JP7232688B2 - Prop for seaweed culture and manufacturing method thereof - Google Patents

Prop for seaweed culture and manufacturing method thereof Download PDF

Info

Publication number
JP7232688B2
JP7232688B2 JP2019063246A JP2019063246A JP7232688B2 JP 7232688 B2 JP7232688 B2 JP 7232688B2 JP 2019063246 A JP2019063246 A JP 2019063246A JP 2019063246 A JP2019063246 A JP 2019063246A JP 7232688 B2 JP7232688 B2 JP 7232688B2
Authority
JP
Japan
Prior art keywords
layer
carbon fiber
frp
core layer
frp layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019063246A
Other languages
Japanese (ja)
Other versions
JP2020162421A (en
Inventor
宏和 鈴木
匡 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2019063246A priority Critical patent/JP7232688B2/en
Publication of JP2020162421A publication Critical patent/JP2020162421A/en
Application granted granted Critical
Publication of JP7232688B2 publication Critical patent/JP7232688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Description

本発明は、海苔養殖用支柱、及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a prop for laver culture and a method for producing the same.

海苔養殖は海中に竹などを支柱として、等間隔に配置し、支柱間に網を設置してその網の上で養殖を行う。近年、竹材が入手しにくいことや、太さや長さが不均一であること、耐久性の問題などから、太さの均一化が可能な繊維強化合成樹脂(以下、「FRP」と称する。)製の支柱が使用されるようになった。 In seaweed farming, bamboo is used as a pillar in the sea and placed at equal intervals. In recent years, due to the difficulty in obtaining bamboo, uneven thickness and length, and durability issues, fiber-reinforced synthetic resin (hereinafter referred to as "FRP") that can be made uniform in thickness. steel stanchions are now used.

海苔養殖用のFRP製支柱の製造方法としては、強化繊維に未硬化状の熱硬化性樹脂組成物を含浸して、加熱された円環状の金型でパイプ状に引抜きながら硬化させつつ連続的に引取る、いわゆる引抜き成形法(1)によるものや、パイプの内径に相当する外径の長尺状マンドレルに、未硬化状の熱硬化性樹脂組成物を含浸した強化繊維をトラバースしながら所定の巻角にて卷回してパイプ層を形成しつつ硬化してパイプ状の支柱を形成する方法(2)などが知られている。
さらに、強化繊維に合成樹脂としてエポキシ樹脂を用いたシート状の繊維強化樹脂材料を、支柱形成用のマンドレルに卷回積層して形成した繊維強化樹脂層を有する構成のFRP製支柱が提案されている(例えば、特許文献1参照)。
As a method for manufacturing FRP props for seaweed cultivation, reinforcing fibers are impregnated with an uncured thermosetting resin composition, and continuously cured while being drawn into a pipe shape with a heated annular mold. , a so-called pultrusion method (1), or a long mandrel with an outer diameter corresponding to the inner diameter of a pipe, and a reinforcing fiber impregnated with an uncured thermosetting resin composition while traversing a predetermined A method (2) is known in which a pipe layer is formed by winding at a winding angle of 100 mm and hardened to form a pipe-shaped support.
Furthermore, there has been proposed an FRP column having a fiber reinforced resin layer formed by winding and laminating a sheet-like fiber reinforced resin material using an epoxy resin as a synthetic resin for the reinforcing fiber on a mandrel for forming the column. (See Patent Document 1, for example).

しかしながら、前記の金型による引抜き成形法(1)では、金型から硬化ないし半硬化したFRP製支柱を引取るには、金型との摩擦抵抗力の存在により高い引取り力を要し、装置が大型化し、消費エネルギー及び設備コストの増大を余儀なくされる。
一方、特許文献1に記載のFRP製支柱の製造方法では、支柱形成用のマンドレルにシート状の繊維強化樹脂材料を卷回積層して形成するため、マンドレルの長さの制約等から、全長が6m程度のものが最大長となる。しかし、海苔養殖の漁場の水深としては、12m程度のところもあり、連続的に長い支柱を得る製造方法としては採用できない。
However, in the aforementioned pultrusion molding method (1) using a mold, a high pull-out force is required to pull the hardened or semi-hardened FRP post out of the mold due to the presence of frictional resistance with the mold. The size of the equipment is increased, which inevitably leads to increases in energy consumption and equipment costs.
On the other hand, in the method for manufacturing an FRP column described in Patent Document 1, a sheet-like fiber reinforced resin material is wound and laminated on a mandrel for forming the column. The maximum length is about 6m. However, the seaweed farming grounds have a depth of about 12 m, and this cannot be used as a manufacturing method for continuously obtaining long pillars.

また、海苔養殖用FRP製支柱は、取り扱い時にFRP層の一部が剥離して手指に突き刺ってけがをすることの防止や、海水中に立設して使用する際のFRP層の加水分解の防止、FRP層の耐候劣化の防止等を目的に、FRP層の外表面は、熱可塑性樹脂等で被覆されていることが好ましい。また、FRP層の内表面も、海水中に立設して使用する際のFRP層の加水分解の防止の観点から被覆されていることが望ましい。
本出願人は、このような機能を備える、熱可塑性樹脂による中芯層、その外周に長繊維状のガラス繊維をマトリックス樹脂で結着したFRP層、FRP層の外周に熱可塑性樹脂被覆層を備えた、熱可塑性樹脂中芯層/FRP層/熱可塑性樹脂被覆層の三層構造を有し、外径が35~57mmのFRP製支柱を商品名:「コンポーズ、登録商標」として海苔養殖用支柱として上市し、取り扱い性、耐久性、竹に比較した利点などに富むことから、海苔養殖業者に実用上の高い評価を得ている。
In addition, the FRP support for seaweed farming prevents part of the FRP layer from peeling off during handling and piercing fingers and injuring the user. It is preferable that the outer surface of the FRP layer is coated with a thermoplastic resin or the like for the purpose of preventing decomposition and weathering deterioration of the FRP layer. In addition, it is desirable that the inner surface of the FRP layer is also coated from the viewpoint of preventing hydrolysis of the FRP layer when standing in seawater for use.
The applicant of the present invention has a core layer made of a thermoplastic resin, an FRP layer in which long fiber-like glass fibers are bound with a matrix resin on the outer periphery, and a thermoplastic resin coating layer on the outer periphery of the FRP layer. Equipped with a three-layer structure of thermoplastic resin core layer / FRP layer / thermoplastic resin coating layer, FRP posts with an outer diameter of 35 to 57 mm are used as a product name: "Compose, registered trademark" for seaweed farming Marketed as a prop, it is highly valued by seaweed farmers for practical use due to its ease of handling, durability, and advantages over bamboo.

特開2007-259838号公報JP-A-2007-259838

しかしながら、前記三層構造のFRP製の海苔養殖用支柱でも以下の様な課題が挙げられている。
(i)海苔養殖用支柱の設置は人の手作業で実施されるため、重量が重いと作業がし辛い。
(ii) 海苔養殖用支柱を手でつかむときに太いとつかみにくく作業がし辛く、一方、支柱を単純に細くすると、通常のFRPでは剛性が低下して海中で自立し辛く、網が流されやすくなる。
(iii)養殖場まで通常は船で養殖用支柱などの機材を運搬するが、支柱が嵩高いと運搬の頻度が増加して作業により多くの時間を要する。
(iv)上記課題を解決するためにFRP材料として炭素繊維の利用が考えられるが、炭素繊維のみでFRP製支柱を作製した場合には非常にコスト高となり実用性に乏しい。
However, the following problems are raised even with the three-layer structure FRP prop for seaweed cultivation.
(i) Since the installation of the props for cultivating seaweed is carried out manually, heavy weight makes the work difficult.
(ii) When grasping a pole for seaweed cultivation by hand, if it is thick, it is difficult to grasp and work. easier.
(iii) Equipment such as aquaculture poles is usually transported to the farm by boat, but if the poles are bulky, the frequency of transportation will increase and the work will take more time.
(iv) Carbon fiber may be used as the FRP material to solve the above problems, but if the FRP column is made only of carbon fiber, the cost will be very high and the practicality will be poor.

そこで、本発明者らは、手作業での取扱い性に優れ、軽量性と高剛性を両立でき、比較的安価で実用性に富む、FRP製の海苔養殖用支柱について鋭意検討して本発明を完成するに至った。 Therefore, the present inventors have made intensive studies on FRP seaweed aquaculture posts that are easy to handle manually, can achieve both light weight and high rigidity, are relatively inexpensive and highly practical, and have found the present invention. Completed.

すなわち、本発明は、以下の〔1〕~〔4〕の発明を提供する。
〔1〕熱可塑性樹脂からなる中芯層と、該中芯層の外周に形成されたFRP層と、該FRP層の外周に形成された被覆層とを有する密着一体化した複合構造の海苔養殖用支柱であって、該中芯層は、少なくともその外周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成され、該FRP層は、該中芯層の長手方向の外周に少なくともガラス繊維と炭素繊維を含む長繊維の強化繊維が縦添い状に結着され、該炭素繊維は該FRP層の外周側に配置され、該FRP層の横断面における該ガラス繊維と炭素繊維の断面積比が60:40~95:5であり、該被覆層は、少なくともその内周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成されることを特徴とする海苔養殖用支柱。
〔2〕前記FRP層におけるガラス繊維と炭素繊維との断面積比が80:20~95:5である前記〔1〕に記載の海苔養殖用支柱。
〔3〕前記FRP層におけるガラス繊維と炭素繊維との断面積比が90:10~95:5であり、該FRP層の長手方向に直交する断面において、炭素繊維の束が該FRP層の外周面側に互いに略同一の中心角で配置されてなる前記〔1〕に記載の海苔養殖用支柱。
〔4〕下記の(i)~(vii)の工程を有することを特徴とする前記〔1〕~〔3〕のいずれかに記載の海苔養殖用支柱の製造方法。
(i)長繊維状の強化繊維として所要本数のガラス繊維束及び炭素繊維束を準備し、集合ガイドの所定のガイド孔に、ガラス繊維束及び炭素繊維束のそれぞれを挿通し、さらに、これらを平行に配列させて含浸槽の含浸操作ガイド、中芯層の外周に所定配置で縦添いさせるための絞りダイス、被覆層用押出機及び製造ラインを通して強化繊維束を引取り可能に準備する工程、
(ii)含浸層に熱硬化性樹脂及び熱硬化剤を含む液状の硬化性樹脂組成物を注入する工程、
(iii)中芯層を形成する熱可塑性樹脂を溶融押出機から所定寸法の円管状に連続的に押出し、製造ラインを経て連続的に引取る中芯層製造工程、
(iv)前記(i)で準備された強化繊維束を引取りつつ、含浸槽に含浸操作ガイドを下降させて、強化繊維束に硬化性樹脂組成物を含浸し、これを絞りダイスの孔部の中央を走行する中芯層の外周に縦添いして、余剰の樹脂を絞りダイスにより段階的に絞り、中芯層に強化繊維束が縦添された未硬化状管状物とする工程、
(v)該未硬化状管状物を、溶融押出機のクロスヘッドに通して、被覆層用の熱可塑性樹脂により円環状に押出被覆し、該被覆層を冷却する溶融被覆工程、
(vi)被覆された未硬化状管状物を、硬化槽に導いて内部の未硬化状熱硬化性樹脂組成物を熱硬化し、密着一体化した複合構造の管状物を引取る工程、及び
(vii)引取られた管状物を海苔養殖用支柱としての所定の長さに切断する工程。
That is, the present invention provides the following inventions [1] to [4].
[1] Seaweed farming with a composite structure that includes a core layer made of a thermoplastic resin, an FRP layer formed on the outer periphery of the core layer, and a coating layer formed on the outer periphery of the FRP layer. at least the outer peripheral surface of the core layer is made of a thermoplastic resin having a chemical affinity with a thermosetting resin that is a matrix component constituting the FRP layer, and the FRP layer is Reinforcing fibers of long fibers containing at least glass fibers and carbon fibers are vertically attached to the outer circumference of the core layer in the longitudinal direction, and the carbon fibers are arranged on the outer circumference side of the FRP layer. The cross-sectional area ratio of the glass fiber to the carbon fiber in the cross section is 60:40 to 95:5, and the coating layer has at least the inner peripheral surface of a thermosetting resin that is a matrix component constituting the FRP layer. A prop for seaweed cultivation, characterized by being composed of a thermoplastic resin having chemical affinity.
[2] The prop for seaweed cultivation according to [1], wherein the cross-sectional area ratio of the glass fiber to the carbon fiber in the FRP layer is 80:20 to 95:5.
[3] The cross-sectional area ratio of the glass fiber and the carbon fiber in the FRP layer is 90:10 to 95:5, and in the cross section orthogonal to the longitudinal direction of the FRP layer, the carbon fiber bundle is the outer periphery of the FRP layer. The props for laver cultivation according to the above [1], which are arranged on the surface side at substantially the same center angle.
[4] The method for producing a prop for laver cultivation according to any one of [1] to [3], which comprises the following steps (i) to (vii).
(i) Prepare a required number of glass fiber bundles and carbon fiber bundles as long-fiber-like reinforcing fibers, insert each of the glass fiber bundles and carbon fiber bundles into predetermined guide holes of a gathering guide, and further insert them into A step of preparing the reinforcing fiber bundle so that it can be taken through the impregnation operation guide of the impregnation tank arranged in parallel, the drawing die for longitudinally attaching to the outer periphery of the core layer in a predetermined arrangement, the extruder for the coating layer and the production line,
(ii) injecting a liquid curable resin composition containing a thermosetting resin and a thermosetting agent into the impregnation layer;
(iii) a core layer manufacturing step of continuously extruding a thermoplastic resin forming the core layer from a melt extruder into a circular tube shape of a predetermined size and continuously taking it through a production line;
(iv) While taking out the reinforcing fiber bundle prepared in (i) above, the impregnation operation guide is lowered into the impregnation tank to impregnate the reinforcing fiber bundle with the curable resin composition, and the curable resin composition is impregnated into the hole of the drawing die. A step of vertically attaching to the outer periphery of the core layer running in the center of the, and gradually squeezing the excess resin with a drawing die to form an uncured tubular product in which the reinforcing fiber bundle is vertically attached to the core layer;
(v) a melt-coating step of passing the uncured tubular article through the crosshead of a melt extruder to circularly extrusion-coat it with a thermoplastic resin for a coating layer, and cooling the coating layer;
(vi) a step of introducing the coated uncured tubular article into a curing bath to thermally cure the uncured thermosetting resin composition inside, and taking out the tubular article having a composite structure that is adhered and integrated;
(vii) A step of cutting the collected tubular object into a predetermined length as a prop for laver cultivation.

本発明の海苔養殖用支柱は、ガラス繊維のみで構成していた従来のFRP層よりも同外径では高剛性で軽量にできる。また、従来と同程度の剛性としたいのであれば、外径をより細径にすることができ、軽量化と、細径化による取扱い性の向上を図ることができる。
また、本発明の海苔養殖用支柱の製造方法は、手作業での取扱い性に優れ、軽量性と高剛性を両立でき、比較的安価で実用性に富む、本発明の海苔養殖用支柱を、再現性よく安定して、且つ経済的に製造することができる。
The post for seaweed cultivation of the present invention can be made more rigid and lighter than the conventional FRP layer composed only of glass fiber with the same outer diameter. Further, if it is desired to achieve the same level of rigidity as the conventional one, the outer diameter can be made smaller, and the reduction in weight and the improvement in handleability due to the smaller diameter can be achieved.
In addition, the method for manufacturing the laver aquaculture prop of the present invention provides the laver aquaculture prop of the present invention, which is excellent in manual handling, can achieve both light weight and high rigidity, is relatively inexpensive, and is highly practical. It can be produced stably and economically with good reproducibility.

本発明の実施例4による海苔養殖用支柱の模式断面図である。FIG. 4 is a schematic cross-sectional view of a prop for laver cultivation according to Example 4 of the present invention; 本発明の海苔養殖用支柱の製造方法に用いられる製造ラインの一例の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an explanatory diagram of an example of a production line used in the method for producing a prop for laver culture according to the present invention;

以下、本発明の好適な実施形態について説明する。なお、添付図面に示された各実施形態は、本発明に係わる代表的な実施形態の一例を説明するための図面であり、寸法などは実体に適合したものでなく、これらの図面により本発明の範囲が狭く解釈されることはない。 Preferred embodiments of the present invention are described below. It should be noted that each embodiment shown in the accompanying drawings is a drawing for explaining an example of a representative embodiment related to the present invention, and the dimensions and the like are not adapted to the actuality, and the present invention is not based on these drawings. should not be interpreted narrowly.

本発明の海苔養殖用支柱は、熱可塑性樹脂からなる中芯層と、該中芯層の外周に形成されたFRP層と、該FRP層の外周に形成された被覆層とを有する密着一体化した複合構造の海苔養殖用支柱であって、該中芯層は、少なくともその外周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成され、該FRP層は、該中芯層の長手方向の外周に少なくともガラス繊維と炭素繊維を含む長繊維の強化繊維が縦添い状に結着され、該炭素繊維は該FRP層の外周側に配置され、該FRP層の横断面における該ガラス繊維と炭素繊維の断面積比が60:40~95:5であり、該被覆層は、少なくとも内周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成されることを特徴としている。 The post for laver cultivation of the present invention has a core layer made of a thermoplastic resin, an FRP layer formed on the outer periphery of the core layer, and a coating layer formed on the outer periphery of the FRP layer. The core layer is composed of a thermoplastic resin having a chemical affinity with a thermosetting resin, which is a matrix component constituting the FRP layer, at least on the outer peripheral surface of the core layer. In the FRP layer, long fiber reinforcing fibers containing at least glass fiber and carbon fiber are vertically attached to the outer circumference of the core layer in the longitudinal direction, and the carbon fiber is arranged on the outer circumference side of the FRP layer. and the cross-sectional area ratio of the glass fiber to the carbon fiber in the cross section of the FRP layer is 60:40 to 95:5, and the coating layer is a matrix component that constitutes the FRP layer at least on the inner peripheral surface. It is characterized by being composed of a thermoplastic resin having chemical affinity with a thermosetting resin.

本発明の海苔養殖用支柱10は、長手方向に直交する断面の層構成の一例を図1に示すように、熱可塑性樹脂からなる中芯層1、強化繊維として所定断面積比率のガラス繊維2aと炭素繊維2bをマトリックス成分としての熱硬化性樹脂硬化物2cで結着したFRP層2、及びFRP層2の外周に形成された熱可塑性樹脂からなる被覆層3から形成されている。
本発明の海苔養殖用支柱10は、海苔網を支持し、海中に立設して使用される際の波浪に耐えるに必要な剛性等から、外径が概ね35mm~60mmであって、この外径のものを海底に立設する主体部とする。海底側の先端には円錐状の先端部があり、海面側には、接手を介して、外径が10~20mm、長さが1m~2.0mのアンテナと称し、満潮時に網綱の保持を確保するための先端部が接続されている。本発明は、上記の海苔養殖用支柱の主体部に係る発明であり、その長さは、漁場の海深との関係から、概ね4~15mである。
As shown in FIG. 1, an example of a layer structure of a laver culture prop 10 of the present invention in a cross section perpendicular to the longitudinal direction is composed of a core layer 1 made of a thermoplastic resin and glass fibers 2a having a predetermined cross-sectional area ratio as reinforcing fibers. and carbon fibers 2b bound together with a cured thermosetting resin 2c as a matrix component, and a coating layer 3 made of a thermoplastic resin formed on the outer periphery of the FRP layer 2.
The prop 10 for laver cultivation of the present invention supports a laver net and has an outer diameter of approximately 35 mm to 60 mm from the rigidity required to withstand waves when used standing in the sea. The main part to be erected on the seabed is the one with a diameter. There is a conical tip at the tip of the seabed side, and on the sea surface side, through a joint, an antenna with an outer diameter of 10 to 20 mm and a length of 1 to 2.0 m is used to hold the net rope at high tide. to ensure that the tip is connected. The present invention is an invention relating to the main body of the above-mentioned nori aquaculture support, and the length thereof is approximately 4 to 15 m in consideration of the sea depth of the fishing ground.

(中芯層の熱可塑性樹脂)
本発明の海苔養殖用支柱の製造方法との関連において、中芯層は熱可塑性樹脂を溶融押出して製造される。そして、当該中芯層は、少なくともその外周面がFRP層の最内層の界面と化学的親和性によって密着(接着)していることを要する。そのため、中芯層に用いられる熱可塑性樹脂は、FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から選択され、たとえばABS(アクリロニトリル-ブタジエン-スチレン樹脂)、AES(アクリロニトリル・エチレンプロピレンゴム・スチレン樹脂)、AS(アクリロニトリル-スチレン樹脂)、AAS(アクリロニトリル-アクリル-スチレン樹脂)、PS(ポリスチレン樹脂)、PC(ポリカーボネート樹脂)、PPE(変性ポリフェニレンエーテル樹脂;ポリフェニレンとポリスチレンとのグラフト共重合体)、ポリ塩化ビニル樹脂等が挙げられる。
中芯層の内径は概ね30.5~50.5mm、層厚みが概ね1.5~3.0mmである。中芯層は、少なくとも外周面がFRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有していればよく、外周面のみにマトリックス成分と相溶性を有する上記の熱可塑性樹脂や、接着性向上のために変性された熱可塑性樹脂共重合体等を複層押出して形成してもよい。
(Thermoplastic resin of core layer)
In connection with the manufacturing method of the prop for laver cultivation of the present invention, the core layer is manufactured by melt extruding a thermoplastic resin. At least the outer peripheral surface of the core layer is required to adhere (adhere) to the interface of the innermost layer of the FRP layer due to chemical affinity. Therefore, the thermoplastic resin used for the core layer is selected from thermoplastic resins having chemical affinity with the thermosetting resin, which is the matrix component constituting the FRP layer, such as ABS (acrylonitrile-butadiene-styrene resin). , AES (acrylonitrile/ethylene propylene rubber/styrene resin), AS (acrylonitrile-styrene resin), AAS (acrylonitrile-acrylic-styrene resin), PS (polystyrene resin), PC (polycarbonate resin), PPE (modified polyphenylene ether resin; graft copolymers of polyphenylene and polystyrene), polyvinyl chloride resins, and the like.
The core layer has an inner diameter of approximately 30.5 to 50.5 mm and a layer thickness of approximately 1.5 to 3.0 mm. At least the outer peripheral surface of the core layer needs to have chemical affinity with the thermosetting resin, which is the matrix component of the FRP layer. It may be formed by extruding multiple layers of a resin, a thermoplastic resin copolymer modified to improve adhesiveness, or the like.

〔FRP層〕
本発明の海苔養殖用支柱のFRP層は、中芯層の長手方向の外周に少なくともガラス繊維と炭素繊維を含む長繊維の強化繊維が縦添い状にマトリックス成分により結着され、該炭素繊維は該FRP層の外周側に配置され、該FRP層断面における該ガラス繊維と炭素繊維の断面積比が60:40~95:5である。
本発明の海苔養殖用支柱の製造方法との関連において、FRP層は、先ず、連続して押出成形される中芯層の外周に、(iv)強化繊維として所定の断面積比率で集合された長尺状のガラス繊維束及び炭素繊維束に硬化性樹脂組成物を含浸して縦添いして、余剰の樹脂を絞りダイスにより段階的に絞り、中芯層に強化繊維が縦添された未硬化状管状物とする工程を経て、次工程に移行する。
次いで、(v)該未硬化状管状物を、溶融押出機のクロスヘッドに通して、被覆層用の熱可塑性樹脂により円環状に押出被覆し、該被覆層を冷却する溶融被覆工程を経て、(vi)被覆された未硬化状管状物を、硬化槽に導いて内部の未硬化状熱硬化性樹脂組成物を熱硬化し、密着一体化した複合構造の管状物を引取る工程により形成される。
[FRP layer]
In the FRP layer of the prop for seaweed cultivation of the present invention, long fiber reinforcing fibers containing at least glass fiber and carbon fiber are longitudinally attached to the outer circumference of the core layer in the longitudinal direction by a matrix component, and the carbon fiber is They are arranged on the outer peripheral side of the FRP layer, and the cross-sectional area ratio of the glass fiber and the carbon fiber in the cross section of the FRP layer is 60:40 to 95:5.
In connection with the manufacturing method of the prop for laver cultivation of the present invention, the FRP layer is first assembled in a predetermined cross-sectional area ratio as (iv) reinforcing fibers on the outer periphery of the core layer that is continuously extruded. Long glass fiber bundles and carbon fiber bundles are impregnated with a curable resin composition and vertically attached, excess resin is gradually squeezed with a squeezing die, and the reinforcing fiber is vertically attached to the core layer. After the step of forming a cured tubular product, the next step is performed.
(v) passing the uncured tubular material through the crosshead of a melt extruder to circularly extrusion-coat it with a thermoplastic resin for a coating layer; (vi) introducing the coated uncured tubular article into a curing bath to heat-cure the uncured thermosetting resin composition inside, and taking out the tubular article having a composite structure that is adhered and integrated; be.

(強化繊維及びFRP層における断面積比率)
本発明において使用できる強化繊維は、平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねた繊維束状のものを利用できる。強化繊維の比強度は1,000kN・m/kg以上、比弾性率は20,000kN・m/kg以上が好ましい。
本発明の海苔養殖用支柱のFRP層に用いられる長繊維の強化繊維には、少なくともガラス繊維と炭素繊維が併用される。海苔養殖用支柱の長手方向のFRP層断面におけるガラス繊維と炭素繊維の断面積比は、60:40~95:5であり、より好ましくは、80:20~95:5であり、さらに好ましくは、90:10~95:5である。FRP層断面におけるガラス繊維と炭素繊維の断面積比が60:40、すなわち炭素繊維が面積比で40%以下であれば、炭素繊維による原料コストの増加を許容できる安価で、高剛性、軽量性、作業性の向上効果を発現できる海苔養殖用支柱を提供することができ、95:5、すなわち炭素繊維が面積比で5%以上であれば、炭素繊維による高剛性、軽量性、作業性の向上効果が発現できる。
FRP層断面におけるガラス繊維と炭素繊維の断面積比を80:20~95:5とすれば、より安価な海苔養殖用支柱を提供できる。
なお、FRP層断面における強化繊維の断面積比は、FRP層に使用するガラス繊維及び炭素繊維の断面積を、それぞれの使用本数、繊度、密度から計算して求めることができる。
(Cross-sectional area ratio in reinforcing fiber and FRP layer)
The reinforcing fibers that can be used in the present invention can be used in the form of fiber bundles in which 1,000 to 50,000 single reinforcing fibers having an average diameter of 5 to 10 μm are bundled. The reinforcing fibers preferably have a specific strength of 1,000 kN·m/kg or more and a specific elastic modulus of 20,000 kN·m/kg or more.
At least glass fiber and carbon fiber are used in combination for the long-fiber reinforcing fiber used in the FRP layer of the prop for laver cultivation of the present invention. The cross-sectional area ratio of the glass fiber to the carbon fiber in the cross section of the FRP layer in the longitudinal direction of the prop for laver culture is 60:40 to 95:5, more preferably 80:20 to 95:5, and even more preferably. , 90:10 to 95:5. If the cross-sectional area ratio of glass fiber and carbon fiber in the cross section of the FRP layer is 60:40, that is, if the area ratio of carbon fiber is 40% or less, the cost of raw materials due to carbon fiber can be increased. , It is possible to provide a prop for laver cultivation that can express the effect of improving workability, and if 95: 5, that is, if the carbon fiber is 5% or more in terms of area ratio, the carbon fiber has high rigidity, lightness, and workability. An improvement effect can be expressed.
If the cross-sectional area ratio of glass fiber to carbon fiber in the cross section of the FRP layer is 80:20 to 95:5, it is possible to provide a less expensive prop for seaweed cultivation.
The cross-sectional area ratio of the reinforcing fibers in the cross section of the FRP layer can be obtained by calculating the cross-sectional areas of the glass fibers and carbon fibers used in the FRP layer from the number of fibers used, fineness, and density.

さらに、添加する炭素繊維の効果を最大限に利用した構成とし、炭素繊維の使用量を抑えるには前記FRP層におけるガラス繊維と炭素繊維との断面積比が90:10~95:5である場合に、以下の2要件を満足させることで、より好適なものを提供することができる。
(A)FRP層において炭素繊維(束)をガラス繊維より外周側に配置していること。
(B)支柱の中心に対して炭素繊維(束)をFRP層の外周側に略同一の中心角θで対称に配置していること。
炭素繊維(束)がFRP層の外周側に配置され、且つ、支柱の中心に対して炭素繊維が略同一の中心角θで対称に配置されていると、高弾性率の炭素繊維が外周側にあるので、支柱の長手方向に曲げられた際に、中立軸からより距離のある炭素繊維(束)が曲げに抗するので、高剛性の支柱を得ることができる。
また、支柱の中心に対して炭素繊維(束)がFRP層の外周側に略同一の中心角θで対称に配置していると、長手方向の断面において炭素繊維(束)が均等に配置されるので、支柱が長手方向に偏奇したり、使用時に異方性が生じたりする弊害を生じることなく、実用上必要な程度の真直性や真直回復性が保たれる。
なお、炭素繊維量の軽減、並びに強度保持の観点からは、炭素繊維束の扁平率は、0.33~0.83が好ましく、アスペクト比は3:2~6:1が好ましい。
Furthermore, in order to maximize the effect of the added carbon fiber and reduce the amount of carbon fiber used, the cross-sectional area ratio of the glass fiber and the carbon fiber in the FRP layer is 90: 10 to 95: 5. In some cases, satisfying the following two requirements can provide a more suitable one.
(A) The carbon fibers (bundles) are arranged on the outer peripheral side of the glass fibers in the FRP layer.
(B) The carbon fibers (bundles) are arranged symmetrically with substantially the same center angle θ on the outer peripheral side of the FRP layer with respect to the center of the support.
When the carbon fibers (bundles) are arranged on the outer peripheral side of the FRP layer, and the carbon fibers are arranged symmetrically with substantially the same central angle θ with respect to the center of the support, the carbon fibers with a high elastic modulus are arranged on the outer peripheral side. Therefore, when the column is bent in the longitudinal direction, the carbon fibers (bundles) farther from the neutral axis resist bending, so a column with high rigidity can be obtained.
In addition, when the carbon fibers (bundles) are arranged symmetrically with substantially the same central angle θ on the outer peripheral side of the FRP layer with respect to the center of the support, the carbon fibers (bundles) are evenly arranged in the cross section in the longitudinal direction. Therefore, the practically necessary degree of straightness and straightness recovery can be maintained without causing the adverse effects of the struts becoming eccentric in the longitudinal direction and causing anisotropy during use.
From the viewpoints of reducing the carbon fiber amount and maintaining strength, the carbon fiber bundle preferably has an oblateness of 0.33 to 0.83 and an aspect ratio of 3:2 to 6:1.

本発明の海苔養殖用支柱のFRP層の強化繊維として使用できるガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維などが挙げられる。繊維の形態としては、ガラス繊維(フィラメント)を束ねたガラスロービングが、FRP層の使用に適している。使用できるガラス繊維としては例えば、日東紡績株式会社製の品名:RS110QL-533AH、RS220RL-510AH、RS440RR-531AHや、セントラル硝子株式会社製の品名:ERS2200-820/LX、ERS4400-820/LX、重慶国際複合材料有限公司(CPIC社)製の品名:ER469-4400、ER469-2200、及び巨石集団有限公司製の品名:EDR17-1150-386T、巨石集団有限公司 EDR22-2200-312T、などが挙げられる。 Examples of the glass fiber that can be used as the reinforcing fiber of the FRP layer of the laver culture prop of the present invention include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber. . As for the form of fibers, glass rovings in which glass fibers (filaments) are bundled are suitable for use in the FRP layer. Glass fibers that can be used include, for example, Nitto Boseki Co., Ltd. product names: RS110QL-533AH, RS220RL-510AH, RS440RR-531AH, and Central Glass Co., Ltd. product names: ERS2200-820/LX, ERS4400-820/LX, Chongqing. International Composite Materials Co., Ltd. (CPIC) product names: ER469-4400, ER469-2200; .

本発明の海苔養殖用支柱のFRP層の強化繊維として使用できる炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。入手して使用できる炭素繊維としては、例えば、三菱ケミカル株式会社製、品名:TRW40 50L 3750tex、及びZoltek Companies, Inc.製、品名:PX35(50K)などが挙げられる。 Examples of the carbon fiber that can be used as the reinforcing fiber of the FRP layer of the laver culture prop of the present invention include PAN-based carbon fiber made from polyacrylonitrile (PAN) fiber, and pitch-based carbon made from petroleum tar or petroleum pitch. Examples include fibers, cellulose-based carbon fibers made from viscose rayon, cellulose acetate, etc., vapor-grown carbon fibers made from hydrocarbons, graphitized fibers thereof, and the like. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus. Examples of commercially available carbon fibers that can be used include TRW40 50L 3750tex manufactured by Mitsubishi Chemical Corporation and PX35 (50K) manufactured by Zoltek Companies, Inc.

(マトリックス成分)
本発明の海苔養殖用支柱のFRP層のマトリックス成分は熱硬化性樹脂組成物を硬化して形成される。熱硬化性樹脂としては、不飽和ポリエステル樹脂、不飽和物カルボン酸変性ビニルエステル樹脂、エポキシ樹脂などが挙げられる。
これらのうち、熱硬化性であり、汎用性、経済性等の観点から不飽和ポリエステル樹脂が好ましく用いられる。
また、不飽和ポリエステル樹脂はモノマー成分としてスチレンを含み、中芯層及び被覆層の熱可塑性樹脂に化学的親和性を有するものを選択でき、熱硬化後において、これらの三層を密着一体化したものを用いることもできる。
熱硬化性樹脂は、熱硬化触媒(硬化剤)、粘度調整のための炭酸カルシウムなど、必要に応じて超微粒子シリカであるアエロジル(商品名)などの揺変剤を添加混合した熱硬化性樹脂組成物として準備され、強化繊維に含浸されて、最終的に熱硬化されてマトリックス成分を構成する。
(matrix component)
The matrix component of the FRP layer of the prop for seaweed cultivation of the present invention is formed by curing a thermosetting resin composition. Examples of thermosetting resins include unsaturated polyester resins, unsaturated carboxylic acid-modified vinyl ester resins, and epoxy resins.
Among these resins, unsaturated polyester resins are preferably used from the viewpoints of thermosetting, versatility, economy, and the like.
In addition, the unsaturated polyester resin contains styrene as a monomer component and can be selected from those having chemical affinity for the thermoplastic resin of the core layer and the coating layer, and after thermosetting, these three layers are tightly integrated. You can also use things.
Thermosetting resin is a thermosetting resin that is added and mixed with a thermosetting catalyst (curing agent), calcium carbonate for adjusting viscosity, and, if necessary, a thixotropic agent such as Aerosil (trade name), which is ultrafine silica particles. It is prepared as a composition, impregnated into reinforcing fibers, and finally heat-cured to form a matrix component.

(被覆層)
本発明の海苔養殖用支柱の被覆層は、被覆層の少なくとも内周面を構成する熱可塑性樹脂が、スチレンを成分として含む熱可塑性樹脂から選択され、前記FRP層のマトリックス成分を構成する熱硬化性樹脂がスチレンモノマーを単量体成分として含む不飽和ポリエステル樹脂との未硬化状での接触によって、化学的親和性により熱硬化性樹脂の硬化後に、FRP層/被覆層が相互に接着一体化してなる、構成とすることもできる。
(coating layer)
In the coating layer of the prop for laver cultivation of the present invention, the thermoplastic resin constituting at least the inner peripheral surface of the coating layer is selected from thermoplastic resins containing styrene as a component, and the thermosetting resin constituting the matrix component of the FRP layer. By contacting the uncured resin with the unsaturated polyester resin containing styrene monomer as a monomer component, the FRP layer/coating layer are bonded and integrated with each other after curing of the thermosetting resin due to chemical affinity. It can also be configured as follows.

〔海苔養殖用支柱の製造方法〕
本発明の海苔養殖用支柱の製造方法は、下記の(i)~(vii)の工程を含むことを特徴とする。以下、各工程について順次説明する。
[Manufacturing method of prop for seaweed cultivation]
The method for producing a prop for laver culture according to the present invention is characterized by including the following steps (i) to (vii). Each step will be described below in order.

(i)強化繊維の準備工程
図2に示すように繊維状の強化繊維として所要本数のガラス繊維束2a及び炭素繊維束2bを準備し、FRP層での配置を考慮して、表面層側に炭素繊維を配置する場合は、2つの含浸槽14及び16を準備しそれぞれの集合ガイド(目板)(図示省略)の所定のガイド孔(図示省略)に、ガラス繊維束及び炭素繊維束のそれぞれを挿通し、さらに、これらを平行に配列させて含浸槽の含浸操作ガイド(図示省略)、定常走行時に中芯層1の外周に所定配置で縦添いさせ、余剰の熱硬化性樹脂を絞るための絞りダイス、被覆層用押出機及びそれ以降(下流側)の製造ラインを通して引取り可能に準備する工程である。なお、この強化繊維の準備工程の段階では、中芯層の押出、熱硬化性樹脂含浸槽での強化繊維束への樹脂含浸操作、絞り成形、被覆押出機での被覆は、行わず、定常運転時の製造ラインに強化繊維の配置を可能に準備する工程である。
(i) Reinforcing fiber preparation process As shown in FIG. 2, prepare a required number of glass fiber bundles 2a and carbon fiber bundles 2b as fibrous reinforcing fibers, and consider the arrangement in the FRP layer. When arranging carbon fibers, two impregnation tanks 14 and 16 are prepared, and glass fiber bundles and carbon fiber bundles are respectively inserted into predetermined guide holes (not shown) of the respective assembly guides (batches) (not shown). are arranged in parallel to guide the impregnation operation of the impregnation tank (not shown), and are vertically attached to the outer periphery of the core layer 1 in a predetermined arrangement during steady running to squeeze out excess thermosetting resin. It is a step of preparing for take-up through a drawing die, a coating layer extruder, and a subsequent (downstream) production line. In addition, at the stage of this reinforcing fiber preparation process, extrusion of the core layer, resin impregnation of the reinforcing fiber bundle in the thermosetting resin impregnation tank, draw molding, and coating with the coating extruder are not performed. This is a process that prepares the production line for the placement of reinforcing fibers during operation.

(ii)硬化性樹脂組成物の準備工程
含浸槽14、16に熱硬化性樹脂及び熱硬化剤を含む液状の硬化性樹脂組成物を注入する工程である。熱硬化性樹脂としては、前記のものから選択して使用され、熱硬化性樹脂は、所定量の熱硬化触媒(硬化剤)、粘度調整のための炭酸カルシウムなど、及び要すれば超微粒子シリカであるアエロジル(商品名)などの揺変剤を添加して攪拌混合したものを熱硬化性樹脂組成物として攪拌混合して含浸槽14、16に注入される。攪拌混合は事前に行ってもよいし、定常生産状態に移行した後には、熱硬化性樹脂組成物を構成する物質につきそれぞれ所定量を計量して、ミキシング装置で混合しながら、熱硬化性樹脂組成物の消費量に対応して連続的に含浸槽に注入してもよい。
(ii) Step of preparing curable resin composition This is a step of injecting a liquid curable resin composition containing a thermosetting resin and a thermosetting agent into the impregnation tanks 14 and 16 . The thermosetting resin is selected from the above and used, and the thermosetting resin includes a predetermined amount of thermosetting catalyst (curing agent), calcium carbonate for viscosity adjustment, and if necessary, ultrafine silica particles. A thixotropic agent such as Aerosil (trade name) is added and stirred to form a thermosetting resin composition, which is then poured into impregnation tanks 14 and 16 . Stirring and mixing may be performed in advance, or after shifting to a steady production state, a predetermined amount of each substance constituting the thermosetting resin composition is weighed, and the thermosetting resin is mixed with a mixing device. You may pour into an impregnation tank continuously corresponding to the consumption of a composition.

(iii)中芯層製造工程
中芯層1を形成する熱可塑性樹脂を溶融押出機11から内径をマンドレルで、若しくは、外径を型で規制しながら所定寸法の円管状に連続的に押出し、製造ラインを経て連続的に引取る中芯層製造工程によって、事後において長繊維の強化繊維に含浸された未硬化状樹脂組成物を所定の外径に絞り成形し、被覆押出機18で被覆可能とする工程である。
(iii) Core layer manufacturing process Continuously extruding the thermoplastic resin forming the core layer 1 from the melt extruder 11 into a circular tube shape of a predetermined size while controlling the inner diameter with a mandrel or the outer diameter with a mold, The uncured resin composition impregnated into the reinforcing fibers of the long fibers is drawn to a predetermined outer diameter after the fact by the core layer manufacturing process that is continuously taken out through the manufacturing line, and can be coated by the coating extruder 18. It is a process to

(iv)未硬化状管状部の製造工程
前記(i)で準備された強化繊維を引取りつつ、含浸槽14、16に向けて、含浸操作ガイド(図示省略)を下降させて、強化繊維束に硬化性樹脂組成物を含浸し、これを絞りダイス17の孔部の中央を走行する中芯層1の外周に縦添いして、余剰の樹脂を絞りダイスにより段階的に絞り、中芯層に強化繊維が縦添された未硬化状管状物4とする工程である。
(iv) Manufacturing process of uncured tubular part While taking out the reinforcing fibers prepared in the above (i), the impregnating operation guide (not shown) is lowered toward the impregnation tanks 14 and 16 to form a reinforcing fiber bundle. is impregnated with a curable resin composition, and this is vertically attached to the outer periphery of the core layer 1 running in the center of the hole of the drawing die 17, and excess resin is gradually drawn by the drawing die, and the core layer It is a step of forming an uncured tubular material 4 in which reinforcing fibers are longitudinally attached to.

(v)未硬化状管状物の溶融被覆、冷却工程
前記未硬化状管状物4を、溶融押出機18のクロスヘッドに通して、被覆層用の熱可塑性樹脂により円環状に押出被覆し、直ちに該被覆層を冷却槽19で冷却固化して被覆層付未硬化状管状物5を得る溶融被覆、冷却工程である。
(v) Melt coating of uncured tubular material and cooling step The uncured tubular material 4 is passed through the crosshead of a melt extruder 18 to be circularly extrusion-coated with a thermoplastic resin for a coating layer, and immediately The coating layer is cooled and solidified in the cooling tank 19 to obtain the uncured tubular article 5 with the coating layer, which is a melt-coating and cooling process.

(vi)未硬化状熱硬化性樹脂組成物の熱硬化、及び引取工程
被覆層付き未硬化状管状物5を、硬化槽20に導いて内部の未硬化状熱硬化性樹脂組成物を熱硬化し、中芯層1、FRP層2、被覆層3の三層が密着一体化した複合構造の管状物(複合管状物)6をゴムベルト式、或いはキャタピラー式引取機(図示省略)等で引取る工程である。
(vi) Thermal curing of uncured thermosetting resin composition and take-up step The uncured tubular article 5 with the coating layer is introduced into a curing tank 20 to thermally cure the uncured thermosetting resin composition inside. Then, a tubular article (composite tubular article) 6 having a composite structure in which the three layers of the core layer 1, the FRP layer 2, and the covering layer 3 are tightly integrated is picked up by a rubber belt type or caterpillar type take-up machine (not shown) or the like. It is a process.

(vii)複合管状物を所定の長さに切断する工程
引取られた複合管状物6は高剛性でありドラム等に巻取ることは困難なので、使用時の長さに応じて所定の長さに切断される。
(vii) A step of cutting the composite tubular material to a predetermined length. disconnected.

(その他の工程)
本発明の主要部ではないので、詳細な記載は割愛するが、上記のようにして得られた切断された複合管状物は、海苔養殖用支柱の主体部として使用され、一端側には海底への突き刺用円錐状先端部材(図示省略)、他端側には接続部材を介して細径の所定長さの複合管状物が先端部材(いわゆる「アンテナ」)として接続されて、海苔養殖用支柱として供される。これらの部材の接続は、切断工程に連続したラインで行われることが効率的である。
(Other processes)
Since it is not the main part of the present invention, detailed description will be omitted. A cone-shaped tip member (not shown) for piercing, and a composite tubular object with a small diameter and a predetermined length is connected to the other end via a connecting member as a tip member (so-called "antenna") for laver cultivation. Serves as a prop. It is efficient to connect these members in a line that is continuous with the cutting process.

以下、本発明を実施例及び比較例により説明するが、本発明はこれら実施例に限定されるものではない。以下、図面も参照して説明する。 EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The following description will also refer to the drawings.

実施例1
以下に示す材料を使用して海苔養殖用支柱の主体部の複合管を作製した。
〔材料構成〕
(中芯層用熱可塑性樹脂)
・ABS樹脂:東レ株式会社製、トヨラック(登録商標)600-309N
(熱硬化性樹脂組成物)
・不飽和ポリエステル樹脂100質量部:日本ユピカ株式会社製、ユピカ(登録商標)3464
・炭酸カルシウム10質量部:日東粉化工業株式会社製、NS#200
・有機過酸化物-1 4質量部:化薬アクゾ株式会社製、カヤエステル(登録商標)O-50E
・有機過酸化物-2 1質量部:化薬アクゾ株式会社製、トリゴノックス(登録商標)117
(強化繊維)
・ガラス繊維ロービング 168本:日東紡績株式会社製、RS220RL-510AH(2200tex)
・炭素繊維トウ 12本:三菱ケミカル株式会社製、PYROFIL(登録商標)、 TRW40 50
(被覆用熱可塑性樹脂)
・ABS樹脂:東レ株式会社製、トヨラック(登録商標)600-309N、FB-1682(黒色着色マスターバッチ)
(未硬化状熱硬化性樹脂の調合、準備)
FRP層を構成する強化繊維に含浸させる未硬化状の熱硬化性樹脂組成物として、上記の不飽和ポリエステル樹脂、有機過酸化物、及び充てん剤としての炭酸カルシウムをそれぞれ所定量計量し、攪拌装置を備える調合タンクで攪拌混合し、含浸槽14及び16に注入した。
Example 1
A composite pipe for the main body of a prop for laver culture was produced using the materials shown below.
[Material composition]
(Thermoplastic resin for core layer)
· ABS resin: manufactured by Toray Industries, Inc., Toyolac (registered trademark) 600-309N
(Thermosetting resin composition)
・Unsaturated polyester resin 100 parts by mass: U-Pica (registered trademark) 3464 manufactured by Japan U-Pica Co., Ltd.
・ 10 parts by mass of calcium carbonate: NS#200 manufactured by Nitto Funka Kogyo Co., Ltd.
・ Organic peroxide-1 4 parts by mass: Kayaku Akzo Co., Ltd., Kayaester (registered trademark) O-50E
・ Organic peroxide-2 1 part by mass: Trigonox (registered trademark) 117 manufactured by Kayaku Akzo Co., Ltd.
(reinforced fiber)
・ 168 glass fiber rovings: RS220RL-510AH (2200tex) manufactured by Nitto Boseki Co., Ltd.
・ 12 carbon fiber tows: PYROFIL (registered trademark), TRW40 50 manufactured by Mitsubishi Chemical Corporation
(Thermoplastic resin for coating)
· ABS resin: manufactured by Toray Industries, Inc., Toyolac (registered trademark) 600-309N, FB-1682 (black colored masterbatch)
(Preparation and preparation of uncured thermosetting resin)
As an uncured thermosetting resin composition to be impregnated into the reinforcing fibers constituting the FRP layer, predetermined amounts of the unsaturated polyester resin, the organic peroxide, and calcium carbonate as a filler are weighed, and a stirring device is added. was stirred and mixed in a mixing tank equipped with, and injected into the impregnation tanks 14 and 16.

図2に示すように中芯用溶融押出機11より上記ABS樹脂を外径35.6mm、内径31.8mmのパイプ状に中芯層1として連続状に押出した。
その外周にクリール13(詳細な図示省略)に配置されたガラス繊維ロービング2aを集束して含浸槽14の熱硬化性樹脂組成物を含浸させて、内径が段階的に最終的にFRP層の外径41.5mmに収斂する複数の絞りダイスを備える絞りダイス装置17に導いた。
一方、炭素繊維は、クリール15(詳細な図示省略)に配置された炭素繊維を集束して、含浸槽16の熱硬化性樹脂組成物を含浸させてFRP層において外周側に配置されるように、絞りダイス装置17の下流側(被覆層用押出機側)の絞りダイスから導いた。なお、FRP層の断面において炭素繊維12本を外周側に長手方向の中心軸に対して対称に配列するため、360/12=30°毎に案内孔を有する目板(図示省略)を導入する絞りダイスの前に配置した。
中芯層の外周にガラス繊維2aとそれに含浸された硬化性樹脂組成物により形成された層とその外周に中心角30°で配置された炭素繊維とそれに含浸された硬化性樹脂組成物とを縦添いして最終の絞りダイスで成形し、外径41.5mmの未硬化状管状物4とし、引き続いて、被覆層用溶融押出機18のクロスヘッド部に導いて、着色用ブラック樹脂を含む上記ABS樹脂により被覆し、直ちに冷却水槽19に導いて、被覆層付未硬化状管状物5を得た。
次いで、被覆層付き未硬化状管状物5を熱媒として熱湯を用いた熱硬化槽20に導いて、内部未硬化状FRP層を熱硬化し、冷却水槽(図示省略)で冷却して、三層構造の複合管状物6を得、切断装置(図示省略)で10mの長さに切断した。得られた支柱(複合管状物)の外径は、42.8mmであった。得られた支柱のガラス繊維/炭素繊維の断面積比、単位重量、曲げ弾性率、性能評価の結果等まとめて、表1に示す。
As shown in FIG. 2, the ABS resin was continuously extruded as a core layer 1 from a core melt extruder 11 into a pipe having an outer diameter of 35.6 mm and an inner diameter of 31.8 mm.
A glass fiber roving 2a arranged on a creel 13 (detailed illustration is omitted) is bundled around the periphery thereof and impregnated with a thermosetting resin composition in an impregnation bath 14, so that the inner diameter is gradually increased to the outside of the FRP layer. It was led to a drawing die device 17 having a plurality of drawing dies converging to a diameter of 41.5 mm.
On the other hand, the carbon fibers are arranged on the outer peripheral side of the FRP layer by bundling the carbon fibers arranged on the creel 15 (detailed illustration is omitted) and impregnating them with the thermosetting resin composition in the impregnation tank 16. , from the drawing die on the downstream side of the drawing die device 17 (on the coating layer extruder side). In addition, in order to arrange 12 carbon fibers symmetrically with respect to the central axis in the longitudinal direction on the outer peripheral side in the cross section of the FRP layer, a grid plate (not shown) having a guide hole every 360/12 = 30 ° is introduced. Placed in front of the drawing die.
A layer formed of glass fibers 2a and a curable resin composition impregnated in the glass fiber 2a on the outer periphery of the core layer, carbon fibers arranged at a central angle of 30° on the outer periphery, and a curable resin composition impregnated in the carbon fiber. It is vertically joined and molded by a final drawing die to form an uncured tubular body 4 having an outer diameter of 41.5 mm. It was coated with the above ABS resin and immediately led to a cooling water tank 19 to obtain an uncured tubular article 5 with a coating layer.
Next, the uncured tubular article 5 with the coating layer is introduced into a thermosetting bath 20 using hot water as a heating medium to thermally cure the inner uncured FRP layer, and then cooled in a cooling water bath (not shown). A composite tubular article 6 having a layered structure was obtained and cut to a length of 10 m with a cutting device (not shown). The obtained strut (composite tubular article) had an outer diameter of 42.8 mm. Table 1 summarizes the glass fiber/carbon fiber cross-sectional area ratio, unit weight, flexural modulus, performance evaluation results, etc. of the obtained support.

実施例2
実施例1において外径が37.6mm、内径が33.8mmの中芯層を押出して、ガラス繊維ロービング96本、炭素繊維トウ26本に変更した以外は実施例1と同様の方法により、長さ10mのサンプルを得た。外径は42.8mmであった。
Example 2
In Example 1, a core layer having an outer diameter of 37.6 mm and an inner diameter of 33.8 mm was extruded, and 96 glass fiber rovings and 26 carbon fiber tows were used. A 10 m long sample was obtained. The outer diameter was 42.8 mm.

実施例3
実施例1において、外径が41.0mm、内径が37.0mmの中芯をパイプ状に押出して、ガラス繊維ロービング171本、炭素繊維トウ4本に変更した以外は実施例1と同様の方法により、長さ10mのサンプルを得た。得られた支柱の外径は46.2mmであった。
Example 3
In Example 1, the same method as in Example 1 except that a core having an outer diameter of 41.0 mm and an inner diameter of 37.0 mm was extruded into a pipe shape, and 171 glass fiber rovings and 4 carbon fiber tows were used. obtained a sample with a length of 10 m. The outer diameter of the obtained strut was 46.2 mm.

実施例4
実施例3においてガラス繊維ロービング162本、炭素繊維トウ8本に変更した以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Example 4
A sample having a length of 10 m was obtained in the same manner as in Example 3, except that 162 glass fiber rovings and 8 carbon fiber tows were used. The outer diameter was 46.2 mm.

実施例5
実施例3においてガラス繊維ロービング144本、炭素繊維トウ15本に変更した以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Example 5
A sample having a length of 10 m was obtained in the same manner as in Example 3, except that 144 glass fiber rovings and 15 carbon fiber tows were used. The outer diameter was 46.2 mm.

実施例6
実施例3においてガラス繊維ロービング126本、炭素繊維トウ23本に変更した以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Example 6
A sample having a length of 10 m was obtained in the same manner as in Example 3, except that 126 glass fiber rovings and 23 carbon fiber tows were used. The outer diameter was 46.2 mm.

実施例7
実施例3においてガラス繊維ロービングを日東紡績株式会社製、RS440RR-531AH(4400tex)60本、炭素繊維トウ46本に変更した以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Example 7
A sample with a length of 10 m was obtained in the same manner as in Example 3 except that the glass fiber roving was changed to 60 RS440RR-531AH (4400 tex) manufactured by Nitto Boseki Co., Ltd. and 46 carbon fiber tows. . The outer diameter was 46.2 mm.

実施例8
実施例1において、外径が44.3mm、内径が41.0mmの中芯層をパイプ状に押出して、ガラス繊維ロービング、RS440RR-531AH82本、炭素繊維トウ18本に変更した以外は実施例1と同様の方法により、長さ10mのサンプルを得た。得られた支柱の外径は50.0mmであった。
Example 8
Example 1 except that the core layer of Example 1 having an outer diameter of 44.3 mm and an inner diameter of 41.0 mm was extruded into a pipe shape and replaced with glass fiber rovings, 82 RS440RR-531AH, and 18 carbon fiber tows. A sample with a length of 10 m was obtained by the same method as. The outer diameter of the obtained strut was 50.0 mm.

比較例1
実施例2において、ガラス繊維ロービングを150本に変更し、炭素繊維トウを使用しなかったこと以外は実施例2と同様の方法により、長さ10mのサンプルを得た。外径は42.8mmであった。
Comparative example 1
A sample with a length of 10 m was obtained in the same manner as in Example 2, except that the number of glass fiber rovings was changed to 150 and the carbon fiber tow was not used. The outer diameter was 42.8 mm.

比較例2
実施例1において、クリール13に炭素繊維トウ12本、クリール15にガラス繊維ロービング166本を準備し、これらに硬化性樹脂組成物を含浸して中芯層の長手方向に縦添いする順番を、実施例1とは逆にした以外は同様の方法により、長さ10mのサンプルを得た。外径は42.8mmであった。
Comparative example 2
In Example 1, 12 carbon fiber tows were prepared for the creel 13 and 166 glass fiber rovings were prepared for the creel 15, and the curable resin composition was impregnated into the rovings and the core layer was vertically attached in the longitudinal direction. A sample with a length of 10 m was obtained in the same manner as in Example 1, except that the procedure was reversed. The outer diameter was 42.8 mm.

比較例3
実施例3において、ガラス繊維ロービングを171本から180本に変更し、炭素繊維トウを使用なかったこと以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Comparative example 3
A sample with a length of 10 m was obtained in the same manner as in Example 3 except that the number of glass fiber rovings was changed from 171 to 180 and the carbon fiber tow was not used. The outer diameter was 46.2 mm.

比較例4
実施例4において、炭素繊維の配置を長手方向の中心軸に対して半円側を60°とし、もう一方の半円側を36°の位置で非対称にした以外は実施例4と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Comparative example 4
In Example 4, the same method as in Example 4 except that the carbon fibers were arranged at 60° on the semicircular side with respect to the central axis in the longitudinal direction, and the other semicircular side was asymmetric at 36°. obtained a sample with a length of 10 m. The outer diameter was 46.2 mm.

比較例5
実施例3において、ガラス繊維ロービング171本と炭素繊維トウ4本の中芯層の長手方向に添わせる順番を逆にした以外は実施例3と同様の方法により、長さ10mのサンプルを得た。外径は46.2mmであった。
Comparative example 5
A sample with a length of 10 m was obtained in the same manner as in Example 3, except that the order of placing 171 glass fiber rovings and 4 carbon fiber tows in the core layer in the longitudinal direction was reversed. . The outer diameter was 46.2 mm.

比較例6
中芯用押出機より実施例1と同じABS樹脂を用いて外径44.3mm、内径41.0mmのパイプ状に中芯層を押出した。中芯層の外周に実施例1と同じ熱硬化性樹脂組成物を含浸させたガラス繊維ロービングRS440RR-531AH132本を長手方向に添わせ、絞り工程で余剰樹脂を除去し、外径50.5mmの未硬化状物とした。
これを、さらに被覆用押出機より実施例1と同じABS樹脂を用いて溶融被覆し、以下実施例1と同様にして長さ10mのサンプルを得た。得られた支柱の外径は52.0mmであった。
Comparative example 6
Using the same ABS resin as in Example 1, a core layer was extruded into a pipe shape having an outer diameter of 44.3 mm and an inner diameter of 41.0 mm from a core extruder. 132 glass fiber rovings RS440RR-531AH impregnated with the same thermosetting resin composition as in Example 1 were attached to the outer periphery of the core layer in the longitudinal direction, excess resin was removed in the drawing process, and the outer diameter was 50.5 mm. It was used as an uncured product.
This was further melt-coated with the same ABS resin as in Example 1 using a coating extruder, and a sample with a length of 10 m was obtained in the same manner as in Example 1. The outer diameter of the obtained strut was 52.0 mm.

実施例及び比較例により得られた海苔養殖用支柱サンプルの評価
(重量)
物性測定用サンプルとして採取した0.5mの重量をデジタル秤にて計量し単位重量(g/m)に換算した。
(反り)
長さ4mの海苔支柱サンプルを、直線が表示された水平な床面に置いて、該直線に両端を添わせて静置し、直線からの距離が最大となる点を反り量として金尺により計測し、2cm以下を「〇」、2cm超を「×」とした。
(支柱サンプル断面の寸法)
長手方向に直交して丸鋸型チップソーカッターにより切断し、断面における中芯層の内径、外径、FRP層の外径、被覆層の外径をノギス((株)Mitutoyo製、CD-20CPX)により測定した。測定個数nを5点としその平均で表した。
(FRP層の強化繊維の体積含有率、及びFRP層横断面におけるガラス繊維と炭素繊維の断面積比)
上記断面寸法からFRP層の断面積Sfを計算する。各実施例、比較例におけるガラス繊維ロービング、及び炭素繊維トウについて使用本数及び、それぞれの繊度、密度からガラス繊維の断面積Sg、炭素繊維の断面積Scを算出して,〔(Sg+Sc)/Sf〕×100により計算した。
また、FRP層断面におけるガラス繊維と炭素繊維の断面積比は、上記ガラス繊維の断面積Sgと、炭素繊維の断面積Scを用いて表記した。
なお、ガラス繊維ロービング(日東紡績株式会社製、RS220RL-510AH、及びRS440RR-531AH:Eガラス)の密度を2.54g/cm、炭素繊維炭素繊維トウ(三菱ケミカル株式会社製、PYROFIL(登録商標)、TRW40 50)の密度を1.81g/cmとして計算した。
Evaluation of prop samples for laver culture obtained in Examples and Comparative Examples
(weight)
The weight of 0.5 m taken as a sample for physical property measurement was weighed with a digital scale and converted to unit weight (g/m).
(warp)
Place a 4 m long seaweed prop sample on a horizontal floor surface with a straight line displayed, let it stand with both ends attached to the straight line, and use a metal rule as the point at which the distance from the straight line is the maximum. Measurement was performed, and 2 cm or less was given as “◯” and more than 2 cm as “x”.
(Dimensions of cross section of strut sample)
Cut perpendicular to the longitudinal direction with a circular saw tip saw cutter, and measure the inner diameter and outer diameter of the core layer, the outer diameter of the FRP layer, and the outer diameter of the coating layer in the cross section with a vernier caliper (CD-20CPX, manufactured by Mitutoyo Co., Ltd.). Measured by The number of measurements n was set to 5 points, and the average was shown.
(Volume content of reinforcing fibers in FRP layer and cross-sectional area ratio of glass fibers and carbon fibers in cross section of FRP layer)
A cross-sectional area Sf of the FRP layer is calculated from the above cross-sectional dimensions. For the glass fiber rovings and carbon fiber tows in each example and comparative example, the cross-sectional area Sg of the glass fiber and the cross-sectional area Sc of the carbon fiber were calculated from the number of used glass fiber rovings and the carbon fiber tow, and their fineness and density, and [(Sg + Sc) / Sf ]×100.
The cross-sectional area ratio of the glass fiber to the carbon fiber in the cross section of the FRP layer was expressed using the cross-sectional area Sg of the glass fiber and the cross-sectional area Sc of the carbon fiber.
The density of the glass fiber roving (RS220RL-510AH and RS440RR-531AH: E glass manufactured by Nitto Boseki Co., Ltd.) is 2.54 g/cm 3 , and the carbon fiber carbon fiber tow (Mitsubishi Chemical Corporation, PYROFIL (registered trademark) ), the density of TRW40 50) was calculated as 1.81 g/cm 3 .

(曲げ剛性)
JIS K 7074:1988を参考として、3点曲げ試験(n=5)で以下の条件で測定した。
・曲げ方向:繊維強化樹脂管状体の長手方向に対し、垂直方向かつ繊維強化樹脂管状体の径がもっとも短くなる方向(平行部に直交する方向)に曲げた。
・試験片の径D:圧子直下における、荷重方向の繊維強化樹脂管状体の幅をノギスにより測定(n=1)・支点の半径:2.0mm・圧子の半径 :5.0mm・支点間距離Lm:(40±8)×D mm (JISでは中実の厚みHで算出しているところを試験片の径Dで算出した)
・試験片長さlm :Lm+20 mm
・試験速度:20mm/min (JISでは0.01Lm /6H)
・曲げ強度:破壊時の荷重、支点間距離、試験片の断面二次モーメント、重心距離より次式により求めた。
曲げ強度σmax、破壊時の荷重Pm、支点間距離Lm、試験片の断面二次モーメントI、重心距離dとして、
σmax=FLmd/8I で算出した。
・曲げ弾性率(E):荷重-たわみ曲線の直線部勾配、支点間距離、試験片の断面二次モーメントより求めた。
すなわち、曲げ弾性率E、荷重―たわみ曲線の直線部の勾配Pm/δ、支点間距離Lm、試験片の断面二次モーメントIとすると
E=(Lm /48I)× Pm/δ
・曲げ剛性(EI):荷重-たわみ曲線の直線部の勾配Pm/δ及び支点間距離Lmより次式で求めた。
EI=(Lm /48)× Pm/δ
(bending rigidity)
With reference to JIS K 7074:1988, measurement was performed under the following conditions in a three-point bending test (n=5).
Bending direction: Bending was performed in a direction perpendicular to the longitudinal direction of the fiber-reinforced resin tubular body and in a direction in which the diameter of the fiber-reinforced resin tubular body was the shortest (a direction perpendicular to the parallel portion).
・Test piece diameter D: The width of the fiber-reinforced resin tubular body in the load direction directly below the indenter was measured with a vernier caliper (n = 1) ・Radius of fulcrum: 2.0 mm ・Radius of indenter: 5.0 mm ・Distance between fulcrums L m : (40±8)×D mm (In JIS, the thickness H of the solid is used for calculation, but the diameter D of the test piece is used for calculation.)
・Test piece length l m : L m + 20 mm
・Test speed: 20 mm/min (0.01 L m 2 /6H in JIS)
・Bending strength: It was obtained by the following formula from the load at break, the distance between fulcrums, the geometrical moment of inertia of the test piece, and the distance from the center of gravity.
Bending strength σ max , load at break P m , distance between fulcrums L m , geometric moment of inertia I of the test piece, center-of-gravity distance d,
It was calculated by σ max =FL m d/8I.
Bending elastic modulus (E): Obtained from the slope of the straight line of the load-deflection curve, the distance between fulcrums, and the geometrical moment of inertia of the test piece.
That is, E = (L m 3 / 48I) × P m / δ
・Bending rigidity (EI): Obtained by the following formula from the gradient P m /δ of the straight portion of the load-deflection curve and the distance L m between fulcrums.
EI = ( Lm3 /48)× Pm

(握り易さ)
海苔養殖用支柱の立て付け作業性を考慮すると、支柱の外径をΦ50mm以下にすることが好ましい。これは、一般財団法人 人間生活工学研究センターの高齢者対応基盤整備データーベースにおける“握りやすい太さ”の調査結果からも読み取れるが、「これ以上太くなると握りにくくなる太さ」として示されているのは、性別や年齢、握り方などによって違いがあるものの、おおよそΦ45~50mmの間にある。このため、Φ45mmに近い外径の支柱は握り易く作業しやすいが、Φ50mmに近くなる若しくは、以上である場合は握りにくく作業性が悪化するものと考えられる。そこで、海苔養殖用支柱の外径が50mmを超えるものの評価を「×」とした。
(ease of grip)
Considering the workability of erecting the posts for seaweed cultivation, it is preferable to set the outer diameter of the posts to Φ50 mm or less. This can be read from the survey results of "easy-to-grip thickness" in the database of infrastructure maintenance for elderly people of the Research Center for Human Life Science, but it is indicated as "thickness that makes it difficult to grip if it is thicker." Although there are differences depending on gender, age, grip method, etc., it is roughly between Φ45 and 50mm. For this reason, it is considered that a column having an outer diameter close to Φ45 mm is easy to grip and work, but a column having an outer diameter close to Φ50 mm or more is difficult to grip and workability deteriorates. Therefore, the evaluation of the seaweed aquaculture prop with an outer diameter exceeding 50 mm was given as "x".

各実施例、比較例の海苔養殖用支柱サンプルの断面寸法形状、炭素繊維束の配置部位、ガラス繊維/炭素繊維の断面体積比、及び性能評価としての曲げ剛性、単位重量、長手方向の反り、並びに握り易さについてまとめて表1に示す。 Cross-sectional size and shape of the seaweed culture prop samples of each example and comparative example, carbon fiber bundle arrangement site, glass fiber / carbon fiber cross-sectional volume ratio, and bending rigidity, unit weight, longitudinal warpage as performance evaluation, Table 1 summarizes the easiness of gripping.

Figure 0007232688000001
Figure 0007232688000001

表1に示すように、従来のガラス繊維のみからなる強化繊維を用いた支柱外径42.8mmの比較例1では曲げ剛性が2,060(N・m)、重量754(g/m)であるが、FRP層厚みが2.0で同じ実施例2では、FRP層のガラス繊維/炭素繊維の断面積比を60.7:39.3と炭素繊維を最大の比率にしたので、重量は723g/m、剛性は3,354(N・m)となり、約4%の軽量化と、1.61倍の剛性増加が達成できる。これは、比較例1は、剛性が低いため、水深が浅く、若しくは潮流が弱い環境での使用など使用場所の制限があったのに対し、実施例2は、握り易くて軽い支柱外径42.8mmを海苔養殖用支柱として広範囲の使用場所に展開できることを示す。さらに、前述の如く高剛性であるため広範囲に使用可能な汎用性の高い海苔養殖用支柱として利用でき、従来において汎用されている外径46.2mmの比較例3の支柱に対して約14%の軽量化ができ作業負荷の低減が期待できる。 As shown in Table 1, in Comparative Example 1 in which the reinforcing fiber made of conventional glass fibers alone was used and the outer diameter of the support was 42.8 mm, the bending rigidity was 2,060 (N m 2 ) and the weight was 754 (g/m). However, in Example 2, where the FRP layer thickness is 2.0, the cross-sectional area ratio of glass fiber/carbon fiber in the FRP layer is 60.7:39.3, which is the maximum ratio of carbon fiber, so the weight is 723 g/m, and the rigidity is 3,354 (N·m 2 ), achieving a weight reduction of about 4% and an increase in rigidity of 1.61 times. This is because Comparative Example 1 has low rigidity, so there are restrictions on where it can be used, such as use in environments with shallow water depths or weak tidal currents. 0.8mm can be deployed in a wide range of locations as a support for seaweed cultivation. Furthermore, as described above, because of its high rigidity, it can be used as a versatile laver aquaculture prop that can be used in a wide range, and is about 14% compared to the commonly used conventional prop of Comparative Example 3 with an outer diameter of 46.2 mm. The weight can be reduced, and a reduction in the workload can be expected.

実施例3~7は、中芯層の内径/外径が37.0mm/41.0mm、FRP層外径が45.1mm、FRP層厚みが2.1mmで、支柱外径を46.2mmとして、FRP層におけるガラス繊維と炭素繊維の断面積比を変更している。
炭素繊維断面積の増加に伴い、曲げ剛性は、3,124~5,192(N・m)に増加し、重量は、833~756(g/m)に減少している。一方、比較例3として示す、同一寸法でガラス繊維のみからFRPを構成した場合は、重量が838(g/m)で剛性は、2,890(N・m)であり、所望とされる剛性、或いは重量に合わせて、炭素繊維の断面積比率を調整することによって、海苔養殖用支柱を製造することができる。
In Examples 3 to 7, the inner diameter/outer diameter of the core layer is 37.0 mm/41.0 mm, the FRP layer outer diameter is 45.1 mm, the FRP layer thickness is 2.1 mm, and the column outer diameter is 46.2 mm. , changing the cross-sectional area ratio of glass fiber and carbon fiber in the FRP layer.
As the carbon fiber cross-sectional area increases, the bending stiffness increases to 3,124-5,192 (N·m 2 ) and the weight decreases to 833-756 (g/m). On the other hand, in the case of FRP composed only of glass fibers with the same dimensions as shown in Comparative Example 3, the weight was 838 (g/m) and the rigidity was 2,890 (N m 2 ), which is desirable. By adjusting the cross-sectional area ratio of the carbon fiber according to the rigidity or weight, the prop for laver cultivation can be manufactured.

また、海深15m程度の深場で使用する場合、剛性の観点から、従来においては、比較例6に示す外径52mmで、剛性が5,169(N・m)、重量1,187(g/m)のものが要求されるが、剛性を満足するには、実施例7の、重量756(g/m)で外径46.2mmの支柱や、重量911(g/m)で外径50mmの支柱を選択できる。
なお、炭素繊維のFRP層での配置は、実施例1と比較例2の対比から、より高い剛性を得るためには、FRP層の外側に配置することを要することが確認された。
また、炭素繊維に関する中心軸対称性に関しては、実施例4と、比較例4の対比から、非対称の比較例4では反りが発生し、剛性も劣っていることから、炭素繊維はFRP層の外周面側に互いに略同一の中心角で配置することが好ましいことが確認された。
In addition, when used in a deep field of about 15 m in the sea, from the viewpoint of rigidity, conventionally, the outer diameter of 52 mm shown in Comparative Example 6 has a rigidity of 5,169 (N·m 2 ) and a weight of 1,187 (N·m 2 ). g/m) is required, but in order to satisfy the rigidity, the support of Example 7 with a weight of 756 (g/m) and an outer diameter of 46.2 mm, and the weight of 911 (g/m) with an outer diameter of 46.2 mm A strut with a diameter of 50 mm can be selected.
In addition, it was confirmed from the comparison between Example 1 and Comparative Example 2 that the carbon fibers in the FRP layer should be arranged outside the FRP layer in order to obtain higher rigidity.
In addition, regarding the central axis symmetry of the carbon fiber, from the comparison between Example 4 and Comparative Example 4, warpage occurs in the asymmetric Comparative Example 4, and the rigidity is also inferior. It was confirmed that it is preferable to arrange them on the surface side at substantially the same central angle.

本発明の海苔養殖用支柱は、従来においてガラス繊維のみで構成していたFRP層よりも同外径では高剛性で軽量な海苔養殖用支柱として利用できる。また、従来と同程度の剛性としたいのであれば、外径をより細径にすることができ、軽量化と、細径化による取扱い性の向上を図ることができる海苔養殖用支柱として利用できる。
また、本発明の海苔養殖用支柱の製造方法は、手作業での取扱い性に優れ、軽量性と高剛性を両立でき、比較的安価で実用性に富む、本発明の海苔養殖用支柱を、再現性よく安定して、且つ経済的に製造する方法として利用することができる。
The post for laver cultivation of the present invention can be used as a post for laver cultivation that is more rigid and lighter than the FRP layer that has conventionally been composed only of glass fibers with the same outer diameter. In addition, if you want to have the same rigidity as before, you can make the outer diameter smaller, and it can be used as a prop for seaweed cultivation that can reduce the weight and improve the handleability by reducing the diameter. .
In addition, the method for manufacturing the laver aquaculture prop of the present invention provides the laver aquaculture prop of the present invention, which is excellent in manual handling, can achieve both light weight and high rigidity, is relatively inexpensive, and is highly practical. It can be used as a method for stable and economical production with good reproducibility.

1 中芯層
2 FRP層
2a ガラス繊維
2b 炭素繊維
2c マトリックス成分
3 熱可塑性樹脂被覆層
4 未硬化状管状物
5 被覆層付き未硬化状管状物
6 複合管状物
10 海苔養殖用支柱
11 中芯層用溶融押出機
12 冷却槽
13 ガラス繊維ロービング用クリール
14 熱硬化性樹脂含浸槽
15 炭素繊維トウ用クリール
16 熱硬化性樹脂含浸槽
2a’、2b’未硬化状熱硬化性樹脂組成物含浸繊維
17 絞りダイス装置
18 被覆層用溶融押出機
19 冷却水槽
20 熱硬化槽
REFERENCE SIGNS LIST 1 core layer 2 FRP layer 2a glass fiber 2b carbon fiber 2c matrix component 3 thermoplastic resin coating layer 4 uncured tubular article 5 uncured tubular article with coating layer 6 composite tubular article 10 column for seaweed cultivation 11 core layer melt extruder 12 cooling tank 13 glass fiber roving creel 14 thermosetting resin impregnating tank 15 carbon fiber tow creel 16 thermosetting resin impregnating tank 2a′, 2b′ uncured thermosetting resin composition impregnated fiber 17 Drawing die device 18 Melting extruder for coating layer 19 Cooling water bath 20 Thermal curing bath

Claims (4)

熱可塑性樹脂からなる中芯層と、該中芯層の外周に形成されたFRP層と、該FRP層の外周に形成された被覆層とを有する密着一体化した複合構造の海苔養殖用支柱であって、
該中芯層は、少なくともその外周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成され、
該FRP層は、該中芯層の長手方向の外周に少なくともガラス繊維と炭素繊維を含む長繊維の強化繊維が縦添い状に結着され、該炭素繊維は該FRP層の外周側に配置され、該FRP層の横断面における該ガラス繊維と炭素繊維の断面積比が60:40~95:5であり、
該被覆層は、少なくともその内周面が該FRP層を構成するマトリックス成分である熱硬化性樹脂と化学的親和性を有する熱可塑性樹脂から構成されることを特徴とする海苔養殖用支柱。
Nori seaweed aquaculture posts with a composite structure that are tightly integrated, each having a core layer made of a thermoplastic resin, an FRP layer formed on the outer periphery of the core layer, and a coating layer formed on the outer periphery of the FRP layer. There is
At least the outer peripheral surface of the core layer is made of a thermoplastic resin having a chemical affinity with a thermosetting resin, which is a matrix component of the FRP layer,
In the FRP layer, long-fiber reinforcing fibers containing at least glass fiber and carbon fiber are vertically attached to the outer circumference of the core layer in the longitudinal direction, and the carbon fiber is arranged on the outer circumference side of the FRP layer. , the cross-sectional area ratio of the glass fiber and the carbon fiber in the cross section of the FRP layer is 60:40 to 95:5,
A prop for seaweed cultivation, wherein at least the inner peripheral surface of the coating layer is made of a thermoplastic resin having a chemical affinity with a thermosetting resin that is a matrix component of the FRP layer.
前記FRP層におけるガラス繊維と炭素繊維との断面積比が80:20~95:5である請求項1に記載の海苔養殖用支柱。 The prop for seaweed cultivation according to claim 1, wherein the cross-sectional area ratio of the glass fiber to the carbon fiber in the FRP layer is 80:20 to 95:5. 前記FRP層におけるガラス繊維と炭素繊維との断面積比が90:10~95:5であり、該FRP層の長手方向に直交する断面において、炭素繊維の束が該FRP層の外周面側に互いに略同一の中心角で配置されてなる請求項1に記載の海苔養殖用支柱。 The cross-sectional area ratio of the glass fiber to the carbon fiber in the FRP layer is 90:10 to 95:5, and in the cross section orthogonal to the longitudinal direction of the FRP layer, the carbon fiber bundle is on the outer peripheral surface side of the FRP layer. The columns for nori culture according to claim 1, which are arranged at substantially the same central angle. 下記の(i)~(vii)の工程を有することを特徴とする請求項1~3のいずれかに記載の海苔養殖用支柱の製造方法。
(i)長繊維状の強化繊維として所要本数のガラス繊維束及び炭素繊維束を準備し、集合ガイドの所定のガイド孔に、ガラス繊維束及び炭素繊維束のそれぞれを挿通し、さらに、これらを平行に配列させて含浸槽の含浸操作ガイド、中芯層の外周に所定配置で縦添いさせるための絞りダイス、被覆層用押出機及び製造ラインを通して強化繊維束を引取り可能に準備する工程、
(ii)含浸層に熱硬化性樹脂及び熱硬化剤を含む液状の硬化性樹脂組成物を注入する工程、
(iii)中芯層を形成する熱可塑性樹脂を溶融押出機から所定寸法の円管状に連続的に押出し、製造ラインを経て連続的に引取る中芯層製造工程、
(iv)前記(i)で準備された強化繊維束を引取りつつ、含浸槽に含浸操作ガイドを下降させて、強化繊維束に硬化性樹脂組成物を含浸し、これを絞りダイスの孔部の中央を走行する中芯層の外周に縦添いして、余剰の樹脂を絞りダイスにより段階的に絞り、中芯層に強化繊維束が縦添された未硬化状管状物とする工程、
(v)該未硬化状管状物を、溶融押出機のクロスヘッドに通して、被覆層用の熱可塑性樹脂により円環状に押出被覆し、該被覆層を冷却する溶融被覆工程、
(vi)被覆された未硬化状管状物を、硬化槽に導いて内部の未硬化状熱硬化性樹脂組成物を熱硬化し、密着一体化した複合構造の管状物を引取る工程、及び
(vii)引取られた管状物を海苔養殖用支柱としての所定の長さに切断する工程。
4. The method for producing a prop for laver culture according to any one of claims 1 to 3, comprising the following steps (i) to (vii).
(i) Prepare a required number of glass fiber bundles and carbon fiber bundles as long-fiber-like reinforcing fibers, insert each of the glass fiber bundles and carbon fiber bundles into predetermined guide holes of a gathering guide, and further insert them into A step of preparing the reinforcing fiber bundle so that it can be taken through the impregnation operation guide of the impregnation tank arranged in parallel, the drawing die for longitudinally attaching to the outer periphery of the core layer in a predetermined arrangement, the extruder for the coating layer and the production line,
(ii) injecting a liquid curable resin composition containing a thermosetting resin and a thermosetting agent into the impregnation layer;
(iii) a core layer manufacturing step of continuously extruding a thermoplastic resin forming the core layer from a melt extruder into a circular tube shape of a predetermined size and continuously taking it through a production line;
(iv) While taking out the reinforcing fiber bundle prepared in (i) above, the impregnation operation guide is lowered into the impregnation tank to impregnate the reinforcing fiber bundle with the curable resin composition, and the curable resin composition is impregnated into the hole of the drawing die. A step of vertically attaching to the outer periphery of the core layer running in the center of the, and gradually squeezing the excess resin with a drawing die to form an uncured tubular product in which the reinforcing fiber bundle is vertically attached to the core layer;
(v) a melt-coating step of passing the uncured tubular article through the crosshead of a melt extruder to circularly extrusion-coat it with a thermoplastic resin for a coating layer, and cooling the coating layer;
(vi) a step of introducing the coated uncured tubular article into a curing bath to thermally cure the uncured thermosetting resin composition inside, and taking out the tubular article having a composite structure that is adhered and integrated;
(vii) A step of cutting the collected tubular object into a predetermined length as a prop for laver cultivation.
JP2019063246A 2019-03-28 2019-03-28 Prop for seaweed culture and manufacturing method thereof Active JP7232688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063246A JP7232688B2 (en) 2019-03-28 2019-03-28 Prop for seaweed culture and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063246A JP7232688B2 (en) 2019-03-28 2019-03-28 Prop for seaweed culture and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020162421A JP2020162421A (en) 2020-10-08
JP7232688B2 true JP7232688B2 (en) 2023-03-03

Family

ID=72714028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063246A Active JP7232688B2 (en) 2019-03-28 2019-03-28 Prop for seaweed culture and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7232688B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022022887A (en) * 2020-07-10 2022-02-07 宇部エクシモ株式会社 Support rod for laver culture, and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160303A (en) 2000-11-24 2002-06-04 Mitsubishi Rayon Co Ltd Unidirectionally fiber-reinforced plastic, its pultrusion method and die for pultrusion
JP2007259838A (en) 2006-03-30 2007-10-11 Mizuno Technics Kk Support for culturing marine product
JP2016210032A (en) 2015-04-30 2016-12-15 宇部エクシモ株式会社 Fiber-reinforced resin composite tubular structure and method for manufacturing the same
JP2017537233A (en) 2014-10-08 2017-12-14 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Hybrid reinforced assembly
KR101855817B1 (en) 2017-11-30 2018-05-10 제우피엔씨 주식회사 Gimbal interchange stand and its manufacturing method
JP2019041730A (en) 2017-09-06 2019-03-22 キョーセー株式会社 Column structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152862U (en) * 1982-04-07 1983-10-13 三菱油化株式会社 Support for seaweed cultivation
FR2588575B1 (en) * 1985-10-16 1988-02-26 Brochier Sa FABRIC BASED ON GLASS AND CARBON FIBERS AND ARTICLES COMPRISING SUCH A FABRIC
JPS62256633A (en) * 1986-04-30 1987-11-09 Mitsubishi Rayon Co Ltd Carbon fiber reinforced pultrusion rod
JPH02217231A (en) * 1989-02-17 1990-08-30 Sekisui Chem Co Ltd Fiber reinforced synthetic resin molded form and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160303A (en) 2000-11-24 2002-06-04 Mitsubishi Rayon Co Ltd Unidirectionally fiber-reinforced plastic, its pultrusion method and die for pultrusion
JP2007259838A (en) 2006-03-30 2007-10-11 Mizuno Technics Kk Support for culturing marine product
JP2017537233A (en) 2014-10-08 2017-12-14 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Hybrid reinforced assembly
JP2016210032A (en) 2015-04-30 2016-12-15 宇部エクシモ株式会社 Fiber-reinforced resin composite tubular structure and method for manufacturing the same
JP2019041730A (en) 2017-09-06 2019-03-22 キョーセー株式会社 Column structure
KR101855817B1 (en) 2017-11-30 2018-05-10 제우피엔씨 주식회사 Gimbal interchange stand and its manufacturing method

Also Published As

Publication number Publication date
JP2020162421A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
AU2004284079B2 (en) Aluminum conductor composite core reinforced cable and method of manufacture
RU2013110893A (en) REINFORCED BY FIBERS, FILLED WITH NANOPARTICLES THERMAL SUSPENSION POLYMER COMPOSITE WIRES AND CABLES, AND METHODS
CN102344573A (en) Technology for producing stranded fiber reinforced composite core with pre-dipping method
CN103302906A (en) Ultra-high-modulus polyethylene fiber reinforced plastic rod and manufacturing method thereof
CN102279449A (en) Basalt fiber optical cable reinforced core and manufacturing method thereof
JP7232688B2 (en) Prop for seaweed culture and manufacturing method thereof
CN102979964A (en) Fiber reinforced polymer (FRP) material and stainless steel tube composite and preparation technology thereof
CN102692686A (en) Fiber reinforced plastic rod for optical cables and manufacturing method thereof
US10064400B2 (en) Fishing rod with graphene and method of manufacturing
CN201827633U (en) Composite section material wrapped by plastic
WO2022009743A1 (en) Laver cultivation support pillar and production method for same
CN104325653B (en) The method for continuous production of a kind of GRP pipe and prepared GRP pipe
CN101382214A (en) Steel mesh plastic composite pipe and preparation thereof
CN202283795U (en) Fiber reinforced plastic (FRP) bar composite stainless steel tube
CN101668793A (en) Matrix material
CN202418937U (en) FRP material composite tube
CN100482450C (en) Fibre reinforced pultrusion rod and its preparation method and application
CN109881577A (en) A kind of steel and CFRP combined stress band and preparation method thereof
JPS62288633A (en) Composite material of continuous carbon fiber and polyolefin resin
GB2175364A (en) Reinforcing member having projections
CN202209482U (en) FRP material composite stainless steel pipe
CN102979965A (en) Fiber reinforced polymer (FRP) tendon and stainless steel tube composite and preparation technology thereof
CN202418938U (en) FRP (fiber reinforce plastic) rib composite pipe
Hassanin et al. Date palm fiber composite fabrication techniques
CN203317811U (en) Plastic rod reinforced by ultra-high modulus polyethylene fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7232688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150