JP7233686B2 - Titanium oxide coating method - Google Patents

Titanium oxide coating method Download PDF

Info

Publication number
JP7233686B2
JP7233686B2 JP2019012112A JP2019012112A JP7233686B2 JP 7233686 B2 JP7233686 B2 JP 7233686B2 JP 2019012112 A JP2019012112 A JP 2019012112A JP 2019012112 A JP2019012112 A JP 2019012112A JP 7233686 B2 JP7233686 B2 JP 7233686B2
Authority
JP
Japan
Prior art keywords
titanium oxide
porous material
water
coating
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019012112A
Other languages
Japanese (ja)
Other versions
JP2020116550A (en
Inventor
幸一 島田
Original Assignee
株式会社イリス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イリス filed Critical 株式会社イリス
Priority to JP2019012112A priority Critical patent/JP7233686B2/en
Publication of JP2020116550A publication Critical patent/JP2020116550A/en
Application granted granted Critical
Publication of JP7233686B2 publication Critical patent/JP7233686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングするための酸化チタンのコーティング方法に関するものである。 TECHNICAL FIELD The present invention relates to a titanium oxide coating method for coating the surface of a porous material having a large number of fine pores with titanium oxide.

従来より、活性炭等のように表面に多数の微細孔を有する多孔材は、微細孔による吸着作用を利用して吸着材や触媒担体などの素材として広く使用されている。 BACKGROUND ART Conventionally, porous materials having a large number of micropores on their surfaces, such as activated carbon, have been widely used as materials for adsorbents, catalyst carriers, and the like by utilizing the adsorption action of the micropores.

一方、酸化チタンは、脱臭や殺菌などを目的として素材の表面に膜状にコーティングすることが広く行われている。 On the other hand, titanium oxide is widely used to coat the surface of materials in the form of a film for the purpose of deodorization, sterilization, and the like.

そして、多孔材の機能を助長するために、活性炭等の多孔材の表面に酸化チタン溶液を塗布することで多孔材の表面を酸化チタンでコーティングすることが考案されている(たとえば、特許文献1参照)。 In order to promote the function of the porous material, it has been devised to coat the surface of the porous material with titanium oxide by applying a titanium oxide solution to the surface of the porous material such as activated carbon (for example, Patent Document 1). reference).

特開2003-225562号公報JP-A-2003-225562

ところが、上記従来の多孔材の表面に酸化チタンをコーティングする方法では、表面に多数の微細孔を有する多孔材の表面に酸化チタン溶液を塗布しているために、塗布した酸化チタン溶液が微細孔の内部に浸入してしまい、多孔材としての機能を損なわせるおそれがあるとともに、多孔材の表面に酸化チタンを良好にコーティングすることが困難であった。 However, in the conventional method of coating the surface of a porous material with titanium oxide, the titanium oxide solution is applied to the surface of the porous material having a large number of micropores on the surface. In addition, it is difficult to coat the surface of the porous material with titanium oxide well.

そこで、請求項1に係る本発明では、多数の微細孔を有し吸水性を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、活性炭、ゼオライト、軽石、シリカゲル、ポーラスコンクリートから選ばれる多孔材を水の中に投入して水の浸透圧力で多孔材の内部に水を浸入させて多孔材の微細孔の内部だけでなく素材内部にまで水分を浸入させた後に、多孔材の表面に酸化チタンを付着させることで、水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止し、その後、多孔材を乾燥させて多孔材の微細孔の内部や素材内部に浸入させた水分を除去することで、多孔材の表面に酸化チタンをコーティングすることにした。 Therefore, in the present invention according to claim 1, in a method for coating titanium oxide on the surface of a porous material having a large number of fine pores and having water absorption , activated carbon, zeolite, pumice stone, silica gel, and porous concrete are used. The selected porous material is immersed in water, and the permeation pressure of the water allows the water to infiltrate into the interior of the porous material. By attaching titanium oxide to the surface of the material, it is possible to prevent titanium oxide from entering the inside of the micropores due to the action of moisture. We decided to coat the surface of the porous material with titanium oxide by removing the moisture that had been applied.

また、請求項2に係る本発明では、前記請求項1に係る本発明において、前記酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることにした。 Further, in the present invention according to claim 2, in the present invention according to claim 1, titanium oxide having anatase type crystals is used as the titanium oxide.

そして、本発明では、以下に記載する効果を奏する。 And in this invention, there exists an effect described below.

すなわち、本発明では、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、多孔材の微細孔の内部に水分を浸入させた後に、多孔材の表面に酸化チタンを付着させ、その後、多孔材を乾燥させることにしているために、酸化チタンが微細孔の内部に浸入するのを防止することができ、多孔材としての機能を損なわせることなく、多孔材の表面に酸化チタンを良好にコーティングすることができる。 That is, in the present invention, in the method of coating titanium oxide on the surface of a porous material having a large number of micropores, after allowing moisture to enter the micropores of the porous material, the surface of the porous material is oxidized. Since titanium is deposited and then the porous material is dried, it is possible to prevent titanium oxide from entering the inside of the micropores, and the porous material can be formed without impairing the function of the porous material. The surface of the titanium oxide can be well coated.

特に、酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることにした場合には、多孔材の表面に酸化チタンのアナタース型結晶構造物を強固に付着させることができ、耐候性や耐摩耗性などに優れたコーティングを施すことができる。 In particular, when titanium oxide having anatase-type crystals is used as titanium oxide, the anatase-type crystal structure of titanium oxide can be firmly attached to the surface of the porous material. excellent coating can be applied.

本発明に係る酸化チタンのコーティング方法を示す説明図。Explanatory drawing which shows the coating method of the titanium oxide which concerns on this invention.

以下に、本発明に係る酸化チタンのコーティング方法の具体的な構成について図面を参照しながら説明する。 A specific configuration of the titanium oxide coating method according to the present invention will be described below with reference to the drawings.

本発明に係る酸化チタンのコーティング方法は、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングするための方法である。 A titanium oxide coating method according to the present invention is a method for coating titanium oxide on the surface of a porous material having a large number of fine pores.

多孔材としては、表面に微細な孔が形成されている材料からなるものであればよく、例えば、活性炭やゼオライトや軽石やシリカゲルやポーラスコンクリートなどが該当する。また、多孔材は、後述する浸液工程において素材内部にまで水分を浸入させやすい吸水性を有する素材からなるものが好ましい。さらに、多孔材としての機能は、特に限定されるものではないが、主に吸着材や触媒担体に用いられるものが好適であり、酸化チタンによる脱臭作用や殺菌作用によって本来の機能が助長されるものが好ましい。 The porous material may be any material having fine pores formed on its surface, such as activated carbon, zeolite, pumice stone, silica gel, and porous concrete. In addition, the porous material is preferably made of a material having water absorption property that allows water to easily penetrate into the inside of the material in the immersion process described later. Furthermore, the function as a porous material is not particularly limited, but it is preferably used mainly as an adsorbent or a catalyst carrier, and the original function is promoted by the deodorizing action and bactericidal action of titanium oxide. things are preferred.

図1に示すように、本発明では、まず、多孔材の微細孔の内部に水分(液体)を浸入させる浸液工程を行う。 As shown in FIG. 1, in the present invention, first, an immersion step is performed in which water (liquid) is allowed to enter the micropores of the porous material.

この浸液工程では、多孔材の微細孔の内部に水分(液体)を浸入させることができればよく、例えば、容器に充填した水の中に多孔材を投入し、水の浸透圧力で多孔材の内部に水を浸入させてもよく、多孔材の表面に高圧で水を吹き付けて、水圧で多孔材の内部に水を浸入させてもよい。この浸液工程では、水に限られず、様々な液体を用いることができ、アルコール等の揮発性を有する液体でもよいが、後述する付着工程において使用される酸化チタン溶液との反応性が無い又は低いものが好適である。また、浸液工程では、多孔材の微細孔の内部だけでなく、素材内部にまで水分(液体)を浸入(吸水)させることが好ましい。 In this liquid immersion process, it is only necessary to allow water (liquid) to enter the inside of the micropores of the porous material. Water may be allowed to infiltrate into the interior of the porous material, or the surface of the porous material may be sprayed with water at high pressure to cause the water to intrude into the interior of the porous material under water pressure. In this liquid immersion step, various liquids can be used without being limited to water. Liquids having volatility such as alcohol may be used. A low one is preferred. In addition, in the liquid immersion step, it is preferable to allow water (liquid) to enter (absorb) not only the inside of the micropores of the porous material but also the inside of the material.

なお、この浸液工程においては、予備的実験によって液体の種類や気温や圧力や吸水量などの浸液条件と後述する付着工程における酸化チタンの付着状態との関係を予め求めておき、後述する付着工程において使用される酸化チタン溶液が微細孔に浸入しないことが顕微鏡写真等で確認できた条件(液体の種類や気温や圧力や吸水量など)で行う。 In this immersion step, the relationship between the immersion conditions such as the type of liquid, temperature, pressure, and amount of water absorption, and the adhesion state of titanium oxide in the adhesion step described later is determined in advance by preliminary experiments. The conditions (liquid type, temperature, pressure, amount of water absorption, etc.) are used to confirm that the titanium oxide solution used in the adhesion process does not penetrate into the micropores.

次に、本発明では、微細孔の内部に水分を浸入させた多孔材の表面に酸化チタンを付着させる付着工程を行う。 Next, in the present invention, an adhesion step is performed to adhere titanium oxide to the surface of the porous material in which water has entered the micropores.

この付着工程では、多孔材の表面に酸化チタンを付着させることができればよく、例えば、多孔材の表面に酸化チタン溶液を刷毛等で塗布してもよく、容器に充填した酸化チタン溶液の中に多孔材を浸漬させてもよく、多孔材の表面に酸化チタン溶液を噴霧してもよい。 In this adhesion step, it is sufficient that titanium oxide can be adhered to the surface of the porous material. For example, a titanium oxide solution may be applied to the surface of the porous material with a brush or the like. The porous material may be immersed, or the surface of the porous material may be sprayed with the titanium oxide solution.

酸化チタンとしては、各種の酸化チタンを用いることができ、結晶構造がアナタース型(アナターゼ型)であっても、ルチル型であっても、ブルッカイト型であってもよいが、酸化チタンの結晶が扁平状の結晶構造を有するアナタース型結晶を有する酸化チタンを用いた場合には、多孔材の表面から内部に侵入させる(食い込ませる)ことができる。 As titanium oxide, various titanium oxides can be used, and the crystal structure may be anatase type (anatase type), rutile type, or brookite type. When titanium oxide having anatase-type crystals having a flat crystal structure is used, it can penetrate (eat into) the inside of the porous material from the surface.

次に、本発明では、表面に酸化チタンを付着させた多孔材を乾燥させる乾燥工程を行う。 Next, in the present invention, a drying step is performed to dry the porous material having titanium oxide adhered to the surface.

この乾燥工程では、多孔材を乾燥させることができればよく、例えば、高温環境下で短時間で乾燥を行ってもよく、常温環境下で時間をかけて乾燥を行ってもよい。この乾燥工程では、多孔材の微細孔の内部や素材内部に浸入させた水分を除去できればよく、その後の多孔材の使用に支障が生じない範囲において完全に水分を除去しなくてもよい。 In this drying step, it is sufficient if the porous material can be dried. For example, the drying may be performed in a high temperature environment for a short period of time, or the drying may be performed in a normal temperature environment over a long period of time. In this drying step, it is only necessary to remove the moisture that has penetrated into the inside of the micropores of the porous material and the inside of the material, and it is not necessary to completely remove the moisture to the extent that the subsequent use of the porous material is not hindered.

これにより、表面に酸化チタンをコーティングした多孔材を製造することができる。 Thereby, a porous material having a surface coated with titanium oxide can be manufactured.

以上に説明したように、本発明では、多数の微細孔を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、多孔材の微細孔の内部に水分を浸入させた後に、多孔材の表面に酸化チタンを付着させ、その後、多孔材を乾燥させることにしている。 INDUSTRIAL APPLICABILITY As described above, in the present invention, in the method of coating titanium oxide on the surface of a porous material having a large number of micropores, after allowing moisture to enter the micropores of the porous material, Titanium oxide is deposited on the surface of the material, and then the porous material is dried.

そのため、本発明では、予め微細孔の内部に浸入させた水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止することができる。これにより、本発明では、多孔材としての機能を損なわせることなく、多孔材の表面に酸化チタンを良好にコーティングすることができる。 Therefore, in the present invention, it is possible to prevent titanium oxide from penetrating into the inside of the micropores due to the action of moisture that has entered the inside of the micropores in advance. As a result, in the present invention, the surface of the porous material can be satisfactorily coated with titanium oxide without impairing the function of the porous material.

また、本発明では、酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることができる。 Further, in the present invention, titanium oxide having anatase type crystals can be used as the titanium oxide.

この場合には、多孔材の表面に酸化チタンのアナタース型結晶構造物を強固に付着させることができ、耐候性や耐摩耗性などに優れたコーティングを施すことができる。 In this case, the anatase type crystal structure of titanium oxide can be firmly adhered to the surface of the porous material, and a coating having excellent weather resistance and wear resistance can be applied.

Claims (2)

多数の微細孔を有し吸水性を有する多孔材の表面に酸化チタンをコーティングする酸化チタンのコーティング方法において、
活性炭、ゼオライト、軽石、シリカゲル、ポーラスコンクリートから選ばれる多孔材を水の中に投入して水の浸透圧力で多孔材の内部に水を浸入させて多孔材の微細孔の内部だけでなく素材内部にまで水分を浸入させた後に、多孔材の表面に酸化チタンを付着させることで、水分の作用によって酸化チタンが微細孔の内部に浸入するのを防止し、その後、多孔材を乾燥させて多孔材の微細孔の内部や素材内部に浸入させた水分を除去することで、多孔材の表面に酸化チタンをコーティングすることを特徴とする酸化チタンのコーティング方法。
In a titanium oxide coating method for coating titanium oxide on the surface of a porous material having a large number of fine pores and having water absorption,
A porous material selected from activated carbon, zeolite, pumice stone, silica gel, and porous concrete is put into water, and the permeation pressure of the water allows the water to enter the interior of the porous material. After water has penetrated to the surface of the porous material, titanium oxide is attached to the surface of the porous material to prevent titanium oxide from entering the inside of the micropores due to the action of moisture. A method of coating titanium oxide, which comprises coating the surface of a porous material with titanium oxide by removing moisture that has penetrated into the inside of the micropores of the material and the inside of the material.
前記酸化チタンとしてアナタース型結晶を有する酸化チタンを用いることを特徴とする請求項1に記載の酸化チタンのコーティング方法。 2. The method of coating titanium oxide according to claim 1, wherein titanium oxide having anatase type crystals is used as said titanium oxide.
JP2019012112A 2019-01-28 2019-01-28 Titanium oxide coating method Active JP7233686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012112A JP7233686B2 (en) 2019-01-28 2019-01-28 Titanium oxide coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012112A JP7233686B2 (en) 2019-01-28 2019-01-28 Titanium oxide coating method

Publications (2)

Publication Number Publication Date
JP2020116550A JP2020116550A (en) 2020-08-06
JP7233686B2 true JP7233686B2 (en) 2023-03-07

Family

ID=71891659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012112A Active JP7233686B2 (en) 2019-01-28 2019-01-28 Titanium oxide coating method

Country Status (1)

Country Link
JP (1) JP7233686B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225562A (en) 2002-02-04 2003-08-12 Shinto Fine Co Ltd Adsorbent and manufacturing method therefor
JP2004148143A (en) 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Method of forming photocatalytic coating film
JP2004230258A (en) 2003-01-29 2004-08-19 Ohbayashi Corp Porous material and coating material for porous material
JP2005263610A (en) 2004-03-15 2005-09-29 Ishitake:Kk Titanium oxide-coated activated carbon
JP2005279366A (en) 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
US20060171877A1 (en) 2004-08-05 2006-08-03 Mazakhir Dadachov Novel titanium dioxide, process of making and method of using same
JP2007190543A (en) 2005-12-22 2007-08-02 Kiichiro Sumi Method for manufacturing titanium dioxide coating-formed material and titanium dioxide coating-formed material manufactured thereby
JP2010018447A (en) 2008-07-08 2010-01-28 Sumitomo Osaka Cement Co Ltd Surface-coated porous oxide particle and method for coating surface of porous oxide particle
WO2014088039A1 (en) 2012-12-07 2014-06-12 株式会社マンダム Body odor suppressing agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044801B2 (en) * 1991-02-05 2000-05-22 クラレケミカル株式会社 Colored activated carbon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225562A (en) 2002-02-04 2003-08-12 Shinto Fine Co Ltd Adsorbent and manufacturing method therefor
JP2004148143A (en) 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Method of forming photocatalytic coating film
JP2004230258A (en) 2003-01-29 2004-08-19 Ohbayashi Corp Porous material and coating material for porous material
JP2005263610A (en) 2004-03-15 2005-09-29 Ishitake:Kk Titanium oxide-coated activated carbon
JP2005279366A (en) 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
US20060171877A1 (en) 2004-08-05 2006-08-03 Mazakhir Dadachov Novel titanium dioxide, process of making and method of using same
JP2007190543A (en) 2005-12-22 2007-08-02 Kiichiro Sumi Method for manufacturing titanium dioxide coating-formed material and titanium dioxide coating-formed material manufactured thereby
JP2010018447A (en) 2008-07-08 2010-01-28 Sumitomo Osaka Cement Co Ltd Surface-coated porous oxide particle and method for coating surface of porous oxide particle
WO2014088039A1 (en) 2012-12-07 2014-06-12 株式会社マンダム Body odor suppressing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安部 郁夫,多機能材料:活性炭、木炭,色材,72 [6],日本,1999年,pp388-396,https://www.jstage.jst.go.jp/article/shikizai1937/72/6/72_388/_pdf

Also Published As

Publication number Publication date
JP2020116550A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
CA2324909C (en) Photocatalytic composition
JP7233686B2 (en) Titanium oxide coating method
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
JP4175671B2 (en) NOx removal catalyst manufacturing method and exhaust gas purification method
JP3798060B2 (en) Method for supporting photocatalyst particles
JP4263268B2 (en) Method for immobilizing a catalyst layer on an aluminum carrier
CA2805278A1 (en) Disinfection element
JP2003183889A (en) Coated part
CA2506361A1 (en) Process for coating a catalyst support containing two different partial structures with a catalytically active coat, and catalyst obtained thereby
GB2138695A (en) Filter element
JP5031244B2 (en) How to regenerate the absorbent
CN105435627A (en) Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
RU2013504C1 (en) Method for prevention of environmental pollution with chemical and/or biological harmful substances liberated from surfaces of building structures
JP2004121371A (en) Member and element for cleaning air
JP3640901B2 (en) Coating film creation method
JP2010094678A (en) Method of carrying photocatalyst and porous material carrying photocatalyst
JPH0418887B2 (en)
JP4742853B2 (en) House structure
JP2010029867A (en) Carrier for photocatalyst
CN105729698A (en) Method for protecting screen panel of electronic equipment
JP2001259435A (en) Photocatalyst-supporting body
JP4654892B2 (en) Method for inactivating allergens by housing materials
JP2004141737A (en) Photocatalyst body, its manufacturing method, its regeneration method and photocatalyst filter
JP2014069118A (en) Deodorization catalyst
JP2009073695A (en) Water absorption preventing layer forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7233686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150