JP4914545B2 - Manufacturing method of liquid crystal display device - Google Patents

Manufacturing method of liquid crystal display device Download PDF

Info

Publication number
JP4914545B2
JP4914545B2 JP2001281376A JP2001281376A JP4914545B2 JP 4914545 B2 JP4914545 B2 JP 4914545B2 JP 2001281376 A JP2001281376 A JP 2001281376A JP 2001281376 A JP2001281376 A JP 2001281376A JP 4914545 B2 JP4914545 B2 JP 4914545B2
Authority
JP
Japan
Prior art keywords
liquid crystal
ultraviolet
mounting plate
display device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281376A
Other languages
Japanese (ja)
Other versions
JP2003090995A (en
Inventor
知喜 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001281376A priority Critical patent/JP4914545B2/en
Publication of JP2003090995A publication Critical patent/JP2003090995A/en
Application granted granted Critical
Publication of JP4914545B2 publication Critical patent/JP4914545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液晶表示装置の製造方法、特に高分子分散型液晶の表示装置の製造方法に関する。
【0002】
【従来の技術】
液晶表示装置は一般に、1対の透明電極基板間に液晶を挟持させ、透明電極基板の外側に偏光板を配置し、透明電極に外部から電圧を印加させて液晶を動作させることにより光の透過量を変化させて表示を実現させる表示装置である。この液晶を任意に動作させるために、透明電極基板の内側に配向膜処理を約300℃の高温雰囲気中で行う必要がある。通常、ノートパソコン、腕時計、電卓、電子辞書等に用いられている液晶表示装置は、TN(ツイステッドネマチック)LCDやSTN(スーパーツイステッドネマチック)LCDと呼ばれ、液晶セルの上下の基板に偏光板または一方に偏光板と一体になった反射板が張り付けられている。この偏光板の使用により入射光は50%以下に減少してしまい、そのため表示面が暗くなる。
【0003】
近年、明るい表示を実現させたいとの要求から偏光板を必要としない新しい表示方式である高分子分散型液晶表示装置等が検討されている。その代表例としてポリマーネットワーク液晶(以後「PN−LC」と称する)が挙げられる。これは、紫外線によって架橋反応を起こして重合する高分子樹脂と通常用いられているTN液晶とを混合分散させた新しい複合型の液晶材料を用いた表示装置(以後「PN−LCD」と称する)である。また、予め、液晶を高分子樹脂の中に閉じこめたマイクロカプセルタイプも検討されているが、ここではより低電圧駆動の実現が容易なPN−LCについて述べる。
【0004】
PN−LCは、紫外線(UV)重合性高分子樹脂とTN液晶を適度の配合で混合分散させた場合に、紫外線照射時に高分子がネットワークを形成すると同時に、配合されているTN液晶がポリマーネットワーク中に均一に分散されて、ポリマーとTN液晶のそれぞれの機能を合わせ持った性質を有するようになる。このようなポリマーネットワークとTN液晶の屈折率の差を利用して、入射光を散乱させて表示を行わせる光散乱モード型の表示素子が提案されている。この表示素子は、従来のTN−LCDやSTN−LCDと比べて、高分子分散型液晶を硬化させる紫外線照射装置が必要になるだけで、高温処理の伴う配向膜処理や高価な偏光板を不要とする簡素な製造工程で製造可能であるので、表示装置の低価格化が可能になるという利点を有している。
【0005】
一般に、PN−LCは、可視光の波長分散を生じさせず、かつ効果的な散乱特性を得るために、ポリマーネットワークの粒径を可視光波長よりも大きなサイズの1ミクロン程度に微細化させることにより後方散乱を強くしている。ポリマーネットワークの粒径を決める製造上の要因は、紫外線照射強度である。紫外線照射強度は、使用するPN−LCにより異なるが、365nm波長で通常20〜30mw/cm2以上必要である。この照射強度を実現するために紫外線発光ランプとして、メタルハライドランプや高圧水銀ランプが用いられる。
【0006】
また、紫外線照射装置は光源からの紫外線を効率的に一方向に集めるようにした構造にしておく。通常、PN−LCの硬化のための紫外線照射作業はランプの一方向の位置で行うために、この照射装置は、ランプ周囲には紫外線を効率的に反射させる反射板を設けるなどして、紫外線強度を向上させると同時に紫外線の照度を均一させるような構造になっている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したPN−LCDの製造方法において、PN−LCを硬化させる従来の紫外線照射の方法では、紫外線照射によって形成されたポリマーネットワークの粒径の均一化が不十分であり、また、均一な後方散乱が得られないという問題があった。
【0008】
また、実質的な照射強度は中央部が高くかつ周縁部が低くなることが、経験上認識されており、したがって表示ムラが生じてまう。
【0009】
そこで、この発明の目的は、均一な後方散乱を行って表示ムラの無いPN−LCDを提供することにある。
【0010】
【課題を解決するための手段】
この目的の達成を図るため、紫外線硬化型高分子材料と液晶を分散させた合溶、1対の透明基板間に封入して液晶セルを作製する工程と、周縁部から中央部にかけて紫外線反射率が順次異なるように構成された載置板上に、前記液晶セルを載置る工程と、記載置板とは反対側の面から前記液晶セルに紫外線を照射させる工程とを含むこととしたこのとき、載置板は、紫外線照射が強い部位で紫外線反射率が低く、紫外線照射が弱い部位で紫外線反射率が高くなっている。このような製造方法により、表示にムラのないPN−LCDが提供される。
【0011】
また、さらに好適には、前述の載置板は、周縁部から中央部にかけて段階的に紫外線反射率が低くなると良い。このようにすると、周縁部と中央部との表示ムラのないPN−LCDが提供される。
【0012】
前述の載置板は、周縁部から中央部にかけて直線的に紫外線反射率が低くなると良い。このようにすると、さらに周縁部と中央部との表示ムラのないPN−LCDが提供される。
【0013】
さらに、好適には、紫外線硬化型高分子材料は、光重合性モノマーであると良い。このようにすると、光重合を効率的に行うことができる。
【0014】
さらに、好適には、前述の載置板は、前述のセルを載置する載置面において、前述の中央部が黒色であり、かつ前述の周縁部が白色であると良い。このようにすると、周縁部と中央部との表示ムラのないPN−LCDが提供される。
【0015】
前述の載置板は、前述の中央部と前述の周縁部との間は灰色であるとよい。このようにすると、さらに、周縁部と中央部との表示ムラのないPN−LCDが提供される。
【0016】
【発明の実施の形態】
以下、図を参照して、この発明の実施の形態について、説明する。なお、図中、各構成成分の大きさ、接続関係、形状及び配置関係は、この発明が理解できる程度に概略的に示してあるにすぎず、したがって、この発明は、図示例に限定されるものではない。
【0017】
図1は、高分子分散型液晶表示装置の構造の模式的断面図である。この図1を参照して、高分子分散型液晶表示装置の原理を説明する。
【0018】
図1に示す高分子分散型液晶表示装置の構造は、まず2枚の対向するガラス基板100a、100bの対向面上に電極110a、110bをそれぞれ対向するように形成して具える。そして、これらガラス基板100a、100b間に、液晶130と紫外線硬化型高分子材料、すなわち高分子140とを分散させた混合溶液が注入されてから、封止されている。
【0019】
この高分子140は、たとえば紫外線を液晶層(液晶と高分子前駆体とからなる層)に照射することにより、高分子が析出して構成される。
【0020】
この液晶層において、電界無印加時には、高分子140の配向は変動しないのに対して、液晶130は基板100a、100bに対してランダムに配向するので、液晶130と高分子140の屈折率が異なって、入射光が散乱する状態となる。
【0021】
一方、電極110a、110b間への電界印加時には、液晶130が高分子140と同方向に配向するため、基板100a、100bに垂直な方向における液晶130屈折率と高分子140の屈折率は互いに一致する。したがって、基板間を入射光が透過する状態となる。
【0022】
次に、図2及び図3を参照して、このような高分子分散型液晶装置の製造方法について説明する。
【0023】
この高分子分散型液晶表示装置の製造方法によれば、先ず、電極が形成された1対の基板間に、液晶と、紫外線硬化型樹脂すなわち高分子前駆体とカイラル剤と、からなる液晶混合材料を注入する。さらに、この液晶混合材料に紫外線(UV)を照射することにより、紫外線硬化型樹脂を光重合させて、高分子マトリクスを析出させる。また、前述の紫外線硬化型樹脂は、この発明の目的を損なわない範囲で適宜選択可能であるが、好ましくはこの樹脂として、例えば光重合性モノマー等を用いると良い。次に、具体的な製造方法を以下に説明する。
【0024】
▲1▼先ず、基板にパターニング技術を用いて所定パターンの電極を形成する。つまり、基板100a、100bに所定パターンの電極110a、110bをそれぞれ形成する。
【0025】
▲2▼続いて、基板100a、100b同士を貼り合わせるためのシール材を印刷する。つまり、基板100a、100b上にシール材を設けるためのシール印刷処理をそれぞれおこなう。尚、シール材形成時には、シール材に注入穴を設けておく。
【0026】
▲3▼次にシール材が設けられた1対の基板100a、100bを貼り合わせる。つまり、両基板100a、100bを互いに対向させて、組み合わせて基板間にセルを形成する。
【0027】
▲4▼続いて、液晶混合材料を1対の基板間すなわちセルに注入する。つまり、シール材形成時に設けておいた注入穴を経て、液晶混合材料をセル内に注入してこの注入穴を封止する。
【0028】
▲5▼次に、前述の1対の基板100aを載置板250に載置する。つまり、一方のガラス基板100aを載置板250に搭載する。ただし、ガラス基板100aと載置板250とを実質的に接触させる。また、この載置板250は、中央部300は、紫外線反射率が低く、周縁部320は、紫外線反射率が順次に高くなるように構成されている。
【0029】
▲6▼次に、紫外線を照射する。つまり、液晶混合材料に紫外線を照射して高分子前駆体を光重合させ高分子を析出させる。ただし、載置板250と接触していない他方の基板100b側から、紫外線高原200から紫外線照射を行う。
【0030】
従来セルの周縁部と中央部300で、光重合制御等が困難であったが、載置板250の中央部300と周縁部310、320とで紫外線反射率の異なるものを用いているので、光重合制御が容易に行える。
【0031】
次に、この発明の実施例につき説明する。
【0032】
<実施例1>
図2を参照して、この実施例を説明する。
【0033】
透明電極がパターニングされた1対の透明すなわちガラス基板を用いて、10ミクロンのギャップを有する液晶セルを形成する。温度40℃の加温した液晶セルのセルギャップ中に、PN−LCとして、例えば、大日本インキ製PN−LC15(PNM157)(商品名)を40℃に保温してアイソトロピック状態(isotropic)のまま真空注入する。
【0034】
このPN−LC15を注入した液晶セルを図2に示すような紫外線照射装置200を用いて前述の液晶セルを20℃の温度に維持させて、光重合性モノマーを紫外線硬化させる。
【0035】
また、この液晶セルの下方に、中央部300と周縁部320とで紫外線反射率の異なる載置板250を設ける。図3に、この載置板250の平面図を概略的に示す。この図3を参照して、この載置板の構成並びに動作を説明する。
【0036】
この載置板250は、中央部300が黒色で、周縁部320が白色である。さらにその中部間310は、灰色である。
【0037】
このようにすることにより、載置板250の中央部300は、前述の液晶セルを通過した紫外線が、実質的に反射されない。また、この載置板250の周縁部320は、前述の液晶セルを通過した紫外線を、散乱反射させるので、この反射光が、前述の液晶セルの周縁部320に再照射される。その結果、この周縁部320のセルを効率よく硬化させることができる。また、連続的に載置板250の、紫外線反射率を変えてあるので、経験的に、PN−LCに対し実質的に均一な紫外線照射を行うことができ、したがって、セル全体にわたり、均一にポリマ化することができる。よって表示ムラのないPN−LCDを製造することができる。
【0038】
<実施例2>
前述の載置板250の構成は、中央部300で黒色、中間部で灰色、周縁部320で白色と段階的に変化するとしたが、この発明の目的を損なわない範囲で適宜変形可能である。例えば、色の変化を白、黒、灰色の3段階ではなく、さらに多くの段階すなわち階調を設けても良い。すなわち、黒色でも黒色の強度をグラジエントに設けても良い。
【0039】
また、載置板250の色を、周縁部320から中央部300にかけて白色から黒色の変化だったものを、連続的かつ直線的に色の変化をする構成にしても当然良い。
【0040】
さらに、紫外線照射の状況に応じて、前述の載置板250の構成を変化させても良い。例えば、前述の紫外線照射が液晶セルの中央部300で強く、液晶セルの周縁部320で弱いと設定したが、逆に液晶セルの中央部300で弱く、液晶セルの周縁部320で強い場合には、逆に載置板250の構成を周縁部320から中央部300にかけて黒色から白色の変化にしても当然構わない。
【0041】
【発明の効果】
上述した説明から明らかなように、この発明によれば、PN−LCを紫外線硬化させる場合に、紫外線反射率の異なる載置板を用いることにより、PN−LCの硬化時のポリマーネットワークの粒径をより均一化させることができる。このことにより、PN−LCDの品質の向上が達成させることが可能になる。したがって、工業的、経済的効果は大きい。
【0042】
また、紫外線照射装置に変更は加えず、載置板のみでPN−LCの硬化時のポリマーネットワークの粒径をより均一化させることができる。したがって、設備投資の面からも経済的効果は大きい。
【図面の簡単な説明】
【図1】高分子分散型液晶の構造の模式的断面図である。
【図2】実施例の構成を示す図である。
【図3】載置板の平面図である。
【符号の説明】
100a、100b ガラス基板
110a、110b 電極
130 液晶
140 高分子
200 紫外線照射装置
250 載置板
300 中央部
310 中間部
320 周縁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly to a method for manufacturing a polymer dispersed liquid crystal display device.
[0002]
[Prior art]
Liquid crystal display devices generally transmit light by sandwiching a liquid crystal between a pair of transparent electrode substrates, disposing a polarizing plate outside the transparent electrode substrate, and operating the liquid crystal by applying a voltage from the outside to the transparent electrode. This is a display device that realizes display by changing the amount. In order to operate this liquid crystal arbitrarily, it is necessary to perform alignment film processing inside the transparent electrode substrate in a high temperature atmosphere of about 300 ° C. Usually, liquid crystal display devices used for notebook computers, wrist watches, calculators, electronic dictionaries, etc. are called TN (twisted nematic) LCDs and STN (super twisted nematic) LCDs, and polarizing plates or On one side, a reflector integrated with the polarizing plate is attached. By using this polarizing plate, the incident light is reduced to 50% or less, and the display surface becomes dark.
[0003]
In recent years, a polymer-dispersed liquid crystal display device, which is a new display method that does not require a polarizing plate, has been studied because of a demand for realizing a bright display. A typical example is a polymer network liquid crystal (hereinafter referred to as “PN-LC”). This is a display device (hereinafter referred to as “PN-LCD”) using a new composite type liquid crystal material in which a polymer resin that undergoes a cross-linking reaction by ultraviolet rays and a commonly used TN liquid crystal are mixed and dispersed. It is. In addition, a microcapsule type in which liquid crystal is confined in a polymer resin has been studied in advance, but here, PN-LC that can be easily driven at a lower voltage will be described.
[0004]
In PN-LC, when an ultraviolet (UV) polymerizable polymer resin and a TN liquid crystal are mixed and dispersed in an appropriate blend, the polymer forms a network when irradiated with ultraviolet rays, and at the same time, the blended TN liquid crystal is a polymer network. It is uniformly dispersed therein, and has properties that combine the functions of the polymer and the TN liquid crystal. There has been proposed a light scattering mode type display element that uses the difference in refractive index between the polymer network and the TN liquid crystal to scatter incident light to perform display. Compared with conventional TN-LCDs and STN-LCDs, this display element only requires an ultraviolet irradiation device that cures polymer-dispersed liquid crystals, and does not require alignment film processing with high-temperature processing or expensive polarizing plates. Therefore, it is possible to reduce the price of the display device.
[0005]
In general, PN-LC does not cause chromatic dispersion of visible light, and in order to obtain effective scattering characteristics, the particle size of the polymer network is reduced to about 1 micron that is larger than the visible light wavelength. This increases backscattering. The manufacturing factor that determines the particle size of the polymer network is the intensity of ultraviolet irradiation. Although ultraviolet irradiation intensity | strength changes with PN-LC to be used, it is normally 20-30 mw / cm <2> or more at a 365 nm wavelength. In order to realize this irradiation intensity, a metal halide lamp or a high-pressure mercury lamp is used as an ultraviolet light emitting lamp.
[0006]
Further, the ultraviolet irradiation device has a structure that efficiently collects ultraviolet rays from the light source in one direction. In general, since the ultraviolet irradiation work for curing PN-LC is performed at a position in one direction of the lamp, this irradiation apparatus is provided with a reflector that efficiently reflects the ultraviolet light around the lamp. The structure improves the strength and at the same time makes the illuminance of ultraviolet rays uniform.
[0007]
[Problems to be solved by the invention]
However, in the above-described PN-LCD manufacturing method, the conventional ultraviolet irradiation method for curing PN-LC has insufficient uniformity of the particle size of the polymer network formed by the ultraviolet irradiation, and is uniform. There was a problem that backscattering could not be obtained.
[0008]
Further, it has been recognized from experience that the substantial irradiation intensity is high in the central portion and low in the peripheral portion, and therefore display unevenness occurs.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a PN-LCD that does not display unevenness by performing uniform backscattering.
[0010]
[Means for Solving the Problems]
Order to promote the achievement of this object, a process of forming a liquid crystal cell ultraviolet curable polymer material and the liquid crystal of the mixed Go溶 prepared by dispersing, enclosed between a pair of transparent substrates, a center from the periphery the mounting on the plate to ultraviolet reflectance is constructed sequentially different subjected parts, the step of irradiating the steps you placing the liquid crystal cell, an ultraviolet ray to the liquid crystal cell from the surface opposite to the front mounting plate Once, it was decided to include the. At this time, the mounting plate has a low ultraviolet reflectance at a portion where the ultraviolet irradiation is strong, and a high ultraviolet reflectance at a portion where the ultraviolet irradiation is weak. By such a manufacturing method , a PN-LCD having no display unevenness is provided.
[0011]
More preferably, the mounting plate has a lower ultraviolet reflectance stepwise from the peripheral part to the center part. In this way, a PN-LCD having no display unevenness between the peripheral portion and the central portion is provided.
[0012]
The mounting plate described above preferably has a lower ultraviolet reflectance linearly from the periphery to the center. In this way, a PN-LCD having no display unevenness between the periphery and the center is provided.
[0013]
Further preferably, the ultraviolet curable polymer material is a photopolymerizable monomer. If it does in this way, photopolymerization can be performed efficiently.
[0014]
Further, preferably, in the mounting plate, the above-mentioned center portion is black and the above-mentioned peripheral edge portion is white on the mounting surface on which the above-described cell is mounted. In this way, a PN-LCD having no display unevenness between the peripheral portion and the central portion is provided.
[0015]
The mounting plate described above may be gray between the central portion and the peripheral portion. In this case, a PN-LCD having no display unevenness between the peripheral edge portion and the central portion is further provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the size, connection relationship, shape, and arrangement relationship of each component are merely schematically shown to the extent that the present invention can be understood. Therefore, the present invention is limited to the illustrated examples. It is not a thing.
[0017]
FIG. 1 is a schematic cross-sectional view of the structure of a polymer dispersion type liquid crystal display device. The principle of the polymer dispersion type liquid crystal display device will be described with reference to FIG.
[0018]
In the structure of the polymer dispersion type liquid crystal display device shown in FIG. 1, electrodes 110a and 110b are first formed on opposing surfaces of two opposing glass substrates 100a and 100b so as to oppose each other. The glass substrate 100a, 100b is sealed after a mixed solution in which the liquid crystal 130 and the ultraviolet curable polymer material, that is, the polymer 140 are dispersed, is injected.
[0019]
The polymer 140 is formed by, for example, irradiating a liquid crystal layer (a layer made of a liquid crystal and a polymer precursor) with ultraviolet rays to deposit the polymer.
[0020]
In this liquid crystal layer, when no electric field is applied, the orientation of the polymer 140 does not vary, whereas the liquid crystal 130 is randomly oriented with respect to the substrates 100a and 100b, so that the refractive indexes of the liquid crystal 130 and the polymer 140 are different. Thus, the incident light is scattered.
[0021]
On the other hand, since the liquid crystal 130 is aligned in the same direction as the polymer 140 when an electric field is applied between the electrodes 110a and 110b, the refractive index of the liquid crystal 130 and the refractive index of the polymer 140 in the direction perpendicular to the substrates 100a and 100b match each other. To do. Accordingly, the incident light is transmitted between the substrates.
[0022]
Next, a method for manufacturing such a polymer dispersion type liquid crystal device will be described with reference to FIGS.
[0023]
According to this method for manufacturing a polymer-dispersed liquid crystal display device, first, a liquid crystal mixture composed of a liquid crystal and an ultraviolet curable resin, that is, a polymer precursor and a chiral agent, between a pair of substrates on which electrodes are formed. Inject material. Further, by irradiating the liquid crystal mixed material with ultraviolet rays (UV), the ultraviolet curable resin is photopolymerized to deposit a polymer matrix. The ultraviolet curable resin described above can be appropriately selected within a range that does not impair the object of the present invention. Preferably, for example, a photopolymerizable monomer is used as the resin. Next, a specific manufacturing method will be described below.
[0024]
(1) First, electrodes having a predetermined pattern are formed on a substrate by using a patterning technique. That is, electrodes 110a and 110b having predetermined patterns are formed on the substrates 100a and 100b, respectively.
[0025]
(2) Subsequently, a sealing material for bonding the substrates 100a and 100b together is printed. That is, a seal printing process for providing a sealant on the substrates 100a and 100b is performed. When forming the sealing material, an injection hole is provided in the sealing material.
[0026]
(3) Next, a pair of substrates 100a and 100b provided with a sealing material are bonded together. That is, both the substrates 100a and 100b are opposed to each other and combined to form a cell between the substrates.
[0027]
(4) Subsequently, a liquid crystal mixed material is injected between a pair of substrates, ie, cells. In other words, the liquid crystal mixed material is injected into the cell through the injection hole provided at the time of forming the sealing material, and the injection hole is sealed.
[0028]
(5) Next, the above-described pair of substrates 100a is placed on the placement plate 250. That is, one glass substrate 100 a is mounted on the mounting plate 250. However, the glass substrate 100a and the mounting plate 250 are substantially brought into contact with each other. Further, the mounting plate 250 is configured such that the central portion 300 has a low ultraviolet reflectance and the peripheral portion 320 has a sequentially increased ultraviolet reflectance.
[0029]
(6) Next, ultraviolet rays are irradiated. That is, the polymer precursor is photopolymerized by irradiating the liquid crystal mixed material with ultraviolet rays to precipitate the polymer. However, UV irradiation is performed from the UV plateau 200 from the other substrate 100b side not in contact with the mounting plate 250.
[0030]
Conventionally, photopolymerization control or the like has been difficult at the peripheral portion and the central portion 300 of the cell, but since the central portion 300 and the peripheral portions 310 and 320 of the mounting plate 250 are different in ultraviolet reflectance, Photopolymerization can be easily controlled.
[0031]
Next, an embodiment of the present invention will be described.
[0032]
<Example 1>
This embodiment will be described with reference to FIG.
[0033]
A pair of transparent or glass substrates patterned with transparent electrodes is used to form a liquid crystal cell having a 10 micron gap. In the cell gap of a heated liquid crystal cell at a temperature of 40 ° C., as a PN-LC, for example, PN-LC15 (PNM157) (trade name) manufactured by Dainippon Ink is kept at 40 ° C. in an isotropic state (isotropic). Inject vacuum.
[0034]
The liquid crystal cell into which the PN-LC 15 has been injected is maintained at a temperature of 20 ° C. using an ultraviolet irradiation device 200 as shown in FIG. 2, and the photopolymerizable monomer is UV cured.
[0035]
Further, a mounting plate 250 having a different ultraviolet reflectance at the central portion 300 and the peripheral portion 320 is provided below the liquid crystal cell. FIG. 3 schematically shows a plan view of the mounting plate 250. With reference to this FIG. 3, the structure and operation | movement of this mounting board are demonstrated.
[0036]
The mounting plate 250 has a central portion 300 that is black and a peripheral portion 320 that is white. Furthermore, the middle part 310 is gray.
[0037]
By doing so, the central portion 300 of the mounting plate 250 does not substantially reflect the ultraviolet light that has passed through the liquid crystal cell. Further, since the peripheral portion 320 of the mounting plate 250 scatters and reflects the ultraviolet light that has passed through the liquid crystal cell, the reflected light is re-irradiated to the peripheral portion 320 of the liquid crystal cell. As a result, the cells of the peripheral edge 320 can be efficiently cured. Further, since the ultraviolet reflectance of the mounting plate 250 is continuously changed, it is empirically possible to perform substantially uniform ultraviolet irradiation on the PN-LC. Can be polymerized. Therefore, a PN-LCD without display unevenness can be manufactured.
[0038]
<Example 2>
The configuration of the mounting plate 250 described above is changed stepwise from black at the central portion 300, gray at the intermediate portion, and white at the peripheral portion 320, but can be modified as appropriate without departing from the object of the present invention. For example, the color change may be provided in more stages, that is, gradations, instead of the three stages of white, black, and gray. That is, black or black intensity may be provided in the gradient.
[0039]
In addition, the color of the mounting plate 250 that has changed from white to black from the peripheral portion 320 to the central portion 300 may naturally be configured to change the color continuously and linearly.
[0040]
Furthermore, the configuration of the mounting plate 250 described above may be changed according to the state of ultraviolet irradiation. For example, when the aforementioned ultraviolet irradiation is set to be strong at the central portion 300 of the liquid crystal cell and weak at the peripheral portion 320 of the liquid crystal cell, conversely, it is weak at the central portion 300 of the liquid crystal cell and strong at the peripheral portion 320 of the liquid crystal cell. Conversely, the configuration of the mounting plate 250 may naturally be changed from black to white from the peripheral portion 320 to the central portion 300.
[0041]
【Effect of the invention】
As is apparent from the above description, according to the present invention, when PN-LC is cured by ultraviolet rays, the particle size of the polymer network at the time of curing PN-LC is obtained by using a mounting plate having a different ultraviolet reflectance. Can be made more uniform. This makes it possible to improve the quality of the PN-LCD. Therefore, the industrial and economic effects are great.
[0042]
Moreover, the ultraviolet irradiation apparatus is not changed, and the particle size of the polymer network at the time of PN-LC curing can be made more uniform with only the mounting plate. Therefore, the economic effect is great from the aspect of capital investment.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of the structure of a polymer dispersed liquid crystal.
FIG. 2 is a diagram illustrating a configuration of an example.
FIG. 3 is a plan view of a mounting plate.
[Explanation of symbols]
100a, 100b Glass substrate 110a, 110b Electrode 130 Liquid crystal 140 Polymer 200 Ultraviolet irradiation device 250 Mounting plate 300 Central part 310 Middle part 320 Peripheral part

Claims (4)

紫外線硬化型高分子材料と液晶を分散させた合溶、1対の透明基板間に封入して液晶セルを作製する工程と
周縁部から中央部にかけて紫外線反射率が順次異なるように構成された載置板上に、前記液晶セルを載置る工程と、
記載置板とは反対側の面から前記液晶セルに紫外線照射を行う工程と、を含み、
前記載置板は、前記紫外線照射が強い部位で紫外線反射率が低く、前記紫外線照射が弱い部位で紫外線反射率が高くなるように構成されたことを特徴とする液晶表示装置の製造方法。
A step of preparing a liquid crystal cell an ultraviolet curable polymer material and mixed Go溶 liquid in which liquid crystal is dispersed, enclosed between a pair of transparent substrates,
On mounting plate to ultraviolet reflectance is constructed sequentially differently toward the center portion from the periphery, the steps placing the liquid crystal cell,
See containing and performing ultraviolet irradiation from the surface opposite to the liquid crystal cell, a is the the mounting plate,
The manufacturing method of a liquid crystal display device , wherein the mounting plate is configured such that the ultraviolet reflectance is low at a portion where the ultraviolet irradiation is strong and the ultraviolet reflectance is high at a portion where the ultraviolet irradiation is weak .
前記載置板は、周縁部から中央部にかけて紫外線反射率が順次低くなるように構成されたことを特徴とする請求項1に記載の液晶表示装置の製造方法。2. The method for manufacturing a liquid crystal display device according to claim 1, wherein the mounting plate is configured such that the ultraviolet reflectance gradually decreases from the peripheral portion to the central portion. 前記載置板は、周縁部から中央部にかけて段階的に紫外線反射率が低くなることを特徴とする請求項に記載の液晶表示装置の製造方法。The method for manufacturing a liquid crystal display device according to claim 2 , wherein the mounting plate has an ultraviolet reflectance that gradually decreases from a peripheral part to a central part. 前記載置板は、周縁部から中央部にかけて直線的に紫外線反射率が低くなることを特徴とする請求項に記載の液晶表示装置の製造方法。The method for manufacturing a liquid crystal display device according to claim 2 , wherein the mounting plate has a lower ultraviolet reflectance linearly from the peripheral part to the center part.
JP2001281376A 2001-09-17 2001-09-17 Manufacturing method of liquid crystal display device Expired - Fee Related JP4914545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281376A JP4914545B2 (en) 2001-09-17 2001-09-17 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281376A JP4914545B2 (en) 2001-09-17 2001-09-17 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2003090995A JP2003090995A (en) 2003-03-28
JP4914545B2 true JP4914545B2 (en) 2012-04-11

Family

ID=19105209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281376A Expired - Fee Related JP4914545B2 (en) 2001-09-17 2001-09-17 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4914545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427874A (en) * 2020-05-13 2022-12-02 Dic株式会社 Method for manufacturing polymer dispersion type liquid crystal display element and polymer dispersion type liquid crystal display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269802A (en) * 1997-03-24 1998-10-09 Sony Corp Lighting system and image display unit
JP2001091931A (en) * 1999-09-21 2001-04-06 Canon Inc Manufacture of liquid crystal device

Also Published As

Publication number Publication date
JP2003090995A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
KR0184652B1 (en) Liquid crystal display and its fabrication method
US6356324B1 (en) Retardation film and method for producing the same, and liquid crystal display device
JP3358935B2 (en) Liquid crystal display device and method of manufacturing the same
EP1921495A1 (en) Liquid crystal display device using nematic liquid crystal
CN111142287A (en) Dimming panel, manufacturing method thereof and display device
KR20000029277A (en) Liquid crystal device, its preparation and examination method
JP4914545B2 (en) Manufacturing method of liquid crystal display device
WO2023097789A1 (en) Display panel and method for preparing same, display apparatus
KR970703544A (en) Liquid crystal display device and method for manufacturing it
JPH09258176A (en) Curved surface panel and its production
KR101993342B1 (en) Liquid Crystal Display Device and Method Of Fabricating The Same
JP3092899B2 (en) Liquid crystal display device and method of manufacturing the same
JP3152587B2 (en) Liquid crystal panel manufacturing method
KR101182299B1 (en) backlight unit and method for fabricating the same and liquid crystal display device having the same
JPH11287978A (en) Manufacture of liquid crystal display panel
KR100357956B1 (en) Color filter of Reflctive Color LCD and manufacturing methode thereof
JPH10333127A (en) Manufacture of liquid crystal display device and device therefor
JPH06160818A (en) Liquid crystal element and its production
JP2010049207A (en) Transflective liquid crystal display device and method for manufacturing the same
JP4460889B2 (en) Liquid crystal element, manufacturing method thereof, and light control panel
JP2009229486A (en) Method of manufacturing polymer dispersed liquid crystal panel
KR100213182B1 (en) Lcd with micro color lens
JPH10104587A (en) Liquid optical element and its production
TWI247163B (en) Method for producing liquid crystal film, method for forming liquid crystal brightness enhancing film, and structure of liquid crystal film
JP3244079B2 (en) Liquid crystal panel and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent or registration of utility model

Ref document number: 4914545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees