JP2012139665A - NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME - Google Patents

NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME Download PDF

Info

Publication number
JP2012139665A
JP2012139665A JP2011000955A JP2011000955A JP2012139665A JP 2012139665 A JP2012139665 A JP 2012139665A JP 2011000955 A JP2011000955 A JP 2011000955A JP 2011000955 A JP2011000955 A JP 2011000955A JP 2012139665 A JP2012139665 A JP 2012139665A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
aluminum sulfate
composition
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011000955A
Other languages
Japanese (ja)
Other versions
JP5701066B2 (en
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Keiichiro Kai
啓一郎 甲斐
Kotoe Matsuyama
琴衣 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011000955A priority Critical patent/JP5701066B2/en
Publication of JP2012139665A publication Critical patent/JP2012139665A/en
Application granted granted Critical
Publication of JP5701066B2 publication Critical patent/JP5701066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a NOx removal catalyst and methods of manufacturing and regenerating the NOx removal catalyst, which can easily wash out impurities adhered to the catalyst and facilitate reactivation.SOLUTION: The NOx removal catalyst is a catalyst for reducing and removing nitrogen oxide in an exhaust gas by using ammonia and urea as a reducing agent, and is mainly composed of a composition containing an oxide of titanium (Ti), an oxide of molybdenum (Mo) and/or tungsten (W), an oxide of vanadium (V) and aluminum sulfate (Al(SO)). In the composition, (1) >0 atom% and ≤3 atom% of Mo or W with respect to Ti atoms is included and (2) the content of the aluminum sulfate is 1.5-7 wt.% with respect to TiO.

Description

本発明は、酸化チタンを主成分とする脱硝触媒及びその再生法に係り、特に、不純物を洗い出し易く、再賦活の容易な脱硝触媒、その製造方法及び再生方法に関する。   The present invention relates to a denitration catalyst containing titanium oxide as a main component and a regeneration method thereof, and more particularly, to a denitration catalyst that is easy to wash out impurities and that can be easily reactivated, a manufacturing method thereof, and a regeneration method.

酸化チタンを主成分とする、アンモニアや尿素を還元剤とした脱硝触媒は、活性が高く耐久性に優れるため、国内外でボイラなどの排煙処理に広く用いられ、脱硝触媒の主流となっている(特許文献1)。   Denitration catalysts with titanium oxide as the main component and ammonia or urea as a reducing agent are highly active and excellent in durability, so they are widely used for flue gas treatment in boilers and other countries at home and abroad, becoming the mainstream of denitration catalysts. (Patent Document 1).

他方、近年、資源の有効利用や資源保護に対する意識の高まりから、脱硝触媒を再生して再利用するニーズが増加傾向にある。脱硝触媒は、実機で長期間使用されると、熱によるシンタリング、触媒毒(Na、Kなどのアルカリ金属、Ca、Srなどのアルカリ土類金属)の炭酸塩や硫酸塩などの付着、また活性成分のMoやVが硫酸塩化することによる細孔の閉塞等により活性が低下する。現在、実用化されている脱硝触媒の再生方法の多くは、触媒に付着した硫酸根や被毒物質を酸や薬液で洗浄することで細孔から洗い出し、低下した触媒活性を補うために、W、Mo、Vなどの活性成分を含有する溶液に含浸する方法が主流である(特許文献2、3、4)。   On the other hand, in recent years, the need to regenerate and reuse the denitration catalyst has been increasing due to increasing awareness of effective use of resources and protection of resources. The denitration catalyst, when used for a long period of time in an actual machine, is attached by heat sintering, adhesion of catalyst poisons (alkaline metals such as Na and K, alkaline earth metals such as Ca and Sr), carbonates and sulfates, etc. The activity decreases due to pore clogging and the like due to sulfation of active ingredients Mo and V. Many of the denitration catalyst regeneration methods that are currently in practical use are washed out from the pores by washing the sulfate radicals and poisonous substances adhering to the catalyst with an acid or chemical solution to compensate for the reduced catalytic activity. The mainstream is a method of impregnating a solution containing active ingredients such as Mo, V and the like (Patent Documents 2, 3, and 4).

特開昭50-128681号公報JP 50-128681 特開昭55-145532号公報JP 55-145532 A 特開2000-24520号公報Japanese Unexamined Patent Publication No. 2000-24520 特開昭2004-267897号公報JP 2004-267897 A

上記した従来の触媒では、毒物の付着や活性成分の硫酸塩化による細孔閉塞で劣化した触媒の活性を回復するために、強酸やシュウ酸、クエン酸などの錯化剤で処理後、活性成分を含浸する方法が取られているが、これらの方法には、以下の問題がある。
(1)アルカリなどの毒物を完全に除くためには、濃度の高い強酸で処理するなど、過酷な条件で洗浄する必要があり、それに伴って高価な活性成分が洗い出され、洗浄廃液として廃棄される問題があるほか、過酷な条件により粒子間の結合が緩み、触媒の強度が低下する。このため、大量の新しい活性成分や強度向上剤を含浸して活性の回復を図る必要があるが、それに伴い細孔が閉塞するため、活性と強度がトレードオフの関係にあり、活性・強度共に高くすることが難しい。
(2)活性成分の洗い出される量を最小限に抑えようとして温和な条件で洗浄処理すると、不純物の除去や細孔を埋めている毒物の除去が不十分となり、活性成分の再担時量は減るものの、分な活性回復が期待できない。
In the conventional catalyst described above, the active component is treated with a complexing agent such as strong acid, oxalic acid, or citric acid to recover the activity of the catalyst that has deteriorated due to adhesion of poisons or pore clogging due to sulfation of the active component. However, these methods have the following problems.
(1) In order to completely remove poisons such as alkalis, it is necessary to wash under harsh conditions such as treatment with a strong acid of high concentration, and along with that, expensive active ingredients are washed out and discarded as washing waste liquid In addition to the above problems, the bond between particles is loosened under severe conditions, and the strength of the catalyst is lowered. For this reason, it is necessary to restore the activity by impregnating a large amount of a new active ingredient and a strength improver. However, since the pores are blocked accordingly, the activity and strength are in a trade-off relationship. It is difficult to make it high.
(2) Washing under mild conditions to minimize the amount of active ingredient that is washed out will result in insufficient removal of impurities and poisons filling the pores, and the amount of active ingredient that is recharged However, it is not possible to expect a sufficient recovery of activity.

本発明の解決しようとする課題は、上記問題点に鑑み、触媒に付着した不純物を洗い出し易く、再賦活の容易な脱硝触媒、その製造方法及び再生方法を提供することである。   In view of the above problems, an object of the present invention is to provide a denitration catalyst that is easy to wash out impurities adhering to the catalyst and that can be easily reactivated, a method for producing the same, and a method for regenerating the same.

上記課題は、以下の方法により達成される。
(1)排ガス中の窒素酸化物をアンモニアや尿素を還元剤として還元、除去する触媒であって、チタン(Ti)の酸化物、モリブデン(Mo)及び/またはタングステン(W)の酸化物、バナジウム(V)酸化物、並びに硫酸アルミニウム(Al2(SO4)3)からなる組成物を主成分とし、その組成が、(1)MoまたはWがTi原子に対し0を越えて3原子%以下、(2)硫酸アルミニウムの含有量がTiO2に対し1.5〜7wt%であることを特徴とする脱硝触媒。
(2)排ガス中の窒素酸化物をアンモニアや尿素を還元剤として還元、除去する触媒の製造方法であって、チタン(Ti)の酸化物、モリブデン(Mo)及び/またはタングステン(W)の酸化物、バナジウム(V)酸化物、並びに硫酸アルミニウム(Al2(SO4)3)からなる組成物を主成分とし、その組成が、(1)MoまたはWがTi原子に対し0を越えて3原子%以下、(2)硫酸アルミニウムの含有量がTiO2に対し1.5〜7wt%になるように上記化合物またはその前駆体を混合し、所定の触媒形状に成形後、乾燥または焼成することを特徴とする(1)記載の脱硝触媒の製造方法。
(3)前記乾燥または焼成の最高履歴温度が450℃以下である(2)記載の方法。
(4)燃焼装置から排出される排ガス中で使用された(1)記載の脱硝触媒を、水または酸性水溶液に浸漬して液切し、触媒への付着物を除去すると同時に、触媒中の成分である硫酸アルミニウムの少なくとも一部を溶出、除去した後、該洗浄後の触媒を、硫酸アルミニウム及び硫酸バナジルを含有する水溶液に含浸させ、液切り、乾燥処理をすることを特徴とする脱硝触媒の再生方法。
The above-mentioned subject is achieved by the following method.
(1) A catalyst for reducing and removing nitrogen oxides in exhaust gas using ammonia or urea as a reducing agent, titanium (Ti) oxide, molybdenum (Mo) and / or tungsten (W) oxide, vanadium (V) The main component is a composition comprising oxide and aluminum sulfate (Al 2 (SO 4 ) 3 ), and the composition is (1) Mo or W exceeds 0 with respect to Ti atoms and is 3 atomic% or less. (2) A denitration catalyst characterized in that the content of aluminum sulfate is 1.5 to 7 wt% with respect to TiO 2 .
(2) A method for producing a catalyst for reducing and removing nitrogen oxides in exhaust gas using ammonia or urea as a reducing agent, and oxidizing titanium (Ti) oxide, molybdenum (Mo) and / or tungsten (W). The composition is composed of an oxide, vanadium (V) oxide, and aluminum sulfate (Al 2 (SO 4 ) 3 ), and the composition is (1) Mo or W exceeds 0 with respect to Ti atoms. atomic% or less, (2), characterized in that the content of aluminum sulfate is mixed with the compound or a precursor thereof so as to TiO 2 in 1.5~7Wt%, after forming a predetermined catalyst shape, drying or baking The method for producing a denitration catalyst according to (1).
(3) The method according to (2), wherein the maximum history temperature of the drying or baking is 450 ° C. or less.
(4) The denitration catalyst described in (1) used in the exhaust gas discharged from the combustion apparatus is immersed in water or an acidic aqueous solution to remove the deposits on the catalyst, and at the same time, the components in the catalyst An elution and removal of at least a part of the aluminum sulfate is impregnated with an aqueous solution containing aluminum sulfate and vanadyl sulfate, followed by draining and drying. Playback method.

本発明によれば、実機で劣化した触媒を初期と同等の性能及び強度で再生することができ、触媒の繰り返し利用回数を著しく高めることができる。   According to the present invention, a catalyst deteriorated in an actual machine can be regenerated with the same performance and strength as the initial stage, and the number of repeated uses of the catalyst can be significantly increased.

発明者らは、新品の触媒製造時からその再生を念頭に置き、触媒に付着した不純物を洗い出し易く、再賦活の容易な触媒を製造するという発明思想に基づき、以下の手段を取った。
(1) Mo酸化物をモリブデン酸として吸着し、触媒の活性化を行う吸着点の内、Mo化合物を強く吸着するものにのみ吸着させるため、Mo化合物を必要最小限の量に抑え、洗浄時に溶出されにくくした。
(2) Mo化合物に代え、硫酸アルミニウムを活性化剤として用いると共に、再生時に溶出され易いようにするため、硫酸アルミニウムが分解しない温度条件で焼成した。
The inventors took the following measures based on the inventive idea of producing a catalyst that is easy to wash out impurities adhering to the catalyst and easy to re-activate in consideration of regeneration from the time of production of a new catalyst.
(1) Mo oxide is adsorbed as molybdic acid, and it is adsorbed only to those that strongly adsorb Mo compounds among the adsorption points that activate the catalyst. It was difficult to elute.
(2) In place of the Mo compound, aluminum sulfate was used as an activator, and in order to facilitate elution during regeneration, firing was performed under temperature conditions in which aluminum sulfate was not decomposed.

このような手段をとることにより、例えば触媒のアルカリ劣化に対し、触媒中に侵入したカリウムイオンが、従来の触媒では式1のごとくTiに吸着して劣化していたものが、式2のようになり、Ti上にアルカリ金属が吸着するのではなく、硫酸根と反応するため、劣化を軽減すると共に、水により硫酸塩として溶出し易くなる。   By taking such a measure, for example, potassium ions that have penetrated into the catalyst are deteriorated by being adsorbed to Ti as shown in Formula 1 in the case of the conventional catalyst, as shown in Formula 2. Thus, the alkali metal is not adsorbed on Ti but reacts with the sulfate radical, so that the deterioration is reduced and the water is easily eluted as sulfate.


Ti-MO4-Ti−OH+K+ → Ti-MO4-Ti−O-K + H+ ・・・・(1) M=Mo、W、Vなど
Ti-SO4−Al + K+ → Ti-SO4-K + Al3 + ・・・・(2)

さらに、触媒再生時に硫酸アルミニウムと付着物を洗浄により除去した後、硫酸アルミニウムと硫酸バナジルを含浸させて触媒を再生することにより、再び初期並みに高い活性を得ることができる。また、硫酸アルミニウムは、バインダ効果を有するため、洗浄後の細孔容積の増大に伴う強度低下を補うこともできる。

Ti-MO 4 -Ti-OH + K + → Ti-MO 4 -Ti-OK + H + ... (1) M = Mo, W, V, etc.
Ti-SO 4 -Al + K + → Ti-SO 4 -K + Al 3 + (2)

Furthermore, after the catalyst is regenerated, aluminum sulfate and deposits are removed by washing, and then the catalyst is regenerated by impregnating with aluminum sulfate and vanadyl sulfate, whereby high activity as in the initial stage can be obtained again. Moreover, since aluminum sulfate has a binder effect, it can also compensate for the strength reduction accompanying the increase in pore volume after washing.

本発明の脱硝触媒に使用する硫酸アルミニウムには、結晶水を持つ工業用の硫酸アルミニウム(Al2(SO4)3・13〜14H2O)を使用することができる。その添加量は、無水硫酸アルミニウム(Al2 (SO4) 4)として、酸化チタンに対し、1.5を超えて7wt%以下が好適である。添加量が少なすぎると、耐毒性が低く、また使用済み触媒となった後、洗浄により再生した後の細孔容積の回復が小さく、その後の賦活操作による活性向上効果が小さくなる。一方、添加量が多い場合は、例えば触媒製造時に硫酸アルミニウムが溶解するまで水を添加すると、ペースト化が困難になることがある。Ti原料には、含水酸化チタンや酸化チタンのゾル状物の乾燥体、TiO2-SiO2の複合酸化物など、Mo、W原料には、モリブデン酸アンモニウム、メタもしくはパラタングステン酸アンモニウム、三酸化モリブデンを使用することができる。このときのMo、Wの添加量は、Tiに対し0を越えて3原子%以下が好ましい。これ以上の添加量では、洗浄時の溶出量が多くなる。 As the aluminum sulfate used in the denitration catalyst of the present invention, industrial aluminum sulfate (Al 2 (SO 4 ) 3 · 13 to 14H 2 O) having crystal water can be used. The addition amount is preferably more than 1.5 wt% and 7 wt% or less with respect to titanium oxide as anhydrous aluminum sulfate (Al 2 (SO 4 ) 4 ). If the amount added is too small, the toxicity resistance is low, and after the catalyst becomes a used catalyst, the recovery of the pore volume after regeneration by washing is small, and the activity improving effect by the subsequent activation operation becomes small. On the other hand, when the amount added is large, for example, when water is added until aluminum sulfate is dissolved during the production of the catalyst, pasting may become difficult. Ti raw materials include dried hydrous titanium oxide and titanium oxide sols, TiO 2 -SiO 2 composite oxides, Mo and W raw materials include ammonium molybdate, meta or ammonium paratungstate, trioxide Molybdenum can be used. At this time, the addition amount of Mo and W is preferably more than 0 and not more than 3 atomic% with respect to Ti. If the amount is more than this, the amount of elution at the time of washing increases.

また、これら活性成分となる原料の他に、シリカゾルなどのバインダ、無機繊維などの強度部材等、通常脱硝触媒に添加される原料を加えることも、本発明の範囲内である。シリカゾルは強度を向上させる効果があるが、一方で細孔容積を低減させる。また、シリカゾルは水や弱酸の薬液では溶出できないため、再生後の細孔容積増大の妨げになる。しかし、従来では、強度が不足するため、シリカゾルの添加量を少なくすることができなかったが、本発明では、硫酸アルミニウムがバインダ効果を有しているため、シリカゾルなどのバインダの添加量を極力少なくすることも可能である。その添加量はシリカとして、酸化チタン及び活性成分の酸化物重量の合計に対して8wt%以下、好ましくは4wt%以下が細孔の回復性がよく、好適である。   It is also within the scope of the present invention to add raw materials that are usually added to a denitration catalyst, such as a binder such as silica sol and a strength member such as inorganic fibers, in addition to the raw materials to be active ingredients. Silica sol has the effect of improving strength, while reducing the pore volume. Further, since silica sol cannot be eluted with water or a weak acid chemical, it hinders increase in pore volume after regeneration. However, conventionally, since the strength was insufficient, the amount of silica sol added could not be reduced. However, in the present invention, since aluminum sulfate has a binder effect, the amount of binder such as silica sol added is minimized. It is also possible to reduce it. The addition amount of silica is 8 wt% or less, preferably 4 wt% or less, based on the total weight of titanium oxide and the oxide of the active component, and is preferable because the pore recovery is good.

これらの活性成分の添加法はどのような方法であっても良いが、水の存在下でニーダを用いて混練あるいは加熱混練する方法が経済的で優れている。   Any method for adding these active ingredients may be used, but a method of kneading or kneading with a kneader in the presence of water is economical and excellent.

次に、実機で使用した本発明の触媒を再生する方法について具体的に説明する。本発明において、使用済み触媒の洗浄液として、水、または蓚酸、クエン酸、その他の有機酸などの酸類、アンモニアやアミンなどの塩基性物質を、0.1乃至10wt%添加した水を用いることができる。触媒重量の3乃至20倍量のこれら溶液を、常温または100℃以下の温度に加温した中に使用済触媒を投入後、液を攪拌機やポンプで移動させながら0.5〜24時間保持して、触媒毒および硫酸アルミニウムを触媒から溶出させる。所定時間経過後、触媒を取り出し、乾燥する。さらに本発明の再生方法では、上記洗浄処理後の触媒を、活性成分液として硫酸アルミニウムおよび硫酸バナジルを添加した溶液中に含浸後、乾燥する。この操作を行うことにより再生処理が完了する。このとき、硫酸アルミニウムは触媒中で硫酸根の保持剤という役割を果たす。硫酸アルミニウムの添加量は、洗浄溶液中1を超えて20wt%量の範囲が好適である。これより少ないと、再生後に高い活性得られにくい。また、これより多いと細孔が小さくなり、活性が低下する。含浸液中にシリカゾルなどのバインダを添加しても良いが、硫酸アルミニウムも強度を高める役割を果たすため、バインダの添加量を少なくすることができる。   Next, a method for regenerating the catalyst of the present invention used in an actual machine will be specifically described. In the present invention, water or water to which 0.1 to 10 wt% of basic substances such as water, acids such as oxalic acid, citric acid and other organic acids, and ammonia and amines can be used as the cleaning solution for the used catalyst. After adding the spent catalyst while warming the solution of 3 to 20 times the catalyst weight to room temperature or a temperature of 100 ° C. or less, hold the solution for 0.5 to 24 hours while moving the solution with a stirrer or pump, Catalyst poison and aluminum sulfate are eluted from the catalyst. After a predetermined time has elapsed, the catalyst is taken out and dried. Further, in the regeneration method of the present invention, the catalyst after the washing treatment is impregnated in a solution to which aluminum sulfate and vanadyl sulfate are added as active component liquids and then dried. By performing this operation, the reproduction process is completed. At this time, aluminum sulfate plays a role of a sulfate radical retainer in the catalyst. The amount of aluminum sulfate added is preferably in the range of more than 1 in the cleaning solution and 20 wt%. If it is less than this, it is difficult to obtain high activity after regeneration. Moreover, when more than this, a pore will become small and activity will fall. A binder such as silica sol may be added to the impregnating solution. However, since aluminum sulfate plays a role of increasing the strength, the amount of the binder added can be reduced.

以下具体例を用いて本発明を詳細に説明する。
[実施例1]
酸化チタン(石原産業社製、比表面積100m/g)1200kg、三酸化モリブデン21.6kg、メタバナジン酸アンモニウム35.1kg、硫酸アルミニウム13〜14水和物(Al2(SO4)3として56〜59%含有)89.9kg、シリカゾル(日産化学社製、商品名OSゾル、SiO2として20wt%含有)129.7kg、と水とをニーダに入れて60分混練、その後シリカアルミナ系セラミック繊維(ニチアス社製)194.5kgを徐々に添加しながら30分混練して水分27%の触媒ペーストを得た。
Hereinafter, the present invention will be described in detail using specific examples.
[Example 1]
1,200 kg of titanium oxide (made by Ishihara Sangyo Co., Ltd., specific surface area 100 m 2 / g), 21.6 kg of molybdenum trioxide, 35.1 kg of ammonium metavanadate, aluminum sulfate 13-14 hydrate (Al 2 (SO 4 ) 3 as 56-59% 89.9kg, silica sol (manufactured by Nissan Chemical Co., Ltd., trade name OS sol, 20wt% as SiO 2 ) 129.7kg, and water are mixed in a kneader for 60 minutes, and then silica-alumina ceramic fiber (manufactured by NICHIAS) While gradually adding 194.5 kg, the mixture was kneaded for 30 minutes to obtain a catalyst paste having a moisture content of 27%.

得られたぺーストを、厚さ0.2mmのSUS430製鋼板をメタルラス加工した厚さ0.7mmの基材の上に置き、これらを2枚のPPC用普通紙(オーストリッチ)の間に挟み、1対の加圧ローラを通して、メタルラス基材の網目を埋めるように塗布し、これを乾燥後、450℃で2時間焼成して触媒を得た。
本触媒の組成は、原子比でTi/Mo/V=100/1/2であり、硫酸アルミニウム(Al2(SO4)3)の添加量は、酸化チタン重量に対して4wt%である。
[実施例2]
実施例1の焼成温度を400℃にした以外は実施例1と同様にして触媒を得た。
[実施例3及び4]
実施例1の硫酸アルミニウムの添加量を、それぞれ31.3kg及び146.1kgに変え、他は実施例1と同様にして触媒を得た。硫酸アルミニウムの添加量は、酸化チタン重量に対して、それぞれ、1.5 wt%及び7wt%である。
[実施例5及び6]
実施例1の三酸化モリブデンの添加量を、それぞれ10.8kg及び64.9kgに変え、ほかは実施例1と同様にして触媒を得た。本触媒の組成は、それぞれ原子比でTi/Mo/V=100/0.5/2及び100/3/2である。
[実施例7]
実施例1の三酸化モリブデンを当モルのメタタングステン酸アンモニウム塩に変え、ほかは実施例1と同様にして触媒を得た。本触媒の組成は、原子比でTi/W/V=100/1/2である。
The obtained paste is placed on a 0.7 mm thick base material obtained by metallizing a 0.2 mm thick SUS430 steel plate and sandwiched between two sheets of plain paper for PPC (Oostrich). The catalyst was applied through a pressure roller so as to fill the mesh of the metal lath substrate, dried, and calcined at 450 ° C. for 2 hours to obtain a catalyst.
The composition of this catalyst is Ti / Mo / V = 100/1/2 in atomic ratio, and the amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) added is 4 wt% with respect to the titanium oxide weight.
[Example 2]
A catalyst was obtained in the same manner as in Example 1 except that the calcination temperature in Example 1 was changed to 400 ° C.
[Examples 3 and 4]
The catalyst was obtained in the same manner as in Example 1 except that the amount of aluminum sulfate added in Example 1 was changed to 31.3 kg and 146.1 kg, respectively. The addition amount of aluminum sulfate is 1.5 wt% and 7 wt%, respectively, with respect to the titanium oxide weight.
[Examples 5 and 6]
A catalyst was obtained in the same manner as in Example 1 except that the amount of molybdenum trioxide added in Example 1 was changed to 10.8 kg and 64.9 kg, respectively. The composition of the catalyst is Ti / Mo / V = 100 / 0.5 / 2 and 100/3/2, respectively, in atomic ratio.
[Example 7]
A catalyst was obtained in the same manner as in Example 1 except that the molybdenum trioxide of Example 1 was replaced with an equimolar amount of ammonium metatungstate. The composition of this catalyst is Ti / W / V = 100/1/2 in atomic ratio.

[比較例1]
実施例1において、硫酸アルミニウムを添加しない以外は実施例1と同様にして触媒を得た。
[参考例1]
実施例1において、焼成温度を500℃にした以外は実施例1と同様にして触媒を得た。
[比較例2]
実施例1において、三酸化モリブデンの添加量を108.1kgにした以外は実施例1と同様にして触媒を得た。本触媒の組成は、原子比でTi/Mo/V=100/5/2である。
[Comparative Example 1]
A catalyst was obtained in the same manner as in Example 1 except that aluminum sulfate was not added.
[Reference Example 1]
A catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was changed to 500 ° C. in Example 1.
[Comparative Example 2]
A catalyst was obtained in the same manner as in Example 1 except that the amount of molybdenum trioxide added was 108.1 kg in Example 1. The composition of this catalyst is Ti / Mo / V = 100/5/2 in atomic ratio.

[再生例1]
本発明の触媒とその再生法の組み合わせの効果を確認するため、以下の試験を実施した。
(1)排ガス暴露試験
実施例1〜7、比較例1、2、参考例1の触媒(初期触媒とする)を100mm角に切り出し、プロパン燃焼炉から発生する排ガスに、表1の条件で5000時間暴露し、暴露触媒とした。
(2)洗浄試験
暴露触媒100mm角-1枚を150℃で乾燥した後重量を測定し、1Nのシュウ酸100mlの入ったシャーレに入れ、液を揺り動かしながら60度で6時間保持した。しかるのち、触媒を取り出し、液切り後150℃、続いて350℃で乾燥した。乾燥後の重量を測定し、洗浄済み触媒とした。洗浄済み触媒中のAl、SO4量を蛍光X線分析装置を用いて定量した。
(3)賦活試験
これとは別に、純水180mlに、硫酸アルミニウム13〜14水和物(Al2(SO4)3 として56〜59%含有)17.4g、硫酸バナジル(VOSO4として70%含有)3.3gを溶解し、賦活薬剤を調製した。
[Reproduction example 1]
In order to confirm the effect of the combination of the catalyst of the present invention and its regeneration method, the following tests were conducted.
(1) Exhaust gas exposure test The catalysts of Examples 1 to 7, Comparative Examples 1 and 2 and Reference Example 1 (referred to as the initial catalyst) were cut into 100 mm squares, and the exhaust gas generated from the propane combustion furnace was subjected to 5000 conditions under the conditions shown in Table 1. Exposed to time and used as an exposed catalyst.
(2) Cleaning test The exposed catalyst 100 mm square −1 sheet was dried at 150 ° C., weighed, placed in a petri dish containing 100 ml of 1N oxalic acid, and held at 60 ° C. for 6 hours while shaking the solution. Thereafter, the catalyst was taken out, dried and then dried at 150 ° C. and then at 350 ° C. The weight after drying was measured to obtain a washed catalyst. The amounts of Al and SO 4 in the washed catalyst were quantified using a fluorescent X-ray analyzer.
(3) Activation test Separately, 180 ml of pure water, 17.4 g of aluminum sulfate 13-14 hydrate (containing 56-59% as Al 2 (SO 4 ) 3 ), vanadyl sulfate (containing 70% as VOSO 4 ) ) 3.3 g was dissolved to prepare an activator.

賦活薬剤をシャーレに入れ、これに洗浄済み触媒を約30秒間浸漬して、硫酸アルミニウム及び硫酸バナジルを含浸後、液から触媒を引き上げ、液切り後120℃及び350℃で乾燥、焼成処理し賦活触媒を得た。   Put the activator in a petri dish, immerse the washed catalyst in this for about 30 seconds, impregnate with aluminum sulfate and vanadyl sulfate, pull up the catalyst from the liquid, drain and dry at 120 ° C and 350 ° C and calcinate to activate A catalyst was obtained.

[比較再生例1]
実施例1の触媒において、再生試験例1の(3)の賦活試験で硫酸アルミニウムを添加しない以外は再生試験例1と同様にして触媒を得た。
[試験例1]
再生例1及び比較再生例1において、初期触媒、劣化触媒、洗浄済み触媒、賦活触媒でのそれぞれの細孔容積を水銀圧入法による細孔容積測定装置を用いて測定した。
[Comparative playback example 1]
In the catalyst of Example 1, a catalyst was obtained in the same manner as in Regeneration Test Example 1 except that aluminum sulfate was not added in the activation test of (3) of Regeneration Test Example 1.
[Test Example 1]
In the regeneration example 1 and the comparative regeneration example 1, each pore volume in the initial catalyst, the deteriorated catalyst, the washed catalyst, and the activation catalyst was measured using a pore volume measuring device by mercury porosimetry.

実施例1〜7、比較例1、参考例1について、各処理工程後の細孔容積を纏めて表2に示す。実施例及び比較例、参考例において、いずれの実施例及び比較例、参考例の触媒も初期触媒では、細孔容積は大きな差はないが、排ガス中で5000時間暴露されることにより細孔容積が低下する。この時点では、実施例、比較例および参考例で差はない。   For Examples 1 to 7, Comparative Example 1, and Reference Example 1, the pore volume after each processing step is summarized in Table 2. In Examples, Comparative Examples, and Reference Examples, the catalyst volume of any of Examples, Comparative Examples, and Reference Examples is the same as that of the initial catalyst, but the pore volume is not significantly different. Decreases. At this point, there is no difference between the examples, comparative examples, and reference examples.

しかし、これら暴露触媒について(2)の洗浄試験を実施した前後で比較すると、比較例の触媒では、試験前後で細孔容積に変化はないが、実施例及び参考例の触媒では、いずれも細孔容積が初期よりも増大しており、特に実施例では増大が大きいことが分かる。さらに、(3)の賦活試験後で比較すると、比較例1の触媒は、賦活後に細孔容積が減少していることが分かる。
[試験例2]
実施例1、5、6及び比較例2において、初期触媒と、再生例1における洗浄後触媒の中のMo量を蛍光X線装置を用いて測定した。初期に対する洗浄後のMo量をMo残存率として算出した。結果を表3に示す。実施例1、5、6ではMo残存率はほぼ100%に近く、洗浄によりMoが溶出していないことが分かる。一方、比較例2では約58%であり、Moが溶出している。このことから、本発明のMoの添加範囲で、洗浄によるMoの流出を抑制することできる。
[試験例3]
実施例1〜7、比較例1、2及び参考例1において、再生例1で得られた初期触媒、暴露触媒及び賦活触媒において、それぞれ100×20mmに切断後流通系の反応管に充填し、表4の条件で脱硝率を測定した。結果を表5に示す。
However, when these exposed catalysts were compared before and after the cleaning test (2), the comparative catalyst had no change in the pore volume before and after the test, but both the catalyst of the example and the reference example were small. It can be seen that the pore volume is increased from the initial stage, and in particular, the increase is large in the examples. Furthermore, when compared after the activation test of (3), it can be seen that the pore volume of the catalyst of Comparative Example 1 has decreased after activation.
[Test Example 2]
In Examples 1, 5, 6 and Comparative Example 2, the amount of Mo in the initial catalyst and the catalyst after washing in regeneration example 1 was measured using a fluorescent X-ray apparatus. The amount of Mo after washing with respect to the initial stage was calculated as the Mo remaining rate. The results are shown in Table 3. In Examples 1, 5, and 6, the Mo residual ratio is almost 100%, and it can be seen that Mo is not eluted by washing. On the other hand, in Comparative Example 2, it is about 58%, and Mo is eluted. From this, the outflow of Mo by washing can be suppressed within the range of addition of Mo of the present invention.
[Test Example 3]
In Examples 1 to 7, Comparative Examples 1 and 2 and Reference Example 1, the initial catalyst, the exposed catalyst and the activation catalyst obtained in Regeneration Example 1 were each cut to 100 × 20 mm and filled into a reaction tube in a flow system, The denitration rate was measured under the conditions shown in Table 4. The results are shown in Table 5.

実施例の触媒は、賦活後いずれも初期とほぼ同等の脱硝率が得られていることがわかる。これに対し、比較例の触媒は、いずれも脱硝性能が低い。このことから、本発明の方法からなる触媒(実施例)を本発明の再生法(再生例1)と組み合わせた場合、高い効果が得られることが分かる。
[試験例4]
実施例1の初期触媒と再生試験例1及び比較再生試験例1の(3)賦活試験後の触媒について、45度に傾けた触媒上に高さ500mm上から、平均粒子径70mmのグリッドを落下させて磨耗量を測定するグリッド磨耗試験を実施し、強度を比較した。結果を表6に示す。
It can be seen that the catalyst of the example has almost the same denitration rate as the initial stage after activation. On the other hand, all of the catalysts of the comparative examples have low denitration performance. From this, it can be seen that when the catalyst (Example) comprising the method of the present invention is combined with the regeneration method of the present invention (Regeneration Example 1), a high effect can be obtained.
[Test Example 4]
For the initial catalyst of Example 1, regeneration test example 1 and comparative regeneration test example 1 (3) after the activation test, a grid with an average particle diameter of 70 mm was dropped from a height of 500 mm onto a catalyst inclined at 45 degrees. A grid wear test was performed to measure the amount of wear, and the strength was compared. The results are shown in Table 6.

再生例1(硫酸アルミニウム添加)に比べ、比較再生例1で再生した触媒の摩耗強度は低い。本結果より、本発明の触媒を、本発明の再生試験と組み合わせることにより、高い磨耗強度を得ることができることが分かる。   Compared to regeneration example 1 (with aluminum sulfate added), the wear strength of the catalyst regenerated in comparative regeneration example 1 is lower. From this result, it is understood that a high wear strength can be obtained by combining the catalyst of the present invention with the regeneration test of the present invention.

Figure 2012139665
Figure 2012139665

Figure 2012139665
Figure 2012139665

Figure 2012139665
Figure 2012139665

Figure 2012139665
Figure 2012139665

Figure 2012139665
Figure 2012139665

Figure 2012139665
Figure 2012139665

Claims (4)

排ガス中の窒素酸化物をアンモニアや尿素を還元剤として還元、除去する触媒であって、チタン(Ti)の酸化物、モリブデン(Mo)及び/またはタングステン(W)の酸化物、バナジウム(V)酸化物、並びに硫酸アルミニウム(Al2(SO4)3)からなる組成物を主成分とし、その組成が、(1)MoまたはWがTi原子に対し0を越えて3原子%以下、(2)硫酸アルミニウムの含有量がTiO2に対し1.5〜7wt%であることを特徴とする脱硝触媒。 A catalyst that reduces and removes nitrogen oxides in exhaust gas using ammonia or urea as a reducing agent. Titanium (Ti) oxide, molybdenum (Mo) and / or tungsten (W) oxide, vanadium (V) The composition is mainly composed of an oxide and aluminum sulfate (Al 2 (SO 4 ) 3 ), and the composition is (1) Mo or W exceeds 0 with respect to Ti atoms and is 3 atomic% or less, (2 ) denitration catalyst content of aluminum sulfate is characterized in that it is a 1.5~7Wt% to TiO 2. 排ガス中の窒素酸化物をアンモニアや尿素を還元剤として還元、除去する触媒の製造方法であって、チタン(Ti)の酸化物、モリブデン(Mo)及び/またはタングステン(W)の酸化物、バナジウム(V)酸化物、並びに硫酸アルミニウム(Al2(SO4)3)からなる組成物を主成分とし、その組成が、(1)MoまたはWがTi原子に対し0を越えて3原子%以下、(2)硫酸アルミニウムの含有量がTiO2に対し1.5〜7wt%になるように上記化合物またはその前駆体を混合し、所定の触媒形状に成形後、乾燥または焼成することを特徴とする請求項1記載の脱硝触媒の製造方法。 A method for producing a catalyst for reducing and removing nitrogen oxides in exhaust gas using ammonia or urea as a reducing agent, comprising titanium (Ti) oxide, molybdenum (Mo) and / or tungsten (W) oxide, vanadium (V) The main component is a composition comprising oxide and aluminum sulfate (Al 2 (SO 4 ) 3 ), and the composition is (1) Mo or W exceeds 0 with respect to Ti atoms and is 3 atomic% or less. (2) The above compound or a precursor thereof is mixed so that the content of aluminum sulfate is 1.5 to 7 wt% with respect to TiO 2 , molded into a predetermined catalyst shape, and then dried or calcined. Item 2. A method for producing a denitration catalyst according to Item 1. 前記乾燥または焼成の最高履歴温度が450℃以下である請求項2記載の方法。 The method according to claim 2, wherein the maximum history temperature of the drying or baking is 450 ° C or lower. 燃焼装置から排出される排ガス中で使用された請求項1記載の脱硝触媒を、水または酸性水溶液に浸漬して液切し、触媒への付着物を除去すると同時に、触媒中の成分である硫酸アルミニウムの少なくとも一部を溶出、除去した後、該洗浄後の触媒を、硫酸アルミニウム及び硫酸バナジルを含有する水溶液に含浸させ、液切り、乾燥処理をすることを特徴とする脱硝触媒の再生方法。 The denitration catalyst according to claim 1 used in exhaust gas discharged from a combustion device is immersed in water or an acidic aqueous solution to remove the deposits on the catalyst, and at the same time, sulfuric acid which is a component in the catalyst A method for regenerating a denitration catalyst, wherein at least a part of aluminum is eluted and removed, and the washed catalyst is impregnated with an aqueous solution containing aluminum sulfate and vanadyl sulfate, followed by draining and drying.
JP2011000955A 2011-01-06 2011-01-06 NOx removal catalyst and its regeneration method Active JP5701066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000955A JP5701066B2 (en) 2011-01-06 2011-01-06 NOx removal catalyst and its regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000955A JP5701066B2 (en) 2011-01-06 2011-01-06 NOx removal catalyst and its regeneration method

Publications (2)

Publication Number Publication Date
JP2012139665A true JP2012139665A (en) 2012-07-26
JP5701066B2 JP5701066B2 (en) 2015-04-15

Family

ID=46676512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000955A Active JP5701066B2 (en) 2011-01-06 2011-01-06 NOx removal catalyst and its regeneration method

Country Status (1)

Country Link
JP (1) JP5701066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555002A (en) * 2021-07-01 2023-01-03 中国石油天然气股份有限公司 Denitration catalyst and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101629483B1 (en) * 2015-02-27 2016-06-13 주식회사 에코프로 Vanadium-based denitration catalyst and preparing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470144A (en) * 1987-06-05 1989-03-15 Babcock Hitachi Kk Denitration catalyst utilizing catalytic-reduction of ammonia and its production
JPH08168641A (en) * 1994-12-20 1996-07-02 Babcock Hitachi Kk Plate-shaped catalyst for denitration of exhaust gas, manufacture thereof and exhaust gas denitration method using the plate-shaped catalyst
JPH1133402A (en) * 1997-07-17 1999-02-09 Babcock Hitachi Kk Denitration catalyst and its production
JP2004267968A (en) * 2003-03-11 2004-09-30 Babcock Hitachi Kk Method for regenerating denitration catalyst
JP2009006226A (en) * 2007-06-27 2009-01-15 Babcock Hitachi Kk Method for regenerating catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470144A (en) * 1987-06-05 1989-03-15 Babcock Hitachi Kk Denitration catalyst utilizing catalytic-reduction of ammonia and its production
JPH08168641A (en) * 1994-12-20 1996-07-02 Babcock Hitachi Kk Plate-shaped catalyst for denitration of exhaust gas, manufacture thereof and exhaust gas denitration method using the plate-shaped catalyst
JPH1133402A (en) * 1997-07-17 1999-02-09 Babcock Hitachi Kk Denitration catalyst and its production
JP2004267968A (en) * 2003-03-11 2004-09-30 Babcock Hitachi Kk Method for regenerating denitration catalyst
JP2009006226A (en) * 2007-06-27 2009-01-15 Babcock Hitachi Kk Method for regenerating catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555002A (en) * 2021-07-01 2023-01-03 中国石油天然气股份有限公司 Denitration catalyst and preparation method thereof
CN115555002B (en) * 2021-07-01 2023-11-28 中国石油天然气股份有限公司 Denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP5701066B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5495001B2 (en) Catalyst regeneration method
JP5701185B2 (en) Method for reducing SO2 oxidation rate increase of denitration catalyst
JP2013056319A5 (en)
KR102069959B1 (en) Method of regenerating used denitration catalyst
KR20150023523A (en) Scr catalyst and method of preparation thereof
JP5701066B2 (en) NOx removal catalyst and its regeneration method
JP2015192999A (en) Method for producing exhaust gas treatment catalyst using used catalyst and exhaust gas treatment catalyst
JP5615228B2 (en) Regeneration method of used denitration catalyst
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
JP5526369B2 (en) Denitration catalyst regeneration method
JP4905985B2 (en) Recycling of used denitration catalyst
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP4905988B2 (en) Regeneration method of used denitration catalyst
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
KR101096938B1 (en) Method of regenerating thermally deteriorated catalyst
JPWO2013073032A1 (en) Exhaust gas treatment catalyst, exhaust gas treatment catalyst manufacturing method, and exhaust gas treatment catalyst regeneration method
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP2016007554A (en) Method for regenerating used denitration catalyst
JP2012192338A (en) Method of treating exhaust
JP2013180282A (en) Method for regenerating denitration catalyst
JP2014097439A (en) Adsorbent for cumulative catalyst poison
JP2012152672A (en) Regeneration method for denitration catalyst
JP2014200757A (en) Cumulative catalyst poison adsorbent, and combustion exhaust gas purification method
JP2010017687A (en) Catalyst for cleaning exhaust gas and manufacturing method therefor
JP5313842B2 (en) Denitration catalyst regeneration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5701066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350