JP7233686B2 - Titanium oxide coating method - Google Patents
Titanium oxide coating method Download PDFInfo
- Publication number
- JP7233686B2 JP7233686B2 JP2019012112A JP2019012112A JP7233686B2 JP 7233686 B2 JP7233686 B2 JP 7233686B2 JP 2019012112 A JP2019012112 A JP 2019012112A JP 2019012112 A JP2019012112 A JP 2019012112A JP 7233686 B2 JP7233686 B2 JP 7233686B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- porous material
- water
- coating
- micropores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 60
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims description 53
- 238000000576 coating method Methods 0.000 title claims description 18
- 239000011148 porous material Substances 0.000 claims description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000008262 pumice Substances 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 10
- 238000007654 immersion Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Images
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Description
本発明は、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングするための酸化チタンのコーティング方法に関するものである。 TECHNICAL FIELD The present invention relates to a titanium oxide coating method for coating the surface of a porous material having a large number of fine pores with titanium oxide.
従来より、活性炭等のように表面に多数の微細孔を有する多孔材は、微細孔による吸着作用を利用して吸着材や触媒担体などの素材として広く使用されている。 BACKGROUND ART Conventionally, porous materials having a large number of micropores on their surfaces, such as activated carbon, have been widely used as materials for adsorbents, catalyst carriers, and the like by utilizing the adsorption action of the micropores.
一方、酸化チタンは、脱臭や殺菌などを目的として素材の表面に膜状にコーティングすることが広く行われている。 On the other hand, titanium oxide is widely used to coat the surface of materials in the form of a film for the purpose of deodorization, sterilization, and the like.
そして、多孔材の機能を助長するために、活性炭等の多孔材の表面に酸化チタン溶液を塗布することで多孔材の表面を酸化チタンでコーティングすることが考案されている(たとえば、特許文献1参照)。 In order to promote the function of the porous material, it has been devised to coat the surface of the porous material with titanium oxide by applying a titanium oxide solution to the surface of the porous material such as activated carbon (for example, Patent Document 1). reference).
ところが、上記従来の多孔材の表面に酸化チタンをコーティングする方法では、表面に多数の微細孔を有する多孔材の表面に酸化チタン溶液を塗布しているために、塗布した酸化チタン溶液が微細孔の内部に浸入してしまい、多孔材としての機能を損なわせるおそれがあるとともに、多孔材の表面に酸化チタンを良好にコーティングすることが困難であった。 However, in the conventional method of coating the surface of a porous material with titanium oxide, the titanium oxide solution is applied to the surface of the porous material having a large number of micropores on the surface. In addition, it is difficult to coat the surface of the porous material with titanium oxide well.
そこで、請求項1に係る本発明では、多数の微細孔を有し吸水性を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、活性炭、ゼオライト、軽石、シリカゲル、ポーラスコンクリートから選ばれる多孔材を水の中に投入して水の浸透圧力で多孔材の内部に水を浸入させて多孔材の微細孔の内部だけでなく素材内部にまで水分を浸入させた後に、多孔材の表面に酸化チタンを付着させることで、水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止し、その後、多孔材を乾燥させて多孔材の微細孔の内部や素材内部に浸入させた水分を除去することで、多孔材の表面に酸化チタンをコーティングすることにした。 Therefore, in the present invention according to claim 1, in a method for coating titanium oxide on the surface of a porous material having a large number of fine pores and having water absorption , activated carbon, zeolite, pumice stone, silica gel, and porous concrete are used. The selected porous material is immersed in water, and the permeation pressure of the water allows the water to infiltrate into the interior of the porous material. By attaching titanium oxide to the surface of the material, it is possible to prevent titanium oxide from entering the inside of the micropores due to the action of moisture. We decided to coat the surface of the porous material with titanium oxide by removing the moisture that had been applied.
また、請求項2に係る本発明では、前記請求項1に係る本発明において、前記酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることにした。 Further, in the present invention according to claim 2, in the present invention according to claim 1, titanium oxide having anatase type crystals is used as the titanium oxide.
そして、本発明では、以下に記載する効果を奏する。 And in this invention, there exists an effect described below.
すなわち、本発明では、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、多孔材の微細孔の内部に水分を浸入させた後に、多孔材の表面に酸化チタンを付着させ、その後、多孔材を乾燥させることにしているために、酸化チタンが微細孔の内部に浸入するのを防止することができ、多孔材としての機能を損なわせることなく、多孔材の表面に酸化チタンを良好にコーティングすることができる。 That is, in the present invention, in the method of coating titanium oxide on the surface of a porous material having a large number of micropores, after allowing moisture to enter the micropores of the porous material, the surface of the porous material is oxidized. Since titanium is deposited and then the porous material is dried, it is possible to prevent titanium oxide from entering the inside of the micropores, and the porous material can be formed without impairing the function of the porous material. The surface of the titanium oxide can be well coated.
特に、酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることにした場合には、多孔材の表面に酸化チタンのアナタース型結晶構造物を強固に付着させることができ、耐候性や耐摩耗性などに優れたコーティングを施すことができる。 In particular, when titanium oxide having anatase-type crystals is used as titanium oxide, the anatase-type crystal structure of titanium oxide can be firmly attached to the surface of the porous material. excellent coating can be applied.
以下に、本発明に係る酸化チタンのコーティング方法の具体的な構成について図面を参照しながら説明する。 A specific configuration of the titanium oxide coating method according to the present invention will be described below with reference to the drawings.
本発明に係る酸化チタンのコーティング方法は、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングするための方法である。 A titanium oxide coating method according to the present invention is a method for coating titanium oxide on the surface of a porous material having a large number of fine pores.
多孔材としては、表面に微細な孔が形成されている材料からなるものであればよく、例えば、活性炭やゼオライトや軽石やシリカゲルやポーラスコンクリートなどが該当する。また、多孔材は、後述する浸液工程において素材内部にまで水分を浸入させやすい吸水性を有する素材からなるものが好ましい。さらに、多孔材としての機能は、特に限定されるものではないが、主に吸着材や触媒担体に用いられるものが好適であり、酸化チタンによる脱臭作用や殺菌作用によって本来の機能が助長されるものが好ましい。 The porous material may be any material having fine pores formed on its surface, such as activated carbon, zeolite, pumice stone, silica gel, and porous concrete. In addition, the porous material is preferably made of a material having water absorption property that allows water to easily penetrate into the inside of the material in the immersion process described later. Furthermore, the function as a porous material is not particularly limited, but it is preferably used mainly as an adsorbent or a catalyst carrier, and the original function is promoted by the deodorizing action and bactericidal action of titanium oxide. things are preferred.
図1に示すように、本発明では、まず、多孔材の微細孔の内部に水分(液体)を浸入させる浸液工程を行う。 As shown in FIG. 1, in the present invention, first, an immersion step is performed in which water (liquid) is allowed to enter the micropores of the porous material.
この浸液工程では、多孔材の微細孔の内部に水分(液体)を浸入させることができればよく、例えば、容器に充填した水の中に多孔材を投入し、水の浸透圧力で多孔材の内部に水を浸入させてもよく、多孔材の表面に高圧で水を吹き付けて、水圧で多孔材の内部に水を浸入させてもよい。この浸液工程では、水に限られず、様々な液体を用いることができ、アルコール等の揮発性を有する液体でもよいが、後述する付着工程において使用される酸化チタン溶液との反応性が無い又は低いものが好適である。また、浸液工程では、多孔材の微細孔の内部だけでなく、素材内部にまで水分(液体)を浸入(吸水)させることが好ましい。 In this liquid immersion process, it is only necessary to allow water (liquid) to enter the inside of the micropores of the porous material. Water may be allowed to infiltrate into the interior of the porous material, or the surface of the porous material may be sprayed with water at high pressure to cause the water to intrude into the interior of the porous material under water pressure. In this liquid immersion step, various liquids can be used without being limited to water. Liquids having volatility such as alcohol may be used. A low one is preferred. In addition, in the liquid immersion step, it is preferable to allow water (liquid) to enter (absorb) not only the inside of the micropores of the porous material but also the inside of the material.
なお、この浸液工程においては、予備的実験によって液体の種類や気温や圧力や吸水量などの浸液条件と後述する付着工程における酸化チタンの付着状態との関係を予め求めておき、後述する付着工程において使用される酸化チタン溶液が微細孔に浸入しないことが顕微鏡写真等で確認できた条件(液体の種類や気温や圧力や吸水量など)で行う。 In this immersion step, the relationship between the immersion conditions such as the type of liquid, temperature, pressure, and amount of water absorption, and the adhesion state of titanium oxide in the adhesion step described later is determined in advance by preliminary experiments. The conditions (liquid type, temperature, pressure, amount of water absorption, etc.) are used to confirm that the titanium oxide solution used in the adhesion process does not penetrate into the micropores.
次に、本発明では、微細孔の内部に水分を浸入させた多孔材の表面に酸化チタンを付着させる付着工程を行う。 Next, in the present invention, an adhesion step is performed to adhere titanium oxide to the surface of the porous material in which water has entered the micropores.
この付着工程では、多孔材の表面に酸化チタンを付着させることができればよく、例えば、多孔材の表面に酸化チタン溶液を刷毛等で塗布してもよく、容器に充填した酸化チタン溶液の中に多孔材を浸漬させてもよく、多孔材の表面に酸化チタン溶液を噴霧してもよい。 In this adhesion step, it is sufficient that titanium oxide can be adhered to the surface of the porous material. For example, a titanium oxide solution may be applied to the surface of the porous material with a brush or the like. The porous material may be immersed, or the surface of the porous material may be sprayed with the titanium oxide solution.
酸化チタンとしては、各種の酸化チタンを用いることができ、結晶構造がアナタース型(アナターゼ型)であっても、ルチル型であっても、ブルッカイト型であってもよいが、酸化チタンの結晶が扁平状の結晶構造を有するアナタース型結晶を有する酸化チタンを用いた場合には、多孔材の表面から内部に侵入させる(食い込ませる)ことができる。 As titanium oxide, various titanium oxides can be used, and the crystal structure may be anatase type (anatase type), rutile type, or brookite type. When titanium oxide having anatase-type crystals having a flat crystal structure is used, it can penetrate (eat into) the inside of the porous material from the surface.
次に、本発明では、表面に酸化チタンを付着させた多孔材を乾燥させる乾燥工程を行う。 Next, in the present invention, a drying step is performed to dry the porous material having titanium oxide adhered to the surface.
この乾燥工程では、多孔材を乾燥させることができればよく、例えば、高温環境下で短時間で乾燥を行ってもよく、常温環境下で時間をかけて乾燥を行ってもよい。この乾燥工程では、多孔材の微細孔の内部や素材内部に浸入させた水分を除去できればよく、その後の多孔材の使用に支障が生じない範囲において完全に水分を除去しなくてもよい。 In this drying step, it is sufficient if the porous material can be dried. For example, the drying may be performed in a high temperature environment for a short period of time, or the drying may be performed in a normal temperature environment over a long period of time. In this drying step, it is only necessary to remove the moisture that has penetrated into the inside of the micropores of the porous material and the inside of the material, and it is not necessary to completely remove the moisture to the extent that the subsequent use of the porous material is not hindered.
これにより、表面に酸化チタンをコーティングした多孔材を製造することができる。 Thereby, a porous material having a surface coated with titanium oxide can be manufactured.
以上に説明したように、本発明では、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、多孔材の微細孔の内部に水分を浸入させた後に、多孔材の表面に酸化チタンを付着させ、その後、多孔材を乾燥させることにしている。 INDUSTRIAL APPLICABILITY As described above, in the present invention, in the method of coating titanium oxide on the surface of a porous material having a large number of micropores, after allowing moisture to enter the micropores of the porous material, Titanium oxide is deposited on the surface of the material, and then the porous material is dried.
そのため、本発明では、予め微細孔の内部に浸入させた水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止することができる。これにより、本発明では、多孔材としての機能を損なわせることなく、多孔材の表面に酸化チタンを良好にコーティングすることができる。 Therefore, in the present invention, it is possible to prevent titanium oxide from penetrating into the inside of the micropores due to the action of moisture that has entered the inside of the micropores in advance. As a result, in the present invention, the surface of the porous material can be satisfactorily coated with titanium oxide without impairing the function of the porous material.
また、本発明では、酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることができる。 Further, in the present invention, titanium oxide having anatase type crystals can be used as the titanium oxide.
この場合には、多孔材の表面に酸化チタンのアナタース型結晶構造物を強固に付着させることができ、耐候性や耐摩耗性などに優れたコーティングを施すことができる。 In this case, the anatase type crystal structure of titanium oxide can be firmly adhered to the surface of the porous material, and a coating having excellent weather resistance and wear resistance can be applied.
Claims (2)
活性炭、ゼオライト、軽石、シリカゲル、ポーラスコンクリートから選ばれる多孔材を水の中に投入して水の浸透圧力で多孔材の内部に水を浸入させて多孔材の微細孔の内部だけでなく素材内部にまで水分を浸入させた後に、多孔材の表面に酸化チタンを付着させることで、水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止し、その後、多孔材を乾燥させて多孔材の微細孔の内部や素材内部に浸入させた水分を除去することで、多孔材の表面に酸化チタンをコーティングすることを特徴とする酸化チタンのコーティング方法。 In a titanium oxide coating method for coating titanium oxide on the surface of a porous material having a large number of fine pores and having water absorption,
A porous material selected from activated carbon, zeolite, pumice stone, silica gel, and porous concrete is put into water, and the permeation pressure of the water allows the water to enter the interior of the porous material. After water has penetrated to the surface of the porous material, titanium oxide is attached to the surface of the porous material to prevent titanium oxide from entering the inside of the micropores due to the action of moisture. A method of coating titanium oxide, which comprises coating the surface of a porous material with titanium oxide by removing moisture that has penetrated into the inside of the micropores of the material and the inside of the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019012112A JP7233686B2 (en) | 2019-01-28 | 2019-01-28 | Titanium oxide coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019012112A JP7233686B2 (en) | 2019-01-28 | 2019-01-28 | Titanium oxide coating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020116550A JP2020116550A (en) | 2020-08-06 |
JP7233686B2 true JP7233686B2 (en) | 2023-03-07 |
Family
ID=71891659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019012112A Active JP7233686B2 (en) | 2019-01-28 | 2019-01-28 | Titanium oxide coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7233686B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003225562A (en) | 2002-02-04 | 2003-08-12 | Shinto Fine Co Ltd | Adsorbent and manufacturing method therefor |
JP2004148143A (en) | 2002-10-28 | 2004-05-27 | Matsushita Electric Works Ltd | Method of forming photocatalytic coating film |
JP2004230258A (en) | 2003-01-29 | 2004-08-19 | Ohbayashi Corp | Porous material and coating material for porous material |
JP2005263610A (en) | 2004-03-15 | 2005-09-29 | Ishitake:Kk | Titanium oxide-coated activated carbon |
JP2005279366A (en) | 2004-03-29 | 2005-10-13 | Mitsubishi Materials Corp | Porous photocatalyst film |
US20060171877A1 (en) | 2004-08-05 | 2006-08-03 | Mazakhir Dadachov | Novel titanium dioxide, process of making and method of using same |
JP2007190543A (en) | 2005-12-22 | 2007-08-02 | Kiichiro Sumi | Method for manufacturing titanium dioxide coating-formed material and titanium dioxide coating-formed material manufactured thereby |
JP2010018447A (en) | 2008-07-08 | 2010-01-28 | Sumitomo Osaka Cement Co Ltd | Surface-coated porous oxide particle and method for coating surface of porous oxide particle |
WO2014088039A1 (en) | 2012-12-07 | 2014-06-12 | 株式会社マンダム | Body odor suppressing agent |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3044801B2 (en) * | 1991-02-05 | 2000-05-22 | クラレケミカル株式会社 | Colored activated carbon |
-
2019
- 2019-01-28 JP JP2019012112A patent/JP7233686B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003225562A (en) | 2002-02-04 | 2003-08-12 | Shinto Fine Co Ltd | Adsorbent and manufacturing method therefor |
JP2004148143A (en) | 2002-10-28 | 2004-05-27 | Matsushita Electric Works Ltd | Method of forming photocatalytic coating film |
JP2004230258A (en) | 2003-01-29 | 2004-08-19 | Ohbayashi Corp | Porous material and coating material for porous material |
JP2005263610A (en) | 2004-03-15 | 2005-09-29 | Ishitake:Kk | Titanium oxide-coated activated carbon |
JP2005279366A (en) | 2004-03-29 | 2005-10-13 | Mitsubishi Materials Corp | Porous photocatalyst film |
US20060171877A1 (en) | 2004-08-05 | 2006-08-03 | Mazakhir Dadachov | Novel titanium dioxide, process of making and method of using same |
JP2007190543A (en) | 2005-12-22 | 2007-08-02 | Kiichiro Sumi | Method for manufacturing titanium dioxide coating-formed material and titanium dioxide coating-formed material manufactured thereby |
JP2010018447A (en) | 2008-07-08 | 2010-01-28 | Sumitomo Osaka Cement Co Ltd | Surface-coated porous oxide particle and method for coating surface of porous oxide particle |
WO2014088039A1 (en) | 2012-12-07 | 2014-06-12 | 株式会社マンダム | Body odor suppressing agent |
Non-Patent Citations (1)
Title |
---|
安部 郁夫,多機能材料:活性炭、木炭,色材,72 [6],日本,1999年,pp388-396,https://www.jstage.jst.go.jp/article/shikizai1937/72/6/72_388/_pdf |
Also Published As
Publication number | Publication date |
---|---|
JP2020116550A (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2324909C (en) | Photocatalytic composition | |
DE10393112D2 (en) | Ceramic molded article with photocatalytic coating and method of making the same | |
US20070275192A1 (en) | Insulating Glass Unit with an Elastoplastic Spacer Strip and a Method of Applying the Spacer Strip | |
JP7233686B2 (en) | Titanium oxide coating method | |
JP4175671B2 (en) | NOx removal catalyst manufacturing method and exhaust gas purification method | |
JPH0244581B2 (en) | ||
JP3729880B2 (en) | Method for supporting titanium dioxide particles | |
JP3798060B2 (en) | Method for supporting photocatalyst particles | |
US20120141743A1 (en) | Biocide coating comprising copper | |
JP2004076494A (en) | Building material having environment improving function and manufacturing method for the material | |
CA2506361A1 (en) | Process for coating a catalyst support containing two different partial structures with a catalytically active coat, and catalyst obtained thereby | |
JP5031244B2 (en) | How to regenerate the absorbent | |
JPH09314714A (en) | Functional film and article having it | |
GB2138695A (en) | Filter element | |
JP2008095337A (en) | Paved road construction method | |
JP5152214B2 (en) | Photocatalyst loading method and porous material carrying photocatalyst | |
CN105435627A (en) | Photocatalytic filter, method for manufacturing the same, and method for reactivating the same | |
JP3095735U (en) | Photocatalytic filter | |
JP2004121371A (en) | Member and element for cleaning air | |
JP2019038190A (en) | Moisture absorbing film, packaging bag and method for producing moisture absorbing layer | |
JP2006102567A (en) | Carrying method for photocatalyst and porous material carried with photocatalyst | |
JP4742853B2 (en) | House structure | |
JP3108611U (en) | Screen door with photocatalytic function | |
JP2005342704A (en) | Depositing method for photocatalytic body and porous material | |
CN105729698A (en) | Method for protecting screen panel of electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20221124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7233686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |