than 2%, and Invention Examples 1-5 to 1-14, in which the ratio is 2% or more, the ratio of the recesses is 2% or more. and ΔB are improved by more than 50%. In addition, from a comparison of Invention Example 1-13 in which the ratio is 10% or less and Invention Example 1-14 in which the ratio exceeds 10%, even if the ratio of concave portions exceeds 10%, ΔB increases as much as Invention Example 1-13. I know you won't.

(実施例2)
残留応力部を有するFe-Co合金からなる磁歪素子
(1)合金の製造
実施例1と同様に、磁区変更用表面処理を施すための試料を作製した。
(Example 2)
1. Magnetostrictive element made of Fe—Co alloy having residual stress portion (1) Manufacture of alloy As in Example 1, a sample was prepared for surface treatment for changing the magnetic domain.

(2)残留応力部の形成
上記(1)で得た、再結晶処理を施した試料の表面に、公知のレ-ザ-照射手法を用いて応力残留部を導入した。具体的には、YAGレ-ザ-を用いて、集光レンズで試料に当たるレ-ザ-スポット径を10~100μm程度に調整し、平均エネルギ-密度が1~4mJ/mm程度のレーザー照射を行った。レーザーのスポット径、平均エネルギ-密度、照射時間を変えることによって、残留応力の大きさを変化させて、残留応力が発生している試料表面上での範囲、および試料深さ方向の範囲を下記表に示したように変化させ、更に、表に示したピッチおよび角度となるように、所望の形状の残留応力部を形成した。
(2) Formation of residual stress portion A stress residual portion was introduced into the surface of the recrystallized sample obtained in (1) above using a known laser irradiation technique. Specifically, using a YAG laser, the diameter of the laser spot that hits the sample is adjusted to about 10 to 100 μm with a condenser lens, and the average energy density is about 1 to 4 mJ/mm 2 for laser irradiation. did By changing the laser spot diameter, average energy density, and irradiation time, the magnitude of residual stress is changed, and the range on the sample surface where residual stress is generated and the range in the sample depth direction are shown below. A desired shape of the residual stress portion was formed so as to change as shown in the table and to have the pitch and angle shown in the table.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、実施例1の(3)と同様に評価した。更に、以下の方法で残留応力部の範囲および深さを測定した。
(3) Evaluation method A sample before surface treatment and a sample after surface treatment were evaluated in the same manner as in Example 1 (3). Furthermore, the range and depth of the residual stress portion were measured by the following method.

(3-5)残留応力の評価方法
残留応力はX線残留応力測定法を用いて測定した。試料表面上における残留応力の範囲は、レ-ザを照射した中心位置から試料長手方向、および、幅方向に10μmピッチでずらしながら残留応力を測定し、残留応力の長手方向、および、幅方向の分布を求めた。表面から深さ方向に10μmピッチで化学的エッチングを施して掘り下げた位置での残留応力を測定することを繰り返し、残留測定の深さ方向の分布を求めた。これらの結果とレ-ザ-が照射されていない部位(例えば、照射部位の中間位置)の残留応力の値を比較して、レ-ザ-が照射されていない部位に対して、±10%以上の変化がある部位を磁区変更用表面処理部とし、それらの測定結果を残留応力の評価結果とした。測定したレ-ザ照射部位は、試料の長手方向とそれに垂直な幅方向の中央部近傍の部位と、長手方向端部と中央部の間のほぼ中央位置、および、幅方向端部と中央部の間のほぼ中央位置、の合計3ヵ所とした。それぞれの部位について1ヵ所づつ選定して、残留応力を測定し、それらの平均を求めた。
(3-5) Evaluation method of residual stress Residual stress was measured using an X-ray residual stress measurement method. The range of residual stress on the sample surface is measured by shifting the residual stress in the longitudinal direction and width direction of the sample from the center position where the laser is irradiated at a pitch of 10 μm. distribution was obtained. Chemical etching was performed from the surface in the depth direction at a pitch of 10 μm, and the residual stress was measured at dug-down positions repeatedly to obtain the distribution of the residual measurement in the depth direction. Comparing these results with the value of the residual stress of the part not irradiated with the laser (for example, the middle position of the irradiated part), ± 10% for the part not irradiated with the laser The portions with the above changes were defined as the magnetic domain altering surface treatment portions, and the measurement results thereof were used as the evaluation results of the residual stress. The measured laser irradiation sites were the longitudinal direction of the sample and the site near the center in the width direction perpendicular to it, the approximately center position between the longitudinal end and the center, and the width direction end and center. A total of 3 positions were set at approximately the center position between . One place was selected for each site, the residual stress was measured, and the average was obtained.

(3-6)残留応力部の面積の割合
残留応力部の形状がほぼ円形であったことから、残留応力部の範囲を一つの残留応力部の直径とし、一つの残留応力部の面積を求めた。そしてその面積に残留応力部の総数を掛け合わせて、残留応力部の総面積を求め、その総面積を磁性面の面積で割り、残留応力部の面積の割合を決定した。
(3-6) Ratio of the area of the residual stress part Since the shape of the residual stress part was almost circular, the range of the residual stress part was defined as the diameter of one residual stress part, and the area of one residual stress part was calculated. rice field. Then, the area was multiplied by the total number of residual stress portions to obtain the total area of the residual stress portions, and the total area was divided by the area of the magnetic surface to determine the ratio of the area of the residual stress portions.

下記表2に、表面処理部である残留応力部の形状(範囲、深さ、ピッチ、角度)とその割合、ならびに第1磁区と第2磁区の割合、第2磁区の均一性、およびΔBを示した。 Table 2 below shows the shape (range, depth, pitch, angle) of the residual stress portion, which is the surface treatment portion, the ratio thereof, the ratio of the first magnetic domain to the second magnetic domain, the uniformity of the second magnetic domain, and ΔB. Indicated.

Figure 0007240874000002
Figure 0007240874000002

表2の結果らから明かなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例1の試料は、ΔBが30mTだった。しかし、比較例1と同じ試料に表面処理を施した発明例2-1~2-14においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBは2割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例2-5~2-12では、ΔBは6割以上向上した。 As is clear from the results in Table 2, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of equation (1), which is an index of the uniformity of the distribution of the second magnetic domain, is 0.5. The non-uniform Comparative Example 1 sample greater than 5 had a ΔB of 30 mT. However, in invention examples 2-1 to 2-14 in which the same samples as in comparative example 1 were surface-treated, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domain is uniform), and ΔB is improved by 20% or more. Furthermore, in invention examples 2-5 to 2-12 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is improved by more than 60%.

発明例2-1~2-14から明らかなように、試料の長手方向に対する、残留応力部の点列状方向の角度θが10°以上90°以下の範囲内であると、ΔBは2割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例2-1~2-12)であると、角度θが10°以上40°未満の発明例2-13および2-14と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 2-1 to 2-14, when the angle θ of the dot-sequence direction of the residual stress portion with respect to the longitudinal direction of the sample is in the range of 10° or more and 90° or less, ΔB is 20%. More than improved. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 2-1 to 2-12), compared to Invention Examples 2-13 and 2-14 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、残留応力の範囲が50μm以上500μm以下、深さが0.1t以上0.7t以下、試料長手方向ピッチが1mm以上7mm以下、試料幅方向ピッチが0.10mm以上1.0mm以下である発明例2-2~2-14ではΔBは3割以上向上した。このΔBの向上率は、残留応力の範囲が50μm未満、深さが0.1t未満、試料長手方向ピッチが1mm未満、試料幅方向ピッチが0.10mm未満である発明例2-1よりも高かった。 In addition, the range of residual stress is 50 μm or more and 500 μm or less, the depth is 0.1 t or more and 0.7 t or less, the pitch in the longitudinal direction of the sample is 1 mm or more and 7 mm or less, and the pitch in the width direction of the sample is 0.10 mm or more and 1.0 mm or less. In Examples 2-2 to 2-14, ΔB was improved by 30% or more. This improvement rate of ΔB is higher than that of Invention Example 2-1 in which the range of residual stress is less than 50 μm, the depth is less than 0.1 t, the pitch in the longitudinal direction of the sample is less than 1 mm, and the pitch in the width direction of the sample is less than 0.10 mm. rice field.

残留応力の範囲が200μm以上500μm以下、残留応力の深さが0.3t以上0.7t以下、試料長手方向ピッチが2mm以上7mm以下、試料幅方向ピッチが0.40mm以上1.0mm以下、角度θが40°以上90°以下である発明例2-5~2-8では、ΔBが6~13割増加した。しかし、残留応力の範囲が500μm超、残留応力の深さが0.7t超、試料長手方向ピッチが7mm超、試料幅方向ピッチが1.0mm超である発明例2-9では、発明例2-8と比較して顕著なΔBの変化は認められなかった。 Range of residual stress is 200 μm or more and 500 μm or less, depth of residual stress is 0.3 t or more and 0.7 t or less, pitch in the longitudinal direction of the sample is 2 mm or more and 7 mm or less, pitch in the width direction of the sample is 0.40 mm or more and 1.0 mm or less, angle In invention examples 2-5 to 2-8 in which θ is 40° or more and 90° or less, ΔB increased by 60 to 130%. However, in Invention Example 2-9 where the range of residual stress is over 500 μm, the depth of residual stress is over 0.7 t, the pitch in the longitudinal direction of the sample is over 7 mm, and the pitch in the width direction of the sample is over 1.0 mm, Invention Example 2 No significant change in ΔB compared to -8 was observed.

更に磁性面の面積に対する残留応力部の割合が2%未満である発明例2-2と、2%以上である発明例2-3~2-9との比較から、残留応力部の割合が2%以上であると、ΔBの向上率が高まった。 Furthermore, from a comparison of Invention Example 2-2 in which the ratio of the residual stress portion to the area of the magnetic surface is less than 2% and Invention Examples 2-3 to 2-9 in which the ratio is 2% or more, it is found that the ratio of the residual stress portion is 2%. % or more, the improvement rate of ΔB increased.

(実施例3)
凹部を有するFe-Al合金からなる磁歪素子
(1)合金の製造
純度99.98%の電解鉄および純度99.9%の金属Alを、Fe-13質量%Alの組成でア-ク溶解して、200gのボタンインゴットを作製した。ボタンインゴットの形状は、直径60mm、厚み約10mmとした。ボタンインゴットを板厚方向に切断して、長さ約60mmm、幅約10mm、厚み0.5mmの板形状とし、更に、その板から長さ25mm、幅6.5mm、厚み0.5mmの大きさに切り出した。その切出した複数枚の板を真空中で20℃/分で1000℃まで昇温し、1000℃で3時間保定度、20℃/分で室温まで冷却し、熱処理後の磁区変更用表面処理を施すための試料とした。
得られた試料の飽和磁歪値λsを実施例1と同様に測定したところ、40×10-6であった。
(Example 3)
Magnetostrictive element made of Fe-Al alloy having recesses (1) Manufacture of alloy Electrolytic iron with a purity of 99.98% and metal Al with a purity of 99.9% were arc-melted with a composition of Fe-13 mass% Al. A button ingot of 200 g was produced. The button ingot had a diameter of 60 mm and a thickness of about 10 mm. A button ingot is cut in the plate thickness direction into a plate shape having a length of about 60 mm, a width of about 10 mm, and a thickness of 0.5 mm. cut out to The cut multiple plates were heated to 1000° C. at 20° C./min in vacuum, held at 1000° C. for 3 hours, cooled to room temperature at 20° C./min, and subjected to surface treatment for magnetic domain modification after heat treatment. It was used as a sample for application.
When the saturation magnetostriction value λs of the obtained sample was measured in the same manner as in Example 1, it was 40×10 −6 .

(2)凹部の形成
実施例1と同様に、磁区変更用表面処理を施すための試料の表面に、凹部を形成した。
(2) Formation of recesses As in Example 1, recesses were formed on the surface of the sample to be subjected to the surface treatment for changing magnetic domains.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、実施例1と同様に評価した。
(3) Evaluation method The samples before surface treatment and the samples after surface treatment were evaluated in the same manner as in Example 1.

下記表3に、表面処理部である凹部の形状(幅、ピッチ、深さ、角度)とその割合、ならびに第1磁区と第2磁区の割合、第2磁区の均一性、およびΔBを示した。 Table 3 below shows the shape (width, pitch, depth, angle) and ratio of the concave portions that are the surface treatment portions, the ratio of the first magnetic domain to the second magnetic domain, the uniformity of the second magnetic domain, and ΔB. .

Figure 0007240874000003
Figure 0007240874000003

表3の結果らから明らかなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例3の試料は、ΔBが14mTだった。しかし、比較例3と同じ試料に表面処理を施した発明例3-1~3-19においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBが2.8割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例3-5~3-17では、ΔBは7.1割以上向上した。 As is clear from the results in Table 3, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of formula (1), which is an index of the uniformity of the distribution of the second magnetic domain, is 0.5. The sample of Comparative Example 3, which was greater than 5 and non-uniform, had a ΔB of 14 mT. However, in Invention Examples 3-1 to 3-19 in which the same samples as in Comparative Example 3 were surface-treated, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domains is uniform), and ΔB is improved by 2.80% or more. Furthermore, in invention examples 3-5 to 3-17 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is 7. Improved by more than 10%.

これに対して、表面処理は施したものの、形成した溝状凹部の溝幅が5μmと狭く、その狭い溝幅に対して溝ピッチが2.5mmと広い比較例4では、比較例3と比べて、第1磁区の割合は低下し、第2磁区の割合も増加し、式(1)の値も低下したものの、いずれも本発明の範囲内にならなかった。そしてこのような本発明の範囲外の試料では、ΔBの向上はほとんど認められなかった。 On the other hand, in Comparative Example 4, although the surface treatment was performed, the groove width of the formed groove-shaped recess was as narrow as 5 μm, and the groove pitch was as wide as 2.5 mm with respect to the narrow groove width. As a result, the ratio of the first magnetic domain decreased, the ratio of the second magnetic domain increased, and the value of equation (1) decreased, but none of them fell within the scope of the present invention. In such samples outside the scope of the present invention, almost no improvement in ΔB was observed.

発明例3-1~3-19から明らかなように、試料の長手方向に対する、凹部の長手方向の角度θが10°以上90°以下の範囲内であると、ΔBは2.8割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例3-1~3-17)であると、角度θが10°以上40°未満の発明例3-18および3-19と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 3-1 to 3-19, when the angle θ of the longitudinal direction of the recess with respect to the longitudinal direction of the sample is in the range of 10° or more and 90° or less, ΔB is improved by 2.80% or more. bottom. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 3-1 to 3-17), compared to Invention Examples 3-18 and 3-19 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、凹部の幅が10μm以上200μm以下、ピッチが1mm以上7mm以下、深さが0.03t~0.4t、角度θが10°以上90°以下である発明例3-2~3-11および発明例3-13~3-17は、ΔBは2.8割以上向上した。このΔBの向上率は、凹部の幅が10μm未満、ピッチが1mm未満、深さが0.03t未満である発明例3-1よりも高かった。さらに凹部の幅が200μmを超え、深さも0.40tを超える発明例3-12と比べて、振動に対する耐久性に優れていた。 In addition, invention examples 3-2 to 3-11 in which the width of the concave portion is 10 μm or more and 200 μm or less, the pitch is 1 mm or more and 7 mm or less, the depth is 0.03 t to 0.4 t, and the angle θ is 10° or more and 90° or less, and In invention examples 3-13 to 3-17, ΔB was improved by 2.80% or more. This improvement rate of ΔB was higher than that of Invention Example 3-1 in which the width of the concave portion was less than 10 μm, the pitch was less than 1 mm, and the depth was less than 0.03 t. Furthermore, compared to Invention Example 3-12, in which the width of the concave portion exceeded 200 μm and the depth exceeded 0.40 t, the durability against vibration was excellent.

凹部の幅が50μm以上200μm以下、ピッチが2mm以上7mm以下、深さが0.1t以上0.4t以下、角度θが40°以上90°以下である発明例3-5~3-11および、発明例3-13~3-17では、ΔBは7割以上向上した。この結果は、凹部の角度θが40°未満であり、第1磁区および第2磁区の割合、ならびに第2磁区の分布(式(1)の値)が本発明の範囲内であるが、好ましい範囲外である発明例3-1、3-18および3-19と比べて、優れた値であった。さらに凹部の幅が200μmを超え、深さも0.40tを超える発明例3-12と比べて、振動に対する耐久性に優れていた。 Invention Examples 3-5 to 3-11 in which the width of the concave portion is 50 μm or more and 200 μm or less, the pitch is 2 mm or more and 7 mm or less, the depth is 0.1 t or more and 0.4 t or less, and the angle θ is 40° or more and 90° or less; In invention examples 3-13 to 3-17, ΔB was improved by 70% or more. As a result, the angle θ of the recess is less than 40°, the ratio of the first magnetic domain and the second magnetic domain, and the distribution of the second magnetic domain (the value of formula (1)) are within the scope of the present invention, but it is preferable. It was an excellent value compared to Invention Examples 3-1, 3-18 and 3-19, which were out of range. Furthermore, compared to Invention Example 3-12, in which the width of the concave portion exceeded 200 μm and the depth exceeded 0.40 t, the durability against vibration was excellent.

更に磁性面の面積に対する凹部の割合が2%未満である発明例3-4と、2%以上である発明例3-5~3-14との比較から、凹部の割合が2%以上であるとΔBは7割以上向上した。また、当該割合が10%以下である発明例3-13と10%を超える発明例3-14との比較から、凹部の割合が10%を超えても、ΔBは発明例3-13ほど増加しないことがわかる。 Furthermore, from a comparison between Invention Example 3-4 in which the ratio of the recesses to the area of the magnetic surface is less than 2% and Invention Examples 3-5 to 3-14 in which the ratio is 2% or more, the ratio of the recesses is 2% or more. and ΔB improved by more than 70%. In addition, from the comparison between Invention Example 3-13 in which the ratio is 10% or less and Invention Example 3-14 in which the ratio exceeds 10%, even if the ratio of concave portions exceeds 10%, ΔB increases as much as Invention Example 3-13. I know you won't.

(実施例4)
残留応力部を有するFe-Al合金からなる磁歪素子
(1)合金の製造
実施例3と同様に、磁区変更用表面処理を施すための試料を作製した。
(Example 4)
1. Magnetostrictive element made of Fe—Al alloy having residual stress portion (1) Manufacture of alloy As in Example 3, a sample was prepared for surface treatment for changing the magnetic domain.

(2)残留応力部の形成
実施例2と同様に、磁区変更用表面処理を施すための試料の表面に、残留応力部を形成した。
(2) Formation of Residual Stress Portion As in Example 2, a residual stress portion was formed on the surface of a sample to be subjected to surface treatment for changing magnetic domains.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、実施例2と同様に評価した。
(3) Evaluation method The samples before surface treatment and the samples after surface treatment were evaluated in the same manner as in Example 2.

下記表4に、表面処理部である残留応力部の形状(範囲、深さ、ピッチ、角度)とその割合、ならびに第1磁区と第2磁区の割合、第2磁区の分布、およびΔBを示した。 Table 4 below shows the shape (range, depth, pitch, angle) and the ratio of the residual stress portion, which is the surface treatment portion, the ratio of the first magnetic domain to the second magnetic domain, the distribution of the second magnetic domain, and ΔB. rice field.

Figure 0007240874000004
Figure 0007240874000004

表4の結果らから明らかなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例3の試料は、ΔBが14mTと低かった。しかし、比較例1と同じ試料に表面処理を施した発明例4-1~4-14においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBは4割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例4-5~4-12では、ΔBは9割以上向上した。 As is clear from the results in Table 4, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of formula (1), which is an index of uniformity of the distribution of the second magnetic domain, is 0.5. The sample of Comparative Example 3, which was greater than 5 and non-uniform, had a low ΔB of 14 mT. However, in Invention Examples 4-1 to 4-14 in which the same sample as in Comparative Example 1 was surface-treated, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domains is uniform), and ΔB is improved by 40% or more. Furthermore, in invention examples 4-5 to 4-12 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is More than 90% improvement.

発明例4-1~4-14から明らかなように、試料の長手方向に対する、残留応力部の点列状方向の角度θが10°以上90°以下の範囲内であると、ΔBは4割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例4-1~4-12)であると、角度θが10°以上40°未満の発明例4-13および4-14と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 4-1 to 4-14, when the angle θ of the dot-sequence direction of the residual stress portion with respect to the longitudinal direction of the sample is in the range of 10° or more and 90° or less, ΔB is 40%. More than improved. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 4-1 to 4-12), compared to Invention Examples 4-13 and 4-14 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、残留応力の範囲が50μm以上500μm以下、深さが0.1t以上0.7t以下、試料長手方向ピッチが1mm以上7mm以下、試料幅方向ピッチが0.10mm以上1.0mm以下であり、更に角度θが10°以上90°以下である発明例4-2~4-14ではΔBは6割以上向上した。このΔBの向上率は、残留応力の範囲が50μm未満、深さが0.1t未満、試料長手方向ピッチが1mm未満、試料幅方向ピッチが0.10mm未満である発明例4-1よりも高かった。 Further, the range of residual stress is 50 μm or more and 500 μm or less, the depth is 0.1 t or more and 0.7 t or less, the sample longitudinal pitch is 1 mm or more and 7 mm or less, and the sample width direction pitch is 0.10 mm or more and 1.0 mm or less, Furthermore, in invention examples 4-2 to 4-14 in which the angle θ is 10° or more and 90° or less, ΔB is improved by 60% or more. This improvement rate of ΔB is higher than that of Invention Example 4-1 in which the range of residual stress is less than 50 μm, the depth is less than 0.1 t, the pitch in the longitudinal direction of the sample is less than 1 mm, and the pitch in the width direction of the sample is less than 0.10 mm. rice field.

残留応力の範囲が200μm以上500μm以下、残留応力の深さが0.3t以上0.7t以下、試料長手方向ピッチが2mm以上7mm以下、試料幅方向ピッチが0.40mm以上1.0mm以下、角度θが40°以上90°以下である発明例4-5~4-8では、ΔBが9~15割増加した。しかし、残留応力の範囲が500μm超、残留応力の深さが0.7t超、試料長手方向ピッチが7mm超、試料幅方向ピッチが1.0mm超である発明例4-9では、発明例4-8と比較して顕著なΔBの変化は認められなかった。 Range of residual stress is 200 μm or more and 500 μm or less, depth of residual stress is 0.3 t or more and 0.7 t or less, pitch in the longitudinal direction of the sample is 2 mm or more and 7 mm or less, pitch in the width direction of the sample is 0.40 mm or more and 1.0 mm or less, angle In invention examples 4-5 to 4-8 in which θ is 40° or more and 90° or less, ΔB increased by 90 to 150%. However, in Invention Example 4-9 where the residual stress range is over 500 μm, the residual stress depth is over 0.7 t, the sample longitudinal pitch is over 7 mm, and the sample width direction pitch is over 1.0 mm, Invention Example 4 No significant change in ΔB compared to -8 was observed.

更に磁性面の面積に対する残留応力部の割合が2%未満である発明例4-2と、2%以上である発明例4-3~4-9との比較から、残留応力部の割合が2%以上であると、ΔBの向上率が高まった。 Furthermore, from a comparison of Invention Example 4-2, in which the ratio of the residual stress portion to the area of the magnetic surface is less than 2%, and Invention Examples 4-3 to 4-9, in which the ratio is 2% or more, it is found that the ratio of the residual stress portion is 2%. % or more, the improvement rate of ΔB increased.

(実施例5)
凹部を有するFe-Ga合金からなる磁歪素子
(1)合金の製造
純度99.98%の電解鉄および純度99.99%の金属GaをFe-22質量%Gaの組成でア-ク溶解して、200gのボタンインゴットを作製した。ボタンインゴットの形状は、直径60mm、厚み約10mmとした。ボタンインゴットを板厚方向に切断して、長さ約60mm、幅約10mm、厚み0.5mmの板形状とし、更に、その板から長さ25mm、幅6.5mm、厚み0.5mmの大きさに切り出した。その切出した複数枚の板を真空中で20℃/分で1000℃まで昇温し、1000℃で10時間保定後、20℃/分で室温まで冷却し、熱処理後の磁区変更用表面処理を施すための試料とした。
得られた試料の飽和磁歪値λsを実施例1と同様に測定したところ、153×10-6であった。
(Example 5)
Magnetostrictive element made of Fe—Ga alloy having recesses (1) Manufacture of alloy Electrolytic iron with a purity of 99.98% and metallic Ga with a purity of 99.99% were arc-melted with a composition of Fe-22 mass% Ga. , 200 g button ingots were produced. The button ingot had a diameter of 60 mm and a thickness of about 10 mm. A button ingot is cut in the plate thickness direction into a plate shape having a length of about 60 mm, a width of about 10 mm, and a thickness of 0.5 mm, and a size of 25 mm in length, 6.5 mm in width, and 0.5 mm in thickness is obtained from the plate. cut out to The plurality of cut plates were heated to 1000° C. at 20° C./min in vacuum, held at 1000° C. for 10 hours, cooled to room temperature at 20° C./min, and subjected to surface treatment for changing the magnetic domain after heat treatment. It was used as a sample for application.
When the saturation magnetostriction value λs of the obtained sample was measured in the same manner as in Example 1, it was 153×10 −6 .

(2)凹部の形成
実施例1と同様に、磁区変更用表面処理を施すための試料の表面に、凹部を形成した。
(2) Formation of recesses As in Example 1, recesses were formed on the surface of the sample to be subjected to the surface treatment for changing magnetic domains.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、実施例1と同様に評価した。
(3) Evaluation method The samples before surface treatment and the samples after surface treatment were evaluated in the same manner as in Example 1.

下記表5に、表面処理部である凹部の形状(幅、ピッチ、深さ、角度)とその割合、ならびに第1磁区と第2磁区の割合、第2磁区の均一性、およびΔBを示した。 Table 5 below shows the shape (width, pitch, depth, angle) and ratio of the concave portions that are the surface treatment portions, the ratio of the first magnetic domain to the second magnetic domain, the uniformity of the second magnetic domain, and ΔB. .

Figure 0007240874000005
Figure 0007240874000005

表5の結果らから明かなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例5の試料は、ΔBが85mTであった。しかし、比較例5と同じ試料に表面処理を施した発明例5-1~5-19においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBが2.5割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例5-5~5-17では、ΔBは5割以上向上した。 As is clear from the results in Table 5, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of formula (1), which is an index of the uniformity of the distribution of the second magnetic domain, is 0.5. The sample of Comparative Example 5, which was greater than 5 and non-uniform, had a ΔB of 85 mT. However, in Invention Examples 5-1 to 5-19 in which the same samples as in Comparative Example 5 were subjected to surface treatment, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domains is uniform), and ΔB is improved by 2.50% or more. Furthermore, in invention examples 5-5 to 5-17 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is improved by more than 50%.

これに対して、表面処理は施したものの、形成した溝状凹部の溝幅が5μmと狭く、その狭い溝幅に対して溝ピッチが2.5mmと広い比較例6では、比較例5と比べて、第1磁区の割合は低下し、第2磁区の割合もわずかに増加し、式(1)の値も低下したものの、いずれも本発明の範囲内にならなかった。そしてこのような本発明の範囲外の試料では、ΔBの向上はほとんど認められなかった。 On the other hand, in Comparative Example 6, although the surface treatment was performed, the groove width of the formed groove-shaped recess was as narrow as 5 μm, and the groove pitch was as wide as 2.5 mm with respect to the narrow groove width. As a result, the ratio of the first magnetic domain decreased, the ratio of the second magnetic domain slightly increased, and the value of equation (1) decreased, but none of them fell within the scope of the present invention. In such samples outside the scope of the present invention, almost no improvement in ΔB was observed.

発明例5-1~5-19から明らかなように、試料の長手方向に対する、凹部の長手方向の角度θが10°以上90°以下の範囲内であると、ΔBは2.5割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例5-1~5-17)であると、角度θが10°以上40°未満の発明例5-18および5-19と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 5-1 to 5-19, when the angle θ of the longitudinal direction of the recess with respect to the longitudinal direction of the sample is in the range of 10° or more and 90° or less, ΔB is improved by 2.50% or more. bottom. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 5-1 to 5-17), compared to Invention Examples 5-18 and 5-19 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、凹部の幅が10μm以上200μm以下、ピッチが1mm以上7mm以下、深さが0.03t~0.4t、角度θが10°以上90°以下である発明例5-2~5-11および発明例5-13~5-19は、ΔBは3割以上向上した。このΔBの向上率は、凹部の幅が10μm未満、ピッチが1mm未満、深さが0.03t未満である発明例5-1よりも高かった。さらに凹部の幅が200μmを超え、深さも0.40tを超える発明例5-12と比べて、振動に対する耐久性に優れていた。 In addition, invention examples 5-2 to 5-11 in which the width of the concave portion is 10 μm or more and 200 μm or less, the pitch is 1 mm or more and 7 mm or less, the depth is 0.03 t to 0.4 t, and the angle θ is 10° or more and 90° or less, and In invention examples 5-13 to 5-19, ΔB was improved by 30% or more. This improvement rate of ΔB was higher than that of Example 5-1 in which the width of the concave portion was less than 10 μm, the pitch was less than 1 mm, and the depth was less than 0.03 t. Furthermore, compared to Invention Example 5-12 in which the width of the recess exceeded 200 μm and the depth exceeded 0.40 t, the durability against vibration was excellent.

凹部の幅が50μm以上200μm以下、ピッチが2mm以上7mm以下、深さが0.1t以上0.4t以下、角度θが40°以上90°以下である発明例5-5~5-11および、発明例5-13~5-17では、ΔBは5割以上向上した。この結果は、凹部の角度θが40°未満であり、第1磁区および第2磁区の割合、ならびに第2磁区の分布(式(1)の値)が本発明の範囲内であるが、好ましい範囲外である発明例5-18および5-19と比べて、優れた値であった。さらに凹部の幅が200μmを超え、深さも0.40tを超える発明例5-12と比べて、振動に対する耐久性に優れていた。 Invention Examples 5-5 to 5-11 in which the width of the concave portion is 50 μm or more and 200 μm or less, the pitch is 2 mm or more and 7 mm or less, the depth is 0.1 t or more and 0.4 t or less, and the angle θ is 40° or more and 90° or less, and In invention examples 5-13 to 5-17, ΔB was improved by 50% or more. As a result, the angle θ of the recess is less than 40°, the ratio of the first magnetic domain and the second magnetic domain, and the distribution of the second magnetic domain (the value of formula (1)) are within the scope of the present invention, but it is preferable. It was an excellent value compared to Inventive Examples 5-18 and 5-19, which were out of range. Furthermore, compared to Invention Example 5-12 in which the width of the recess exceeded 200 μm and the depth exceeded 0.40 t, the durability against vibration was excellent.

凹部の幅が50μm以上200μm以下、ピッチが2mm以上7mm以下、深さが0.1t以上0.4t以下、角度θが40°以上90°以下である発明例5-5~5-11および、発明例5-13~5-17では、ΔBは5割以上向上した。この結果は、凹部の角度θが40°未満であり、第1磁区および第2磁区の割合、ならびに第2磁区の分布(式(1)の値)が本発明の範囲内であるが、好ましい範囲外である発明例5-18および5-19と比べて、優れた値であった。 Invention Examples 5-5 to 5-11 in which the width of the concave portion is 50 μm or more and 200 μm or less, the pitch is 2 mm or more and 7 mm or less, the depth is 0.1 t or more and 0.4 t or less, and the angle θ is 40° or more and 90° or less, and In invention examples 5-13 to 5-17, ΔB was improved by 50% or more. As a result, the angle θ of the recess is less than 40°, the ratio of the first magnetic domain and the second magnetic domain, and the distribution of the second magnetic domain (the value of formula (1)) are within the scope of the present invention, but it is preferable. It was an excellent value compared to Inventive Examples 5-18 and 5-19, which were out of range.

更に磁性面の面積に対する凹部の割合が2%未満である発明例5-4と、2%以上である発明例5-5~5-14との比較から、凹部の割合が2%以上であるとΔBは5割以上向上した。また、当該割合が10%以下である発明例5-13と10%を超える発明例5-14との比較から、凹部の割合が10%を超えても、ΔBは発明例5-13ほど増加しないことがわかる。 Furthermore, from a comparison between Invention Example 5-4, in which the ratio of the recesses to the area of the magnetic surface is less than 2%, and Invention Examples 5-5 to 5-14, in which the ratio is 2% or more, the ratio of the recesses is 2% or more. and ΔB improved by more than 50%. In addition, from a comparison of Invention Example 5-13 in which the ratio is 10% or less and Invention Example 5-14 in which the ratio exceeds 10%, even if the ratio of concave portions exceeds 10%, ΔB increases as much as Invention Example 5-13. I know you won't.

(実施例6)
残留応力部を有するFe-Ga合金からなる磁歪素子
(1)合金の製造
実施例5と同様に、磁区変更用表面処理を施すための試料を作製した。
(Example 6)
2. Magnetostrictive element made of Fe--Ga alloy having residual stress portion (1) Manufacture of alloy As in Example 5, a sample to be subjected to surface treatment for changing the magnetic domain was prepared.

(2)残留応力部の形成
実施例2と同様に、磁区変更用表面処理を施すための試料の表面に、残留応力部を形成した。
(2) Formation of Residual Stress Portion As in Example 2, a residual stress portion was formed on the surface of a sample to be subjected to surface treatment for changing magnetic domains.

(3)評価方法
表面処理を施す前の試料および表面処理後の試料について、実施例2と同様に評価した。
(3) Evaluation method The samples before surface treatment and the samples after surface treatment were evaluated in the same manner as in Example 2.

下記表6に、表面処理部である残留応力部の形状(範囲、深さ、ピッチ、角度)と割合、ならびに第1磁区と第2磁区の割合、第2磁区の分布、およびΔBを示した。 Table 6 below shows the shape (range, depth, pitch, angle) and ratio of the residual stress portion, which is the surface treatment portion, the ratio of the first magnetic domain to the second magnetic domain, the distribution of the second magnetic domain, and ΔB. .

Figure 0007240874000006
Figure 0007240874000006

表6の結果らから明らかなように、第1磁区および第2磁区の割合が本発明の範囲外であり、第2磁区の分布の均一性の指標となる式(1)の値が0.5超で不均一な比較例5の試料は、ΔBが85mTだった。しかし、比較例5と同じ試料に表面処理を施した発明例6-1~6-14においては、第1磁区の割合が0%以上70%以下、第2磁区の割合が50%以上100%以下、そして式(1)の値が0.5以下(即ち、第2磁区の分布が均一)となり、ΔBは3割以上向上した。更に、第1磁区が10%以上50%以下、第2磁区が70%以上100%以下、式(1)の値が0.3以下である発明例6-5~6-12では、ΔBは6割以上向上した。 As is clear from the results in Table 6, the ratio of the first magnetic domain to the second magnetic domain is outside the scope of the present invention, and the value of formula (1), which is an index of uniformity of the distribution of the second magnetic domain, is 0.5. The sample of Comparative Example 5, which was greater than 5 and non-uniform, had a ΔB of 85 mT. However, in Invention Examples 6-1 to 6-14 in which the same samples as in Comparative Example 5 were surface-treated, the ratio of the first magnetic domain was 0% or more and 70% or less, and the ratio of the second magnetic domain was 50% or more and 100%. Then, the value of formula (1) becomes 0.5 or less (that is, the distribution of the second magnetic domain is uniform), and ΔB is improved by 30% or more. Furthermore, in invention examples 6-5 to 6-12 in which the first magnetic domain is 10% or more and 50% or less, the second magnetic domain is 70% or more and 100% or less, and the value of formula (1) is 0.3 or less, ΔB is improved by more than 60%.

発明例6-1~6-14から明らかなように、試料の長手方向に対する、残留応力部の点列状方向の角度θが10°以上90°以下の範囲内であると、ΔBは3割以上向上した。さらに角度θが40°以上90°以下の範囲内(発明例6-1~6-12)であると、角度θが10°以上40°未満の発明例6-13および6-14と比べて、ΔBの向上率が高まった。 As is clear from Invention Examples 6-1 to 6-14, when the angle θ of the dot-sequence direction of the residual stress portion with respect to the longitudinal direction of the sample is in the range of 10° or more and 90° or less, ΔB is 30%. More than improved. Furthermore, when the angle θ is in the range of 40° or more and 90° or less (Invention Examples 6-1 to 6-12), compared to Invention Examples 6-13 and 6-14 in which the angle θ is 10° or more and less than 40° , ΔB increased.

また、残留応力の範囲が50μm以上500μm以下、深さが0.1t以上0.7t以下、試料長手方向ピッチが1mm以上7mm以下、試料幅方向ピッチが0.10mm以上1.0mm以下である発明例6-2~6-14ではΔBは4割以上向上した。このΔBの向上率は、残留応力の範囲が50μm未満、深さが0.1t未満、試料長手方向ピッチが1mm未満、試料幅方向ピッチが0.10mm未満である発明例6-1よりも高かった。 In addition, the range of residual stress is 50 μm or more and 500 μm or less, the depth is 0.1 t or more and 0.7 t or less, the pitch in the longitudinal direction of the sample is 1 mm or more and 7 mm or less, and the pitch in the width direction of the sample is 0.10 mm or more and 1.0 mm or less. In Examples 6-2 to 6-14, ΔB was improved by 40% or more. This ΔB improvement rate is higher than that of Invention Example 6-1 in which the range of residual stress is less than 50 μm, the depth is less than 0.1 t, the pitch in the longitudinal direction of the sample is less than 1 mm, and the pitch in the width direction of the sample is less than 0.10 mm. rice field.

残留応力の範囲が200μm以上500μm以下、残留応力の深さが0.3t以上0.7t以下、試料長手方向ピッチが2mm以上7mm以下、試料幅方向ピッチが0.40mm以上1.0mm以下、角度θが40°以上90°以下である発明例6-5~6-8では、ΔBが6~8割増加した。しかし、残留応力の範囲が500μm超、残留応力の深さが0.7t超、試料長手方向ピッチが7mm超、試料幅方向ピッチが1.0mm超である発明例6-9では、発明例6-8と比較して顕著なΔBの変化は認められなかった。 Range of residual stress is 200 μm or more and 500 μm or less, depth of residual stress is 0.3 t or more and 0.7 t or less, pitch in the longitudinal direction of the sample is 2 mm or more and 7 mm or less, pitch in the width direction of the sample is 0.40 mm or more and 1.0 mm or less, angle In invention examples 6-5 to 6-8 in which θ is 40° or more and 90° or less, ΔB increased by 60 to 80%. However, in Invention Example 6-9 where the range of residual stress is over 500 μm, the depth of residual stress is over 0.7 t, the pitch in the longitudinal direction of the sample is over 7 mm, and the pitch in the width direction of the sample is over 1.0 mm, Invention Example 6 No significant change in ΔB compared to -8 was observed.

更に磁性面の面積に対する残留応力部の割合が2%未満である発明例6-2と、2%以上である発明例6-3~6-9とを比較すると、残留応力部の割合が2%以上であると、ΔBの向上率が高まった。 Furthermore, when comparing Invention Example 6-2, in which the ratio of the residual stress portion to the area of the magnetic surface is less than 2%, and Invention Examples 6-3 to 6-9, in which the ratio is 2% or more, the ratio of the residual stress portion is 2%. % or more, the improvement rate of ΔB increased.

上記実施例1および2で示したように、本発明は、量産が可能となる冷延によって製造できるFe-Co合金に適用可能である。また、実施例5および6で示したように、脆性であるため通常の熱延や冷延では製造困難なFe-Ga合金にも適用可能である。よって、本発明の製造方法は、原料として使用する磁歪材料に係わらず、発電出力の高い発電用磁歪素子の安定的な量産に適用可能である。 As shown in Examples 1 and 2 above, the present invention is applicable to Fe—Co alloys that can be produced by cold rolling, which enables mass production. Further, as shown in Examples 5 and 6, the present invention can be applied to Fe--Ga alloys which are brittle and difficult to manufacture by normal hot rolling or cold rolling. Therefore, the production method of the present invention is applicable to stable mass production of magnetostrictive elements for power generation with high power generation output regardless of the magnetostrictive material used as the raw material.

本発明によって、発電出力が高く、安定的な量産が可能な、磁歪発電に用いるための発電用磁歪素子、その製造方法、および当該発電用磁歪素子を用いた発電装置が提供される。本発明の発電用磁歪素子は、従来の磁歪素子と比べて発電出力が高いことから、IoTなどにおける無線センサモジュールの電源などとして有用な、磁歪発電装置の開発を可能にする。 INDUSTRIAL APPLICABILITY According to the present invention, a power generation magnetostrictive element for use in magnetostrictive power generation, which has a high power generation output and can be stably mass-produced, a manufacturing method thereof, and a power generator using the power generation magnetostrictive element are provided. Since the magnetostrictive element for power generation of the present invention has a higher power generation output than conventional magnetostrictive elements, it enables the development of a magnetostrictive power generator useful as a power source for wireless sensor modules in IoT and the like.

1 凹部(表面処理部)
2、3 領域
4 180°磁壁
5 90°磁壁
10 磁性面
a 長手方向の寸法
b 短手方向の寸法
1 recess (surface treatment part)
2, 3 region 4 180° domain wall 5 90° domain wall 10 magnetic surface a lengthwise dimension b widthwise dimension

Claims (14)

Fe系磁歪合金からなる板状の発電用磁歪素子であって、
前記発電用磁歪素子の表面および裏面の少なくとも1つの面が、180°磁壁を含む第1磁区および90°磁壁を含む第2磁区が存在する磁性面であり、
前記磁性面の面積に対する、前記磁性面に存在する第1磁区の総面積の割合が0%以上70%以下であり、且つ第2磁区の総面積の割合が50%以上100%以下であり、
前記磁性面における第2磁区の分布が、前記磁性面全体に渡って均一であり、
前記第1磁区の総面積の割合、前記第2磁区の総面積の割合、および前記第2磁区の分布は、前記発電用磁歪素子の前記磁性面を交流磁場で消磁し、その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により測定した値である、
発電用磁歪素子。
A plate-shaped magnetostrictive element for power generation made of an Fe-based magnetostrictive alloy,
At least one of the front and back surfaces of the magnetostrictive element for power generation is a magnetic surface on which a first magnetic domain including a 180° domain wall and a second magnetic domain including a 90° domain wall are present,
The ratio of the total area of the first magnetic domains present on the magnetic surface to the area of the magnetic surface is 0% or more and 70% or less, and the ratio of the total area of the second magnetic domains is 50% or more and 100% or less,
the distribution of the second magnetic domains on the magnetic surface is uniform over the entire magnetic surface;
The ratio of the total area of the first magnetic domain, the ratio of the total area of the second magnetic domain, and the distribution of the second magnetic domain are obtained by demagnetizing the magnetic surface of the magnetostrictive element for power generation with an alternating magnetic field and then demagnetizing A value measured by a magneto-optical method with no external stress applied to the surface,
Magnetostrictive element for power generation.
前記磁性面が、磁区変更用表面処理部を有し、
前記磁区変更用表面処理部の総面積は、前記磁性面の面積に対して、0.5%以上10%以下である、請求項1に記載の発電用磁歪素子。
the magnetic surface has a magnetic domain altering surface treatment,
2. The magnetostrictive element for power generation according to claim 1, wherein the total area of said magnetic domain altering surface treatment portion is 0.5% or more and 10% or less with respect to the area of said magnetic surface.
前記磁区変更用表面処理部が、凹部および残留応力部から選ばれる少なくとも1種である、請求項2に記載の発電用磁歪素子。 3. The magnetostrictive element for power generation according to claim 2, wherein the magnetic domain altering surface treatment portion is at least one selected from a concave portion and a residual stress portion. 前記磁区変更用表面処理部が、凹部である、請求項3に記載の発電用磁歪素子。 4. The magnetostrictive element for power generation according to claim 3, wherein the magnetic domain altering surface treatment portion is a concave portion. 前記凹部の深さが、前記発電用磁歪素子の厚みtに対して0.03t以上0.4t以下である、請求項4に記載の発電用磁歪素子。 5. The magnetostrictive element for power generation according to claim 4, wherein the depth of said concave portion is 0.03t or more and 0.4t or less with respect to the thickness t of said magnetostrictive element for power generation. 複数の前記凹部が点列状に配置されている、または前記凹部が線状である、請求項4または5に記載の発電用磁歪素子。 6. The magnetostrictive element for power generation according to claim 4, wherein a plurality of said recesses are arranged in a dotted line, or said recesses are linear. 前記磁区変更用表面処理部が、残留応力部である、請求項3に記載の発電用磁歪素子。 4. The magnetostrictive element for power generation according to claim 3, wherein the magnetic domain altering surface treatment portion is a residual stress portion. 前記磁性面における、表面上の前記残留応力部の直径または長径の範囲が、50μm以上500μm以下である、請求項7に記載の発電用磁歪素子。 8. The magnetostrictive element for power generation according to claim 7, wherein the residual stress portion on the surface of the magnetic surface has a diameter or major axis range of 50 μm or more and 500 μm or less. 前記残留応力部の深さが、前記発電用磁歪素子の厚みtに対して0.1t以上0.7t以下である、請求項7または8に記載の発電用磁歪素子。 9. The magnetostrictive element for power generation according to claim 7, wherein the depth of said residual stress portion is 0.1 t or more and 0.7t or less with respect to the thickness t of said magnetostrictive element for power generation. 前記Fe系磁歪合金が、Fe-Ga系合金、Fe-Co系合金、またはFe-Al系合金である、請求項1~9のいずれか一項に記載の発電用磁歪素子。 The magnetostrictive element for power generation according to any one of claims 1 to 9, wherein the Fe-based magnetostrictive alloy is an Fe--Ga-based alloy, an Fe--Co-based alloy, or an Fe--Al-based alloy. 前記Fe系磁歪合金の飽和磁歪値λsが、20×10-6以上である、請求項1~10のいずれか一項に記載の発電用磁歪素子。 11. The magnetostrictive element for power generation according to claim 1, wherein the Fe-based magnetostrictive alloy has a saturation magnetostriction value λs of 20×10 −6 or more. Fe系磁歪合金からなる板状磁歪材料を提供し、
前記板状磁歪材料の表面および裏面の少なくとも1つの面に磁区変更用表面処理を行って、表面処理済みの磁性面を得る、
ことを含み、
前記磁性面には、180°磁壁を含む第1磁区および90°磁壁を含む第2磁区が存在し、
前記磁性面の面積に対する、前記磁性面に存在する第1磁区の総面積の割合が0%以上70%以下であり、且つ第2磁区の総面積の割合が50%以上100%以下であり、
前記磁性面における第2磁区の分布は、前記磁性面全体に渡って均一であり、
前記第1磁区の総面積の割合、前記第2磁区の総面積の割合、および前記第2磁区の分布は、前記板状磁歪材料の前記磁性面を交流磁場で消磁し、その後、消磁した磁性面に対して、外部応力が無負荷の状態で磁気光学的方法により測定した値である、
発電用磁歪素子の製造方法。
Providing a plate-shaped magnetostrictive material made of an Fe-based magnetostrictive alloy,
At least one of the front and back surfaces of the plate-shaped magnetostrictive material is subjected to a surface treatment for changing the magnetic domain to obtain a surface-treated magnetic surface;
including
The magnetic surface has a first magnetic domain including a 180° domain wall and a second magnetic domain including a 90° domain wall,
The ratio of the total area of the first magnetic domains present on the magnetic surface to the area of the magnetic surface is 0% or more and 70% or less, and the ratio of the total area of the second magnetic domains is 50% or more and 100% or less,
the distribution of the second magnetic domains on the magnetic surface is uniform over the entire magnetic surface;
The percentage of the total area of the first magnetic domains, the percentage of the total area of the second magnetic domains, and the distribution of the second magnetic domains are obtained by demagnetizing the magnetic surface of the plate-shaped magnetostrictive material with an alternating magnetic field and then demagnetizing the magnetic A value measured by a magneto-optical method with no external stress applied to the surface,
A method for manufacturing a magnetostrictive element for power generation.
前記磁区変更用表面処理が、凹部の形成および残留応力の付与から選ばれる少なくとも1種である、請求項12に記載の製造方法。 13. The manufacturing method according to claim 12, wherein the magnetic domain altering surface treatment is at least one selected from formation of recesses and application of residual stress. 請求項1~11のいずれか一項に記載の発電用磁歪素子を含む、発電装置。 A power generator comprising the magnetostrictive element for power generation according to any one of claims 1 to 11.
JP2018244760A 2018-12-27 2018-12-27 MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR Active JP7240874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018244760A JP7240874B2 (en) 2018-12-27 2018-12-27 MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018244760A JP7240874B2 (en) 2018-12-27 2018-12-27 MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR

Publications (2)

Publication Number Publication Date
JP2020107715A JP2020107715A (en) 2020-07-09
JP7240874B2 true JP7240874B2 (en) 2023-03-16

Family

ID=71450935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018244760A Active JP7240874B2 (en) 2018-12-27 2018-12-27 MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR

Country Status (1)

Country Link
JP (1) JP7240874B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022167661A (en) * 2021-04-23 2022-11-04 住友金属鉱山株式会社 Magnetostrictive member and method for producing magnetostrictive member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247944A (en) 1999-12-27 2001-09-14 Sumitomo Metal Ind Ltd Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JP2006153667A (en) 2004-11-29 2006-06-15 Tdk Corp Sensor device and detecting method for stress
JP2018081735A (en) 2016-11-18 2018-05-24 独立行政法人国立高等専門学校機構 Manufacturing method of compound element
WO2018123749A1 (en) 2016-12-27 2018-07-05 東北特殊鋼株式会社 Vibration power generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222490A (en) * 1992-02-17 1993-08-31 Nippon Steel Corp Grain oriented silicon steel containing super high

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247944A (en) 1999-12-27 2001-09-14 Sumitomo Metal Ind Ltd Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JP2006153667A (en) 2004-11-29 2006-06-15 Tdk Corp Sensor device and detecting method for stress
JP2018081735A (en) 2016-11-18 2018-05-24 独立行政法人国立高等専門学校機構 Manufacturing method of compound element
WO2018123749A1 (en) 2016-12-27 2018-07-05 東北特殊鋼株式会社 Vibration power generation device

Also Published As

Publication number Publication date
JP2020107715A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7028242B2 (en) Manufacturing method of winding cores and winding cores of grain-oriented electrical steel sheets and transformers using them
JP5866850B2 (en) Method for producing grain-oriented electrical steel sheet
JP7252902B2 (en) Grain-oriented silicon steel with low iron loss and its manufacturing method
TW521286B (en) Bulk amorphous metal magnetic component
RU2570591C1 (en) Textured sheet of electrical steel
KR20140103995A (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP4344264B2 (en) Low iron loss unidirectional electrical steel sheet
RU2741585C1 (en) Textured sheet of electrical steel, transformer stacked core from textured sheet of electrical steel and method of making a stacked core
JP7240874B2 (en) MAGNETOSTRICTIVE ELEMENT FOR GENERATION, MANUFACTURING METHOD THEREOF, AND GENERATOR
Celie et al. Effects of cutting and annealing of amorphous materials for high speed permanent magnet machines
CN118073061A (en) Grain-oriented electrical steel sheet and method for producing same
JP3500103B2 (en) Unidirectional electrical steel sheet for transformers
JP4616623B2 (en) Method for producing grain-oriented electrical steel sheet
Paltanea et al. Influence of cutting technologies on the magnetic anisotropy of grain oriented electrical steel
KR20230167105A (en) Grain-oriented electrical steel sheet
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
Waeckerlé et al. Recent progress in the application development of Fe50Ni50 type alloys
JP4979970B2 (en) Low iron loss unidirectional electrical steel sheet
JP4276618B2 (en) Low iron loss unidirectional electrical steel sheet
JP4437939B2 (en) Low iron loss unidirectional electrical steel sheet
KR20130075780A (en) Soft-magnetic metal strip for electromechanical components
KR101870671B1 (en) Fe-based soft magnetic alloy with high-magnetization and ribbon using the alloy
JP2023121125A (en) Grain-oriented electromagnetic steel sheet
Leshchynsky et al. Layered alloys for effective magnetic flux concentration in induction heating
JP2005120405A (en) Grain oriented silicon steel sheet for lamination type iron core

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7240874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150