JPH0244581B2 - - Google Patents

Info

Publication number
JPH0244581B2
JPH0244581B2 JP56063379A JP6337981A JPH0244581B2 JP H0244581 B2 JPH0244581 B2 JP H0244581B2 JP 56063379 A JP56063379 A JP 56063379A JP 6337981 A JP6337981 A JP 6337981A JP H0244581 B2 JPH0244581 B2 JP H0244581B2
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
aqueous solution
titania
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56063379A
Other languages
Japanese (ja)
Other versions
JPS57180433A (en
Inventor
Kikuji Tsuneyoshi
Noboru Hiraoka
Takemi Nakane
Juzo Nawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56063379A priority Critical patent/JPS57180433A/en
Publication of JPS57180433A publication Critical patent/JPS57180433A/en
Publication of JPH0244581B2 publication Critical patent/JPH0244581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排ガス中の窒素酸化物除去用触媒(以
下脱硝触媒という)の再生方法に係るもので、更
に詳しくはアンモニアを還元剤として排ガス中の
窒素酸化物(以下NOxという)を除去する触媒
の再生方法に関する。 排ガス中のNOxは近年光化学スモツグの原因
物質の一つとして注目され、その除去法が種々提
案されているが、その中でアンモニアを還元剤と
して触媒の存在下、NOxを無害な窒素にまで還
元せしめる接触還元法がすでに実用段階に到達し
ている。ここで用いられる触媒はバナジウム−チ
タニア系が優れた活性を示すものとして一般的で
ある。バナジウムチタニア系にはV2O5とTiO2
(V2O5+α成分)とTiO2の組合せがあり、α成
分としては例えば特開昭51−80696に記載のよう
な酸化モリブデンや酸化タングステンなどがあ
る。その組成はTiO280〜95wt%、V2O520〜5wt
%であるが、一般にはTiO290〜91wt%、V2O510
〜9wt%のものが多い。α成分のWO3やMoO3
例えばTiO291wt%、V2O52wt%、WO37wt%の
ようにV2O5と置き換える形で配合される。 更に脱硝触媒の形状は第1図に示すようなハニ
カム状が多用されている。ハニカム触媒は大別し
てコート型とソリツド型とがあり、前者はハニカ
ム状の基材にバナジウム化合物を含むチタニアス
ラリーを塗布して、乾燥、焼成することにより作
られるが後者はチタニアにバナジウム化合物と水
を加えて混練し、ハニカム状に成形した後、乾
燥、焼成して作られる。(第1図矢印はガスの流
れ方向を示す) 脱硝触媒は一般には350〜450℃の温度領域で使
用されるが、排ガスがダーテイな場合には長期間
の使用によつて触媒の活性が低下する現象が認め
られる。触媒の活性を低下させる触媒毒としては
ナトリウムやカリウムなどのアルカリ金属化合
物、マグネシウムやカルシウムなどの土類金属化
合物がよく知られているが、これらは燃料油や石
炭中に含まれるものである。その他にダストの付
着堆積による閉塞や表面積の低下も活性低下の要
因となる。 以上のように脱硝触媒の活性の経時的な低下に
ついては種々の要因があるが、活性の低下した触
媒について水洗後100〜500℃で焼成する方法(特
開昭51−80696)、水又は稀無機酸水溶液で洗浄す
るか、又は蒸気を吹付ける方法(特開昭52−
27091)、蓚酸水溶液を接触させバナジウム成分の
一部を抽出後、バナジウム化合物を含浸担持し、
焼成する方法(特開昭54−10294)などの活性回
復(再生)方法が提案されている。 しかしながら前記洗浄処理においては水溶性触
媒毒やダストが除去され、それなりの効果は認め
られるものの、活性成分であるバナジウムや、α
成分(酸化タングステン及び酸化モリブデンな
ど)が一部溶出して来るため未使用触媒の活性と
同等のレベルまで再成することはできない。特に
蓚酸水溶液で洗浄する方法はバナジウムを蓚酸バ
ナジルとして強制的に溶出させるものであり、ま
たα成分もかなり溶出して来るので、当然活性の
向上は見込めない。従つて上記洗浄後に活性成分
を再担持させることが必要となる。 ところが前述のコート型触媒は前記洗浄後単に
バナジウム化合物を含浸担持させる従来法では再
生不良であり、バナジウム化合物又は〔バナジウ
ム化合物+α成分の化合物〕を含むチタニアスラ
リーを塗布することによりはじめて良好に再生さ
れることを見出した。前記バナジウム化合物とし
てはメタバナジン酸アンモニウムや蓚酸バナジ
ル、α成分の化合物としてはパラタングステン酸
アンモニウム及モリブデン酸アンモニウムが一般
によく使用される。更に第1図に示すように排ガ
スはハニカムの穴を通過する訳でこの穴の径が小
さくなれば、即ち塗布層の厚みが増せば、当然圧
力損失の上昇をきたすことになり、また塗布層の
ヒビ割れやはく離の原因となるため、やみくもに
チタニアスラリーを塗布することはできないので
ある。この点について本発明者らは種々検討し、
チタニアスラリーの粘度をある好ましい範囲に制
御することにより活性の低下したコート型ハニカ
ム触媒を未使用触媒と同等の活性と圧力損失を有
する触媒へ再生できることを見出し、本発明を完
成するに至つた。 以下本発明を詳細に説明する。 本発明によるコート型触媒の再生は、まず活性
の低下した触媒を、水又は硫酸、硝酸及び塩酸な
どの無機酸の希水溶液で洗浄する。更に必要に応
じて蓚酸水溶液による洗浄を追加する。その後バ
ナジウム化合物又は〔バナジウム化合物+α成分
の化合物〕を含むチタニアスラリ(粘度0.3〜2.0
ポイズ)を塗布して乾燥、焼成することにより再
生触媒が得られる。前記チタニアスラリー中のバ
ナジウム化合物やα成分の化合物の配合は焼成し
た後の組成が前述のように例えばTiO291wt%、
V2O52wt%WO37wt%となるようにあらかじめ計
算して決められる。 NOx含有排ガスの脱硝触媒として長時間使用
された結果、活性の低下した触媒には、多くの場
合触媒表面にダストが付着堆積しているのであら
かじめ水又は稀無機酸水溶液で洗浄、除去するの
であるが、この時アルカリ金属化合物などの水溶
性の被毒物も除去される。一方活性成分のバナジ
ウムや前記のα成分も一部溶出して来るので長時
間の洗浄は好ましくない。またダストや被毒物に
よる汚染が著しく水又は稀無機酸水溶液による洗
浄のみではそれらの除去が困難な場合には更に蓚
酸水溶液で好ましくは加温下で洗浄することが効
果的である。 上記洗浄によりダストや被毒物を除去した触媒
は、バナジウム化合物又は〔バナジウム化合物+
α成分の化合物〕を含むチタニアスラリーに浸漬
するなどの方法によつて該スラリーを塗布され
る。該スラリーの粘度は0.3〜2.0ポイズが好まし
く、0.3ポイズ以下では活性の回復が十分でなく、
また2.0ポイズ以上では塗布層の厚みが増大して
通気圧力損失の増大や塗布層のヒビ割れ、はく離
の促進などを引き起し好ましくない。 該スラリーを塗布された触媒は、乾燥と焼成を
経て未使用触媒と比較して遜色ない活性と通気圧
力損失を有する触媒に再生される。 以上詳述したように本発明の方法により活性の
低下したコート型バナジウム−チタニア系触媒、
すなわちV2O5−TiO2、及び(V2O5+α成分)−
TiO2の組合せからなる触媒、を形状を損うこと
もなく、未使用触媒と同等のレベルにまで再生す
ることができる訳でその実用的価値は極めて大き
い。 次に本発明を実施例により更に具体的に説明す
る。 実施例 1 TiO291wt%、TiO29wt%を含むコート型ハニ
カム触媒を用い、下記条件でボイラ排ガスを2年
間処理したところ、380℃における初期NOx除去
率83%のものが74.5%に低下した。 排ガス処理条件 処理ガス量 温 度 空間速度 100Nm3/h 300〜400℃ 10000 1/h NH3/NOx比.NOx SOx 1.0 350ppm 1000ppm この性能の低下した触媒を触媒の見掛け容積
(外寸より算出)の3.3倍の水及び温水に浸漬し、
水及び温水を循環しながら30分〜1時間洗浄し
た。洗浄後はバナジウムの溶出により橙色に着色
し、化学分析によつて洗浄水中のバナジウムを定
量したところ触媒中のバナジウムの5〜20%が溶
出していた。またカリウムはいずれの条件下でも
100%溶出していた。 洗浄後の触媒を乾燥し、前記と同様の排ガス処
理条件でNOx除去率を測定したところ比較例1
(第1表)に示すように完全には回復しなかつた。 更に70℃の温水中で30分間上記と同様にして洗
浄した触媒を乾燥し、メタバナジン酸アンモニウ
ムを溶解したメチルアミン水溶液に浸漬して含浸
させ排ガス処理に供したところNOx除去率は比
較例2に示すとおり77.5%で水洗のみのものとほ
とんど変らなかつた。 次に比較例1と同様に水及び温水で30分〜1時
間洗浄した触媒を得、TiO288.7wt%、メタバナ
ジン酸アンモニウム11.3wt%の割合ではかり取
り、メチルアミン水溶液を加えて調整した粘度
0.5ポイズのチタニアスラリーに浸漬してスラリ
ーを塗布し、乾燥、焼成して前記排ガス処理条件
下でNOx除去率を測定したところ第1表に示す
とおり初期のNOx除去率へ完全に回復した。
The present invention relates to a method for regenerating a catalyst for removing nitrogen oxides from exhaust gas (hereinafter referred to as a denitration catalyst), and more specifically, the present invention relates to a method for regenerating a catalyst for removing nitrogen oxides from exhaust gas (hereinafter referred to as NOx) using ammonia as a reducing agent. Concerning playback methods. NOx in exhaust gas has recently attracted attention as one of the causative substances of photochemical smog, and various methods for its removal have been proposed. Among them, NOx is reduced to harmless nitrogen in the presence of a catalyst using ammonia as a reducing agent. The catalytic reduction method for this purpose has already reached the practical stage. The catalyst used here is generally a vanadium-titania catalyst, which exhibits excellent activity. Vanadium titania systems include combinations of V 2 O 5 and TiO 2 and (V 2 O 5 + α component) and TiO 2 , and the α component includes, for example, molybdenum oxide and tungsten oxide as described in JP-A-51-80696. and so on. Its composition is TiO2 80~95wt%, V2O5 20 ~5wt%
%, but generally TiO 2 90-91wt%, V 2 O 5 10
Many contain ~9wt%. The α components WO 3 and MoO 3 are blended in a form that replaces V 2 O 5 , such as 91 wt% TiO 2 , 2 wt% V 2 O 5 , and 7 wt% WO 3 . Furthermore, the shape of the denitrification catalyst is often a honeycomb shape as shown in FIG. Honeycomb catalysts can be roughly divided into coated type and solid type. The former is made by coating a honeycomb-shaped base material with a titania slurry containing a vanadium compound, dried and fired, while the latter is made by applying a titania slurry containing a vanadium compound to titania and water. It is made by adding, kneading and forming into a honeycomb shape, then drying and firing. (The arrow in Figure 1 indicates the direction of gas flow.) Denitrification catalysts are generally used in the temperature range of 350 to 450°C, but if the exhaust gas is dirty, the activity of the catalyst decreases with long-term use. A phenomenon is observed. Alkali metal compounds such as sodium and potassium, and earth metal compounds such as magnesium and calcium are well known as catalyst poisons that reduce catalyst activity, and these are contained in fuel oil and coal. In addition, blockage due to adhesion and accumulation of dust and a decrease in surface area are also factors that reduce activity. As mentioned above, there are various factors that cause the activity of the denitrification catalyst to decrease over time. Cleaning with an inorganic acid aqueous solution or spraying with steam (Japanese Patent Application Laid-Open No. 1973-
27091), after extracting a part of the vanadium component by contacting with an oxalic acid aqueous solution, impregnating and supporting the vanadium compound,
Activity recovery (regeneration) methods such as a firing method (Japanese Patent Laid-Open No. 10294/1983) have been proposed. However, although water-soluble catalyst poisons and dust are removed in the cleaning treatment, and some effects are observed, the active ingredients vanadium and α
Since some components (tungsten oxide, molybdenum oxide, etc.) are eluted, it is not possible to regenerate the catalyst to a level equivalent to the activity of the unused catalyst. In particular, in the method of washing with an aqueous oxalic acid solution, vanadium is forcibly eluted as vanadyl oxalate, and a considerable amount of the α component is also eluted, so naturally no improvement in activity can be expected. It is therefore necessary to reload the active ingredient after said washing. However, the above-mentioned coated catalyst cannot be regenerated properly by the conventional method of simply impregnating and supporting a vanadium compound after the washing, and can be successfully regenerated only by applying a titania slurry containing a vanadium compound or [vanadium compound + α component compound]. I discovered that. Ammonium metavanadate and vanadyl oxalate are commonly used as the vanadium compounds, and ammonium paratungstate and ammonium molybdate are commonly used as the α component compounds. Furthermore, as shown in Figure 1, exhaust gas passes through the holes in the honeycomb, so if the diameter of these holes becomes smaller, that is, if the thickness of the coating layer increases, the pressure loss will naturally increase, and the thickness of the coating layer will increase. Titania slurry cannot be applied blindly as it may cause cracking or peeling. The inventors have conducted various studies regarding this point, and
We have discovered that by controlling the viscosity of titania slurry within a certain preferable range, it is possible to regenerate a coated honeycomb catalyst with reduced activity into a catalyst with activity and pressure loss equivalent to that of an unused catalyst, and have completed the present invention. The present invention will be explained in detail below. To regenerate a coated catalyst according to the present invention, first, the catalyst whose activity has decreased is washed with water or a dilute aqueous solution of an inorganic acid such as sulfuric acid, nitric acid, and hydrochloric acid. Furthermore, washing with an oxalic acid aqueous solution is added as necessary. After that, titania slurry containing a vanadium compound or [vanadium compound + α component compound] (viscosity 0.3 to 2.0
A regenerated catalyst can be obtained by coating, drying, and baking. The composition of the vanadium compound and the α component compound in the titania slurry is such that the composition after firing is, for example, 91 wt% TiO 2 ,
It is calculated and determined in advance so that V 2 O 5 2wt% WO 3 7wt%. As a result of being used as a denitrification catalyst for NOx-containing exhaust gas for a long period of time, catalysts whose activity has decreased often have dust deposited on the catalyst surface, which must be removed by cleaning with water or a dilute inorganic acid aqueous solution in advance. However, at this time, water-soluble poisonous substances such as alkali metal compounds are also removed. On the other hand, since some of the active ingredient vanadium and the above-mentioned α component are eluted, prolonged washing is not preferred. In addition, if the contamination by dust or poisonous substances is significant and it is difficult to remove them only by cleaning with water or a dilute inorganic acid aqueous solution, it is effective to further clean with an oxalic acid aqueous solution, preferably under heating. The catalyst from which dust and poisonous substances have been removed by the above washing is a vanadium compound or [vanadium compound +
The slurry is applied by a method such as immersion in a titania slurry containing [alpha component compound]. The viscosity of the slurry is preferably 0.3 to 2.0 poise, and if it is less than 0.3 poise, the activity will not be recovered sufficiently;
Moreover, if it is more than 2.0 poise, the thickness of the coating layer increases, which is not preferable because it causes an increase in ventilation pressure loss, cracking of the coating layer, and promotion of peeling. The catalyst coated with the slurry is dried and calcined to be regenerated into a catalyst having activity and aeration pressure loss comparable to those of unused catalyst. As detailed above, a coated vanadium-titania catalyst whose activity has been reduced by the method of the present invention,
That is, V 2 O 5 −TiO 2 and (V 2 O 5 + α component) −
A catalyst made of a combination of TiO 2 can be regenerated to the same level as an unused catalyst without losing its shape, so its practical value is extremely high. Next, the present invention will be explained in more detail with reference to Examples. Example 1 When boiler exhaust gas was treated for two years under the following conditions using a coated honeycomb catalyst containing 91wt% TiO 2 and 9wt% TiO 2 , the initial NOx removal rate of 83% at 380°C decreased to 74.5%. . Exhaust gas treatment conditions Processing gas amount Temperature Space velocity 100Nm 3 /h 300 to 400℃ 10000 1/h NH 3 /NOx ratio. NOx SOx 1.0 350ppm 1000ppm This catalyst with reduced performance is immersed in water and hot water that is 3.3 times the apparent volume of the catalyst (calculated from the external dimensions).
Washing was carried out for 30 minutes to 1 hour while circulating water and warm water. After washing, the catalyst was colored orange due to the elution of vanadium, and when the amount of vanadium in the washing water was determined by chemical analysis, it was found that 5 to 20% of the vanadium in the catalyst had been eluted. Also, potassium under all conditions
It was 100% eluted. Comparative Example 1 was obtained by drying the washed catalyst and measuring the NOx removal rate under the same exhaust gas treatment conditions as above.
As shown in Table 1, there was no complete recovery. The catalyst was further washed in hot water at 70°C for 30 minutes in the same manner as above, dried, immersed in an aqueous solution of methylamine in which ammonium metavanadate was dissolved, and subjected to exhaust gas treatment. As shown, it was 77.5%, almost the same as the one that was washed with water only. Next, a catalyst was obtained which was washed with water and warm water for 30 minutes to 1 hour in the same manner as in Comparative Example 1, and the proportions of TiO 2 88.7 wt% and ammonium metavanadate 11.3 wt% were weighed, and the viscosity was adjusted by adding an aqueous methylamine solution.
The slurry was applied by immersion in 0.5 poise titania slurry, dried and fired, and the NOx removal rate was measured under the exhaust gas treatment conditions as shown in Table 1. As shown in Table 1, the NOx removal rate was completely recovered to the initial NOx removal rate.

【表】 実施例 2 実施例1と同様にして得られた性能の低下した
触媒を、まず常温の水をかけて軽く洗浄し、次に
触媒の見掛け容積の3.3倍の蓚酸水溶液(70℃)
に浸漬し、液を循環しながら1時間洗浄した。洗
浄後は蓚酸バナジルの生成によつて青色となつ
た。この時の触媒からのバナジウムの溶出率は蓚
酸濃度により第2図のように変化した。25〜50g
(蓚酸二水塩)/(H2O)の濃度で約90%のバ
ナジウムが溶出し、濃度を更に上昇させても溶出
率の向上はない。蓚酸水溶液による洗浄において
ハニカム基材にコートされたチタニアもかなりは
く離することが認められた。 蓚酸水溶液で洗浄した触媒を乾燥して実施例1
と同様の排ガス処理条件にてNOx除去率を測定
したところ比較例3(第2表)に示すとおり、非
常に低い値であつた。 また蓚酸水溶液で洗浄した触媒を乾燥後、蓚酸
バナジル水溶液に浸漬し、乾燥、焼成して排ガス
処理に供したところ比較例4に示すように何の効
果も認められなかつた。 次に蓚酸水溶液で洗浄して触媒を得、
TiO285.5wt%、蓚酸バナジル14.4wt%の割合で
はかり取り水を加えて調整した粘度1.0ポイズの
チタニアスラリーに浸漬してスラリーを塗布し、
乾燥と焼成を行い実施例1と同様の排ガス処理条
件下でNOx除去率を測定したところ第2表に示
すとおり初期のNOx除去率へ回復した。
[Table] Example 2 A catalyst with degraded performance obtained in the same manner as in Example 1 was first lightly washed with water at room temperature, and then an aqueous oxalic acid solution (70°C) with an amount of 3.3 times the apparent volume of the catalyst was washed.
and washed for 1 hour while circulating the liquid. After washing, the color turned blue due to the formation of vanadyl oxalate. The elution rate of vanadium from the catalyst at this time varied as shown in Figure 2 depending on the oxalic acid concentration. 25~50g
Approximately 90% of vanadium is eluted at the concentration of (oxalic acid dihydrate)/(H 2 O), and the elution rate does not improve even if the concentration is further increased. It was observed that the titania coated on the honeycomb substrate was also considerably peeled off during cleaning with an oxalic acid aqueous solution. Example 1: Drying the catalyst washed with oxalic acid aqueous solution
When the NOx removal rate was measured under the same exhaust gas treatment conditions as in Comparative Example 3 (Table 2), it was a very low value. Further, when the catalyst washed with an oxalic acid aqueous solution was dried, immersed in a vanadyl oxalate aqueous solution, dried, fired, and subjected to exhaust gas treatment, no effect was observed as shown in Comparative Example 4. Next, the catalyst was obtained by washing with an oxalic acid aqueous solution.
The slurry was applied by immersing it in titania slurry with a viscosity of 1.0 poise, which was adjusted by adding weighed water at a ratio of 85.5 wt% TiO 2 and 14.4 wt% vanadyl oxalate.
After drying and firing, the NOx removal rate was measured under the same exhaust gas treatment conditions as in Example 1, and as shown in Table 2, the NOx removal rate recovered to the initial NOx removal rate.

【表】 実施例 3 TiO291wt%、V2O52wt%、WO37wt%を含む
コート型ハニカム触媒を用い実施例1と同様にボ
イラ排ガスを2年間処理したところ、380℃にお
ける初期NOx除去率84%のものが76%に低下し
た。 この性能の低下した触媒を常温の水をかけて軽
く洗浄し触媒の見掛け容積の3.3倍の温水(70℃)
又は蓚酸水溶液(70℃)に浸漬し、液を循環しな
がら一定時間洗浄した。この時の触媒からのバナ
ジウム及びタングステンの溶出率は第3図のよう
に変化した。 上記により洗浄された触媒を得、TiO289.7wt
%、メタバナジン酸アンモニウム2.5wt%、パラ
タングステン酸アンモニウム7.8wt%の割合では
かり取り、メチルアミン水溶液を加えて調製した
種々の粘度のチタニアスラリーに浸漬してスラリ
ーを塗布し、乾燥と焼成を行い、実施例1と同様
の排ガス処理条件でNOx除去率と触媒充填層圧
力損失を測定し第4図、第5図の結果を得た。ス
ラリー粘度が2.0ポイズを越えると圧損が急激に
上昇し、またスラリー粘度が0.3以下となれば
NOx除去率は80%より低くなり不適である。な
お未使用触媒の圧力損失は28mmH2O/mであつ
た。 実施例 4 実施例1と同様にして得られた性能の低下した
触媒を、触媒の見掛け容積の3.3倍の1%硫酸水
溶液(50℃)に浸漬し、液を循環しながら1時間
洗浄した。その後、実施例1と同様のチタニアス
ラリー(粘度0.5ポイズ)に浸漬して、スラリー
を塗布し、乾燥、焼成して実施例1と同様の排ガ
ス処理条件でNOx除去率を測定したところ83.5
%であつた。 実施例 5 触媒成分としてバナジウムとタングステンを含
むコート型ハニカム触媒を用い実施例1と同様の
条件でボイラ排ガスを2年間処理したところ、
380℃における初期NOx除去率84%のものが76%
へ低下した。 実施例3と同様にして得られた性能の低下した
触媒を、常温の水で洗浄し、更に触媒の見掛け容
積の3.3倍の蓚酸水溶液(濃度25g/)に浸漬
し、液を循環しながら1時間洗浄した。この時の
バナジウムの溶出は温度によつて第3表のように
変化した。また温度の上昇によつてチタニアのは
く離も増大した。 この触媒を、実施例3と同様にして調製した粘
度1.0ポイズのチタニアスラリーに浸漬してスラ
リーを塗布し、乾燥と焼成を行い実施例1と同様
の排ガス処理条件下でNOx除去率を測定したと
ころ第3表に示すとおり、初期NOx除去率へ回
復した。
[Table] Example 3 Boiler exhaust gas was treated for two years in the same manner as in Example 1 using a coated honeycomb catalyst containing 91wt% TiO 2 , 2wt% V 2 O 5 , and 7wt% WO 3 . The removal rate dropped from 84% to 76%. Gently wash the catalyst whose performance has deteriorated by pouring room-temperature water over it and use hot water (70°C) that is 3.3 times the apparent volume of the catalyst.
Alternatively, it was immersed in an oxalic acid aqueous solution (70°C) and washed for a certain period of time while circulating the solution. At this time, the elution rate of vanadium and tungsten from the catalyst changed as shown in FIG. Obtain the cleaned catalyst as described above, TiO 2 89.7wt
%, ammonium metavanadate 2.5 wt%, and ammonium paratungstate 7.8 wt%. The samples were dipped in titania slurry of various viscosities prepared by adding methylamine aqueous solution to coat the slurry, then dried and fired. The NOx removal rate and catalyst packed bed pressure loss were measured under the same exhaust gas treatment conditions as in Example 1, and the results shown in FIGS. 4 and 5 were obtained. If the slurry viscosity exceeds 2.0 poise, the pressure drop will rise rapidly, and if the slurry viscosity becomes 0.3 or less,
The NOx removal rate is lower than 80%, which is inappropriate. Note that the pressure loss of the unused catalyst was 28 mmH 2 O/m. Example 4 A catalyst with degraded performance obtained in the same manner as in Example 1 was immersed in a 1% aqueous sulfuric acid solution (50° C.) in an amount 3.3 times the apparent volume of the catalyst, and washed for 1 hour while circulating the solution. After that, it was immersed in the same titania slurry (viscosity 0.5 poise) as in Example 1, the slurry was applied, dried, and fired, and the NOx removal rate was measured under the same exhaust gas treatment conditions as in Example 1. 83.5
It was %. Example 5 Boiler exhaust gas was treated for two years under the same conditions as Example 1 using a coated honeycomb catalyst containing vanadium and tungsten as catalyst components.
Initial NOx removal rate of 84% at 380℃ is 76%
It declined to . A catalyst with degraded performance obtained in the same manner as in Example 3 was washed with water at room temperature, and further immersed in an aqueous solution of oxalic acid (concentration 25 g/) with an amount of 3.3 times the apparent volume of the catalyst, and heated while circulating the solution. Washed for hours. The elution of vanadium at this time varied depending on the temperature as shown in Table 3. Moreover, the exfoliation of titania also increased with the increase in temperature. This catalyst was immersed in titania slurry with a viscosity of 1.0 poise prepared in the same manner as in Example 3, the slurry was applied, and the NOx removal rate was measured under the same exhaust gas treatment conditions as in Example 1. However, as shown in Table 3, the NOx removal rate recovered to the initial level.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般に脱硝触媒として使用されるハニ
カム型触媒の構造例を示し、第2図は性能の低下
したTiO2−V2O5系触媒を蓚酸水溶液で洗浄する
ときの、蓚酸濃度に対応するバナジウムの溶出率
をプロツトしたグラフであり、第3図は性能の低
下したTiO2−V2O5−WO3系触媒を蓚酸水溶液で
洗浄するときの、蓚酸濃度に対応するバナジウム
及びタングステンの溶出率をプロツトしたグラフ
であり、第4図及び第5図は、性能の低下した
TiO2−V2O5−WO3系触媒の再生時に使用するチ
タニアスラリーの粘度に対応して、再生された触
媒のNOx除去率及び圧力損失をプロツトしたグ
ラフである。
Figure 1 shows an example of the structure of a honeycomb-type catalyst that is generally used as a denitrification catalyst, and Figure 2 shows the oxalic acid concentration when cleaning a TiO 2 -V 2 O 5 catalyst with degraded performance with an oxalic acid aqueous solution. This is a graph plotting the elution rate of vanadium. Figure 3 shows the elution rate of vanadium and tungsten corresponding to the concentration of oxalic acid when a TiO 2 -V 2 O 5 -WO 3 catalyst with degraded performance is washed with an oxalic acid aqueous solution. This is a graph plotting the elution rate, and Figures 4 and 5 show
2 is a graph plotting the NOx removal rate and pressure loss of the regenerated catalyst in response to the viscosity of the titania slurry used when regenerating the TiO 2 --V 2 O 5 --WO 3 catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 ダストや被毒物質の付着又は蓄積によつて活
性の低下した使用済の、V2O5及びTiO2よりなる
か、或いはこれにWO3及び/又はMoO3を加えて
なるバナジウム−チタニア系コート型脱硝触媒の
再生にあたり、水または稀無機酸水溶液で該触媒
を洗浄した後、そのままかもしくは蓚酸水溶液で
更に洗浄するかし、次いで粘度0.3〜2.0ポイズの
バナジウム化合物を含むチタニアスラリーを塗布
し、乾燥、焼成することを特徴とする使用済脱硝
触媒の再生方法。
1 Used vanadium-titania-based material consisting of V 2 O 5 and TiO 2 or with WO 3 and/or MoO 3 added thereto, whose activity has decreased due to adhesion or accumulation of dust or poisonous substances. When regenerating a coated denitrification catalyst, after washing the catalyst with water or a dilute inorganic acid aqueous solution, it may be left as is or further washed with an oxalic acid aqueous solution, and then a titania slurry containing a vanadium compound with a viscosity of 0.3 to 2.0 poise is applied. A method for regenerating a used denitrification catalyst, which comprises drying and calcination.
JP56063379A 1981-04-28 1981-04-28 Regeneration of used denitration catalyst Granted JPS57180433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56063379A JPS57180433A (en) 1981-04-28 1981-04-28 Regeneration of used denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063379A JPS57180433A (en) 1981-04-28 1981-04-28 Regeneration of used denitration catalyst

Publications (2)

Publication Number Publication Date
JPS57180433A JPS57180433A (en) 1982-11-06
JPH0244581B2 true JPH0244581B2 (en) 1990-10-04

Family

ID=13227595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063379A Granted JPS57180433A (en) 1981-04-28 1981-04-28 Regeneration of used denitration catalyst

Country Status (1)

Country Link
JP (1) JPS57180433A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209252A (en) * 1984-04-03 1985-10-21 Mitsubishi Heavy Ind Ltd Regeneration method of denitration catalyst
JPS60212237A (en) * 1984-04-05 1985-10-24 Mitsubishi Heavy Ind Ltd Regeneration of ammonia catalytic reducing and denitration catalyst
JP3389005B2 (en) * 1996-06-25 2003-03-24 三菱重工業株式会社 Nitrogen oxide removal catalyst
JP3377715B2 (en) * 1997-02-27 2003-02-17 三菱重工業株式会社 Regeneration method of denitration catalyst
US6482762B1 (en) * 2000-08-14 2002-11-19 Atlantic Richfield Company NOx conversion catalyst rejuvenation process
JP4264642B2 (en) * 2003-09-18 2009-05-20 日立造船株式会社 Method for regenerating thermally deteriorated catalyst
JP4518851B2 (en) * 2004-07-08 2010-08-04 バブコック日立株式会社 Regenerative denitration catalyst and its production method
US8048818B2 (en) * 2008-03-26 2011-11-01 Babcock & Wilcox Power Generation Group, Inc. In-situ regeneration of a catalyst masked by calcium sulfate
JP5526369B2 (en) * 2009-04-20 2014-06-18 バブコック日立株式会社 Denitration catalyst regeneration method
JP5535769B2 (en) 2010-06-02 2014-07-02 三菱重工業株式会社 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
JP6147663B2 (en) 2013-12-27 2017-06-14 三菱重工業株式会社 Catalyst regeneration method for COS conversion catalyst
CN105170198A (en) * 2015-09-21 2015-12-23 武汉钢铁(集团)公司 Industrialized regeneration method of SCR plate-type denitration catalyst
CN113477083B (en) * 2021-07-05 2022-11-22 国家电投集团远达环保催化剂有限公司 Regeneration method of inactivated denitration dedusting ceramic tube

Also Published As

Publication number Publication date
JPS57180433A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
US4615991A (en) Method for recovering denitrating catalyst
JPH0244581B2 (en)
JP6619948B2 (en) Regeneration method of used denitration catalyst
JP4264643B2 (en) Regeneration method of deteriorated catalyst
TWI454306B (en) Method for revitalizing emission gas purification catalyst
JP2006192344A (en) Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JPS6257382B2 (en)
JP3150519B2 (en) Regeneration method of denitration catalyst
JP5615228B2 (en) Regeneration method of used denitration catalyst
JPH0534057B2 (en)
JPS58247A (en) Regenerating method for denitrating catalyst
JP2004074106A (en) Method for regeneration of catalyst
JP2000024520A (en) Regeneration of denitration catalyst and regenerated catalyst
JP4511915B2 (en) Regeneration catalyst for denitration catalyst and regeneration method using the same
JPH0421545B2 (en)
JPS6321536B2 (en)
JP2009101300A (en) Regeneration method for used denitration catalyst
JPH0446621B2 (en)
JP3789230B2 (en) Regeneration method of exhaust gas denitration catalyst
JP2012139665A (en) NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME
JPH08299791A (en) Denitration catalyst
JPS5998739A (en) Regeneration of catalyst
JPH1157411A (en) Cleaning method for exhaust gas