JP7235168B2 - Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element - Google Patents
Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element Download PDFInfo
- Publication number
- JP7235168B2 JP7235168B2 JP2022515892A JP2022515892A JP7235168B2 JP 7235168 B2 JP7235168 B2 JP 7235168B2 JP 2022515892 A JP2022515892 A JP 2022515892A JP 2022515892 A JP2022515892 A JP 2022515892A JP 7235168 B2 JP7235168 B2 JP 7235168B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- liquid crystal
- crystal display
- display element
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/542—Macromolecular compounds
- C09K19/544—Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3066—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
- C09K19/3068—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3441—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
- C09K19/345—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
- C09K19/3458—Uncondensed pyrimidines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/34—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
- C09K19/3441—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
- C09K19/345—Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
- C09K19/3458—Uncondensed pyrimidines
- C09K19/3469—Pyrimidine with a specific end-group other than alkyl, alkoxy or -C*-
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
- G02F1/13347—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/122—Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/123—Ph-Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/14—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
- C09K19/18—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
- C09K2019/181—Ph-C≡C-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/14—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
- C09K19/18—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
- C09K2019/183—Ph-Ph-C≡C-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/3009—Cy-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/301—Cy-Cy-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3059—Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon triple bonds
- C09K2019/3063—Cy-Ph-C≡C-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3066—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
- C09K19/3068—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
- C09K2019/3083—Cy-Ph-COO-Ph
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Substances (AREA)
Description
本発明は、液晶材料、及び、重合性組成物の重合物である高分子物質から成る調光層を有する高分子分散型液晶表示素子の製造方法、並びに、該高分子分散型液晶表示素子に関する。高分子分散型液晶表示素子は、デジタルカメラやスマートフォン等の調光に使用される光シャッター、ディスプレイ用光源の光散乱板、導光板、反射型ディスプレイや透明ディスプレイの反射板、及び調光素子等を含む物品を含み、調光素子は、ガラス窓、ドア、パーティション、プライベートガラス等の住宅やビル等建築物に使用される調光素子、ガラス窓、鏡、屋根等の自動車、飛行機、船舶、電車等輸送媒体に使用される調光素子、サングラス、眼鏡、サンバイザー、時計、鏡、反射板等の装飾用調光素子等の物品を含む。 TECHNICAL FIELD The present invention relates to a liquid crystal material, a method for producing a polymer dispersed liquid crystal display element having a light control layer made of a polymeric substance that is a polymer of a polymerizable composition, and the polymer dispersed liquid crystal display element. . Polymer-dispersed liquid crystal display elements are used for optical shutters used for light control in digital cameras and smartphones, light scattering plates for light sources for displays, light guide plates, reflectors for reflective displays and transparent displays, and light control elements. Light control elements include glass windows, doors, partitions, private glass, etc. Light control elements used in buildings such as houses and buildings, glass windows, mirrors, roofs such as automobiles, airplanes, ships, Including articles such as light control elements used in transportation vehicles such as trains, decorative light control elements such as sunglasses, eyeglasses, sun visors, clocks, mirrors and reflectors.
高分子分散型液晶組成物を用いて作製される高分子分散型液晶表示素子は、偏光板を必要としないため、従来の偏光板を用いた、TN、STN、IPS又はVAモードの液晶表示素子に比べ、明るい表示が実現できるメリットがあり、素子の構成も単純であることから、調光ガラス等の光シャッター用途、各種光学素子用途、時計等セグメント表示用途に応用されている。高分子分散型液晶表示素子は高分子により液晶分子の配向が乱された状態から、電圧の印加し液晶化合物を一方向に配向させる状態に変化させることにより、光の散乱及び透過を制御するモードである。散乱時には白濁し、透過時には透明になっている。 A polymer-dispersed liquid crystal display element produced using a polymer-dispersed liquid crystal composition does not require a polarizing plate, and thus a TN, STN, IPS or VA mode liquid crystal display element using a conventional polarizing plate can be used. Compared to , it has the advantage of realizing a brighter display and the element structure is simple, so it is used for optical shutter applications such as light control glass, various optical element applications, and segment display applications such as watches. A polymer dispersion type liquid crystal display element controls the scattering and transmission of light by changing the state in which the orientation of liquid crystal molecules is disturbed by a polymer to the state in which the liquid crystal compound is oriented in one direction by applying a voltage. is. It becomes cloudy when scattering and transparent when transmitting.
この高分子分散型液晶素子には、いくつかの種類があり、例えば、ポリマー中に液晶物質の小滴を分散させたNCAPと呼ばれるタイプ(特許文献1)は大面積化には適しているものの駆動電圧が高かった。それを改善する手法としてPDLC、又はPNLCと呼ばれる、液晶材料を重合性モノマーの混合物に紫外線を照射すことにより引き起こされる重合相分離を用いたタイプ(特許文献2)等が提案され、特に低電圧化が要求される光学素子、表示素子等には液晶の連続相中に高分子の網目構造が形成されたPNLCタイプが応用されてきた。このPNLCタイプは用いる液晶組成物、高分子形成材料であるモノマー組成物の物性のみならず、高分子の網目構造のサイズ等をコントロールして目的の物性値を持つ高分子分散型液晶表示素子を作製できる。 There are several types of polymer-dispersed liquid crystal elements. For example, a type called NCAP (Patent Document 1) in which small droplets of a liquid crystal substance are dispersed in a polymer is suitable for a large area. Driving voltage was high. As a method to improve it, a type called PDLC or PNLC, which uses polymerization phase separation caused by irradiating a mixture of polymerizable monomers with a liquid crystal material with ultraviolet rays (Patent Document 2), etc., has been proposed. The PNLC type, in which a polymer network structure is formed in a continuous phase of liquid crystal, has been applied to optical elements, display elements, and the like that require a high degree of transparency. In this PNLC type, a polymer dispersed liquid crystal display element having desired physical properties can be obtained by controlling not only the physical properties of the liquid crystal composition used and the monomer composition used as the polymer forming material, but also the size of the network structure of the polymer. can be made.
これら紫外線を照射して作製するタイプの高分子分散型液晶素子は、その作製工程を的確にコントロールしないと均一な透過・散乱状態や、駆動電圧、中間調状態が得られない傾向があり、量産時に歩留まり低下等の問題点を抱えていた。特許文献3では紫外線照射強度分布をある一定の分布以内に抑える検討等もなされてはいるが、これだけでは問題は解決できていない。
These polymer-dispersed liquid crystal elements manufactured by irradiating ultraviolet rays tend to be unable to obtain a uniform transmission/scattering state, drive voltage, and halftone state unless the manufacturing process is properly controlled. There were sometimes problems such as a decrease in yield. In
本発明が解決しようとする課題は、高分子分散型液晶素子の製造方法において、均一な散乱状態、均一な透明状態、均一な駆動電圧状態を得るための的確な作製条件を見出し、上記均一な特性を有する高分子分散型液晶素子を得ることにある。 The problem to be solved by the present invention is to find, in a method for manufacturing a polymer-dispersed liquid crystal element, precise manufacturing conditions for obtaining a uniform scattering state, a uniform transparent state, and a uniform driving voltage state. An object of the present invention is to obtain a polymer-dispersed liquid crystal device having properties.
本発明者等は、上記課題を解決すべく鋭意検討を行った結果、高分子分散型液晶表示素子において、特定の作製条件で作製することにより、均一性に優れる高分子分散型液晶表示素子が得られることを見出し、本発明を完成するに至った。 The inventors of the present invention have made intensive studies to solve the above problems, and as a result, a polymer-dispersed liquid crystal display device having excellent uniformity can be obtained by manufacturing the polymer-dispersed liquid crystal display device under specific manufacturing conditions. The present inventors have found that it can be obtained, and have completed the present invention.
即ち、本発明は、少なくとも一方に電極層を有する、少なくとも一方が透明な2枚の基板間に、液晶材料、重合性組成物を含有する調光層形成材料を介在させた後、紫外線を照射して前記重合性組成物を重合させることにより、液晶材料と高分子物質から成る調光層を有する調光層の透過率の分布において上位10%の平均値Aと下位10%の平均値Bの差(A-B)の、下位10%の平均値Bに対する割合((A-B)/B×100)が200%以下の高分子分散型液晶表示素子の製造方法において、紫外線照射する液晶表示素子から見て紫外線照射ランプと反対側に位置する液晶表示素子の設置面における紫外線の最低反射率が最大反射率の50%以上であることを特徴とする、高分子分散型液晶表示素子の製造方法、及び高分子分散型液晶表示素子を提供する。
That is, in the present invention, a material for forming a light control layer containing a liquid crystal material and a polymerizable composition is interposed between two substrates, at least one of which has an electrode layer, and at least one of which is transparent. By polymerizing the polymerizable composition, the average value A of the top 10% and the average value B of the
本発明の製造方法を用いると、散乱状態、透明状態、及び、駆動電圧が均一性に優れた高分子分散型液晶表示素子が得られる。 By using the manufacturing method of the present invention, a polymer dispersed liquid crystal display element having excellent scattering state, transparent state, and excellent uniformity in driving voltage can be obtained.
本発明の製造方法で得られる高分子分散型液晶表示素子は、液晶組成物(液晶材料)、重合性組成物、重合開始剤からなる高分子分散型液晶組成物を2枚のITO付ガラス基板間等の少なくとも一方に電極層を有する、少なくとも一方が透明な2枚の基板間に注入等の手段で配置し、該調光層に紫外線を照射することにより、液晶相と高分子相の相分離を誘発させ、重合性モノマー組成物を重合させることにより、液晶相中に高分子の網目構造を形成する、または高分子中に液晶のドロップレット構造を形成することにより得ることができる。この紫外線硬化過程、及び紫外線硬化過程に至るまでの工程をコントロールすることが均一な特性を得るために重要である。また、使用する液晶組成物によっても、作製工程のコントロールの影響は大きく変化する。 The polymer-dispersed liquid crystal display element obtained by the production method of the present invention comprises a polymer-dispersed liquid crystal composition comprising a liquid crystal composition (liquid crystal material), a polymerizable composition, and a polymerization initiator on two ITO-attached glass substrates. It is placed between two substrates, at least one of which has an electrode layer between them, at least one of which is transparent, by means of injection or the like, and by irradiating the light-modulating layer with ultraviolet rays, a phase of a liquid crystal phase and a polymer phase is formed. It can be obtained by inducing separation and polymerizing the polymerizable monomer composition to form a polymer network structure in the liquid crystal phase or by forming a liquid crystal droplet structure in the polymer. It is important to control the ultraviolet curing process and the steps leading up to the ultraviolet curing process to obtain uniform properties. Also, the influence of the control of the manufacturing process changes greatly depending on the liquid crystal composition to be used.
均一な特性の指標としては、高分子分散型液晶表示素子の面内の透過率を評価し、その上位10%の平均値Aと下位10%お平均値Bの差(A-B)の、下位10%の平均値Bに対する割合((A-B)/B×100)が挙げられ、この値が200%以下であることが好ましく、100%以下であることがより好ましく、50%以下であることが更により好ましく、30%以下であることが最も好ましい。
As an index of uniform characteristics, the in-plane transmittance of the polymer dispersed liquid crystal display element is evaluated, and the difference (AB) between the average value A of the top 10% and the average value B of the
本発明の透過率は、大塚電子社製のLCD評価装置であるLCD-5200を用いBレンズでアパーチャーSの条件で測定した値を示しており、集光角3.2°の条件と同等である。 The transmittance of the present invention indicates a value measured using an LCD-5200 LCD evaluation device manufactured by Otsuka Electronics Co., Ltd. with a B lens under the condition of aperture S, which is equivalent to the condition of a condensing angle of 3.2 °. be.
本発明の高分子分散型液晶表示素子の作製方法について説明する。前述の均一な特性を有する高分子分散型液晶表示素子は以下の製法で作製することができる。少なくとも一方に電極層を有する、少なくとも一方が透明な2枚の基板間に、液晶材料、及び、重合性組成物を含有する調光層形成材料を狭持した後、熱、又は活性エネルギー線を照射することによって重合性組成物を重合させ、液晶組成物との相分離を誘発させることにより、液晶組成物と透明性高分子物質からなる調光層が形成され、得ることができる。特に紫外線を照射して重合性化合物を重合させることにより、液晶組成物との相分離を誘発させる手法が好ましい。 A method for producing the polymer dispersed liquid crystal display element of the present invention will be described. The polymer-dispersed liquid crystal display device having uniform properties as described above can be produced by the following method. After sandwiching a liquid crystal material and a light modulating layer forming material containing a polymerizable composition between two substrates at least one of which has an electrode layer and at least one of which is transparent, heat or active energy rays are applied. By polymerizing the polymerizable composition by irradiation and inducing phase separation from the liquid crystal composition, a light control layer comprising the liquid crystal composition and a transparent polymeric substance can be formed and obtained. In particular, a method of inducing phase separation from the liquid crystal composition by irradiating ultraviolet rays to polymerize the polymerizable compound is preferable.
2枚の基板はガラス、プラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムチンオキシド(ITO)をスパッタリングすることにより得ることができる。また、低波長分散の透明性基板を用いることにより本発明のデバイスの光散乱能が高まり反射率やコントラストが向上してより好ましい。低波長分散の透明性基板としては、ホウケイ酸硝子や、ポリエチレンテレフタレートまたはポリカーボネート等のプラスチック透明フィルム、1/4λの光干渉条件を使用した誘電体多層膜をコートした透明性基板が挙げられる。 The two substrates can be made of a flexible transparent material such as glass or plastic, and one can be made of an opaque material such as silicon. A transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate. Further, by using a transparent substrate with low wavelength dispersion, the light scattering ability of the device of the present invention is enhanced, and the reflectance and contrast are improved, which is more preferable. Examples of transparent substrates with low wavelength dispersion include borosilicate glass, plastic transparent films such as polyethylene terephthalate or polycarbonate, and transparent substrates coated with dielectric multilayer films using 1/4λ light interference conditions.
また、該基板上には、必要に応じて、高分子膜や、配向膜、SiO2膜、SiNx膜、やカラーフィルターを配置することもできる。配向膜としては、例えば、ポリイミド配向膜、光配向膜等が使用できる。配向膜の形成方法としては、例えばポリイミド配向膜の場合、ポリイミド樹脂組成物を該透明基板上に塗布し、180℃以上の温度で熱硬化させる。一般的に高分子分散型液晶表示素子の場合は、綿布やレーヨン布等を用いたラビング処理は行わない。Moreover, a polymer film, an alignment film, a SiO2 film, a SiNx film, and a color filter can be arranged on the substrate, if necessary. As the alignment film, for example, a polyimide alignment film, a photo-alignment film, or the like can be used. As a method for forming an alignment film, for example, in the case of a polyimide alignment film, a polyimide resin composition is applied onto the transparent substrate and thermally cured at a temperature of 180° C. or higher. Generally, in the case of a polymer dispersed liquid crystal display element, rubbing treatment using cotton cloth, rayon cloth, or the like is not performed.
カラーフィルターは、例えば、顔料分散法、印刷法、電着法、又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。 A color filter can be produced by, for example, a pigment dispersion method, a printing method, an electrodeposition method, a dyeing method, or the like. An example of a method for producing a color filter by a pigment dispersion method is to apply a curable coloring composition for a color filter onto the transparent substrate, apply a patterning treatment, and cure by heating or light irradiation. By performing this process for each of the three colors of red, green, and blue, a pixel portion for a color filter can be produced. In addition, a pixel electrode provided with an active element such as a TFT, a thin film diode, a metal insulator metal resistivity element, or the like may be provided on the substrate.
前記基板は、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1から100μmとなるように調整するのが好ましい。中でも2から50μmが好ましく、2から30μmがより好ましく、5から25μmが更に好ましく、5から15μmが最も好ましい。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱又は紫外線硬化しシール剤を硬化させる。 The substrates are opposed so that the transparent electrode layer is on the inside. At that time, the spacing between the substrates may be adjusted via spacers. In this case, it is preferable to adjust the thickness of the obtained light control layer to be 1 to 100 μm. Among them, 2 to 50 μm is preferable, 2 to 30 μm is more preferable, 5 to 25 μm is still more preferable, and 5 to 15 μm is most preferable. Examples of spacers include glass particles, plastic particles, alumina particles, photoresist materials, and the like. After that, a sealant such as an epoxy-based thermosetting composition is screen-printed on the substrate, the substrates are bonded together, and the sealant is cured by heating or ultraviolet curing.
2枚の基板間に調光層形成材料を狭持させるに方法は、通常の真空注入法でも良いが、ODF法やインクジェット方式等滴下又は塗布で行うことも好ましい。真空注入や、滴下又は塗布工程から調光層中に網目構造を形成させるために紫外線照射を行うまでの間、調光層形成材料は均一なアイソトロピック状態であることが好ましい。この均一なアイソトロピック状態は高分子分散型液晶組成物のネマチック-アイソトロピック転移点(Tni(PNM))以上の温度で得ることができる。すなわち、注入等から紫外線照射を行うまでの間、高分子分散型液晶組成物をTni(PNM)以上の温度に維持することが好ましい。もし、Tni(PNM)以下の温度にしてしまうと、液晶組成物濃度リッチ相と、重合性組成物濃度リッチ相の2相に分離してしまい、均一な状態ではなくなる可能性があり、この状態で注入等をおこなっても、均一な状態は得られにくい。特に2枚の基板間に狭持させた後にTni(PNM)以下等にすることにより2相分離の状態になると、たとえその後Tni(PNM)以上の温度にしたとしても、両相が均一に混ざりあうことは難しく、結果として均一な特性の高分子分散型液晶表示素子は得られにくくなる。 As a method for sandwiching the light control layer forming material between the two substrates, a normal vacuum injection method may be used, but it is also preferable to perform dropping or coating such as an ODF method or an ink jet method. It is preferable that the light-modulating layer-forming material is in a uniform isotropic state from the vacuum injection, dropping, or coating step to the ultraviolet irradiation for forming a network structure in the light-modulating layer. This uniform isotropic state can be obtained at a temperature equal to or higher than the nematic-isotropic transition point (Tni(PNM)) of the polymer-dispersed liquid crystal composition. That is, it is preferable to maintain the temperature of the polymer-dispersed liquid crystal composition at a temperature equal to or higher than Tni(PNM) during the period from the injection or the like until the ultraviolet irradiation. If the temperature is set to Tni (PNM) or lower, the liquid crystal composition concentration rich phase and the polymerizable composition concentration rich phase may separate into two phases, resulting in a non-uniform state. It is difficult to obtain a uniform state even if the injection or the like is performed with . In particular, when the two-phase separation occurs by lowering the temperature to Tni(PNM) or lower after being sandwiched between two substrates, the two phases are uniformly mixed even if the temperature is raised to Tni(PNM) or higher. As a result, it becomes difficult to obtain a polymer-dispersed liquid crystal display device having uniform characteristics.
紫外線重合のためのランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、調光層形成材料に含有されている光重合開始剤の吸収波長領域であり、且つ含有されている液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、具体的には、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプを使用して330nm以下の紫外線をカットして使用することが好ましい。また、単一波長を照射できるUV-LEDランプを用いることも好ましい。 As a lamp for ultraviolet polymerization, a metal halide lamp, a high-pressure mercury lamp, an extra-high pressure mercury lamp, or the like can be used. In addition, the wavelength of the ultraviolet rays to be irradiated is in the absorption wavelength range of the photopolymerization initiator contained in the light control layer forming material and is not in the absorption wavelength range of the liquid crystal composition contained. Specifically, it is preferable to use a metal halide lamp, a high-pressure mercury lamp, or an ultrahigh-pressure mercury lamp to cut ultraviolet rays of 330 nm or less. It is also preferable to use a UV-LED lamp capable of irradiating a single wavelength.
より具体的には、313nmの紫外線強度が365nmの紫外線強度に対して10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが更により好ましい。313nmの光は一部の液晶化合物の吸収波長と重なるため、液晶化合物の劣化を引き起こしたり、重合過程に悪影響を及ぼしたりする。特に後述の一般式(II)の化合物を含有する液晶組成物の場合は、これらの現象が顕著に発生する。 More specifically, the UV intensity at 313 nm is preferably 10% or less, more preferably 5% or less, and even more preferably 1% or less with respect to the UV intensity at 365 nm. Since the light of 313 nm overlaps with the absorption wavelength of some liquid crystal compounds, it causes deterioration of the liquid crystal compounds and adversely affects the polymerization process. Especially in the case of a liquid crystal composition containing a compound of general formula (II) described below, these phenomena occur remarkably.
紫外線照射の時の温度は、調光層の特性を決める重要な要素となる。前述の通り、高分子分散型液晶組成物がTi(PNM)以上であることが好ましく、Ti(PNM)+0.1℃以上から+15.0℃以下がより好ましく、Ti(PNM)+0.2℃以上から+10.0℃以下が更によりこのましく、Ti(PNM)+0.3℃以上から+5.0℃以下が最も好ましい。 The temperature at the time of ultraviolet irradiation is an important factor that determines the properties of the light control layer. As described above, the temperature of the polymer-dispersed liquid crystal composition is preferably Ti(PNM) or higher, more preferably Ti(PNM) +0.1°C or higher to +15.0°C or lower, and Ti(PNM) +0.2°C. From the above, +10.0°C or less is more preferable, and Ti(PNM) +0.3°C or more to +5.0°C or less is most preferable.
さらに紫外線照射の時に、ガラス基板等に挟まれ高分子分散型液晶組成物を挟持した液晶表示素子から見て紫外線ランプと反対側の面、すなわち紫外線照射における液晶表示素子裏面の状態も、均一な特性を有する高分子分散型液晶表示素子を得るために重要な要素となる。紫外線照射過程において、紫外線ランプからの直接光のみではなく、液晶表示素子を通過した後の反射光も特性の均一性に影響を及ぼす。この影響は後述する一般式(I-1)の化合物を含有する液晶組成物の場合、特に顕著に表れる。 Furthermore, when irradiated with ultraviolet rays, the surface on the opposite side of the liquid crystal display element sandwiched between glass substrates or the like and sandwiching the polymer-dispersed liquid crystal composition from the ultraviolet lamp, that is, the state of the back surface of the liquid crystal display element upon ultraviolet irradiation is also uniform. It is an important factor for obtaining a polymer dispersed liquid crystal display device having properties. In the ultraviolet irradiation process, not only the direct light from the ultraviolet lamp but also the reflected light after passing through the liquid crystal display device affects the uniformity of the characteristics. This effect is particularly pronounced in the case of a liquid crystal composition containing a compound of general formula (I-1), which will be described later.
液晶表示素子から見て紫外線照ランプと反対側の面における紫外線の最低反射率が最大反射率の40%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることが更により好ましく、80%以上であることが最も好ましい。特に裏面に位置決め等のガイドラインを施す場合や、表示素子固定の為の真空チャックを設ける場合には注意が必要となる。このような仕様の場合、紫外線照射時の反射の影響を考慮しないと、表示素子に真空チャック痕等の跡が発生し、均一な表示が得られない。なお、紫外線の反射率としては、分光光度計の反射測定機能を用いた365nmの反射率で評価した。 The minimum reflectance of ultraviolet rays on the surface opposite to the ultraviolet lamp when viewed from the liquid crystal display element is preferably 40% or more, more preferably 50% or more, and 70% or more of the maximum reflectance. is even more preferred, and 80% or more is most preferred. In particular, care must be taken when providing a guideline for positioning or the like on the back surface, or when providing a vacuum chuck for fixing the display element. In the case of such specifications, if the influence of reflection during irradiation of ultraviolet rays is not taken into consideration, traces such as vacuum chuck traces are generated on the display element, and a uniform display cannot be obtained. In addition, as the reflectance of ultraviolet rays, the reflectance at 365 nm using the reflection measurement function of the spectrophotometer was evaluated.
上述の手法で作製された、高分子分散型液晶表示素子内の調光層は、液晶組成物が高分子物質でカプセル状に閉じ込められたドロップレット構造、液晶組成物の連続相中に高分子物質の3次元網目構造が形成された構造、又は両者が混在した構造等を有しているが、液晶組成物の連続相中に透明性高分子物質の3次元ネットワーク構造が形成された構造であることが好ましい。 The light-modulating layer in the polymer-dispersed liquid crystal display element produced by the above-described method has a droplet structure in which the liquid crystal composition is encapsulated in a polymer substance, and the polymer in the continuous phase of the liquid crystal composition. A structure in which a three-dimensional network structure of a substance is formed, or a structure in which both are mixed, etc. A structure in which a three-dimensional network structure of a transparent polymer substance is formed in a continuous phase of a liquid crystal composition. Preferably.
網目構造の平均空隙間隔は高分子分散型液晶表示素子の特性に大きく影響し、平均空隙間隔としては、0.2から2μmが好ましく、0.4から1.5μmがより好ましく、0.5から1.0μmが最も好ましい。
(液晶組成物)
本発明の高分子分散型液晶組成物に用いる液晶組成物は一般式(I)で表される化合物を含有ことが好ましく、一般式(I)で表される化合物を2種類以上含有することが更に好ましい。The average void distance of the network structure greatly affects the characteristics of the polymer-dispersed liquid crystal display device, and the average void distance is preferably 0.2 to 2 μm, more preferably 0.4 to 1.5 μm, and more preferably 0.5 to 0.5 μm. 1.0 μm is most preferred.
(Liquid crystal composition)
The liquid crystal composition used for the polymer-dispersed liquid crystal composition of the present invention preferably contains a compound represented by general formula (I), and may contain two or more kinds of compounds represented by general formula (I). More preferred.
(式中、R1は炭素原子数1から10までのアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-CH≡CH-よって置き換えられていてもよく、
R2は、フッ素原子、塩素原子、シアノ基、CF3基、OCF3基、OCHF2基、NCS基、又は炭素原子数1~10のアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-C≡C-によって置き換えられていてもよく、好ましくはフッ素原子、シアノ基、又は炭素原子数1~5のアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-CH≡CH-よって置き換えられていてもよい)であり、
Z1、及びZ2は、それぞれ独立して、単結合、-COO-、-OCO-、-CH2-CH2-、-CH=CH-、-CF2O-、-OCF2-、又は-C≡C-を表し、Z1が複数個存在する場合は、同じであっても異なっていても良く、
A1、A2、及びA3は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基を表し、該1,4-フェニレン基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、CF3基、OCF3基又はCH3基を有していても良く、A3が複数個存在する場合は、同じであっても異なっていても良く、
n1は0、1又は2である)
一般式(I)の中でも一般式(I-1)(Wherein, R 1 represents an alkyl group having 1 to 10 carbon atoms, and one or two non-adjacent CH 2 groups in the alkyl group are replaced with an oxygen atom, -COO-, -OCO- and one or more methylene groups may be replaced by -CH=CH- or -CH≡CH-,
R 2 represents a fluorine atom, chlorine atom, cyano group, CF 3 group, OCF 3 group, OCHF 2 group, NCS group, or an alkyl group having 1 to 10 carbon atoms, and non-adjacent 1 One or two CH2 groups may be replaced by an oxygen atom, -COO-, -OCO-, and one or more methylene groups may be replaced by -CH=CH- or -C≡C-. preferably a fluorine atom, a cyano group, or an alkyl group having 1 to 5 carbon atoms (one or two non-adjacent CH 2 groups in the alkyl group may be replaced by an oxygen atom, one or more methylene groups may be replaced by -CH=CH- or -CH≡CH-),
Z 1 and Z 2 are each independently a single bond, -COO-, -OCO-, -CH 2 -CH 2 -, -CH=CH-, -CF 2 O-, -OCF 2 -, or represents -C≡C-, and when there are a plurality of Z 1 , they may be the same or different,
A 1 , A 2 and A 3 are each independently a 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1 ,3-dioxane-2,5-diyl group, decahydronaphthalene-2,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, represents a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 2,6-naphthylene group, the 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6- The diyl group, 2,6-naphthylene group may be unsubstituted or may have one or more fluorine atoms, chlorine atoms, CF3 groups, OCF3 groups or CH3 groups as substituents. , A 3 may be the same or different,
n 1 is 0, 1 or 2)
Among general formula (I), general formula (I-1)
(式中、R11は炭素原子数1から10までのアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-CH≡CH-よって置き換えられていてもよく、
R12は、フッ素原子、塩素原子、シアノ基、CF3基、OCF3基、OCHF2基、NCS基、又は炭素原子数1~10のアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-C≡C-によって置き換えられていてもよく、好ましくはフッ素原子、シアノ基、又は炭素原子数1~5のアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよい)であり、
Z11、及びZ12は、それぞれ独立して、単結合、-COO-、-OCO-、-CH2-CH2-、-CH=CH-、-CF2O-、-OCF2-、又は-C≡C-を表し、Z12が複数個存在する場合は、同じであっても異なっていても良く、
A11、A12、及びA13は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基を表し、該1,4-フェニレン基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、CF3基、OCF3基又はCH3基を有していても良く、A13が複数個存在する場合は、同じであっても異なっていても良く、
n11は0、1又は2であり、
且つ、R11中の少なくとも1つ以上のメチレン基が-CH=CH-、又は-C≡C-よって置き換えられているか、R12中の少なくとも1つ以上のメチレン基が-CH=CH-、又は-C≡C-よって置き換えられているか、Z11が-CH=CH-、又は-C≡C-であるか、及び/又は、存在するZ12が-CH=CH-、又は-C≡C-である。)で表される化合物を1種以上含有することがより好ましく、2種類以上含有することが更により好ましい。(Wherein, R 11 represents an alkyl group having 1 to 10 carbon atoms, and one or two non-adjacent CH 2 groups in the alkyl group are replaced with an oxygen atom, —COO—, —OCO— and one or more methylene groups may be replaced by -CH=CH- or -CH≡CH-,
R 12 represents a fluorine atom, chlorine atom, cyano group, CF 3 group, OCF 3 group, OCHF 2 group, NCS group, or an alkyl group having 1 to 10 carbon atoms, and non-adjacent 1 One or two CH2 groups may be replaced by an oxygen atom, -COO-, -OCO-, and one or more methylene groups may be replaced by -CH=CH- or -C≡C-. preferably a fluorine atom, a cyano group, or an alkyl group having 1 to 5 carbon atoms (one or two non-adjacent CH 2 groups in the alkyl group may be replaced by an oxygen atom) and
Z 11 and Z 12 each independently represent a single bond, -COO-, -OCO-, -CH 2 -CH 2 -, -CH=CH-, -CF 2 O-, -OCF 2 -, or represents -C≡C-, and when there are a plurality of Z 12 , they may be the same or different,
A 11 , A 12 and A 13 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, a 1,4-cyclohexenyl group, a tetrahydropyran-2,5-diyl group, 1 ,3-dioxane-2,5-diyl group, decahydronaphthalene-2,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, represents a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 2,6-naphthylene group, the 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6- The diyl group, 2,6-naphthylene group may be unsubstituted or may have one or more fluorine atoms, chlorine atoms, CF3 groups, OCF3 groups or CH3 groups as substituents. , A 13 may be the same or different,
n11 is 0, 1 or 2;
and at least one methylene group in R 11 is replaced by -CH=CH- or -C≡C-, or at least one methylene group in R 12 is -CH=CH-, or -C≡C-, or Z 11 is -CH=CH-, or -C≡C-, and/or any Z 12 present is -CH=CH-, or -C≡ is C-. ) more preferably contains one or more compounds, and more preferably contains two or more compounds.
一般式(I-1)の化合物を含有することで、より駆動電圧を低減することができ、且つ散乱性もより向上する。これらの化合物内の二重結合、又は三重結合の存在により、紫外線照射時の重合性組成物の重合過程に影響を与えて、重合速度を低下させる等の効果を有し、高分子の網目構造や、高分子のドロップレット構造を制御しやすくなる。またそれに反して、前述の紫外線重合工程における種々の条件の影響を非常に受けやすくなる。また、一般式(I-1)と、一般式(I-1)以外の一般式(I)の化合物両方を含有することが好ましく、両方を2種類以上含有することがより好ましい。 By containing the compound of general formula (I-1), the driving voltage can be further reduced and the scattering property is further improved. The presence of double bonds or triple bonds in these compounds affects the polymerization process of the polymerizable composition when irradiated with ultraviolet rays, and has effects such as reducing the polymerization rate. Also, it becomes easier to control the droplet structure of the polymer. On the contrary, it becomes very susceptible to various conditions in the ultraviolet polymerization process described above. Moreover, it preferably contains both general formula (I-1) and a compound of general formula (I) other than general formula (I-1), more preferably two or more of both.
一般式(I-1)以外の一般式(I)の化合物としては、一般式(I)中のR1が炭素原子数1から5までのアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよい)であることが好ましく、R2は、フッ素原子、シアノ基、又は炭素原子数1~5のアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよい)であることが好ましく、Z1、及びZ2は、それぞれ独立して、単結合、-COO-、-OCO-、-CH2-CH2-、-CF2O-、又は-OCF2-(Z1が複数個存在する場合は、同じであっても異なっていても良9)であることが好ましく、単結合、-COO-、-CF2O-であることがより好ましく、A1、A2、及びA3は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,3-ジオキサン-2,5-ジイル基、ピリミジン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基(該1,4-フェニレン基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、又はCH3基を有していても良く、A3が複数個存在する場合は、同じであっても異なっていても良い)であることが好ましく、1,4-フェニレン基、1,4-シクロヘキシレン基、ピリミジン-2,5-ジイル基、2,6-ナフチレン基(該1,4-フェニレン基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、又はCH3基を有していても良く、A3が複数個存在する場合は、同じであっても異なっていても良い)であることがより好ましく、n1は0、又は1であることが好ましい。As compounds of general formula (I) other than general formula (I-1), R 1 in general formula (I) is an alkyl group having 1 to 5 carbon atoms (one or two CH 2 groups may be replaced with oxygen atoms), and R 2 is a fluorine atom, a cyano group, or an alkyl group having 1 to 5 carbon atoms (non- one or two adjacent CH 2 groups may be replaced with an oxygen atom), and Z 1 and Z 2 are each independently a single bond, —COO—, —OCO— , —CH 2 —CH 2 —, —CF 2 O—, or —OCF 2 — (when a plurality of Z 1 are present, they may be the same or different 9), and a single A bond, —COO—, and —CF 2 O— are more preferred, and A 1 , A 2 , and A 3 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, a 1 ,3-dioxane-2,5-diyl group, pyrimidine-2,5-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group (the 1,4 -phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group is unsubstituted or substituted with one or more fluorine atoms, or CH may have 3 groups, and when a plurality of A 3 are present, they may be the same or different), preferably 1,4-phenylene group, 1,4-cyclohexylene group, pyrimidine-2,5-diyl group, 2,6-naphthylene group (the 1,4-phenylene group and 2,6-naphthylene group are unsubstituted or substituted with one or more fluorine or a CH 3 group, and when there are a plurality of A 3 , they may be the same or different), and n 1 is 0 or 1. Preferably.
一般式(I-1)の化合物としては、R11が炭素原子数1から5までのアルケニル基を表し、R12が、フッ素原子、又は炭素原子数1~5のアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよい)を表し、Z11、及びZ12が、それぞれ独立して、単結合、-COO-、-CF2O-を表し(Z12が複数個存在する場合は、同じであっても異なっていても良い)、A11、A12、及びA13は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基(該1,4-フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、又はCH3基を有していても良く、A13が複数個存在する場合は、同じであっても異なっていても良い)を表し、n11は0、又は1又を表す化合物、
又は、R11、及びR12がそれぞれ独立して、炭素原子数1から5までのアルキル基(該アルキル基中の非隣接の1つ又は2つのCH2基は酸素原子で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-よって置き換えられていてもよい)を表し、Z11、及びZ12が、それぞれ独立して、単結合、-COO-、-CF2O-、又は-C≡C-(Z12が複数個存在する場合は、同じであっても異なっていても良いが、少なくとも一つ以上のZ11、又はZ12が-C≡C-を表す)を表し、A11、A12、及びA13は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基(該1,4-フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、又はCH3基を有していても良く、A13が複数個存在する場合は、同じであっても異なっていても良い)を表し、n11は0、又は1又を表す化合物であることが好ましい。In the compound of general formula (I-1), R 11 represents an alkenyl group having 1 to 5 carbon atoms, and R 12 represents a fluorine atom or an alkyl group having 1 to 5 carbon atoms (in the alkyl group, one or two non-adjacent CH 2 groups may be replaced with an oxygen atom), Z 11 and Z 12 each independently represent a single bond, —COO—, —CF 2 O - represents (when there are a plurality of Z 12 , they may be the same or different), A 11 , A 12 and A 13 each independently represent a 1,4-phenylene group, 1 ,4-cyclohexylene group (the 1,4-phenylene group may be unsubstituted or may have one or more fluorine atoms or CH 3 groups as substituents, and A 13 is more than one When there are two, the compound may be the same or different), n 11 is 0 or 1,
Alternatively, each of R 11 and R 12 is independently an alkyl group having 1 to 5 carbon atoms (one or two non-adjacent CH 2 groups in the alkyl group may be replaced with oxygen atoms). one or more methylene groups may be replaced by -CH=CH-), Z 11 and Z 12 are each independently a single bond, -COO-, -CF 2 O -, or -C≡C- (when there are a plurality of Z 12 , they may be the same or different, but at least one or more Z 11 or Z 12 represents -C≡C- ), and A 11 , A 12 and A 13 each independently represent a 1,4-phenylene group and a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or substituted may have one or more fluorine atoms or CH3 groups as a group, and when there are a plurality of A 13 , they may be the same or different), n 11 is preferably a compound representing 0 or 1.
具体的には以下の式(II-1)~(II-54)で表される化合物が好ましい。 Specifically, compounds represented by the following formulas (II-1) to (II-54) are preferred.
(重合性組成物)
前記調光層中に網目構造等を形成している高分子物質は、高分子分散型液晶組成物中の重合性組成物(重合性モノマー組成物)を重合することにより得られる。重合性組成物は熱や紫外線により硬化する化合物で構成されていることが好ましく、紫外線硬化性の重合性化合物で構成されていることが好ましい。紫外線硬化性重合性化合物としては、ラジカル重合、カチオン重合、アニオン重合があげられるが、ラジカル重合性の化合物が好ましく、中でもアクリル系、メタクリル系の重合性化合物がより好ましい。アクリル系、メタクリル系の重合性化合物としては、単官能型重合性化合物、多官能型重合性化合物が上げられるが、少なくとも1種類以上の多官能型重合性化合物で構成させることが好ましく、少なくとも1種類以上の2官能型重合性化合物で構成されることがより好ましい。更により好ましい構成は2官能型重合性化合物と単官能型重合性化合物を併用することである。(Polymerizable composition)
The polymer substance forming the network structure and the like in the light control layer is obtained by polymerizing the polymerizable composition (polymerizable monomer composition) in the polymer-dispersed liquid crystal composition. The polymerizable composition is preferably composed of a compound that is cured by heat or ultraviolet rays, and preferably composed of an ultraviolet-curable polymerizable compound. Examples of the UV-curable polymerizable compound include radical polymerization, cationic polymerization, and anionic polymerization, but radically polymerizable compounds are preferred, and acrylic and methacrylic polymerizable compounds are more preferred. Examples of acrylic or methacrylic polymerizable compounds include monofunctional polymerizable compounds and polyfunctional polymerizable compounds. More preferably, it is composed of more than one type of bifunctional polymerizable compound. A more preferred configuration is to use a bifunctional polymerizable compound and a monofunctional polymerizable compound in combination.
2官能型重合性化合物としては、特に制限はないが、好ましくは一般式(III-1) The bifunctional polymerizable compound is not particularly limited, but preferably general formula (III-1)
(式中、Y1、及びY2は水素原子、又はメチル基を表し、X1は2価の有機基を表す)。該2価の有機基であるX1は分子量150~15000であることが好ましく、350~10000であることが更に好ましく、さらに炭素原子、酸素原子、窒素原子、水素原子で構成される基であることが好ましい。
X1としては、特に密着性を最重視するのであれば、一般式(III-2)(In the formula, Y 1 and Y 2 represent a hydrogen atom or a methyl group, and X 1 represents a divalent organic group). The divalent organic group X 1 preferably has a molecular weight of 150 to 15,000, more preferably 350 to 10,000, and is a group composed of a carbon atom, an oxygen atom, a nitrogen atom, and a hydrogen atom. is preferred.
As X 1 , if adhesion is the most important, general formula (III-2)
(式中、E1は炭素原子数1~4までのアルキル基を表し、該アルキル基中の一つ以上の-CH2-は酸素原子、-CO-、-COO-、-OCO-で置換されていても良く、qは1~20を表し、E2は、下記(III-2-1)~(III-2-4)(In the formula, E 1 represents an alkyl group having 1 to 4 carbon atoms, and one or more —CH 2 — in the alkyl group is substituted with an oxygen atom, —CO—, —COO—, —OCO— may be, q represents 1 to 20, E 2 is the following (III-2-1) ~ (III-2-4)
を表し、E3は下記(III-3-1)又は(III-3-2)and E 3 is the following (III-3-1) or (III-3-2)
(式中、Y3は水素原子、又はメチル基を表し、Y5は2価の芳香族基、2価の脂環式炭化水素基または炭素原子数1~14のアルキレン基を表し、該アルキレンは酸素原子、-CO-基で置換されていてもよく、Y6は炭素原子数1~14のアルキレン基を表し、該アルキレンは酸素原子、-CO-基で置換されていてもよく、r及びyは10~300を表す。)であることが好ましく、駆動電圧を重視するのであれば、X1は一般式(III-4-1)~(III-4-3)(wherein Y 3 represents a hydrogen atom or a methyl group, Y 5 represents a divalent aromatic group, a divalent alicyclic hydrocarbon group or an alkylene group having 1 to 14 carbon atoms, the alkylene may be substituted with an oxygen atom or -CO- group, Y 6 represents an alkylene group having 1 to 14 carbon atoms, the alkylene may be substituted with an oxygen atom or -CO- group, r and y represents 10 to 300.), and if the driving voltage is important, X 1 is represented by general formulas (III-4-1) to (III-4-3)
(式中、Y4はそれぞれ独立して水素原子、又はメチル基を表し、s、及びtは2~15の整数を表し、uは6~40までの整数を表し、式(III-4-3)中の1つ以上のCH2基は、酸素原子が相互に直接結合しないものとして、酸素原子、-CO-、-NH-、-COO-、-OCO-で置き換えられていてもよく、CH2基中の1つ、又は2つの水素原子は、メチル基、エチル基で置き換えられていても良い。)で表わされる化合物が好ましい。(wherein Y 4 each independently represents a hydrogen atom or a methyl group, s and t represent an integer of 2 to 15, u represents an integer of 6 to 40, and the formula (III-4- 3) one or more CH2 groups in may be replaced by an oxygen atom, -CO-, -NH-, -COO-, -OCO-, provided that the oxygen atoms are not directly bonded to each other; One or two hydrogen atoms in the CH 2 group may be replaced with a methyl group or an ethyl group.) is preferred.
X1は、特に下記(III-5-1)、又は(III-5-2)で表される化合物がより好ましい。X 1 is more preferably a compound represented by (III-5-1) or (III-5-2) below.
(式中、s1は3~12の整数を表し、m1+m2は0から6の整数を表す。)
単官能化合物としても、特に制限はないが、好ましくは一般式(IV-1)(In the formula, s1 represents an integer of 3 to 12, and m1+m2 represents an integer of 0 to 6.)
The monofunctional compound is not particularly limited, but is preferably represented by general formula (IV-1)
(式中、Y1は水素原子、又はメチル基を表し、X2は1価の有機基を表す)。(In the formula, Y 1 represents a hydrogen atom or a methyl group, and X 2 represents a monovalent organic group).
該1価の有機基であるX2は分子量100~1000であることが好ましく、110~500であることがより好ましく、120~300であることが更により好ましく、さらに炭素原子、酸素原子、水素原子で構成される基であることが好ましく、ベンゼン環を含まないことが更により好ましい。さらに好ましいX2としては、分岐基、又は環状基を有していてもよい炭素原子数8~30のアルキル基が好ましく(該アルキル基中の非隣接の1つ又は2つ以上の-CH2-はそれぞれ独立して酸素原子、-COO-、又は-OCO-で置き換えられていてもよい)、分岐基を有していてもよい炭素原子数10~25のアルキル基がより好ましく(該アルキル基中の非隣接の1つ又は2つ以上の-CH2-はそれぞれ独立して酸素原子、-COO-、又は-OCO-で置き換えられていてもよい)、分岐基を有する炭素原子数16~24のアルキル基であることが更により好ましい。The monovalent organic group X 2 preferably has a molecular weight of 100 to 1000, more preferably 110 to 500, even more preferably 120 to 300, and further preferably a carbon atom, an oxygen atom, and a hydrogen atom. It is preferably a group composed of atoms, and even more preferably does not contain a benzene ring. X 2 is more preferably an alkyl group having 8 to 30 carbon atoms which may have a branched group or a cyclic group (one or two or more non-adjacent —CH 2 - may be independently replaced with an oxygen atom, -COO-, or -OCO-), more preferably an optionally branched alkyl group having 10 to 25 carbon atoms (the alkyl one or more non-adjacent —CH 2 — in the group may be independently replaced with an oxygen atom, —COO—, or —OCO—), 16 carbon atoms having a branched group Even more preferred is an alkyl group of -24.
前記調光層中に網目構造を形成している高分子物質を紫外線重合により形成する際、光重合開始剤を用いることが好ましい。光重合開始剤としては、特に制限はないが、好ましくはアルキルフェノン系、アシルフォスフィンオキサイド系、オキシムエステル系等の分子内開裂型の開始剤が好ましく、具体的にはジフェニル-(2,4,6-トリメチルベンゾイル)フォスフィンオキシド、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ベンゾフェノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、ベンゾフェノン、メチルベンゾイルフォーメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6トリメチルベンゾフェノン、4-メチルベンゾフェノン、2-エトキシ-1,2-ジフェニルエタン-1-オン、2-(1-メチルエトキシ)-1,2-ジフェニルエタン-1-オン、及び、2-イソブトキシ-2-フェニルアセトフェノンが好ましい。 It is preferable to use a photopolymerization initiator when forming the polymer material forming the network structure in the light modulating layer by ultraviolet polymerization. The photopolymerization initiator is not particularly limited, but is preferably an intramolecular cleavage initiator such as an alkylphenone type, an acylphosphine oxide type, or an oxime ester type. Specifically, diphenyl-(2,4 ,6-trimethylbenzoyl)phosphine oxide, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane -1-one, benzophenone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4- (2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1-[4-(methylthio)phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-dimethylamino-2-(4-methyl-benzyl)-1 -(4-morpholin-4-yl-phenyl)-butan-1-one, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenyl Phosphine oxide, 1,2-octanedione, 1-[4-(phenylthio)-,2-(O-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H -carbazol-3-yl]-,1-(O-acetyloxime), benzophenone, methylbenzoyl formate, oligo{2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanone, 2,4,6 trimethylbenzophenone, 4-methylbenzophenone, 2-ethoxy-1,2-diphenylethan-1-one, 2-(1-methylethoxy)-1,2-diphenylethan-1-one, and 2-isobutoxy-2-phenylacetophenone is preferred.
特にこの中でも、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンがより好ましい。 Among these, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl-propan-1-one are more preferable.
本発明の高分子分散型液晶素子に用いる高分子分散型液晶組成物は、前述の液晶組成物(液晶材料)、重合性組成物、及び重合開始剤で構成されているが、液晶組成物を重合性組成物との比率(質量比)は90:10~40:60の範囲であることが好ましく、85:15~60:40であることがより好ましく、80:20~70:30であることが更により好ましい。 The polymer-dispersed liquid crystal composition used in the polymer-dispersed liquid crystal device of the present invention comprises the aforementioned liquid crystal composition (liquid crystal material), a polymerizable composition, and a polymerization initiator. The ratio (mass ratio) to the polymerizable composition is preferably in the range of 90:10 to 40:60, more preferably 85:15 to 60:40, and 80:20 to 70:30. is even more preferred.
重合開始剤の添加量としては、高分子分散型液晶組成物中に0.001~3質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.1~1質量%であることが更により好ましい。 The amount of the polymerization initiator to be added is preferably 0.001 to 3% by mass, more preferably 0.01 to 2% by mass, more preferably 0.1 to 1% by mass in the polymer-dispersed liquid crystal composition. % by weight is even more preferred.
本発明の高分子分散型液晶素子に用いる高分子分散型液晶組成物は、上述の化合物の他にも、添加剤等を適宜添加してもよい。添加剤としては、重合禁止剤、酸化防止剤、HALS等の光安定化剤、色素、2色性色素、蛍光色素等があげられる。
(実施例)
以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は「質量%」を意味する。The polymer-dispersed liquid crystal composition used in the polymer-dispersed liquid crystal device of the present invention may contain additives as appropriate in addition to the above compounds. Additives include polymerization inhibitors, antioxidants, light stabilizers such as HALS, dyes, dichroic dyes, and fluorescent dyes.
(Example)
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. Moreover, "%" in the compositions of the following examples and comparative examples means "% by mass".
実施例中の高分子分散型液晶表示素子は以下の方法で作製した。 Polymer-dispersed liquid crystal display elements in the examples were produced by the following method.
液晶組成物が78質量%、重合性モノマー組成物が21.6質量%、光重合開始剤が0.4質量%らなる高分子分散型液晶組成物をセル厚10μmのITO付きガラスセル内に高分子分散型液晶組成物のアイソトロピック-ネマチック転移点より高い温度に保ち、該組成物をアイソトロピック状態で注入した。注入口を封口剤3026E(スリーボンド社製)で封止した後、所定の温度にコントロールし、必要に応じてUVカットフィルターを介し、照射強度が20mW/cm2となるように調整されたメタルハライドランプを60秒間照射して、高分子分散型液晶表示素子を得た。UV照射の際、背面に図1に示す背面板を設置した。A polymer-dispersed liquid crystal composition containing 78% by mass of liquid crystal composition, 21.6% by mass of polymerizable monomer composition, and 0.4% by mass of photopolymerization initiator was placed in a glass cell with ITO having a cell thickness of 10 μm. The temperature was kept higher than the isotropic-nematic transition point of the polymer dispersed liquid crystal composition, and the composition was injected in an isotropic state. After sealing the injection port with a sealing agent 3026E (manufactured by ThreeBond Co., Ltd.), the metal halide lamp was controlled to a predetermined temperature and adjusted to an irradiation intensity of 20 mW/cm 2 via a UV cut filter as necessary. was irradiated for 60 seconds to obtain a polymer dispersed liquid crystal display device. A rear plate shown in FIG. 1 was placed on the rear surface during UV irradiation.
UVカットフィルターは表1の厚さのソーダライムガラスを適宜用いた。 Soda-lime glass having a thickness shown in Table 1 was appropriately used as a UV cut filter.
アイソトロピック状態でガラスセルに注入した後、表2の条件で1分間放置し、UV照射を行った。 After being injected into the glass cell in an isotropic state, it was allowed to stand under the conditions shown in Table 2 for 1 minute, and UV irradiation was performed.
背面版としては白いコピー紙((1)の領域)を用い、図1の網掛け部分の(2)の領域に下記表3の条件の塗料を塗布した。なお、条件B1は塗布なしで(1)の白いコピー紙と同じ部材。条件B4は何もない状態、すなわち空気であり、(2)の下方30cmにはなにもない状態である(真空チャックを想定)。 White copy paper (region (1)) was used as the back plate, and paint was applied to the shaded region (2) in FIG. 1 under the conditions shown in Table 3 below. Note that condition B1 is the same member as the white copy paper in (1) without coating. Condition B4 is nothing, that is, air, and nothing 30 cm below (2) (assuming a vacuum chuck).
実施例中に示される液晶組成物、高分子分散型液晶組成物の特性の略号、及び意味は以下の通りである。 The abbreviations and meanings of the properties of the liquid crystal compositions and polymer-dispersed liquid crystal compositions shown in the examples are as follows.
Tni(LC) :液晶組成物のネマチック相-等方性液体相転移温度(℃)
Δn :液晶組成物の25℃における屈折率異方性
Tni(PNM) :高分子分散型液晶組成物のネマチック相-等方性液体相転移温度(℃)
T0:セル厚10μm、25℃において、何もない(空気)の時の光量を100%とした場合の高分子分散型液晶素子の電圧OFF時の透過率(%)。Tni(LC): Nematic phase-isotropic liquid phase transition temperature of liquid crystal composition (°C)
Δn: Refractive index anisotropy of liquid crystal composition at 25° C. Tni (PNM): Nematic phase-isotropic liquid phase transition temperature of polymer dispersed liquid crystal composition (° C.)
T0: Transmittance (%) of the polymer dispersed liquid crystal element when the voltage is off, with the cell thickness of 10 μm, 25° C., and the amount of light when nothing (air) is taken as 100%.
T100:セル厚10μm、25℃において、何もない(空気)の時の光量を100%とした場合の高分子分散型液晶素子の50V印加時の透過率(%)。 T100: Transmittance (%) when 50 V is applied to the polymer dispersed liquid crystal element at a cell thickness of 10 μm and 25° C., where the amount of light when there is nothing (air) is taken as 100%.
V90 :セル厚10μm、25℃において、電圧無印加時の高分子分散型液晶素子の光透過率(T0)を0%とし、50V印加時の光透過率(T100)を100%とした時、光透過率が90%となる印加電圧値(V)。 V90: When the light transmittance (T0) of the polymer dispersed liquid crystal element when no voltage is applied is 0% and the light transmittance (T100) when 50 V is applied is 100% at a cell thickness of 10 µm and 25°C, Applied voltage value (V) at which light transmittance is 90%.
評価方法は以下の通りである。 The evaluation method is as follows.
転移点測定には、メトラートレド社製の温度コントロールシステムFP-90、及びホットステージFP82を用いた。 A temperature control system FP-90 and a hot stage FP82 manufactured by Mettler Toledo were used for the transition point measurement.
T0、T100、V90測定には、大塚電子社製のLCD評価システムLCD-5200を用い、Bレンズ、アパーチャーSの条件にて測定した。その際、一つのセルにつき図2のように升目ごとに100か所測定した。 To measure T0, T100, and V90, an LCD evaluation system LCD-5200 manufactured by Otsuka Electronics Co., Ltd. was used, and measurements were made under the conditions of B lens and aperture S. At that time, measurements were made at 100 points for each square as shown in FIG. 2 for each cell.
上記T0の評価値より、面内の透過率上位10%の平均値と(A)下位10%の平均値(B)を算出し(A-B)/B×100の値をムラ度合いとして評価した。 From the evaluation value of T0, calculate the average value of the top 10% of in-plane transmittance (A) and the average value (B) of the bottom 10%, and evaluate the value of (AB) / B × 100 as the degree of unevenness. bottom.
また、目視でセル面内の透過率の差異が判断できるかも評価した。基準としては表4の通りである。 In addition, it was also evaluated whether the difference in transmittance in the cell plane can be determined visually. Table 4 shows the criteria.
屈折率はアッペの屈折計(ATAGO社製)を用いた。 The refractive index was measured using an Ape's refractometer (manufactured by ATAGO).
365nmの反射率は日立製作所社製の紫外可視近赤外分光光度計U-4100を用いて365nmの反射率を用いた。 As the reflectance at 365 nm, a UV-visible-near-infrared spectrophotometer U-4100 manufactured by Hitachi, Ltd. was used.
紫外線強度はウシオ電機社製のUIT-250を用い、365nm、及び313nmのセンサーを用いて測定した。 The UV intensity was measured using a Ushio Inc. UIT-250 with sensors of 365 nm and 313 nm.
液晶組成物としては下記組成物を用いた。 The following composition was used as the liquid crystal composition.
(液晶組成物LC1) Δn=0.226、Tni(LC)=87.4℃ (Liquid Crystal Composition LC1) Δn=0.226, Tni(LC)=87.4°C
(液晶組成物LC2) Δn=0.218、Tni(LC)=73.9℃ (Liquid Crystal Composition LC2) Δn=0.218, Tni(LC)=73.9°C
(液晶組成物LC3) Δn=0.219、Tni(LC)=83.8℃ (Liquid Crystal Composition LC3) Δn=0.219, Tni(LC)=83.8°C
(液晶組成物LC4) Δn=0.226、Tni(LC)=73.8℃ (Liquid Crystal Composition LC4) Δn=0.226, Tni(LC)=73.8°C
モノマー組成物としては、以下の化合物による組成物を用いた。
(モノマー組成物a)As the monomer composition, a composition of the following compounds was used.
(Monomer composition a)
光重合開始剤としては下記化合物を用いた。 The following compounds were used as photopolymerization initiators.
(実施例1~12、比較例1~6)
表5~9に実施例、及び比較例1~6の条件、評価結果を記載する。表中の最大Ave.は面内の透過率T0の上位10%の平均値、及びその地点でT100とV90の平均値、最小Ave.は面内の透過率T0の下位10%の平均値及びその地点でT100とV90の平均値を表す。平均値は全体の平均値を表す。(Examples 1 to 12, Comparative Examples 1 to 6)
Tables 5 to 9 describe the conditions and evaluation results of Examples and Comparative Examples 1 to 6. The maximum Ave. in the table is the average value of the top 10% of in-plane transmittance T0, and the average value of T100 and V90 at that point, and the minimum Ave. It represents the mean of T100 and V90 at that point. The average value represents the overall average value.
実施例、及び比較例の結果より、パネル裏面の反射条件により、表示素子の見た目に差異が生じることがわかり、液晶組成物により差異が変化することも理解できる。本発明の高分子分散型液晶表示素子の製造方法を採用することにより、電圧無印加時に目視において、ムラが全く分からないか、認識できない程度の、これまでにない特性が均一な高分子分散型液晶表示素子が作製できた。 From the results of Examples and Comparative Examples, it can be seen that the appearance of the display element varies depending on the reflection conditions of the back surface of the panel, and it can also be understood that the difference varies depending on the liquid crystal composition. By adopting the method for manufacturing a polymer dispersed liquid crystal display element of the present invention, a polymer dispersed liquid crystal display element having unprecedented uniform characteristics such that unevenness is completely unnoticeable or unnoticeable visually when no voltage is applied. A liquid crystal display device was produced.
Claims (8)
前記液晶材料が一般式(I-1)
R 12 は、フッ素原子、塩素原子、シアノ基、CF 3 基、OCF 3 基、OCHF 2 基、NCS基、又は炭素原子数1~10のアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH 2 基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-C≡C-によって置き換えられていてもよく、
Z 11 、及びZ 12 は、それぞれ独立して、単結合、-COO-、-OCO-、-CH 2 -CH 2 -、-CH=CH-、-CF 2 O-、-OCF 2 -、又は-C≡C-を表し、Z 12 が複数個存在する場合は、同じであっても異なっていても良く、
A 11 、A 12 、及びA 13 は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基を表し、該1,4-フェニレン基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、CF 3 基、OCF 3 基又はCH 3 基を有していても良く、A 13 が複数個存在する場合は、同じであっても異なっていても良く、
n 11 は0、1又は2であり、
且つ、Z 11 が-CH=CH-、又は-C≡C-であるか、及び/又は、存在するZ 12 が-CH=CH-、又は-C≡C-である。)
で表される化合物を1種又は2種以上含有し、
紫外線照射する液晶表示素子から見て紫外線照射ランプと反対側に位置する液晶表示素子の設置面における紫外線の最低反射率が最大反射率の50%以上であることを特徴とする、高分子分散型液晶表示素子の製造方法。 Between two substrates, at least one of which has an electrode layer and at least one of which is transparent, a liquid crystal material and a light modulating layer-forming material containing a polymerizable composition are interposed between the substrates. By polymerizing a polymerizable composition, it has a light control layer composed of a liquid crystal material and a polymer substance, and the average value A of the top 10% and the average value B of the bottom 10% in the transmittance distribution of the light control layer In a method for manufacturing a polymer dispersed liquid crystal display element in which the ratio ((AB)/B×100) of the difference (A−B) to the average value B of the lower 10% is 200% or less,
The liquid crystal material has the general formula (I −1 )
R 12 represents a fluorine atom, chlorine atom, cyano group, CF 3 group, OCF 3 group, OCHF 2 group, NCS group, or an alkyl group having 1 to 10 carbon atoms, and non-adjacent 1 One or two CH2 groups may be replaced by an oxygen atom, -COO-, -OCO-, and one or more methylene groups may be replaced by -CH=CH- or -C≡C-. may be
Z 11 and Z 12 each independently represent a single bond, -COO-, -OCO-, -CH 2 -CH 2 -, -CH=CH-, -CF 2 O-, -OCF 2 -, or represents -C≡C-, and when there are a plurality of Z 12 , they may be the same or different,
A 11 , A 12 and A 13 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, a 1,4-cyclohexenyl group, a tetrahydropyran-2,5-diyl group, 1 ,3-dioxane-2,5-diyl group, decahydronaphthalene-2,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, represents a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 2,6-naphthylene group, the 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6- The diyl group, 2,6-naphthylene group may be unsubstituted or may have one or more fluorine atoms, chlorine atoms, CF3 groups, OCF3 groups or CH3 groups as substituents. , A 13 may be the same or different,
n11 is 0, 1 or 2 ;
and Z 11 is -CH=CH- or -C≡C- and/or any Z 12 present is -CH=CH- or -C≡C-. )
Contains one or more compounds represented by
A polymer-dispersed type characterized in that the minimum reflectance of ultraviolet rays on the installation surface of the liquid crystal display element located on the opposite side of the ultraviolet irradiation lamp as viewed from the liquid crystal display element irradiated with ultraviolet rays is 50% or more of the maximum reflectance. A method for manufacturing a liquid crystal display element.
前記液晶材料が一般式(I-1)
R 12 は、フッ素原子、塩素原子、シアノ基、CF 3 基、OCF 3 基、OCHF 2 基、NCS基、又は炭素原子数1~10のアルキル基を表し、該アルキル基中の非隣接の1つ又は2つのCH 2 基は酸素原子、-COO-、-OCO-で置き換えられていてもよく、また一つ以上のメチレン基は-CH=CH-、又は-C≡C-によって置き換えられていてもよく、
Z 11 、及びZ 12 は、それぞれ独立して、単結合、-COO-、-OCO-、-CH 2 -CH 2 -、-CH=CH-、-CF 2 O-、-OCF 2 -、又は-C≡C-を表し、Z 12 が複数個存在する場合は、同じであっても異なっていても良く、
A 11 、A 12 、及びA 13 は、それぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基を表し、該1,4-フェニレン基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、CF 3 基、OCF 3 基又はCH 3 基を有していても良く、A 13 が複数個存在する場合は、同じであっても異なっていても良く、
n 11 は0、1又は2であり、
且つ、Z 11 が-CH=CH-、又は-C≡C-であるか、及び/又は、存在するZ 12 が-CH=CH-、又は-C≡C-である。)
で表される化合物を1種又は2種以上含有し、
前記調光層は、前記液晶材料の連続相中に前記高分子物質の網目構造が形成されてなり、前記網目構造の平均空隙間隔が、0.2~2μmである高分子分散型液晶表示素子。 Between two substrates, at least one of which has an electrode layer and at least one of which is transparent, a light control layer made of a liquid crystal material and a polymeric substance that is a polymer of a polymerizable composition is provided, The ratio of the difference (A - B) between the average value A of the top 10% and the average value B of the bottom 10% in the layer transmittance distribution to the average value B of the bottom 10% ((A - B) / B x 100 ) is 200% or less,
The liquid crystal material has the general formula (I −1 )
R 12 represents a fluorine atom, chlorine atom, cyano group, CF 3 group, OCF 3 group, OCHF 2 group, NCS group, or an alkyl group having 1 to 10 carbon atoms, and non-adjacent 1 One or two CH2 groups may be replaced by an oxygen atom, -COO-, -OCO-, and one or more methylene groups may be replaced by -CH=CH- or -C≡C-. may be
Z 11 and Z 12 each independently represent a single bond, -COO-, -OCO-, -CH 2 -CH 2 -, -CH=CH-, -CF 2 O-, -OCF 2 -, or represents -C≡C-, and when there are a plurality of Z 12 , they may be the same or different,
A 11 , A 12 and A 13 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, a 1,4-cyclohexenyl group, a tetrahydropyran-2,5-diyl group, 1 ,3-dioxane-2,5-diyl group, decahydronaphthalene-2,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, represents a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, a 2,6-naphthylene group, the 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6- The diyl group, 2,6-naphthylene group may be unsubstituted or may have one or more fluorine atoms, chlorine atoms, CF3 groups, OCF3 groups or CH3 groups as substituents. , A 13 may be the same or different,
n11 is 0, 1 or 2 ;
and Z 11 is -CH=CH- or -C≡C- and/or any Z 12 present is -CH=CH- or -C≡C-. )
Contains one or more compounds represented by
The light modulating layer is a polymer dispersed liquid crystal display element in which a network structure of the polymer substance is formed in the continuous phase of the liquid crystal material, and an average gap distance of the network structure is 0.2 to 2 μm. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022190119A JP2023025124A (en) | 2020-05-13 | 2022-11-29 | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020084331 | 2020-05-13 | ||
JP2020084331 | 2020-05-13 | ||
PCT/JP2021/016234 WO2021230030A1 (en) | 2020-05-13 | 2021-04-22 | Method for manufacturing polymer dispersed liquid crystal display element, and polymer dispersed liquid crystal display element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022190119A Division JP2023025124A (en) | 2020-05-13 | 2022-11-29 | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2021230030A1 JPWO2021230030A1 (en) | 2021-11-18 |
JPWO2021230030A5 JPWO2021230030A5 (en) | 2022-05-02 |
JP7235168B2 true JP7235168B2 (en) | 2023-03-08 |
Family
ID=78525685
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022515892A Active JP7235168B2 (en) | 2020-05-13 | 2021-04-22 | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element |
JP2022190119A Pending JP2023025124A (en) | 2020-05-13 | 2022-11-29 | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022190119A Pending JP2023025124A (en) | 2020-05-13 | 2022-11-29 | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230167364A1 (en) |
JP (2) | JP7235168B2 (en) |
CN (1) | CN115427874A (en) |
WO (1) | WO2021230030A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117247779B (en) * | 2023-06-26 | 2024-08-13 | 湖北三峡实验室 | Liquid crystal monomer, preparation method thereof, liquid crystal composition containing liquid crystal monomer and optical element |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143592A (en) | 2010-01-13 | 2011-07-28 | Nitto Denko Corp | Method for manufacturing optical part |
WO2015022866A1 (en) | 2013-08-13 | 2015-02-19 | Dic株式会社 | Composite liquid crystal composition, display element and electric field detector |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0566387A (en) * | 1991-09-09 | 1993-03-19 | Dainippon Ink & Chem Inc | Production of liquid crystal device |
KR0166943B1 (en) * | 1993-03-29 | 1999-03-20 | 야스카와 히데아키 | Electronic apparatus |
JP3598614B2 (en) * | 1995-11-07 | 2004-12-08 | 大日本インキ化学工業株式会社 | Liquid crystal device and method of manufacturing the same |
JPH09197380A (en) * | 1996-01-12 | 1997-07-31 | Matsushita Electric Ind Co Ltd | Liquid crystal display element and its production |
JP2998075B2 (en) * | 1996-06-20 | 2000-01-11 | セイコーインスツルメンツ株式会社 | Reflective liquid crystal display |
JP2002287126A (en) * | 2001-03-27 | 2002-10-03 | Dainippon Ink & Chem Inc | Light scattering type liquid crystal device and method for manufacturing the same |
JP4914545B2 (en) * | 2001-09-17 | 2012-04-11 | セイコーインスツル株式会社 | Manufacturing method of liquid crystal display device |
KR20180091827A (en) * | 2015-12-22 | 2018-08-16 | 니폰 제온 가부시키가이샤 | Liquid crystalline composition, liquid crystal hardened layer, method for producing the same, and optical film |
-
2021
- 2021-04-22 US US17/921,634 patent/US20230167364A1/en active Pending
- 2021-04-22 JP JP2022515892A patent/JP7235168B2/en active Active
- 2021-04-22 WO PCT/JP2021/016234 patent/WO2021230030A1/en active Application Filing
- 2021-04-22 CN CN202180027800.0A patent/CN115427874A/en active Pending
-
2022
- 2022-11-29 JP JP2022190119A patent/JP2023025124A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143592A (en) | 2010-01-13 | 2011-07-28 | Nitto Denko Corp | Method for manufacturing optical part |
WO2015022866A1 (en) | 2013-08-13 | 2015-02-19 | Dic株式会社 | Composite liquid crystal composition, display element and electric field detector |
Also Published As
Publication number | Publication date |
---|---|
JP2023025124A (en) | 2023-02-21 |
WO2021230030A1 (en) | 2021-11-18 |
JPWO2021230030A1 (en) | 2021-11-18 |
US20230167364A1 (en) | 2023-06-01 |
CN115427874A (en) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10316251B2 (en) | Nematic liquid crystal composition and liquid crystal display device using same | |
US8906472B2 (en) | Nematic liquid crystal composition and liquid crystal display element using the same | |
JP5875028B2 (en) | Composite liquid crystal composition, display element and electric field detector | |
JP5333879B1 (en) | Liquid crystal display | |
TWI432559B (en) | Liquid crystal composition and liquid crystal display element using same | |
US9120968B2 (en) | Liquid crystal display device | |
JP5273494B1 (en) | Liquid crystal display | |
US20160244672A1 (en) | Polymerizable compound-containing liquid crystal composition and liquid crystal display device using the same | |
JP5609054B2 (en) | Liquid crystal composition for polymer dispersed liquid crystal element and liquid crystal element using the same | |
KR101498575B1 (en) | Nematic liquid crystal composition and liquid crystal display element using same | |
JP5477620B2 (en) | Polymer dispersion type liquid crystal composition and polymer dispersion type liquid crystal device using the same | |
US20160289565A1 (en) | Polymerizable-compound-containing liquid crystal composition and liquid crystal display element using same | |
JP7024254B2 (en) | Liquid crystal composition and liquid crystal display element | |
KR101530595B1 (en) | Nematic liquid crystal composition and liquid crystal display element using same | |
JP2023025124A (en) | Manufacturing method of polymer dispersed liquid crystal display element and polymer dispersed liquid crystal display element | |
EP2703473B1 (en) | Nematic liquid crystal composition and liquid crystal display device using same | |
WO2014045371A1 (en) | Liquid crystal display device | |
JP7367306B2 (en) | Liquid crystal composition, liquid crystal display element using the same, and manufacturing method thereof | |
US9976087B2 (en) | Liquid crystal composition and liquid crystal optical device | |
US9411207B2 (en) | Nematic liquid crystal composition and liquid crystal display element using the same | |
JP7472607B2 (en) | Liquid crystal composition and liquid crystal display device | |
JP3692431B2 (en) | Liquid crystal device and liquid crystal display device using the same | |
TW201432032A (en) | Liquid crystal composition, and liquid crystal display element using same | |
TWI439538B (en) | Liquid crystal display device | |
JP2020097678A (en) | Liquid crystal composition and liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220310 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220310 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220714 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221206 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20221206 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20221215 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20221220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230206 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7235168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |