JP7238380B2 - 飛行装置、飛行システム、及び構造物の点検システム - Google Patents

飛行装置、飛行システム、及び構造物の点検システム Download PDF

Info

Publication number
JP7238380B2
JP7238380B2 JP2018235437A JP2018235437A JP7238380B2 JP 7238380 B2 JP7238380 B2 JP 7238380B2 JP 2018235437 A JP2018235437 A JP 2018235437A JP 2018235437 A JP2018235437 A JP 2018235437A JP 7238380 B2 JP7238380 B2 JP 7238380B2
Authority
JP
Japan
Prior art keywords
outer frame
gravity
axis
flight
flight device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018235437A
Other languages
English (en)
Other versions
JP2019135142A (ja
Inventor
晃弘 川上
伸治 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US16/770,880 priority Critical patent/US11560215B2/en
Priority to EP19704468.8A priority patent/EP3749573B1/en
Priority to PCT/JP2019/002298 priority patent/WO2019151112A1/en
Priority to CN201980007682.XA priority patent/CN111566007B/zh
Publication of JP2019135142A publication Critical patent/JP2019135142A/ja
Application granted granted Critical
Publication of JP7238380B2 publication Critical patent/JP7238380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C17/00Aircraft stabilisation not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、飛行装置、飛行システム、及び構造物の点検システムに関する。
高度経済成長期に建設され、歳月が経過したトンネルや橋梁などの道路関連の公共インフラを、今後も安心して使い続けるために、これらの適切な維持管理、及び定期的な点検が必要とされている。このような公共インフラにおいて、橋梁の側面や裏面といった高所や狭隘部等でも点検を簡便に行うために、カメラを搭載した無人の飛行装置を遠隔から操作し、搭載したカメラで撮影した画像を利用する方法が知られている。
このような無人の飛行装置として、機体の回転翼が外部の物体と接触し、障害物と飛行装置との衝突によって飛行装置の姿勢または軌道に大きな擾乱が生じるのを防ぐために、回動可能な外側フレーム等の外枠を有する装置が開示されている(例えば、特許文献1参照)。
しかしながら、特許文献1の装置では、飛行装置の重心を外枠の回動軸の中心に一致させているために慣性モーメントが小さく、外枠が回動した際に、外枠と機体との接続部で生じるトルクで機体の姿勢が乱れることがあった。そのため、狭隘部に飛行装置が進入した時など、飛行の際に外枠が外部と接触して外力を受けることが多い時に、機体の姿勢が頻繁に乱れ、画像のブレ等により点検に適した画像を取得できない場合があった。
本発明は、上記の点に鑑みてなされたものであって、飛行の際に外枠が外部と接触して外力を受けることが多い場合でも、機体の姿勢が乱れない飛行装置を提供することを課題とする。
開示の技術の一態様に係る飛行装置は、機体と、前記機体に回動可能に接続される外枠と、を有する飛行装置であって、前記機体は、回転翼と、前記回転翼を回転させる回転翼駆動手段と、を有し、前記外枠は、重力方向と交差する第1の回動軸で回動可能な第1の外枠を有し、前記回転翼、及び前記回転翼駆動手段の重心は、前記重力方向において、前記第1の回動軸より下方に位置しており、前記外枠は、前記第1の外枠に接続される第2の外枠と、前記第2の外枠に接続され、前記重力方向を軸とする第3の回動軸で回動可能な第3の外枠と、複数の蓄電池と、を有し、前記第2の外枠は、前記重力方向と交差し、前記第1の回動軸に直交する第2の回動軸で回動可能であり、前記複数の蓄電池のそれぞれの重心は、前記重力方向において、前記第1の回動軸より下方に位置し、かつ第3の回動軸上とは異なる位置にあることを特徴とする。
本発明の実施形態によれば、飛行の際に外枠が外部と接触して外力を受けることが多い場合でも、機体の姿勢が乱れない飛行装置を提供することができる。
第1の実施形態の飛行装置の構成の一例を概略的に説明する斜視図である。 第1の実施形態のマルチコプタの構成の一例を説明する2面図である。 第1の実施形態の飛行装置をB軸方向から観察した正面図である。 第1の実施形態の飛行装置の有する制御装置のハードウェア構成の一例を示すブロック図である。 第1の実施形態の飛行装置の有する制御装置の機能構成の一例を示すブロック図である。 第1の実施形態が適用されない飛行装置にトルクがかかった時のマルチコプタの姿勢の変化を説明する図である。 第1の実施形態の飛行装置におけるマルチコプタにトルクがかかった場合のマルチコプタの動きと重心位置との位置関係を説明する図である。 第1の実施形態の飛行装置にトルクがかかった時のマルチコプタの姿勢の変化を説明する図である。 第2の実施形態の飛行装置におけるマルチコプタの構成の一例を説明する図である。 第3の実施形態の飛行装置におけるジオデシックドーム構造の一例を説明する図である。 第4の実施形態の飛行システムの機能構成の一例を示すブロック図である。 第5の実施形態の点検システムの機能構成の一例を示すブロック図である。
以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。また各図面において、A軸、B軸、及びC軸で方向を示す場合があるが、一例として、A軸はピッチング挙動の回動軸、B軸はローリング挙動の回動軸、C軸はヨーイング挙動の回動軸とする。
[第1の実施形態]
まず、第1の実施形態の飛行装置の構成を説明する。図1は、飛行装置100の構成の一例を、概略的に説明する斜視図である。図1に示されているように、飛行装置100は、外枠1と、支持枠2a、及び2bと、第1接続ジョイント3a、及び3bと、第2接続ジョイント4a、及び4bと、第3接続ジョイント5a、及び5bと、マルチコプタ10とを有している。外枠1は、第1外枠1aと、第2外枠1bと、第3外枠1cとを有している。
第1外枠1aには、支持枠2a、及び2bが固定されている。支持枠2a、及び2bは、それぞれ第1接続ジョイント3a、及び3bを介してマルチコプタ10に接続している。第1接続ジョイント3a、及び3bは、一般的に使用される玉軸受やすべり軸受などの機械部品で構成され、接続される部品を連続的に回動可能にする。第2接続ジョイント4a、及び4b、並びに第3接続ジョイント5a、及び5bにおいても同様である。
マルチコプタ10は、第1接続ジョイント3a、及び3bにより、支持枠2a、及び2bに対してA軸回りに回動可能である。また支持枠2a、及び2bに接続された第1外枠1aは、マルチコプタ10に対してA軸回りに回動可能である。
第1外枠1aには、第2接続ジョイント4a、及び4bが固定されている。第2外枠1bは、第2接続ジョイント4a、及び4bを介して第1外枠1aに接続している。第2外枠1bは、第2接続ジョイント4a、及び4bにより、第1外枠1aに対してB軸回りに回動可能である。また第2外枠1bは、第1外枠1aに、支持枠2a、及び2bと、第1接続ジョイント3a、及び3bとを介して接続されたマルチコプタ10に対して、B軸回りに回動可能である。
第2外枠1bには、第3接続ジョイント5a、及び5bが固定されている。第3外枠1cは、第3接続ジョイント5a、及び5bを介して第2外枠1bに接続している。第3外枠1cは、第3接続ジョイント5a、及び5bにより、第2外枠1bに対してC軸回りに回動可能である。また第3外枠1cは、第2外枠1bに、第1外枠1aと、支持枠2a、及び2bと、第1接続ジョイント3a、及び3bとを介して接続されたマルチコプタ10に対して、C軸回りに回動可能である。
外枠1は、A軸、B軸、及びC軸の3つの回動軸が交差するように構成されている。このような外枠1の回動機構は、所謂ジンバル機構等である。外枠1の内側に配置されたマルチコプタ10は、外枠1に対してA軸、B軸、及びC軸の周りに独立に回動することができる。なお上記では、外枠1が3つの輪状の部材で構成された例を示したが、これに限定されるものではない。例えば、3つの球状の多面体等で、外枠を構成してもよい。なお、3つの球状の多面体で構成された外枠の例については、第3の実施形態で説明する。
次に、マルチコプタ10の構成を説明する。図2は、マルチコプタ10の構成の一例を説明する2面図である。図2(a)は、マルチコプタ10をB軸方向から観察した正面図であり、図2(b)は、マルチコプタ10をC軸方向から観察した上面図である。
図2(a)に示されているように、マルチコプタ10は、フレーム11と、制御ユニット12と、保持部材13と、モータ14と、プロペラ15と、カメラ16とを有している。フレーム11は、フレーム11に対して-C軸方向の位置に制御ユニット12を保持している。つまり、制御ユニット12は、フレーム11(A軸)よりも下方に設けられている。またフレーム11は、A軸方向の両端部分で保持部材13と接続し、保持部材13を固定している。またフレーム11は、フレーム11に対して+C軸方向の位置に、カメラ16を取付け、固定している。つまり、カメラ16は、フレーム11(A軸)よりも上方に設けられている。なお、一点鎖線で示した、C軸方向におけるフレーム11の中心線11aは、A軸と略一致している。
一方、図2(b)に示されているように、保持部材13は、保持部材13a、及び13bで構成されている。保持部材13aの+A軸方向の面には、第1接続ジョイント3aが取付けられている。保持部材13bの-A軸方向の面には、第1接続ジョイント3bが取付けられている。
図2において、保持部材13a、及び13bは、それぞれB軸方向を長手とし、B軸方向の両端部が-C軸方向(鉛直下方)に向けて折り曲げられた角型の部材である。但し、ブロック状の部材の組み合わせ等で、図2に示した保持部材13a、及び13bの形状を実現してもよい。保持部材13a、及び13bは、制御ユニット12を挟んでA軸方向の対称となる位置でフレーム11に固定されている。
一方、モータ14は、モータ14a~14dから構成されている。モータ14a、及び14bは、フレーム11を挟んでB軸方向の対称となる位置で、保持部材13aの折り曲げられた部分の-C軸方向の端部にそれぞれ取り付けられている。
同様に、モータ14c、及び14dは、フレーム11を挟んでB軸方向の対称となる位置で、保持部材13bの折り曲げられた部分の-C軸方向の端部にそれぞれ取り付けられている。
モータ14a~14dがそれぞれ有するモータ軸には、カップリング等の機械部品を介して、プロペラ15a~15dが接続されている。モータ14a~14b、及びプロペラ15a~15bは、保持部材13aよりも鉛直下方に設けられ、フレーム11(A軸)よりも鉛直下方に設けられている。また、モータ14c~14d、及びプロペラ15c~15dは、保持部材13bよりも鉛直下方に設けられ、またフレーム11(A軸)よりも鉛直下方に設けられている。
プロペラ15a~15dは、図2に示されているように、それぞれ2枚のブレードを備えており、モータ14a~14dの回転によりブレードが回転する。ブレードの回転によって回転軸方向に推力が発生する。なおブレードは、回転軸からブレードの先端にかけて緩やかに"ねじれ"が付いた形状を有する部材である。但しこれに限定されるものではなく、平板状の部材であってもよい。以下ではプロペラの回転と、ブレードの回転は同義とする。
ここで、図2の19aは、モータ14a~14b及びプロペラ15a~15bの重心を示し、19bは、モータ14c~14d及びプロペラ15c~15dの重心を示している。
カメラ16は、結像光学系16aと、撮像素子を有するカメラ本体16bとを備え、画像、又は映像を撮像する。画像は静止画と同義であり、映像は動画と同義である。結像光学系16aは、複数のレンズにより構成され、被写体の像を撮像素子の撮像面上に結像させる。図2(a)では、結像光学系16aの光軸は、+C軸方向に向いている。撮像素子には、例えばMOS(Metal Oxide Semiconductor Device)、CMOS(Complementary Metal Oxide Semiconductor Device)、CCD(Charge Coupled Device)等を用いることができる。
カメラ16の重心は、重力方向において、フレーム11(A軸)より上方に位置している。ここで、カメラ16は、「撮影手段」の一例である。
制御ユニット12は、制御装置と、電源部とを有している。制御装置は、モータ14a~14dにそれぞれ電気的に接続され、これらの回転を制御する。また制御装置は、カメラ16に電気的に接続され、カメラ16による撮像を制御する。
電源部は、蓄電池を有している。蓄電池は、例えばリチウムイオン電池等である。蓄電池は、制御装置、モータ14a~14d、及びカメラ16等に電気的に接続され、これらに対し、それぞれが動作するための電力を供給する。
ここで、マルチコプタ10は、「機体」の一例である。モータ14は、「回転翼駆動手段」の一例であり、プロペラ15は、「回転翼」の一例である。
また、A軸は、「第1の回動軸」の一例であり、また「所定の回動軸」の一例である。B軸は、「第2の回動軸」の一例であり、C軸は、「第3の回動軸」の一例である。
さらに、第1外枠1aは、「第1の外枠」の一例であり、第2外枠1bは、「第2の外枠」の一例であり、第3外枠1cは、「第3の外枠」の一例である。
次に、飛行装置100に作用する力を、図3を用いて説明する。図3は、飛行装置100をB軸方向から観察した正面図である。
図3において、白抜き矢印6は、飛行装置100に働く推力を示している。上述したように、マルチコプタ10におけるモータ14の回転により、プロペラ15が回転する。
4つのモータ14a~14dの回転数をそれぞれ等しくすると、4つのプロペラ15a~15dはそれぞれ略等しい回転数で回転する。これによりプロペラ15a~15dは、それぞれ略等しい推力を発生し、マルチコプタ10を白抜きの矢印6で示した方向に進行させる。
一方、白抜きの矢印7、及び矢印8は、マルチコプタ10に作用する重力を表している。つまり、矢印7、及び矢印8で示された方向は、重力方向である。マルチコプタ10の質量をMとし、外枠1の質量をmとし、重力加速度をgとすると、マルチコプタ10にはMgの重力が作用し、外枠1にはmgの重力が作用する。飛行装置100にかかる重力は、マルチコプタ10、及び外枠1等にかかる重力の総和である。矢印7は、マルチコプタ10に作用する重力を示し、矢印8は、外枠1にかかる重力を示している。
図3に示した例では、矢印6の方向への推力は、重力方向とは反対の方向に作用しており、この場合の推力は、揚力に等しい。そのため、このような揚力が、飛行装置100にかかる重力の総和を上回ると、マルチコプタ10は浮き上がる。
但し、各プロペラが回転することによって生じる回転力の反作用を打ち消すため、隣接するプロペラは逆方向に回転し、相対するプロペラは同方向に回転するように制御される。例えば、プロペラ15aとプロペラ15cは時計回りに回転する。一方プロペラ15bとプロペラ15dは反時計回りに回転する。これにより、プロペラの回転で生じる回転力の反作用が打ち消され、マルチコプタ10は安定して浮き上がることができる。
一方、モータ14a~14dの回転数が相互に異なると、プロペラ15a~15dはそれぞれ異なる推力を発生する。各プロペラの推力の違いにより、マルチコプタ10は浮き上がりながら所望の方向に傾く。これにより、マルチコプタ10は傾いた方向に進行、すなわち飛行することが可能となる。
例えば、図2(b)において、モータ14a、及び14dを、モータ14b、及び14cより高い回転数で回転させると、プロペラ15a、及び15dによる推力は、プロペラ15b、及び15cによる推力より大きくなる。これによりマルチコプタ10は、A軸回りに傾き、+B軸方向に進行、すなわち飛行することができる。
次に、本実施形態の飛行装置の有する制御装置のハードウェア構成を説明する。図4は、本実施形態の飛行装置100の有する制御装置200のハードウェア構成の一例を示すブロック図である。
図4に示されているように、制御装置200は、CPU(Central Processing Unit)201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、フラッシュメモリ204と、電源部205と、カメラ制御部206と、通信I/F(Inter/Face)207とを有している。また、制御装置200は、モータ制御部(CW)208と、モータ制御部(CCW)209と、センサI/F210とを有している。これらは、システムバスBを介して相互に接続されている。
CPU201は、制御装置200の動作を統括的に制御する。CPU201は、RAM203をワークエリア、すなわち作業領域としてROM202、又はフラッシュメモリ204等に格納されたプログラムを実行することで、制御装置200全体の動作を制御し、後述する各種機能を実現する。
フラッシュメモリ204は、CPUが実行するプログラムや、カメラ16により撮像された画像、又は映像等を記憶することができる。
電源部205は、蓄電池212を有しており、蓄電池212からの電力を制御装置200に供給する。
カメラ制御部206は、CPU201の指示に従い制御信号を生成し、制御信号に基づく電圧信号を出力することで、カメラ16による撮像を制御する電気回路である。また制御装置200は、カメラ制御部206を通じて、カメラ16により撮像された画像、又は映像を入力することができる。
通信I/F207は、無線通信により操作装置300に接続するためのインタフェースである。制御装置200は、通信I/F207を介して操作装置300からの遠隔操作信号をCPU201に入力し、またカメラ16により撮像された画像等の制御装置200が取得したデータを、操作装置300に出力する。
モータ制御部(CW)208は、モータ14a、及びモータ14cに電気的に接続されている。モータ制御部(CW)208は、CPU201の指示に従い制御信号を生成し、制御信号に基づく電圧信号を出力することで、モータ14a、及びモータ14cの回転を制御する電気回路である。モータ制御部(CCW)209も同様に、モータ14b、及びモータ14dに電気的に接続され、CPU201からの指示に従い制御信号を生成し、制御信号に基づく電圧信号を出力することで、モータ14b、及びモータ14dの回転を制御する電気回路である。
なお、モータ制御部(CW)208は、CW(Clockwise)信号を出力し、モータ14a、及びモータ14cを時計回りに回転させる。モータ制御部(CCW)209は、CCW(Counterclockwise)信号を出力し、モータ14b、及びモータ14dを反時計回りに回転させる。
センサI/F210は、飛行装置100に設けられた慣性センサ213、及び測距センサ214に接続するためのインタフェースである。制御装置200は、慣性センサ213、及び測距センサ214により検出された飛行装置100のデータをセンサI/F210を介してCPU201に入力する。入力データは、飛行装置100の飛行の制御、又は飛行装置100による点検の制御等に用いられる。
慣性センサ213は、角速度や加速度を検知し、これに基づき、飛行装置100の姿勢、又は運動状態を検知する。慣性センサ213により検知されたデータは、飛行制御に用いられる。慣性センサ213に代えて、3軸加速度センサ、3軸ジャイロセンサ、及び3軸磁気センサを有する慣性計測装置を設けてもよい。測距センサ214は、飛行装置100による点検のために、点検対象となる構造物等との距離を計測する。
なお、CPU201で行う処理の一部、又は全部を、FPGA(Field-Programmable Gate Array)やASIC等の電子回路で実現してもよい。
また飛行装置100に、点検対象を照明するための照明装置を備えさせ、制御装置200は、照明装置による照明の制御を行うことにしてもよい。さらに、慣性センサや測距センサ以外に他の対象を検出するためのセンサを設けてもよい。
制御装置200は、CPU201の命令、及び図4に示したハードウェア構成によって、次に説明する機能構成を実現することができる。
図5は、本実施形態の制御装置200の機能構成の一例を示すブロック図である。制御装置200は、飛行制御部216と、通信制御部217と、撮像制御部218と、点検制御部219とを有している。
飛行制御部216は、飛行装置100の飛行を制御する。例えば、飛行制御部216は、操作装置300から入力される遠隔操作信号、或いは慣性センサ213により検出された飛行装置100の姿勢、又は運動状態等に基づき、モータ制御部(CW)208、及び/又はモータ制御部(CCW)209により、モータ14a~14dの回転を制御する。これにより、飛行装置100の姿勢、又は運動状態等が制御される。飛行制御部216は、例えばモータ制御部(CW)208、モータ制御部(CCW)209、及びCPU201等により実現される。
通信制御部217は、通信I/F207を介して、無線通信により接続された操作装置300と通信する。例えば、通信制御部217は、操作装置300からの遠隔操作信号を受信する。或いはカメラ16が撮像した画像、又は映像を操作装置300に送信する。通信制御部217は、通信I/F207、及びCPU201等により実現される。
撮像制御部218は、CPU201の指示に従いカメラ16による撮像を制御する。撮像制御部218は、カメラ16のシャッター速度、及びフレームレート等を制御する。
点検制御部219は、飛行装置100が行う点検のための動作を制御する。点検時における飛行装置100の姿勢、運動状態、又は点検対象となる構造物等までの距離等を制御する。
次に、飛行装置100の飛行時におけるマルチコプタ10の姿勢について説明する。飛行装置100がマルチコプタ10の揚力、及び/又は推力により飛行する際、マルチコプタ10は、第1接続ジョイント3a、及び3bを介して外枠1を支持している。この場合、第1接続ジョイント3a、及び3bには、外枠1の重量による負荷がかかる。負荷に応じて、外枠1がマルチコプタ10に対してA軸回りに回動する時に摺動抵抗が生じる。
摺動抵抗があると、外枠1が構造物等に接触して外力を受け、マルチコプタ10に対してA軸回りに回動する際、マルチコプタ10に対し、トルク、すなわちA軸回りのモーメントがかかる。このようなトルクは、マルチコプタ10の姿勢を乱す要因となる。
図6は、本実施形態が適用されない飛行装置500に対し、トルクがかかった時のマルチコプタ10の姿勢の変化を示している。
図6は、飛行装置500が、構造物50に接触しながら、破線で示した矢印51の方向に進行している様子を示している。(a)~(c)は、進行中における飛行装置500の3つの状態を示している。
飛行装置500のマルチコプタ501は、本実施形態のマルチコプタ10と同様に、プロペラ502、モータ503、保持部材504、制御ユニット505、プロペラ507及びカメラ508を備える。一方、本実施形態のマルチコプタ10とは異なり、プロペラ502、及びモータ503が、重力方向において、外枠506の回動軸であるA軸よりも上方に配置されている。
まず図6(a)の状態は、トルクがかかっていない状態である。図6(a)の状態で、外枠506が構造物50に接触すると、矢印52の方向への外力が飛行装置100に加わる。図6(b)の状態では、外枠506は、外力に応じて矢印53の方向に回動している。つまり外枠506は、A軸回りに回動している。
この時、上述した摺動抵抗により、マルチコプタ501には、矢印54の方向へのトルクがかかる。トルクに応じて、マルチコプタ501は傾いている。つまりマルチコプタ501の姿勢が変化している。図6(c)では、図6(b)の状態における傾きの反動で、マルチコプタ501が逆方向に傾いている。
狭隘部等の点検では、外枠を構造物に接触させながら飛行装置を進行させ、構造物の表面の撮影を行うため、図6に例示したように、飛行装置の外枠に外力が常時かかる。そのため、飛行装置は図6(b)、又は図6(c)の状態になりやすい。この状態のように飛行装置の姿勢が乱れると、撮影する画像がぶれ、点検に適した画像、又は映像を取得できなくなる場合がある。
そこで、本実施形態では、図2で示したように、モータ14a~14d、及びプロペラ15a~15dの重心を、重力方向においてA軸より下方に位置させている。本実施形態では、モータ14a~14d、及びプロペラ15a~15dをフレーム11(A軸)よりも下方に設けているが、モータ14a~14d、及びプロペラ15a~15dの重心がフレーム11よりも下方に位置していれば、モータ14a~14dやプロペラ15a~15dの一部が、フレーム11よりも上方にあってもよい。
プロペラと、プロペラを回転させるためのモータは、飛行装置の構成部品の中で比較的重量が大きい。特に飛行装置がプロペラとモータとを複数有する場合、他の構成部品と比較したこれらの重量の大きさは、より顕著となる。
この作用について、図7を参照して説明する。図7は、マルチコプタ10にA軸回りのトルクがかかった場合の、マルチコプタ10のA軸回りの動きと重心位置との位置関係を説明する図である。
図7において、A軸は、B軸とC軸との交点において、B軸とC軸に直交する軸である。20はマルチコプタ10の重心を示している。図7(a)は、トルクがかかっていない状態である。図7(a)において、距離Lは、A軸から重心20までの距離である。図7(b)は、マルチコプタ10に、矢印55で示した方向に、トルクNがかかった状態である。トルクNに伴い、マルチコプタ10がA軸回りに回動している。
ここで、マルチコプタ10のA軸回りの慣性モーメントをIとすると、トルクNがかかった場合に、マルチコプタ10に生じる角加速度αは、次の(1)式で表される。
α=N/I (1)
(1)式から分かるように、慣性モーメントIが大きいほど、マルチコプタ10に生じる角加速度は小さくなり、マルチコプタ10の姿勢の変化は小さくなる。
一方、マルチコプタ10の質量をmとすると、マルチコプタ10のA軸回りの慣性モーメントIは、次の(2)で表される。
I=m・L (2)
(2)式から分かるように、慣性モーメントIは、距離Lが大きいほど大きくなる。
このように、マルチコプタ10の重心位置が、重力方向においてA軸より下方にあると、トルクが発生した場合にマルチコプタ10に生じる角加速度αが小さくなり、マルチコプタ10の姿勢の変化が抑制される。
従って、本実施形態において、モータ14a~14b、及びプロペラ15a~15bの重心19aと、モータ14c~14d、及びプロペラ15c~15dの重心19bを、それぞれ重力方向においてA軸より下方に位置させ、マルチコプタ10の重心位置を低くすることで、トルクが発生した場合のマルチコプタ10の姿勢の変化を抑制することができる。言い換えると、飛行の際に外枠が外部と接触して外力を受けることが多い場合でも、マルチコプタの姿勢を乱さない飛行装置を提供することができる。
また、マルチコプタ10の重心20の位置が、重力方向においてA軸より下方にあると、マルチコプタ10が水平の時に位置エネルギーが最小となる。そのため、重力の作用でマルチコプタ10の水平状態が得られやすくなる。少なくとも、外枠1を固定した状態でマルチコプタ10を揺らした後、マルチコプタ10が飛行姿勢に落ち着けば、重心20はA軸より下方と言える。
図8は、本実施形態の飛行装置100に対し、トルクがかかった時のマルチコプタ10の姿勢の変化を示している。
図8は、図6と同様に、飛行装置100が、構造物50に接触しながら、破線で示した矢印51の方向に進行している様子を示している。図8(a)~(c)は、進行中における飛行装置100の3つの状態を示している。
図6と比較し、図8(b)の状態でのマルチコプタ10の回動が小さい。また水平状態を得やすいため、マルチコプタ10が回動しても、図8(c)に示すように素早く水平状態に戻っている。
ここで、図8のように、飛行装置100を矢印51の方向に進行させながら、構造物50の表面に対向させ、構造物の鉛直下向きの面を撮影可能な向きに配置されたカメラ16で、構造物50の表面を撮影し、構造物を点検する場合を考える。この場合、マルチコプタ10の水平を保った状態で、外枠1を構造物50の表面に接触させ、外枠1を転がすようにして飛行装置100を進行させながら、撮影が行えると好適である。マルチコプタ10、及びカメラ16を構造物に近接させて撮影することができ、死角が少なく、かつ高解像度の画像が取得できるためである。
本実施形態によれば、外枠への外力によるマルチコプタ10の回動を抑制でき、またマルチコプタ10が回動しても、姿勢の変化が小さく、素早く水平状態に戻せるため、上述したような点検のための撮影を、実現しやすくなる。なお、構造物50の表面は、「構造物の鉛直下向きの面」の一例である。
また、本実施形態では、モータ14a~14b、及びプロペラ15a~15bは、重力方向において、フレーム11(A軸)よりも下方に設けられ、モータ14c~14d、及びプロペラ15c~15dは、重力方向において、フレーム11(A軸)よりも鉛直下方に設けられている。これにより、マルチコプタ10の重心を低くすることができ、上述したものと同様に、外枠への外力によるマルチコプタ10の回動を抑制できる。そして、マルチコプタ10が回動した場合にも、姿勢の変化を小さくでき、素早く水平状態に戻せるため、点検のための撮影を実現しやすくできる。
さらに、本実施形態によれば、重力方向においてプロペラ15a~15dの重心をA軸の下方に位置させ、カメラ16の重心をA軸の上方に位置させることで、プロペラ15a~15dに妨げられることなく、カメラ16の撮影視野を確保しやすくなる。
図8に示したように、構造物の鉛直下向きの表面等をカメラ16で撮影する場合、プロペラ15a~15dに妨げられることなく、カメラ16の撮影視野を確実に確保できるため、特に好適である。
[第2の実施形態]
次に、第2の実施形態の飛行装置について説明する。なお、第1の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
本実施形態では、電源部は複数の蓄電池を有し、各蓄電池の重心を、重力方向においてA軸より下方に位置させ、かつC軸上には位置させないことにしている。図9は、本実施形態の飛行装置におけるマルチコプタ10aの構成の一例を示している。
図9において、マルチコプタ10aは、制御ユニット12aと、蓄電池17a、及び17bとを有している。制御ユニット12aは、第1の実施形態と異なり、電源部を備えず、制御装置200のみを備えている。
蓄電池17a、及び蓄電池17bは、電源部として機能する。また蓄電池17aの重心21a、及び蓄電池17bの重心21bは、重力方向においてA軸より下方にあり、C軸上から離れている。ここで「C軸上から離れている」とは、蓄電池17aの重心21a、及び蓄電池17bの重心21bが、C軸上とは異なる位置にあることを意味している。
蓄電池は、構成部品の中でも比較的重量が大きい。特に飛行装置が蓄電池を複数有する場合、他の構成部品と比較したこれらの重量の大きさは、より顕著となる。本実施形態では、蓄電池17a、及び17bの重心を、重力方向においてA軸より下方に位置させることで、マルチコプタ10の姿勢の変化を更に抑制している。
また蓄電池17a、及び蓄電池17bの重心を、C軸上から離れて位置させることで、C軸回りの回動、すなわちヨーイングに対する慣性モーメントを大きくしている。これにより外枠1の回動に対するマルチコプタ10の姿勢の変化を更に抑制することができる。ここで、蓄電池17a、及び17bは、「複数の蓄電池」の一例であり、C軸は、「第3の回動軸」の一例である。
なお、上記以外の効果は、第1の実施形態で説明したものと同様である。
[第3の実施形態]
次に、第3の実施形態の飛行装置について説明する。なお、第1~2の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
本実施形態では、飛行装置の有する外枠は、ジオデシックドーム構造、又はフラーレン構造の少なくとも一つを含んでいる。
ジオデシックドーム構造とは、球に近い正多面体である正十二面体、又は正二十面体、或いは半正多面体の切頂二十面体を、更に対称性をできるだけ持たせながら正三角形に近い三角形で細分割し、球面をその測地線(ジオデシック)、又は測地線を近似する線分の集まりで構成したドーム状構造である。特に、そのような構造を均質な構造材を多数並べることによってくみ上げたドーム状構造である。
フラーレン構造とは、五角形の面と六角形の面の20枚で構成された切頂二十面体のドーム状構造である。フラーレン構造は、所謂サッカーボール状の構造である。特に、そのような構造を均質な構造材を多数並べることによってくみ上げたドーム状構造である。
図10(a)は、ジオデシックドーム構造の一例を示している。本実施形態では、相互に直交するA軸、B軸、及びC軸で回動可能なジオデシックドーム構造の外枠を含む3つの外枠を有している。第1外枠60cは、C軸回りに回動するジオデシックドーム構造を有している。第1外枠60cの内側には、B軸回りに回動する第2外枠60bが配置されている。また第2外枠60bの内側には、A軸回りに回動する第3外枠60aが配置されている。更に第3外枠60aの内側には、マルチコプタ10が配置されている。マルチコプタ10は、外枠60に対してA軸、B軸、及びC軸の周りに独立に回動することができる。
図10(b)は、フラーレン構造の一例を示している。本実施形態では、上記図10(a)と同様に、相互に直交するA軸、B軸、及びC軸で回動可能なフラーレン構造の外枠を含む3つの外枠を有している。第1外枠60cは、C軸回りに回動するフラーレン構造を有している。第1外枠60cの内側には、B軸回りに回動する第2外枠60bが配置されている。また第2外枠60bの内側には、A軸回りに回動する第3外枠60aが配置されている。更に第3外枠60aの内側には、マルチコプタ10が配置されている。マルチコプタ10は、外枠60に対してA軸、B軸、及びC軸の周りに独立に回動することができる。
本実施形態によれば、図8において、マルチコプタ10の水平を保った状態で、外枠を構造物50の表面に接触させ、外枠を転がすようにして撮影を行う場合に、外枠をより円滑に転がすことができる。これにより外枠に加わる外力を抑制し、外枠の回動に対するマルチコプタ10の姿勢の変化を更に抑制することができる。またフラーレン構造によれば、ジオデシックドーム構造と比較してフレームの本数を少なくできるため、カメラ16の撮影画像へのフレームの映り込みが低減し、かつ飛行装置を軽量化することができる。
なお、上記以外の効果は、第1~2の実施形態で説明したものと同様である。
[第4の実施形態]
次に、第4の実施形態の飛行システムについて説明する。なお、第1~3の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
本実施形態の飛行システムは、飛行装置100と、操作装置300とを有している。
図11は、本実施形態の飛行システム70の機能構成の一例を示すブロック図である。操作装置300は、通信制御部301と、記憶制御部302と、表示制御部303と、操作制御部304とを有している。
通信制御部301は、飛行装置100に備えられ、無線通信により接続された制御装置200と通信を行う。例えば、通信制御部301は、カメラ16が撮像した画像、又は映像を制御装置200から受信する。また、通信制御部301は、飛行装置100を操作する遠隔操作信号を制御装置200に送信する。
記憶制御部302は、制御装置200から受信した画像、又は映像をROM、又はフラッシュメモリ等に記憶させる。
表示制御部303は、制御装置200から受信した画像、又は映像を操作装置300の表示部等に表示させる。
操作制御部304は、飛行装置100を操作するための入力信号を受け付ける。飛行装置100を操作する入力とは、例えば、飛行装置100の飛行を操縦する操作や、点検モードに移行させる操作等である。
なお、操作装置300のハードウェアは、例えば、CPU、ROM、RAM等を有して構成される。操作装置300は、ROMに予め記憶されているプログラムに従って、RAMをワークメモリとして用いて、上記の制御を行うことができる。
<第5の実施形態>
次に、第5の実施形態の構造物の点検システムについて説明する。なお、第1~4の実施の形態において、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
図12は、本実施形態の点検システムの機能構成の一例を示すブロック図である。本実施形態の点検システム80は、飛行装置100aと、操作装置300と、点検装置400とを有している。ここで、点検システム80は、「構造物の点検システム」の一例である。
飛行装置100aは、制御装置200aを有し、制御装置200aは、通信制御部217aと、記憶部220とを有している。
通信制御部217aは、無線通信により接続された操作装置の通信制御部301と通信を行う。また通信制御部217aは、無線通信により接続された点検装置の通信制御部401と通信を行う。例えば、通信制御部217aは、飛行装置100aを操作する遠隔操作信号を操作装置300から受信する。また通信制御部217aは、カメラ16が撮像した画像、又は映像を点検装置400に送信する。
記憶部220は、カメラ16により撮影した画像を記憶する。なお記憶部305は、飛行装置に設けられたSDカード等により実現される。
一方、点検装置400は、飛行装置100aのカメラ16で撮影された構造物の表面等の画像を受信し、点検のための処理等を実施する。点検装置400は、例えば構造物から離れた場所にあるオフィスに設置されたPC(Personal Computer)等である。
点検装置400は、通信制御部401と、画像処理部402と、表示部403と、外部I/F404と、記憶部405とを有している。点検装置400は、「飛行装置、又は操作装置の少なくとも1つと通信可能な端末」の一例である。
通信制御部401は、飛行装置100aの通信制御部217aから、カメラ16により撮影された画像を受信する。画像処理部402は、受信した画像に対し、点検等のための所定の画像処理を実行する。表示部403は、画像処理部402による処理画像を表示する。外部I/F部404は、USB(Universal Serial Bus)等の外部記憶装置に接続されている。点検装置400は、外部I/F部404を通じて、記憶装置等の外部機器とのデータの入出力が可能である。
飛行装置100aは水平方向に移動しながら、カメラ16により、橋梁の床版や桁下面のような鉛直下向き面の画像の一部を撮影した画像群を取得する。動画撮影のように連続撮影することにより、隣接フレーム間で重なりのある画像群となる。
取得された画像群は、通信制御部217aを介して点検装置400に送信される。点検装置400は、通信制御部401を介して画像群を受信する。受信された画像群は、画像処理部402に入力される。
画像処理部402は、画像群を、例えば横桁で区切られた格間のような点検単位に合成する(第2の画像の一例)。なお格間とは、建築において天井やヴォールトを覆う正方形、長方形、八角形などの形状のくぼんだパネルのことである。また画像処理部402は、合成された画像を画像処理し、橋梁における損傷の有無や種類、程度の分類等を行う。これらの結果は、点検結果として記憶部405に保存される。点検結果は印刷されたり、電子ファイルとして取り出されたりして、点検調書として取り扱われる。その際、画像群と点検単位に合成された画像は関連付けられて出力される。すなわち印刷したり、電子ファイルとして取り出したりすることができる。
以上では、橋梁における損傷の有無や種類、程度の分類等を画像処理部402が行う例を示したが、これに限定されるものではない。画像群を点検装置400の表示部403に表示させ、点検者がこれを目視することで橋梁における損傷の有無や種類、程度の分類等を行ってもよい。この場合、点検者は必要に応じて先に合成した点検単位の画像を同時に表示させ、点検を行っている画像の位置の把握に利用してもよい。なお、表示部403はPCのモニター等で実現される。点検者はPC等で点検結果の電子ファイルを作成し、必要な書式に従い点検調書として扱えばよい。
また、記憶部は、制御装置200a、操作装置300、又は点検装置400の1つ以上が備える構成としてもよい。画像処理部402も同様に、制御装置200a、操作装置300、又は点検装置400の1つ以上が備える構成としてもよい。
飛行装置100aで取得した画像を、操作装置300を介して点検装置400に送信する構成としてもよい。
制御装置200aが記憶部220、及び画像処理部402を備えるメリットとして、撮影した画像に画質調整等の処理をして送信することができる点等がある。点検装置400が記憶部405、及び画像処理部402を備えるメリットとして、制御装置200aは単に撮影した画像を送信するだけとなり、画像処理等の負荷がかかる処理は、離れた場所のPC等で実施できるという点等がある。
このような点検システムを用いることで、橋梁下面のような人が近接困難な部分に近接することなく点検作業を行うことができる。
飛行装置100aは撮影するだけなので、撮影現場には飛行操縦技能を有する者のみがいればよく、高度な知識を有するコンクリート診断士などの資格者(点検者)は、撮影現場にはいなくてもよくなる。
撮影された画像は、別のオフィス事務所など撮影現場から離れたところにあるPC等に送られ、そこで点検者は撮影画像、及び画像処理された画像を閲覧し、点検することができる。これにより、点検者が現場に行かずに複数の橋梁の点検を行え、点検効率を上げることができる。
操作装置300に、飛行装置100aの状況を表示することで、操縦者が利用することができるようにしてもよい。これにより機体を安定して飛ばせているのかどうかを目視できるような場所に操縦者がいない場合に、飛行装置100aの状況を確認できるので好ましい。また操作装置300に、撮影画像を表示させてもよい。
以上、実施形態に係る飛行装置、飛行システム、及び構造物の点検システムについて説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。
なお、冒頭でA軸、B軸、及びC軸と、ピッチング挙動、ローリング挙動、及びヨーイング挙動の対応を示したが、これに限定はされない。例えば、A軸をローリング挙動の回動軸、B軸をピッチング挙動の回動軸、C軸をヨーイング挙動の回動軸等としても構わない。
1、60 外枠
1a、60c 第1外枠(第1の外枠の一例)
1b、60b 第2外枠
1c、60a 第3外枠
2a、2b 支持枠
3a、3b 第1接続ジョイント
4a、4b 第2接続ジョイント
5a、5b 第3接続ジョイント
6、7、8、51、52、53、54、55 矢印
10、10b マルチコプタ(機体の一例)
11 フレーム
12 制御ユニット
13、13a、13b 保持部材
14、14a、14b、14c、14d モータ(回転翼駆動手段の一例)
15、15a、15b、15c、15d プロペラ(回転翼の一例)
16 カメラ(撮影手段の一例)
16a 結像光学系
16b カメラ本体
17a、17b、212 蓄電池
19a モータ14a~14b及びプロペラ15a~15bの重心
19b モータ14c~14d及びプロペラ15c~15dの重心
20 マルチコプタの重心
21a 蓄電池17aの重心
21b 蓄電池17bの重心
50 構造物
70 飛行システム
80 点検システム(構造物の点検システムの一例)
100、100a 飛行装置
200、200a 制御装置
205 電源部
213 慣性センサ
214 測距センサ
216 飛行制御部
217、217a 通信制御部
218 撮像制御部
219 点検制御部
220、405 記憶部
300 操作装置
301 通信制御部
302 記憶制御部
303 表示制御部
304 操作制御部
400 点検装置(端末の一例)
401 通信制御部
402 画像処理部
403 表示部
404 外部I/F部
A軸 ピッチング挙動の回動軸(第1の回動軸の一例)
B軸 ローリング挙動の回動軸(第2の回動軸の一例)
C軸 ヨーイング挙動の回動軸(第3の回動軸の一例)
特許第6224234号公報

Claims (10)

  1. 機体と、
    前記機体に回動可能に接続される外枠と、
    を有する飛行装置であって、
    前記機体は、
    回転翼と、
    前記回転翼を回転させる回転翼駆動手段と、
    を有し、
    前記外枠は、重力方向と交差する第1の回動軸で回動可能な第1の外枠を有し、
    前記回転翼、及び前記回転翼駆動手段の重心は、前記重力方向において、前記第1の回動軸より下方に位置しており、
    前記外枠は、前記第1の外枠に接続される第2の外枠と、
    前記第2の外枠に接続され、前記重力方向を軸とする第3の回動軸で回動可能な第3の外枠と、
    複数の蓄電池と、を有し、
    前記第2の外枠は、前記重力方向と交差し、前記第1の回動軸に直交する第2の回動軸で回動可能であり、
    前記複数の蓄電池のそれぞれの重心は、前記重力方向において、前記第1の回動軸より下方に位置し、かつ第3の回動軸上とは異なる位置にある
    ことを特徴とする飛行装置。
  2. 機体と、
    前記機体に回動可能に接続される外枠と、
    を有する飛行装置であって、
    前記機体は、
    回転翼と、
    前記回転翼を回転させる回転翼駆動手段と、
    を有し、
    前記外枠は、重力方向と交差する第1の回動軸で回動可能な第1の外枠を有し、
    前記回転翼、及び前記回転翼駆動手段は、前記重力方向において、前記第1の回動軸より下方に位置しており、
    前記外枠は、前記第1の外枠に接続される第2の外枠と、
    前記第2の外枠に接続され、前記重力方向を軸とする第3の回動軸で回動可能な第3の外枠と、
    複数の蓄電池と、を有し、
    前記第2の外枠は、前記重力方向と交差し、前記第1の回動軸に直交する第2の回動軸で回動可能であり、
    前記複数の蓄電池のそれぞれの重心は、前記重力方向において、前記第1の回動軸より下方に位置し、かつ第3の回動軸上とは異なる位置にある
    ことを特徴とする飛行装置。
  3. 蓄電池を有し、
    前記蓄電池の重心は、前記重力方向において、前記第1の回動軸より下方に位置している
    ことを特徴とする請求項1、又は2に記載の飛行装置。
  4. 前記回転翼、及び前記回転翼駆動手段は、前記第1の回動軸より下方に位置している
    ことを特徴とする請求項1に記載の飛行装置。
  5. 記回転翼、及び前記回転翼駆動手段の重心は、前記第2の回動軸より下方に位置する
    ことを特徴とする請求項1乃至の何れか1項に記載の飛行装置。
  6. 前記外枠は、ジオデシックドーム構造、又はフラーレン構造の少なくとも一つを有する
    ことを特徴とする請求項1乃至の何れか1項に記載の飛行装置。
  7. 前記機体は、撮影により画像、又は映像を取得する撮影手段を有し、
    前記撮影手段の重心は、前記重力方向において、前記第1の回動軸より上方に位置している
    ことを特徴とする請求項1乃至の何れか1項に記載の飛行装置。
  8. 前記撮影手段は、構造物の鉛直下向きの面を撮影可能な向きに配置されている
    ことを特徴とする請求項に記載の飛行装置。
  9. 請求項1乃至の何れか1項に記載の飛行装置と、
    前記飛行装置を操作する操作装置と、を有する
    ことを特徴とする飛行システム。
  10. 請求項7又は8に記載の飛行装置と、前記飛行装置を操作する操作装置と、
    記飛行装置、又は前記操作装置の少なくとも1つと通信可能な端末と、を有し、
    前記端末は、前記撮影手段により撮影された前記画像を用いて第2の画像を生成し、前記画像と前記第2の画像とを関連付けし出力することを特徴とする構造物の点検システム。
JP2018235437A 2018-02-05 2018-12-17 飛行装置、飛行システム、及び構造物の点検システム Active JP7238380B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/770,880 US11560215B2 (en) 2018-02-05 2019-01-24 Aircraft, flight system, and structure inspection system
EP19704468.8A EP3749573B1 (en) 2018-02-05 2019-01-24 Aircraft, flight system, and structure inspection system
PCT/JP2019/002298 WO2019151112A1 (en) 2018-02-05 2019-01-24 Aircraft, flight system, and structure inspection system
CN201980007682.XA CN111566007B (zh) 2018-02-05 2019-01-24 飞行器,飞行系统,以及结构物检查系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018575 2018-02-05
JP2018018575 2018-02-05

Publications (2)

Publication Number Publication Date
JP2019135142A JP2019135142A (ja) 2019-08-15
JP7238380B2 true JP7238380B2 (ja) 2023-03-14

Family

ID=67623749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235437A Active JP7238380B2 (ja) 2018-02-05 2018-12-17 飛行装置、飛行システム、及び構造物の点検システム

Country Status (4)

Country Link
US (1) US11560215B2 (ja)
EP (1) EP3749573B1 (ja)
JP (1) JP7238380B2 (ja)
CN (1) CN111566007B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230093447A1 (en) * 2017-06-27 2023-03-23 Bonavide (PTY) LTD Rotary-wing unmanned aerial vehicle
JP7020300B2 (ja) * 2018-05-31 2022-02-16 富士通株式会社 飛翔機及び飛翔機の制御方法
GB201810554D0 (en) * 2018-06-27 2018-08-15 Macdonald Andrew Norman Autonomous aerial vehicle with compactible fender cage rotatable about at least two perpendicular axes
CN112313942A (zh) * 2019-09-20 2021-02-02 深圳市大疆创新科技有限公司 一种进行图像处理和框架体控制的控制装置
JP7425666B2 (ja) * 2020-05-14 2024-01-31 日立Geニュークリア・エナジー株式会社 外殻付き飛行体
JP7141443B2 (ja) * 2020-12-25 2022-09-22 楽天グループ株式会社 無人飛行装置
CN113359866B (zh) * 2021-08-06 2021-11-02 北京航空航天大学 一种分布式多栖球形无人系统的协同控制架构
JP7420329B1 (ja) 2022-05-30 2024-01-23 Dic株式会社 移動体及び移動体の飛行方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042354A1 (en) 2015-09-11 2017-03-16 Ecole Polytechnique Federale De Lausanne (Epfl) Vertical take-off and landing aerial vehicle
US20170291697A1 (en) 2016-04-08 2017-10-12 Ecole Polytechnique Federale De Lausanne (Epfl) Foldable aircraft with protective cage for transportation and transportability

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105926A1 (en) * 2011-03-22 2013-07-18 Aerovironment Inc. Invertible aircraft
CN102785775B (zh) 2012-08-08 2016-03-02 中国科学院长春光学精密机械与物理研究所 一种具有滚动功能的多旋翼飞行器
US9061558B2 (en) 2012-11-14 2015-06-23 Illinois Institute Of Technology Hybrid aerial and terrestrial vehicle
CN203227299U (zh) * 2013-05-20 2013-10-09 汕头市亨迪实业有限公司 一种可贴壁飞行的遥控飞行玩具
US9725170B2 (en) * 2013-06-11 2017-08-08 Ecole Polytechnique Federale De Lausanne (Epfl) Vertical take-off and landing aerial vehicle
ES2633217T3 (es) 2013-06-11 2017-09-19 Ecole polytechnique fédérale de Lausanne (EPFL) Vehículo aéreo de despegue y aterrizaje vertical
WO2015049798A1 (ja) 2013-10-04 2015-04-09 株式会社日立製作所 軽量小型飛行体
CN104590562B (zh) 2015-02-12 2016-11-30 马鞍山市赛迪智能科技有限公司 一种防撞式定点消防无人机
JP6567300B2 (ja) 2015-03-11 2019-08-28 株式会社フジタ 無線操縦式の回転翼機
US10106277B2 (en) * 2015-10-09 2018-10-23 Carl Michael NEELY Self-stabilizing spherical unmanned aerial vehicle camera assembly
US9796482B2 (en) * 2015-12-11 2017-10-24 Coriolis Games Corporation Aerial sensor system and mounting assembly therefor
JP2017193321A (ja) 2016-04-19 2017-10-26 株式会社石川エナジーリサーチ エンジン搭載型マルチコプター
CN109789926B (zh) * 2016-10-03 2022-10-21 盐城辉空科技有限公司 投递用旋翼机
CN107310720B (zh) * 2017-07-25 2024-02-09 郑州航空工业管理学院 一种可灵活变姿的倾转动力球形结构无人飞行器
EP3450310A1 (en) * 2017-09-05 2019-03-06 Flyability SA Unmanned aerial vehicle with protective outer cage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042354A1 (en) 2015-09-11 2017-03-16 Ecole Polytechnique Federale De Lausanne (Epfl) Vertical take-off and landing aerial vehicle
US20170291697A1 (en) 2016-04-08 2017-10-12 Ecole Polytechnique Federale De Lausanne (Epfl) Foldable aircraft with protective cage for transportation and transportability

Also Published As

Publication number Publication date
CN111566007B (zh) 2023-10-03
EP3749573B1 (en) 2024-01-24
US11560215B2 (en) 2023-01-24
JP2019135142A (ja) 2019-08-15
EP3749573A1 (en) 2020-12-16
CN111566007A (zh) 2020-08-21
US20210163122A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7238380B2 (ja) 飛行装置、飛行システム、及び構造物の点検システム
US9765926B2 (en) Systems and methods for payload stabilization
US20200164968A1 (en) Uav with transformable arms
US20200262581A1 (en) Payload mounting platform
US11708160B2 (en) Unmanned aerial vehicle with protective outer cage
JP6738611B2 (ja) 無人回転翼機
EP3194265B1 (en) Improvements in and relating to unmanned aerial vehicles
KR101783545B1 (ko) Vr 360도 전방위 촬영을 위한 무인 비행체용 카메라 짐볼 시스템
ES2902469T3 (es) Métodos y sistemas para el control del movimiento de dispositivos voladores
WO2019198768A1 (ja) 無人飛行体
JP2016088121A (ja) 観測装置
WO2019021414A1 (ja) 回転翼機
JP6369877B2 (ja) プラットフォーム
WO2020172800A1 (zh) 可移动平台的巡检控制方法和可移动平台
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2019151112A1 (en) Aircraft, flight system, and structure inspection system
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2021168821A1 (zh) 可移动平台的控制方法和设备
US20200027238A1 (en) Method for merging images and unmanned aerial vehicle
JP6798729B2 (ja) 長尺に延びる本体部を備えた飛行体
KR102584931B1 (ko) 구조물 유지 보수용 드론
CN106060357A (zh) 成像设备、无人机及机器人
JP2021059925A (ja) 橋梁検査方法及び橋梁検査システム
Hasbany et al. Tracking a system of multiple cameras on a rotating spherical robot
WO2021217372A1 (zh) 可移动平台的控制方法和设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R151 Written notification of patent or utility model registration

Ref document number: 7238380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151