JP7230741B2 - Nitrogen concentration measurement method - Google Patents

Nitrogen concentration measurement method Download PDF

Info

Publication number
JP7230741B2
JP7230741B2 JP2019149491A JP2019149491A JP7230741B2 JP 7230741 B2 JP7230741 B2 JP 7230741B2 JP 2019149491 A JP2019149491 A JP 2019149491A JP 2019149491 A JP2019149491 A JP 2019149491A JP 7230741 B2 JP7230741 B2 JP 7230741B2
Authority
JP
Japan
Prior art keywords
nitrogen concentration
heat treatment
absorbance
complex
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019149491A
Other languages
Japanese (ja)
Other versions
JP2021032578A (en
Inventor
康 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019149491A priority Critical patent/JP7230741B2/en
Publication of JP2021032578A publication Critical patent/JP2021032578A/en
Application granted granted Critical
Publication of JP7230741B2 publication Critical patent/JP7230741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、窒素濃度の測定方法に関し、特には、エピタキシャルウエーハのシリコン基板中の窒素濃度の測定方法に関する。 The present invention relates to a nitrogen concentration measuring method, and more particularly to a nitrogen concentration measuring method in a silicon substrate of an epitaxial wafer.

半導体集積回路を作製するための基板として、主にCZ(Czochra1ski)法によって作製されたシリコンウエーハが用いられている。最先端ロジックデバイス向けには、主にエピタキシャルウエーハが使用されている。エピタキシャルウエーハは、ポリッシュドウエーハ(シリコン基板)上にエピタキシャル層を形成したウエーハである。 Silicon wafers manufactured by the CZ (Czochra1ski) method are mainly used as substrates for manufacturing semiconductor integrated circuits. Epitaxial wafers are mainly used for cutting-edge logic devices. An epitaxial wafer is a wafer obtained by forming an epitaxial layer on a polished wafer (silicon substrate).

一般的にエピタキシャル層を形成する工程は高温であることから、結晶引き上げ中に形成された微小な酸素析出物(BMD)は消去されてしまう。このことから、エピタキシャルウエーハにおけるBMD密度は、エピタキシャル工程を行わないポリッシュドウエーハの場合と比較して低くなる。その結果、ゲッタリング能力が不足する可能性が示唆されている。
さらに、先端のロジックデバイスのプロセスは低温短時間化していることから、プロセス中でのBMDの形成は期待できない。
これらの理由から、結晶引き上げ段階で、エピタキシャル工程後であっても消滅しない、大きなサイズのBMDの形成が必要である。
Since the epitaxial layer is generally formed at a high temperature, minute oxygen precipitates (BMD) formed during crystal pulling are erased. As a result, the BMD density in the epitaxial wafer is lower than that of the polished wafer without the epitaxial process. As a result, it has been suggested that the gettering ability may be insufficient.
Furthermore, since the process of leading-edge logic devices has been shortened at low temperature, the formation of BMD during the process cannot be expected.
For these reasons, the formation of large-sized BMDs, which do not disappear even after the epitaxial process, is necessary during the crystal pulling step.

その対策として、窒素をドープしたウエーハを基板として用いる方法がある。窒素をドープした場合では、結晶引き上げ中に形成されるBMDのサイズは、ドープされていない場合と比較して、サイズが大きくなることが知られている。また、そのサイズは、結晶の熱履歴の他に、窒素濃度に依存することがわかっている。
以上のことから、エピタキシャルウエーハの基板中の窒素濃度を測定することは、非常に重要である。
As a countermeasure, there is a method of using a wafer doped with nitrogen as a substrate. It is known that when nitrogen is doped, the size of BMDs formed during crystal pulling is larger than when it is not doped. It is also known that the size depends on the nitrogen concentration in addition to the thermal history of the crystal.
From the above, it is very important to measure the nitrogen concentration in the substrate of the epitaxial wafer.

特許第5842765号Patent No. 5842765 特許第3822113号Patent No. 3822113

JEITA EM-3512JEITA EM-3512

エピタキシャルウエーハ中の窒素濃度を定量する方法としては、SIMS(二次イオン質量分析)があるが、破壊法であることが問題である。一方、非破壊で測定できる方法として、室温のFT-IR法(フーリエ変換赤外分光法)が用いられる。CZウエーハに対する測定では、室温FT-IR法で観測されるNN、NNOおよびNNOO複合体(以下、これらをまとめて窒素複合体、または単に複合体とも言う)の吸光度から換算式を用いて窒素濃度を算出する(非特許文献1)。 SIMS (secondary ion mass spectrometry) is available as a method for quantifying the nitrogen concentration in an epitaxial wafer, but the problem is that it is a destructive method. On the other hand, a room temperature FT-IR method (Fourier transform infrared spectroscopy) is used as a non-destructive measurement method. In the measurement of the CZ wafer, the nitrogen concentration was calculated using a conversion formula from the absorbance of NN, NNO and NNOO complexes (hereinafter collectively referred to as nitrogen complexes or simply complexes) observed by the room temperature FT-IR method. is calculated (Non-Patent Document 1).

この方法について本発明者は研究を行った。窒素ドープウエーハ(シリコン基板)と、それを基板としたエピタキシャルウエーハのシリコン基板中の窒素濃度を測定した。図7にエピタキシャル工程前(図7(a):ポリッシュドウエーハ)とエピタキシャル工程後(図7(b):エピタキシャルウエーハ)の室温でのFT-IR法によるスペクトルを示す。窒素濃度は、NN、NNO、およびNNOO複合体の吸光度からサンプルの厚さを用いて吸収係数(α766、α801、α810)に変換し、非特許文献1に記載の換算式である、(α766+1.2×α801+0.3×α810)×1.83×1017(atoms/cm)を用いて、窒素濃度を算出する。
その結果、図7に示すように各窒素複合体の吸光度はエピタキシャル工程後に変化し、また、エピタキシャルウエーハの窒素濃度は、エピタキシャル工程前と比較して、高くなることがわかった。具体的には、エピタキシャル工程前では2.5×1015atoms/cmであったのに対して、エピタキシャル工程後では3.1×1015atoms/cmとなった。
また、実際の窒素濃度はSIMSにより実測し、該実際の窒素濃度はエピタキシャル工程前に測定した濃度と同程度であることがわかった。
以上の結果から、室温でのFT-IR法で算出できるエピタキシャル工程後の基板の窒素濃度は、実際の濃度と異なることがわかった。
The present inventor conducted research on this method. The nitrogen concentration in the silicon substrate of the nitrogen-doped wafer (silicon substrate) and the epitaxial wafer using it as a substrate was measured. FIG. 7 shows FT-IR spectra at room temperature before the epitaxial process (FIG. 7(a): polished wafer) and after the epitaxial process (FIG. 7(b): epitaxial wafer). The nitrogen concentration is converted from the absorbance of the NN, NNO, and NNOO complexes to absorption coefficients (α 766 , α 801 , α 810 ) using the thickness of the sample, and is the conversion formula described in Non-Patent Document 1. The nitrogen concentration is calculated using (α 766 +1.2×α 801 +0.3×α 810 )×1.83×10 17 (atoms/cm 3 ).
As a result, as shown in FIG. 7, it was found that the absorbance of each nitrogen complex changed after the epitaxial process, and the nitrogen concentration in the epitaxial wafer was higher than before the epitaxial process. Specifically, while it was 2.5×10 15 atoms/cm 3 before the epitaxial process, it was 3.1×10 15 atoms/cm 3 after the epitaxial process.
Also, the actual nitrogen concentration was measured by SIMS, and it was found that the actual nitrogen concentration was approximately the same as the concentration measured before the epitaxial process.
From the above results, it was found that the nitrogen concentration of the substrate after the epitaxial process, which can be calculated by the FT-IR method at room temperature, differs from the actual concentration.

一方、特許文献1や特許文献2においても室温でのFT-IR法で測定されるNN、NNO、もしくはNNOOの吸光度から窒素濃度を定量できることが示されているが、いずれの方法もエピタキシャルウエーハについては言及しておらず、エピタキシャル工程後に各複合体の吸光度が変化することも示されていない。また、一般的に広く知られている非特許文献1で示されている、吸光度から窒素濃度を算出する上記換算式を用いていない。 On the other hand, Patent Document 1 and Patent Document 2 also show that the nitrogen concentration can be quantified from the absorbance of NN, NNO, or NNOO measured by the FT-IR method at room temperature. are not mentioned, nor is it shown that the absorbance of each composite changes after the epitaxial step. In addition, the above conversion formula for calculating the nitrogen concentration from the absorbance, which is generally widely known and shown in Non-Patent Document 1, is not used.

本発明は、上記問題点に鑑みてなされたものであって、FT-IR法により測定した窒素複合体の吸光度を基にして、換算式によりエピタキシャルウエーハのシリコン基板中の窒素濃度をより正確に測定することができる窒素濃度の測定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and based on the absorbance of the nitrogen complex measured by the FT-IR method, the nitrogen concentration in the silicon substrate of the epitaxial wafer can be more accurately determined by a conversion formula. It is an object of the present invention to provide a method for measuring a nitrogen concentration that can be measured.

上記目的を達成するために、本発明は、シリコン基板上にエピタキシャル工程によりエピタキシャル層を形成したエピタキシャルウエーハの前記シリコン基板中の窒素濃度を測定する方法であって、
前記エピタキシャルウエーハに吸光度変化熱処理を施し、
該吸光度変化熱処理を施した前記エピタキシャルウエーハにおいて、室温でのFT-IR法により波数766cm-1のNN複合体、波数801cm-1のNNO複合体、および波数810cm-1のNNOO複合体の吸光度を測定して各々の吸収係数を求め、
該各々の吸収係数と下記式
[N]=(α766+1.2×α801+0.3×α810)×1.83×1017
(ここで、[N]は窒素濃度(atoms/cm)、α766は波数766cm-1のNN複合体の吸収係数、α 801 波数801cm-1のNNO複合体の吸収係数、α810は波数810cm-1のNNOO複合体の吸収係数)
を用いて、前記エピタキシャルウエーハの前記シリコン基板中の前記窒素濃度を測定することを特徴とする窒素濃度の測定方法を提供する。
To achieve the above object, the present invention provides a method for measuring the nitrogen concentration in a silicon substrate of an epitaxial wafer having an epitaxial layer formed on the silicon substrate by an epitaxial process, comprising:
subjecting the epitaxial wafer to absorbance change heat treatment,
In the epitaxial wafer subjected to the absorbance change heat treatment, the absorbance of the NN complex with a wave number of 766 cm -1 , the NNO complex with a wave number of 801 cm -1 , and the NNOO complex with a wave number of 810 cm -1 was measured by the FT-IR method at room temperature. Measure and determine the absorption coefficient of each,
The respective absorption coefficients and the following formula [N] = (α 766 +1.2 x α 801 +0.3 x α 810 ) x 1.83 x 10 17
(Here, [N] is the nitrogen concentration (atoms/cm 3 ), α 766 is the absorption coefficient of the NN complex at a wave number of 766 cm −1 , α 801 is the absorption coefficient of the NNO complex at a wave number of 801 cm −1 , α 810 is Absorption coefficient of NNOO complex at wave number 810 cm −1 )
is used to measure the nitrogen concentration in the silicon substrate of the epitaxial wafer.

前述したように、高温のエピタキシャル工程を施すことで、FT-IR法による窒素複合体の吸光度が変化し、上記の非特許文献1の換算式では実際の窒素濃度から外れた値が算出されてしまう。そこで本発明では吸光度変化熱処理を施してから吸光度、ひいては吸収係数の測定を行い、上記換算式によりエピタキシャルウエーハの基板中の窒素濃度を求める。
なお、ここでいう吸光度変化熱処理とは、エピタキシャルウエーハの基板中のNN、NNO、NNOOの窒素複合体の吸光度を変化させ、かつ、該変化後の吸光度から実際の窒素濃度と同程度の窒素濃度を上記換算式で算出し得る程度に吸光度を変化可能な、所定の熱処理を言う。
このようにすれば、エピタキシャル工程により一旦変化した窒素複合体の吸光度を再度変化させ、窒素濃度の測定により適切な状態に変化させることができる。そして、エピタキシャル工程後にそのまま窒素濃度を測定する場合よりも正確に実際の窒素濃度を非破壊で測定することが可能である。エピタキシャルウエーハであっても上記換算式を適用でき、簡便に窒素濃度を求めることができる。
As described above, by applying a high-temperature epitaxial process, the absorbance of the nitrogen complex by the FT-IR method changes, and the conversion formula of Non-Patent Document 1 above calculates a value that deviates from the actual nitrogen concentration. put away. Therefore, in the present invention, the absorbance and absorption coefficient are measured after the absorbance change heat treatment is performed, and the nitrogen concentration in the substrate of the epitaxial wafer is obtained by the above conversion formula.
The absorbance change heat treatment referred to here is to change the absorbance of nitrogen complexes of NN, NNO, and NNOO in the substrate of the epitaxial wafer, and to obtain a nitrogen concentration similar to the actual nitrogen concentration based on the absorbance after the change. is a predetermined heat treatment that can change the absorbance to the extent that can be calculated by the above conversion formula.
In this way, the absorbance of the nitrogen complex, once changed by the epitaxial process, can be changed again, and can be changed to an appropriate state by measuring the nitrogen concentration. Further, it is possible to measure the actual nitrogen concentration in a non-destructive manner more accurately than when measuring the nitrogen concentration directly after the epitaxial process. Even if it is an epitaxial wafer, the above conversion formula can be applied, and the nitrogen concentration can be easily obtained.

このとき、前記吸光度変化熱処理の条件として、酸素拡散長である(D(T)×t)1/2(ここで、D(T)は熱処理温度T(K)での酸素拡散係数(cm/sec)、tは熱処理時間(sec))が2×10-7cm~2×10-5cmの範囲になる熱処理温度と熱処理時間を設定することができる。 At this time, as a condition of the absorbance change heat treatment, the oxygen diffusion length (D(T)×t) 1/2 (here, D(T) is the oxygen diffusion coefficient (cm 2 /sec ) , and t is the heat treatment time (sec)).

このようにすれば、より確実に正確な窒素濃度を測定することができる。 By doing so, it is possible to more reliably and accurately measure the nitrogen concentration.

また、前記測定する窒素濃度の範囲を1×1015atoms/cm以上とすることができる。 Further, the range of nitrogen concentration to be measured can be 1×10 15 atoms/cm 3 or more.

このように、本発明は上記範囲の窒素濃度の測定に特に有効である。この程度の濃度であれば、十分高い吸光度を得られやすく、より適切に窒素濃度を測定することができる。 Thus, the present invention is particularly effective for measuring nitrogen concentrations within the above range. With such a concentration, it is easy to obtain a sufficiently high absorbance, and the nitrogen concentration can be measured more appropriately.

以上のように、本発明の窒素濃度の測定方法であれば、たとえエピタキシャルウエーハであっても、吸光度に基づく窒素濃度への換算式を適用することができ、正確に実際の窒素濃度を非破壊かつ簡便に測定することができる。また、このような窒素濃度範囲は、BMD等のために窒素ドープされたCZシリコン基板をベースに作製したエピタキシャルウエーハに好適である。 As described above, with the nitrogen concentration measuring method of the present invention, even if it is an epitaxial wafer, the conversion formula to the nitrogen concentration based on the absorbance can be applied, and the actual nitrogen concentration can be accurately measured in a non-destructive manner. And it can be easily measured. In addition, such a nitrogen concentration range is suitable for epitaxial wafers manufactured on the basis of a nitrogen-doped CZ silicon substrate for BMD or the like.

本発明の窒素濃度の測定方法の一例を示すフロー図である。It is a flow chart showing an example of the measuring method of nitrogen concentration of the present invention. エピタキシャルウエーハに熱処理を施した後の窒素複合体の吸光度と熱処理条件との関係の一例を示すグラフである。5 is a graph showing an example of the relationship between the absorbance of a nitrogen composite after heat treatment of an epitaxial wafer and heat treatment conditions. 窒素複合体の吸光度からの窒素濃度の算出値と熱処理条件との関係の一例を示すグラフである。4 is a graph showing an example of the relationship between the nitrogen concentration calculated from the absorbance of the nitrogen complex and heat treatment conditions. 熱処理条件における酸素拡散長と、熱処理後の窒素複合体の吸光度から見積もられる窒素濃度の関係の一例を示すグラフである。4 is a graph showing an example of the relationship between the oxygen diffusion length under heat treatment conditions and the nitrogen concentration estimated from the absorbance of the nitrogen complex after heat treatment. 実施例および比較例での、各熱処理条件における酸素拡散長と、熱処理後の窒素複合体の吸光度から見積もられる窒素濃度の関係を示すグラフである。4 is a graph showing the relationship between the oxygen diffusion length under each heat treatment condition and the nitrogen concentration estimated from the absorbance of the nitrogen complex after heat treatment in Examples and Comparative Examples. 熱処理条件が、(a)450℃/8hと(b)550℃/12hと(c)1000℃/30minの室温でのFT-IR法のスペクトルを示すグラフである。2 is a graph showing FT-IR spectra at room temperature with heat treatment conditions of (a) 450° C./8 h, (b) 550° C./12 h, and (c) 1000° C./30 min. (a)エピタキシャル工程前と(b)エピタキシャル工程後の室温でのFT-IR法のスペクトルを示すグラフである。4 is a graph showing FT-IR spectra at room temperature (a) before the epitaxial process and (b) after the epitaxial process.

以下、本発明について図面を参照して実施の形態を説明するが、本発明はこれに限定されるものではない。
図1に、本発明の窒素濃度の測定方法のフローの一例を示す。図1に示すように、本発明の測定方法では、主に、エピタキシャルウエーハの用意(工程1)、吸光度変化熱処理(工程2)、室温でのFT-IR法による窒素複合体の吸光度測定および吸収係数の算出(工程3)、換算式を用いた窒素濃度の測定(工程4)からなっている。以下、各工程について詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows an example of the flow of the nitrogen concentration measuring method of the present invention. As shown in FIG. 1, the measurement method of the present invention mainly includes preparation of an epitaxial wafer (step 1), absorbance change heat treatment (step 2), absorbance measurement of a nitrogen complex by the FT-IR method at room temperature, and absorption It consists of calculating the coefficient (step 3) and measuring the nitrogen concentration using the conversion formula (step 4). Each step will be described in detail below.

(工程1:エピタキシャルウエーハの用意)
まず、シリコン基板上にエピタキシャル工程によりエピタキシャル層を形成したエピタキシャルウエーハを用意する。
シリコン基板は特に限定されないが、特には窒素ドープしたCZシリコン基板とすることができる。従来と同様の単結晶製造装置や手順により製造したものとすることができる。
また測定対象の窒素濃度は、例えば1×1015atoms/cm以上とすることができる。このような濃度範囲は窒素ドープしたCZシリコン基板によくみられる数値範囲であり、また、後工程で行うFT-IR法にて十分な高さの吸光度を得られやすく、窒素濃度を測定しやすい。上限および下限は特に限定されず、吸光度を適切に確認できるレベルであれば良い。
(Step 1: Preparation of epitaxial wafer)
First, an epitaxial wafer is prepared by forming an epitaxial layer on a silicon substrate by an epitaxial process.
The silicon substrate is not particularly limited, but in particular it can be a nitrogen-doped CZ silicon substrate. It can be manufactured by the same single crystal manufacturing apparatus and procedure as conventional.
Further, the nitrogen concentration to be measured can be, for example, 1×10 15 atoms/cm 3 or more. Such a concentration range is a numerical range often found in nitrogen-doped CZ silicon substrates, and it is easy to obtain a sufficiently high absorbance in the FT-IR method performed in a post-process, making it easy to measure the nitrogen concentration. . The upper and lower limits are not particularly limited as long as they are levels at which the absorbance can be properly confirmed.

また、エピタキシャル工程自体は特に限定されず、従来と同様のエピタキシャル工程における装置や手順により所望のエピタキシャル層を形成したものとすることができる。なお、通常、エピタキシャル工程は高温であり、例えばシリコン層を積層時のエピタキシャル装置内の温度は1000~1200℃程度である。 Moreover, the epitaxial process itself is not particularly limited, and a desired epitaxial layer can be formed by the same equipment and procedure in the conventional epitaxial process. Incidentally, the epitaxial process is usually performed at a high temperature. For example, the temperature in the epitaxial device during lamination of the silicon layer is about 1000 to 1200.degree.

(工程2:吸光度変化熱処理)
次に、用意したエピタキシャルウエーハに対して吸光度変化熱処理を施す。
ここで前述したように、図7に示す通りエピタキシャル工程前後において窒素複合体の吸光度が変化し、結果として、そのまま吸光度を求めて非特許文献1の換算式によりエピタキシャルウエーハのシリコン基板における窒素濃度を求めても、実際の窒素濃度の値から外れてしまう。すなわち、この換算式を適用できず、簡便に実際の窒素濃度を正確に求めることができない。
そこで本発明者は鋭意研究を行い、用意したエピタキシャルウエーハをそのまま窒素濃度の測定にかけるのではなく、エピタキシャルウエーハに追加として、別途、所定の熱処理を行い、窒素複合体の吸光度を変化させることで、上記換算式を適用して正確かつ簡便に非破壊で窒素濃度を測定できることを見出した。
以下に、その所定の熱処理(吸光度変化熱処理)の有効性を見出すに至った実験について説明する。また、吸光度変化熱処理の一例を挙げる。
(Step 2: Absorbance change heat treatment)
Next, the prepared epitaxial wafer is subjected to absorbance change heat treatment.
As described above, the absorbance of the nitrogen complex changes before and after the epitaxial process as shown in FIG. Even if it is obtained, it deviates from the actual nitrogen concentration value. That is, this conversion formula cannot be applied, and the actual nitrogen concentration cannot be obtained easily and accurately.
Therefore, the present inventors conducted intensive research, and instead of measuring the nitrogen concentration of the prepared epitaxial wafer as it is, separately performed a predetermined heat treatment in addition to the epitaxial wafer to change the absorbance of the nitrogen complex. , it was found that the nitrogen concentration can be measured accurately and simply in a non-destructive manner by applying the above conversion formula.
Experiments that led to the discovery of the effectiveness of the predetermined heat treatment (absorbance change heat treatment) will be described below. Moreover, an example of absorbance change heat treatment is given.

<実験>
サンプルとして、窒素濃度が2×1015atoms/cmで、酸素濃度が14~15ppma(JEITA)の直径200mm、p-ウエーハ(CZシリコン基板)に10μm厚のエピタキシャル層を堆積させたp/p-エピタキシャルウエーハを用いた。これらのウエーハに対して、450~1000℃/10min~50h/N雰囲気の熱処理を施した後、室温でのFT-IR法によりNN、NNO、およびNNOO複合体を評価した。
<Experiment>
As a sample, the nitrogen concentration is 2×10 15 atoms/cm 3 and the oxygen concentration is 14 to 15 ppma (JEITA). - Epitaxial wafers were used. After subjecting these wafers to heat treatment at 450 to 1000° C./10 min to 50 h/N 2 atmosphere, NN, NNO and NNOO composites were evaluated by the FT-IR method at room temperature.

その結果、熱処理温度が450℃の場合には、時間を50時間と長くしても、いずれの複合体の吸光度もほとんど変化しなかった。一方、熱処理温度が650℃以上の場合では、30分以内の熱処理により各複合体の吸光度が大きく変化した。
さらに、熱処理時間が1時間以上の場合では、熱処理温度で吸光度の変化は異なり、550℃では、NNOおよびNNOO複合体は増加し、NN複合体は減少した。650℃では、いずれの複合体も一旦増加した後に減少する傾向があった。750℃では、NN複合体は一旦増加した後に減少し、NNOおよびNNOO複合体は一旦減少した後一定となる傾向があった。850℃および1000℃では、いずれの複合体も単調に減少する傾向があった。
As a result, when the heat treatment temperature was 450° C., even if the time was increased to 50 hours, the absorbance of any complex hardly changed. On the other hand, when the heat treatment temperature was 650° C. or higher, the absorbance of each composite significantly changed by the heat treatment within 30 minutes.
Furthermore, when the heat treatment time was 1 hour or longer, the change in absorbance was different depending on the heat treatment temperature. At 650°C, all complexes tended to increase and then decrease. At 750°C, the NN complex tended to increase and then decrease, while the NNO and NNOO complex tended to decrease and then remain constant. At 850°C and 1000°C, both complexes tended to monotonically decrease.

熱処理の温度によって、複合体の吸光度が変化する理由は以下のように考えられる。
NN、NNO、およびNNOO複合体は次式の反応式に従って、増加もしくは減少している。
The reason why the absorbance of the composite changes depending on the heat treatment temperature is considered as follows.
NN, NNO, and NNOO complexes increase or decrease according to the following reaction formula.

Figure 0007230741000001
Figure 0007230741000001

この反応式から、550℃において、NNOおよびNNOO複合体が増加し、NN複合体が減少することは、NN複合体にO原子(酸素原子)が付着する正反応が優勢になっているためと考えられる。
また、750℃において、NN複合体が一旦増加した後に減少し、NNOおよびNNOO複合体が一旦減少した後一定となるのは、NNOO複合体からO原子が脱離することでNNOO複合体が減少し、NNO複合体からO原子が脱離することでNN複合体が一旦増加し、その後、NN複合体が乖離することでNN複合体が減少するためと考えられる。
くわえて、850℃および1000℃において、いずれの複合体も単調に減少するのは、NN、NNO、NNOO複合体からO原子もしくはN原子(窒素原子)が脱離することで、減少していると考えられる。
すなわち、550℃付近では、各複合体にO原子が付着する正反応が優勢になり、750℃以上では、各複合体からO原子やN原子が脱離する逆反応が優勢になると考えられる。
From this reaction formula, the increase in NNO and NNOO complexes and the decrease in NN complexes at 550° C. is due to the predominance of the forward reaction in which O atoms (oxygen atoms) attach to NN complexes. Conceivable.
In addition, at 750 ° C., the NN complex increased and then decreased, and the NNO and NNOO complexes decreased once and then remained constant because the NNOO complex decreased due to the elimination of O atoms from the NNOO complex. However, it is considered that the NN complex temporarily increases due to the detachment of the O atom from the NNO complex, and then the NN complex decreases due to the dissociation of the NN complex.
In addition, at 850 ° C. and 1000 ° C., the monotonous decrease of all complexes is due to the elimination of O atoms or N atoms (nitrogen atoms) from the NN, NNO, and NNOO complexes. it is conceivable that.
That is, at around 550° C., the forward reaction in which O atoms attach to each complex becomes dominant, and at 750° C. or higher, the reverse reaction in which O atoms and N atoms detach from each complex becomes dominant.

エピタキシャルウエーハに熱処理を施した後の窒素複合体(NN、NNO、NNOO)の吸光度と熱処理条件との関係を図2に示す。また、得られた吸光度からの窒素濃度の算出値と熱処理条件との関係を図3に示す。なお、窒素濃度の算出の手順自体については、工程3、4での手順と同様であるため、ここでは省略し、詳しくは後述する。
図3中の実線(横線)で囲まれた範囲は、SIMSで測定したサンプルの基板中の窒素濃度の実測値の範囲である。実線が二本あるのは、ウエーハ面内位置や結晶位置等によるばらつきをあらわしており、吸光度から求めた窒素濃度がこの範囲内であれば、概ね定量できていると判断できる。
この結果から、熱処理をエピタキシャルウエーハに施して吸光度を変化させることが、基板中の窒素濃度を正確に測ることに対して有効であることがわかった(図3(b)―(d)参照)。
FIG. 2 shows the relationship between the absorbance of the nitrogen complexes (NN, NNO, NNOO) after heat treatment of the epitaxial wafer and heat treatment conditions. FIG. 3 shows the relationship between the nitrogen concentration calculated from the obtained absorbance and the heat treatment conditions. Note that the procedure itself for calculating the nitrogen concentration is the same as the procedure in steps 3 and 4, so it is omitted here and will be described in detail later.
A range surrounded by a solid line (horizontal line) in FIG. 3 is a range of measured values of the nitrogen concentration in the substrate of the sample measured by SIMS. The presence of two solid lines indicates variations due to the wafer in-plane position, the crystal position, etc. If the nitrogen concentration obtained from the absorbance is within this range, it can be judged that the quantification is generally achieved.
From these results, it was found that changing the absorbance by subjecting the epitaxial wafer to heat treatment is effective for accurately measuring the nitrogen concentration in the substrate (see FIGS. 3(b) to 3(d)). .

そして本発明者は、窒素濃度をより確実かつ正確に測定できるように、その熱処理についてさらに調査して一層適切な条件を探求するべく種々のパラメータを調べた。特には、熱処理後の窒素濃度と、各熱処理条件における酸素拡散長である(D(T)×t)1/2(ここで、D(T)は熱処理温度T(K)での酸素拡散係数(cm/sec)、tは熱処理時間(sec))の関係を調査した。その結果を図4に示す。熱処理条件における酸素拡散長と、熱処理後の窒素複合体の吸光度から見積もられる窒素濃度の関係を示すグラフである。 Then, the present inventor further investigated the heat treatment and examined various parameters to seek more suitable conditions so that the nitrogen concentration could be measured more reliably and accurately. In particular, the nitrogen concentration after heat treatment and the oxygen diffusion length under each heat treatment condition (D(T)×t) 1/2 (where D(T) is the oxygen diffusion coefficient at heat treatment temperature T(K) (cm 2 /sec), t is heat treatment time (sec)). The results are shown in FIG. 4 is a graph showing the relationship between the oxygen diffusion length under heat treatment conditions and the nitrogen concentration estimated from the absorbance of the nitrogen complex after heat treatment.

図4に示すように、酸素拡散長が比較的短くなる熱処理条件の場合は、窒素濃度は高めに算出されること、また、酸素拡散長が2×10-7cm~2×10-5cmの範囲となる熱処理条件の場合は、窒素濃度は上記ばらつきの範囲内になること、それ以上の酸素拡散長となる熱処理条件の場合では、窒素濃度は減少してしまうことがわかった。 As shown in FIG. 4, in the case of heat treatment conditions in which the oxygen diffusion length is relatively short, the nitrogen concentration is calculated to be high, and the oxygen diffusion length is 2×10 −7 cm to 2×10 −5 cm. It was found that the nitrogen concentration falls within the range of the above variation under heat treatment conditions within the range of , and that the nitrogen concentration decreases under heat treatment conditions resulting in an oxygen diffusion length longer than that.

高温のエピタキシャル工程により、NNOもしくはNNOO複合体からO原子が乖離し、NN複合体が増加する。その結果、算出される窒素濃度が増加してしまい、基板の実際の窒素濃度よりも増加してしまう。そこで、エピタキシャル工程後(エピタキシャルウエーハ)に上記条件のような所定の熱処理を施すことで、より適切に各複合体の濃度、ひいては吸光度が変化し、より確実に、算出される窒素濃度が実際の窒素濃度と同程度となり、より正確に基板の窒素濃度を測定することができる。 The high temperature epitaxial process dissociates O atoms from the NNO or NNOO complexes and increases the NN complexes. As a result, the calculated nitrogen concentration increases and becomes higher than the actual nitrogen concentration of the substrate. Therefore, by subjecting the epitaxial process (epitaxial wafer) to a predetermined heat treatment under the above conditions, the concentration of each composite and thus the absorbance will change more appropriately, and the calculated nitrogen concentration will more reliably match the actual value. It becomes almost the same as the nitrogen concentration, and the nitrogen concentration of the substrate can be measured more accurately.

なお、酸素の拡散係数を用いたのは、NN、NNO、およびNNOO複合体の反応ではO原子の付着と脱離が主要因であるためである。
このように、エピタキシャルウエーハに酸素拡散長が2×10-7cm~2×10-5cmとなる熱処理温度、熱処理時間の条件を設定して熱処理を施すことで、室温でのFT-IRで観測されるNN、NNO、およびNNOO複合体の吸光度から基板の正確な窒素濃度をより確実に見積もることができる。
The reason why the diffusion coefficient of oxygen is used is that the attachment and detachment of O atoms are the main factor in the reactions of NN, NNO, and NNOO complexes.
In this way, by performing heat treatment on the epitaxial wafer by setting the heat treatment temperature and heat treatment time conditions such that the oxygen diffusion length is 2×10 −7 cm to 2×10 −5 cm, FT-IR at room temperature The exact nitrogen concentration of the substrate can be estimated more reliably from the observed absorbance of the NN, NNO, and NNOO complexes.

(工程3:室温でのFT-IR法による窒素複合体の吸光度測定および吸収係数の算出)
上記のように所定の熱処理(吸光度変化熱処理)を施したエピタキシャルウエーハにおいて、室温でのFT-IR法により波数766cm-1のNN複合体、波数801cm-1のNNO複合体、および波数810cm-1のNNOO複合体の吸光度を測定する。測定に使用する装置等は特に限定されず、従来と同様のものを用いることができる。
そして、得られた吸光度から、各窒素複合体の吸収係数を算出して求める。
(Step 3: absorbance measurement of nitrogen complex by FT-IR method at room temperature and calculation of absorption coefficient)
In the epitaxial wafer subjected to the predetermined heat treatment (absorbance change heat treatment) as described above, an NN complex with a wave number of 766 cm -1 , an NNO complex with a wave number of 801 cm -1 , and a wave number of 810 cm -1 were obtained by the FT-IR method at room temperature. The absorbance of the NNOO complex of is measured. A device or the like used for measurement is not particularly limited, and the same device as in the past can be used.
Then, the absorption coefficient of each nitrogen complex is calculated from the obtained absorbance.

(工程4:換算式を用いた窒素濃度の測定)
求めた吸収係数を非特許文献1に記載の換算式に代入し、窒素濃度を算出し、これをエピタキシャルウエーハのシリコン基板中の窒素濃度の測定値とする。なお換算式の詳細は以下の通りである。
[N]=(α766+1.2×α801+0.3×α810)×1.83×1017
(ここで、[N]は窒素濃度(atoms/cm)、α766は波数766cm-1のNN複合体の吸収係数、α 801 波数801cm-1のNNO複合体の吸収係数、α810は波数810cm-1のNNOO複合体の吸収係数)
(Step 4: Measurement of nitrogen concentration using conversion formula)
The obtained absorption coefficient is substituted into the conversion formula described in Non-Patent Document 1 to calculate the nitrogen concentration, which is used as the measured value of the nitrogen concentration in the silicon substrate of the epitaxial wafer. The details of the conversion formula are as follows.
[N]=(α 766 +1.2×α 801 +0.3×α 810 )×1.83×10 17
(where [N] is the nitrogen concentration (atoms/cm 3 ), α 766 is the absorption coefficient of the NN complex at a wave number of 766 cm −1 , α 801 is the absorption coefficient of the NNO complex at a wave number of 801 cm −1 , α 810 is Absorption coefficient of NNOO complex at wave number 810 cm −1 )

以上のような本発明の窒素濃度の測定方法であれば、エピタキシャル工程後に(すなわち、エピタキシャル層を形成したままのエピタキシャルウエーハに対し)、そのまま窒素濃度を測定する場合よりも正確に基板中の実際の窒素濃度を測定可能である。一見するとエピタキシャルウエーハには上記換算式を適用できないように思われたものの、本発明者の研究により、前述した吸光度変化熱処理を施すことで上記換算式を適用することができることが分かった。したがって、たとえエピタキシャルウエーハでも簡便に正確な窒素濃度を求めることができる。しかも、破壊検査であるSIMSとは異なり、非破壊で測定することが可能である。 According to the method for measuring the nitrogen concentration of the present invention as described above, after the epitaxial process (that is, for the epitaxial wafer on which the epitaxial layer is formed), the actual nitrogen concentration in the substrate is more accurately measured than when the nitrogen concentration is measured as it is. It is possible to measure the nitrogen concentration of At first glance, it seemed that the above conversion formula could not be applied to epitaxial wafers, but through research by the present inventors, it was found that the above conversion formula can be applied by performing the absorbance changing heat treatment described above. Therefore, even an epitaxial wafer can easily obtain an accurate nitrogen concentration. Moreover, unlike SIMS, which is a destructive inspection, non-destructive measurement is possible.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例、比較例)
窒素ドープした直径200mmのシリコン基板にエピタキシャル層を形成したp/p-エピタキシャルウエーハ(エピ層厚さ:10μm、エピタキシャル層の抵抗率:10Ω・cm)を複数用意し、それらに450℃/30min~50h、550℃/30min~30h、650℃/30min~18h、750℃/30min~12h、850℃/10min~8h、1000℃/10min~1hの熱処理を施した。なお、上記熱処理において、酸素拡散長が2×10-7cm~2×10-5cmの範囲になる熱処理温度と熱処理時間の組み合わせで実施した場合が実施例であり、酸素拡散長が上記範囲外になる組み合わせで実施した場合が比較例である。
その後に、室温のFT-IR法で測定したNN、NNO、およびNNOOの吸光度から吸収係数を算出し、さらには上記換算式を用いて窒素濃度を算出した。
さらに、実際の窒素濃度の把握のため、SIMSで基板の深さ方向の中心部の窒素濃度を実測した。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
(Example, Comparative Example)
A plurality of p/p-epitaxial wafers (epitaxial layer thickness: 10 μm, epitaxial layer resistivity: 10 Ω cm) were prepared by forming an epitaxial layer on a nitrogen-doped silicon substrate with a diameter of 200 mm. Heat treatment was performed for 50 hours, 550° C./30 minutes to 30 hours, 650° C./30 minutes to 18 hours, 750° C./30 minutes to 12 hours, 850° C./10 minutes to 8 hours, and 1000° C./10 minutes to 1 hour. In the above heat treatment, the case where the heat treatment temperature and heat treatment time are combined so that the oxygen diffusion length is in the range of 2×10 −7 cm to 2×10 −5 cm is an example, and the oxygen diffusion length is in the above range. A comparative example is a case in which a combination outside the range is used.
After that, the absorption coefficient was calculated from the absorbance of NN, NNO, and NNOO measured by the FT-IR method at room temperature, and the nitrogen concentration was calculated using the above conversion formula.
Furthermore, in order to grasp the actual nitrogen concentration, SIMS was used to actually measure the nitrogen concentration at the central portion in the depth direction of the substrate.

図5に、実施した各熱処理条件から計算される酸素拡散長(D(T)×t)1/2と吸光度から算出される窒素濃度の関係を示す。図5中の2つの実線(横線)で囲まれた範囲は、SIMS分析で測定した、基板の窒素濃度のばらつき範囲である。
この図5から分かるように、同じ熱処理温度でも時間によって正確に窒素濃度を測定できるかどうかは変化する。例えば、750℃の場合、酸素拡散長が短い場合では、SIMSによる実測の窒素濃度のばらつき範囲内に入り、熱処理時間が長くなり、酸素拡散長が長い条件では、ばらつきの範囲外になることがわかる。
FIG. 5 shows the relationship between the oxygen diffusion length (D(T)×t) 1/2 calculated from each heat treatment condition and the nitrogen concentration calculated from the absorbance. The range surrounded by two solid lines (horizontal lines) in FIG. 5 is the variation range of nitrogen concentration in the substrate measured by SIMS analysis.
As can be seen from FIG. 5, even at the same heat treatment temperature, whether or not the nitrogen concentration can be accurately measured changes depending on the time. For example, in the case of 750° C., if the oxygen diffusion length is short, it falls within the variation range of the nitrogen concentration actually measured by SIMS, the heat treatment time is long, and if the oxygen diffusion length is long, it may be outside the variation range. Recognize.

また、例として熱処理条件が450℃/8hの場合(比較例で、酸素拡散長は9.3×10-8cm)、550℃/12hの場合(実施例で、1.4×10-6cm)、および1000℃/30minの場合(比較例で、1.5×10-4cm)の室温でのFT-IR法で得られたスペクトルを図6に示す。なお、参考として、エピタキシャル工程後の状態(すなわち、熱処理前の状態)におけるスペクトルも破線で示してある。
さらに、熱処理後のエピタキシャルウエーハから得られた吸光度から見積もった吸収係数および窒素濃度を表1に示す。
Further, as examples, the heat treatment conditions are 450° C./8 h (in the comparative example, the oxygen diffusion length is 9.3×10 −8 cm) and 550° C./12 h (in the example, 1.4×10 −6 cm) and 1000° C./30 min (1.5×10 −4 cm in the comparative example) obtained by the FT-IR method at room temperature are shown in FIG. For reference, the spectrum in the state after the epitaxial process (that is, the state before the heat treatment) is also indicated by a dashed line.
Furthermore, Table 1 shows the absorption coefficient and nitrogen concentration estimated from the absorbance obtained from the epitaxial wafer after heat treatment.

Figure 0007230741000002
Figure 0007230741000002

酸素拡散長が2×10-7cm~2×10-5cmの範囲内に入る熱処理を施した550℃/12hの場合、算出した窒素濃度が2.5×1015atoms/cmであり、SIMSの実測の窒素濃度のばらつき範囲に入っていることが分かる。また、その他の2つの場合はSIMSの窒素濃度のばらつき範囲から外れていることが分かる。 In the case of 550° C./12 h in which the heat treatment is performed such that the oxygen diffusion length falls within the range of 2×10 −7 cm to 2×10 −5 cm, the calculated nitrogen concentration is 2.5×10 15 atoms/cm 3 . , are within the variation range of nitrogen concentration actually measured by SIMS. In addition, it can be seen that the other two cases are out of the SIMS nitrogen concentration variation range.

さらには、図5に示すように、実施例の他の例でもSIMSの実測の窒素濃度のばらつき範囲内となっていることが分かる。一方、比較例については、他の例でもSIMSの実測の窒素濃度のばらつきの範囲外となっていることが分かる。 Furthermore, as shown in FIG. 5, it can be seen that the variation of the nitrogen concentration actually measured by SIMS is within the variation range in other examples of the embodiment. On the other hand, it can be seen that the comparative examples are also outside the range of variation in the nitrogen concentration actually measured by SIMS.

上記実施例では窒素濃度が2.5×1015atoms/cm程度のエピタキシャルウエーハについて測定を行ったが、他の窒素濃度を有するエピタキシャルウエーハ(5×1014atoms/cm、1×1015atoms/cm、5×1015atoms/cm、5×1016atoms/cm)についても同様に本発明の測定方法により窒素濃度を測定した。具体的には、酸素拡散長が2×10-7cm~2×10-5cmの範囲となる熱処理条件で吸光度変化熱処理を施し、実施例と同様にして吸光度を測定して換算式により算出した。その結果、実施例と同様に、実際の窒素濃度と同程度の値を算出することができた。 In the above examples, measurements were performed on epitaxial wafers with a nitrogen concentration of about 2.5×10 15 atoms/cm 3 , but epitaxial wafers with other nitrogen concentrations (5×10 14 atoms/cm 3 , 1×10 15 atoms/cm 3 , 1×10 15 atoms/cm 3 , 5×10 15 atoms/cm 3 , 5×10 16 atoms/cm 3 ) were similarly measured by the measuring method of the present invention. Specifically, absorbance change heat treatment is performed under heat treatment conditions in which the oxygen diffusion length is in the range of 2×10 −7 cm to 2×10 −5 cm, the absorbance is measured in the same manner as in the example, and calculated by the conversion formula. bottom. As a result, similar to the example, a value comparable to the actual nitrogen concentration could be calculated.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
It should be noted that the present invention is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

Claims (3)

シリコン基板上にエピタキシャル工程によりエピタキシャル層を形成したエピタキシャルウエーハの前記シリコン基板中の窒素濃度を測定する方法であって、
前記エピタキシャルウエーハに吸光度変化熱処理を施し、
該吸光度変化熱処理を施した前記エピタキシャルウエーハにおいて、室温でのFT-IR法の透過法により波数766cm-1のNN複合体、波数801cm-1のNNO複合体、および波数810cm-1のNNOO複合体の吸光度を測定して各々の吸収係数を求め、
該各々の吸収係数と下記式
[N]=(α766+1.2×α801+0.3×α810)×1.83×1017
(ここで、[N]は窒素濃度(atoms/cm)、α766は波数766cm-1のNN複合体の吸収係数、α801は波数801cm-1のNNO複合体の吸収係数、α810は波数810cm-1のNNOO複合体の吸収係数)
を用いて、前記エピタキシャルウエーハの前記シリコン基板中の前記窒素濃度を測定することを特徴とする窒素濃度の測定方法。
A method for measuring the nitrogen concentration in a silicon substrate of an epitaxial wafer having an epitaxial layer formed on the silicon substrate by an epitaxial process, comprising:
subjecting the epitaxial wafer to absorbance change heat treatment,
An NN complex with a wave number of 766 cm −1 , an NNO complex with a wave number of 801 cm −1 , and an NNOO complex with a wave number of 810 cm −1 were obtained by the transmission method of the FT-IR method at room temperature in the epitaxial wafer subjected to the absorbance change heat treatment. Measure the absorbance of and obtain the absorption coefficient of each,
The respective absorption coefficients and the following formula [N] = (α 766 +1.2 x α 801 +0.3 x α 810 ) x 1.83 x 10 17
(Here, [N] is the nitrogen concentration (atoms/cm 3 ), α 766 is the absorption coefficient of the NN complex at a wave number of 766 cm −1 , α 801 is the absorption coefficient of the NNO complex at a wave number of 801 cm −1 , α 810 is Absorption coefficient of NNOO complex at wave number 810 cm −1 )
measuring the nitrogen concentration in the silicon substrate of the epitaxial wafer using
前記吸光度変化熱処理の条件として、酸素拡散長である(D(T)×t)1/2(ここで、D(T)は熱処理温度T(K)での酸素拡散係数(cm/sec)、tは熱処理時間(sec))が2×10-7cm~2×10-5cmの範囲になる熱処理温度と熱処理時間を設定することを特徴とする請求項1に記載の窒素濃度の測定方法。 As the conditions for the absorbance change heat treatment, the oxygen diffusion length (D(T)×t) 1/2 (where D(T) is the oxygen diffusion coefficient (cm 2 /sec) at the heat treatment temperature T(K) , t is the heat treatment time (sec)) is set to a heat treatment temperature and heat treatment time in the range of 2 × 10 -7 cm to 2 × 10 -5 cm, the measurement of nitrogen concentration according to claim 1, characterized in that Method. 前記測定する窒素濃度の範囲を1×1015atoms/cm以上とすることを特徴とする請求項1または請求項2に記載の窒素濃度の測定方法。 3. The method of measuring nitrogen concentration according to claim 1, wherein the range of nitrogen concentration to be measured is 1×10 15 atoms/cm 3 or more.
JP2019149491A 2019-08-16 2019-08-16 Nitrogen concentration measurement method Active JP7230741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149491A JP7230741B2 (en) 2019-08-16 2019-08-16 Nitrogen concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149491A JP7230741B2 (en) 2019-08-16 2019-08-16 Nitrogen concentration measurement method

Publications (2)

Publication Number Publication Date
JP2021032578A JP2021032578A (en) 2021-03-01
JP7230741B2 true JP7230741B2 (en) 2023-03-01

Family

ID=74676439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149491A Active JP7230741B2 (en) 2019-08-16 2019-08-16 Nitrogen concentration measurement method

Country Status (1)

Country Link
JP (1) JP7230741B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353282A (en) 2001-05-30 2002-12-06 Shin Etsu Handotai Co Ltd Method for evaluating nitrogen concentration in single- crystal silicon wafer
JP2007003529A (en) 2001-08-29 2007-01-11 Fujitsu Ltd Method for determining coefficient for evaluating nitrogen concentration in silicon crystal, method for measuring nitrogen concentration, silicon wafer and manufacturing method therefor, and method for manufacturing semiconductor device
US20080121880A1 (en) 2006-11-27 2008-05-29 Jeong-Su Park Method of measuring thickness of layer in image sensor and pattern for the same
JP2014092411A (en) 2012-11-01 2014-05-19 Toyota Motor Corp EVALUATION METHOD OF SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900633A (en) * 1997-12-15 1999-05-04 On-Line Technologies, Inc Spectrometric method for analysis of film thickness and composition on a patterned sample
US9366601B1 (en) * 2011-03-15 2016-06-14 University Of North Texas Wafer fabrication monitoring/control system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353282A (en) 2001-05-30 2002-12-06 Shin Etsu Handotai Co Ltd Method for evaluating nitrogen concentration in single- crystal silicon wafer
JP2007003529A (en) 2001-08-29 2007-01-11 Fujitsu Ltd Method for determining coefficient for evaluating nitrogen concentration in silicon crystal, method for measuring nitrogen concentration, silicon wafer and manufacturing method therefor, and method for manufacturing semiconductor device
US20080121880A1 (en) 2006-11-27 2008-05-29 Jeong-Su Park Method of measuring thickness of layer in image sensor and pattern for the same
JP2014092411A (en) 2012-11-01 2014-05-19 Toyota Motor Corp EVALUATION METHOD OF SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME

Also Published As

Publication number Publication date
JP2021032578A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US8481346B2 (en) Method of analyzing iron concentration of boron-doped P-type silicon wafer and method of manufacturing silicon wafer
CN107210222B (en) Epitaxially coated semiconductor wafer and method for producing an epitaxially coated semiconductor wafer
US9995693B2 (en) Quality evaluation method for silicon wafer, and silicon wafer and method of producing silicon wafer using the method
JP2009212353A5 (en)
JP7230741B2 (en) Nitrogen concentration measurement method
JP2016111044A (en) Evaluation method for silicon wafer
JP4416566B2 (en) Impurity metal concentration measurement method
TWI698935B (en) Method for predicting thermal donor generation behavior of a silicon wafer, evaluation method of a silicon wafer, and silicon wafer manufacturing method
US20160247694A1 (en) Quality evaluation method for silicon wafer, and silicon wafer and method of producing silicon wafer using the method
JP7115456B2 (en) Method for measuring nitrogen concentration in silicon single crystal wafer
KR102333618B1 (en) Silicon Wafer Heat Treatment Method
JP7309922B2 (en) Semiconductor wafer manufacturing method
JP4992996B2 (en) Nitrogen concentration measurement method and calculation method of proportional conversion factor for nitrogen concentration measurement
JP3874255B2 (en) Evaluation method of BMD size in silicon wafer
JP5590000B2 (en) Method for evaluating film thickness of polysilicon film
JP6544308B2 (en) Method of predicting dislocation occurrence and device manufacturing method
JP6662330B2 (en) Method for measuring carbon concentration in single crystal silicon
JP6032186B2 (en) Evaluation method of silicon epitaxial wafer
Baek et al. Characterization of PECVD Si3N4 thin film in multiple oxide–nitride stack for 3D-NAND flash memory
JP5729098B2 (en) Evaluation method of silicon single crystal wafer
JP2020098104A (en) Method for measuring impurity concentration in silicon substrate
JP6031971B2 (en) Method and apparatus for electrical evaluation of semiconductor samples
JPH11297704A (en) Evaluation method for oxygen deposit density
TWI671441B (en) Silicon wafer
JP6881387B2 (en) DZ layer measurement method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7230741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150