JP2014092411A - EVALUATION METHOD OF SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME - Google Patents

EVALUATION METHOD OF SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL USING THE SAME Download PDF

Info

Publication number
JP2014092411A
JP2014092411A JP2012242162A JP2012242162A JP2014092411A JP 2014092411 A JP2014092411 A JP 2014092411A JP 2012242162 A JP2012242162 A JP 2012242162A JP 2012242162 A JP2012242162 A JP 2012242162A JP 2014092411 A JP2014092411 A JP 2014092411A
Authority
JP
Japan
Prior art keywords
single crystal
sic single
nitrogen concentration
evaluation method
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242162A
Other languages
Japanese (ja)
Other versions
JP5895818B2 (en
Inventor
Akinori Seki
章憲 関
Nobuaki Takazawa
信明 高沢
Naohisa Inoue
直久 井上
Kaori Watanabe
香 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012242162A priority Critical patent/JP5895818B2/en
Publication of JP2014092411A publication Critical patent/JP2014092411A/en
Application granted granted Critical
Publication of JP5895818B2 publication Critical patent/JP5895818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of a SiC single crystal, capable of non-destructively estimating nitrogen concentration of the SiC single crystal including nitrogen at a concentration of 5×10atom/cmor more in the crystal, and a method for manufacturing the SiC single crystal.SOLUTION: The evaluation method of a SiC single crystal comprises: contacting an optical medium having a refractive index higher than that of the SiC single crystal to a surface of the SiC single crystal; irradiating an interface between the SiC single crystal and the optical medium with an infrared ray; obtaining intensity of an absorption peak having a peak value of an absorption wave number varied in a range of 966-971 cmfrom an obtained infrared spectrum; and estimating a nitrogen concentration in the SiC single crystal on the basis of the obtained absorption peak intensity. A method for manufacturing the SiC single crystal includes the evaluation method.

Description

本発明は、SiC単結晶の評価方法およびそれを適用したSiC単結晶の製造方法に関し、さらに詳しくはSiC単結晶中の不純物である窒素の濃度を非破壊的に評価し得るSiC単結晶の評価方法およびそれを適用したSiC単結晶の製造方法に関する。   The present invention relates to a method for evaluating a SiC single crystal and a method for producing a SiC single crystal to which the SiC single crystal is applied, and more particularly, an evaluation of a SiC single crystal capable of nondestructively evaluating the concentration of nitrogen as an impurity in the SiC single crystal. The present invention relates to a method and a method for producing a SiC single crystal to which the method is applied.

SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi(シリコン)単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有し、不純物の添加によってp、n伝導型の電子制御も容易にできるとともに、広い禁制帯幅(4H型のSiC単結晶で約3.3eV、6H型のSiC単結晶で約3.0eV)を有するという特長を備えている。このため、Si単結晶やGaAs(ガリウム砒素)単結晶などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であり、次世代の半導体材料として期待が高まっている。   SiC single crystal is very stable thermally and chemically, excellent in mechanical strength, resistant to radiation, and excellent in breakdown voltage and high thermal conductivity compared to Si (silicon) single crystal. It has physical properties and can easily control p-type and n-conductivity type electrons by adding impurities, and has a wide forbidden band width (about 3.3 eV for 4H-type SiC single crystal, about 3.3 eV for 6H-type SiC single crystal). 0 eV). For this reason, it is possible to realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs (gallium arsenide) single crystal. It is growing.

このSiC単結晶には、ドナー不純物として窒素が含有されている場合が多く、SiC単結晶の窒素濃度が素子の特性に影響を及ぼすことから、SiC単結晶中の窒素濃度を評価し得る評価方法が求められている。
従来、SiC単結晶界面の不純物の測定法として、FTIR(Fourier Transform Infrared Spectroscopy、フーリエ変換赤外分光法)が知られているが、不純物の有無は分析できるが定性分析でありSiC単結晶中の不純物である窒素濃度は評価し得ない。
また、SiC単結晶における窒素量の測定は感度の高いSIMS(Secondary Ion Mass Spectrometry、二次イオン質量分析法)あるいはXPS(X-ray Photoelectron Spectroscopy、X線光電子分光法)によって行われているが、前者は評価に用いた試料は基板として使用することができず、後者は結晶表面の測定に限られる。
This SiC single crystal often contains nitrogen as a donor impurity, and since the nitrogen concentration of the SiC single crystal affects the characteristics of the device, an evaluation method that can evaluate the nitrogen concentration in the SiC single crystal Is required.
Conventionally, FTIR (Fourier Transform Infrared Spectroscopy) is known as a method for measuring impurities at the interface of a SiC single crystal. However, the presence or absence of impurities can be analyzed, but it is a qualitative analysis. The concentration of nitrogen as an impurity cannot be evaluated.
In addition, the measurement of the amount of nitrogen in the SiC single crystal is performed by highly sensitive SIMS (Secondary Ion Mass Spectrometry) or XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy). In the former, the sample used for evaluation cannot be used as a substrate, and the latter is limited to the measurement of the crystal surface.

結晶中に不純物を高濃度で含むSiC単結晶の評価としてはICP−MS(Inductively Coupled Plasma Mass Spectrometry、誘導結合プラズマ−質量分析)、GC−MS(Gas Chromatograph-Mass Spectrometry、ガスクロマトグラフ−質量分析)が知られているが、いずれも試料を溶かして測定するため軽元素である窒素の測定には不向きである。
一方、半導体材料用、特にエピタキシャル層のSiC単結晶として5x1015atom/cm程度、またこのエピタキシャル膜を形成するための基板であるSiC単結晶は1019atom/cm程度の不純物である窒素濃度を有する結晶が求められている。このため、結晶中に窒素を5x1015atom/cm程度以上、特にSiC単結晶基板においては1018〜ax1019atom/cm(a=1〜5)の高濃度で含むSiC単結晶の評価を非破壊的に行うことができる評価方法が求められている。
この単結晶中の不純物を非破壊的に評価する必要性は、他の半導体材料、例えばシリコンにおいても同様であり、様々な検討がなされている。
赤外吸収法を用いた不純物分析や濃度解析法は、光の吸収量を多く得られることから、一般的には透過法が用いられ、SEMIやJEITAなどで規格化もされている。例えば、特開2002−350331号公報には、透過法によりシリコン単結晶を測定する方法が記載されている。一方、反射を用いた方法は、研究段階であり規格化されていない。
ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and GC-MS (Gas Chromatograph-Mass Spectrometry) are used to evaluate SiC single crystals containing impurities at high concentrations. However, all of them are not suitable for measuring nitrogen, which is a light element, because they are measured by melting a sample.
On the other hand, a SiC single crystal for semiconductor materials, particularly as an SiC single crystal of an epitaxial layer, is about 5 × 10 15 atoms / cm 3 , and an SiC single crystal as a substrate for forming this epitaxial film is nitrogen which is an impurity of about 10 19 atoms / cm 3. There is a need for crystals having a concentration. For this reason, the evaluation of SiC single crystal containing nitrogen at a high concentration of about 5 × 10 15 atoms / cm 3 or more, particularly 10 18 to ax10 19 atoms / cm 3 (a = 1 to 5) in a SiC single crystal substrate. There is a need for an evaluation method that can be performed non-destructively.
The necessity for nondestructively evaluating impurities in the single crystal is the same for other semiconductor materials such as silicon, and various studies have been made.
In the impurity analysis and concentration analysis method using the infrared absorption method, since a large amount of light absorption can be obtained, the transmission method is generally used, and standardized by SEMI, JEITA, and the like. For example, Japanese Patent Laid-Open No. 2002-350331 describes a method for measuring a silicon single crystal by a transmission method. On the other hand, the method using reflection is at the research stage and is not standardized.

例えば、特許文献1には、基板の表面に基板よりも屈折率の大きいプリズムを接触させて、プリズムの基板と接する側の面で光を全反射させ、プリズムから基板側に滲み出た光によって評価を行う基板の評価方法が記載されている。そして、具体例として、酸素、炭素および窒素を含有するシリコン基板についてゲルマニウムプリズムを用いて赤外線を入射させ900〜1300cm−1の赤外光の波数で測定したスペクトルが示されている。 For example, in Patent Document 1, a prism having a refractive index larger than that of the substrate is brought into contact with the surface of the substrate, and light is totally reflected on the surface of the prism that is in contact with the substrate. A method for evaluating a substrate to be evaluated is described. As a specific example, a spectrum is shown in which a silicon substrate containing oxygen, carbon, and nitrogen is irradiated with infrared light using a germanium prism and measured with an infrared light wave number of 900 to 1300 cm −1 .

また、特許文献2には、酸素濃度が既知で異なる複数の半導体シリコン結晶に光を照射し、その反射光の照射光に対する振幅比および位相差から各酸素濃度における任意の波数の誘電関数実数部を求めることにより、予めその波数における酸素濃度と誘電関数実数部との相関を求めておく半導体シリコン結晶の酸素濃度評価方法が記載されている。そして、具体例として、シリコン結晶に光を直接照射して反射光を測定し、酸素濃度を求めた例が示されている。   Patent Document 2 discloses that a plurality of semiconductor silicon crystals having different oxygen concentrations are irradiated with light, and a dielectric function real part having an arbitrary wave number at each oxygen concentration based on an amplitude ratio and a phase difference of the reflected light with respect to the irradiated light. Describes a method for evaluating the oxygen concentration of a semiconductor silicon crystal, in which the correlation between the oxygen concentration at the wave number and the real part of the dielectric function is obtained in advance. As a specific example, an example in which the silicon crystal is directly irradiated with light and the reflected light is measured to determine the oxygen concentration is shown.

また、特許文献3には、光源と、サンプルとの接触領域を含む内部反射素子と、該素子の前面における入射角が前記素子の臨界角以上で全反射になるように接触領域に向けて光を入射させ、接触領域から反射光を集光し、反射光を結像させる検出器を備えた分光装置及びスペクトル吸収画像を得る方法が記載されている。そして、内部反射素子としてゲルマニウム、シリコン、セレン化亜鉛又はダイヤモンドを用い得ること、具体例としてエポキシ樹脂ファイバーについてスペクトル測定値が示されている。   Patent Document 3 discloses an internal reflection element including a contact area between a light source and a sample, and light toward the contact area so that an incident angle at the front surface of the element is not less than a critical angle of the element and is totally reflected. , A spectroscopic device including a detector that collects reflected light from a contact area, and forms an image of the reflected light, and a method for obtaining a spectral absorption image are described. And the spectrum measurement value is shown about the epoxy resin fiber as an example which can use germanium, a silicon | silicone, zinc selenide, or a diamond as an internal reflection element.

さらに、特許文献4には、窒素がドープされた4H型炭化珪素バルク単結晶基板の表面に紫外線を照射し、該基板から発光して得られるフォトルミネッセンス光から4H型炭化珪素バルク単結晶基板に含まれる6H型積層欠陥を判別する炭化珪素バルク単結晶基板の欠陥検査方法が記載されている。   Furthermore, in Patent Document 4, ultraviolet light is irradiated on the surface of a nitrogen-doped 4H type silicon carbide bulk single crystal substrate, and photoluminescence light obtained by emitting light from the substrate is applied to the 4H type silicon carbide bulk single crystal substrate. A defect inspection method for a silicon carbide bulk single crystal substrate for discriminating included 6H type stacking faults is described.

特開平7−297247号公報JP 7-297247 A 特開平11−14543号公報Japanese Patent Laid-Open No. 11-14543 特開平11−132941号公報Japanese Patent Laid-Open No. 11-132941 特開2011−220744号公報JP 2011-220744 A

しかし、これら公知文献に記載の技術によっては、SiC単結晶中の不純物である窒素濃度を非破壊的に定量的に評価することは不可能であった。
従って、本発明の目的は、結晶中に窒素を5x1015atom/cm以上の濃度で含むSiC単結晶の窒素濃度を非破壊的に評価し得るSiC単結晶の評価方法を提供することである。
また、本発明の目的は、SiC単結晶を成長させた後、結晶中に窒素を5x1015atom/cm以上の濃度で含むSiC単結晶の窒素濃度を非破壊的に評価するSiC単結晶の製造方法を提供することである。
However, it is impossible to quantitatively evaluate the nitrogen concentration, which is an impurity in the SiC single crystal, nondestructively by the techniques described in these known documents.
Accordingly, an object of the present invention is to provide a method for evaluating a SiC single crystal capable of nondestructively evaluating the nitrogen concentration of a SiC single crystal containing nitrogen at a concentration of 5 × 10 15 atoms / cm 3 or more in the crystal. .
Another object of the present invention is to provide a SiC single crystal for nondestructively evaluating the nitrogen concentration of a SiC single crystal containing nitrogen at a concentration of 5 × 10 15 atoms / cm 3 or more after the SiC single crystal is grown. It is to provide a manufacturing method.

本発明者らは、前記目的を達成するために鋭意検討を行った結果、本発明を完成した。
本発明は、結晶中の窒素濃度を評価するSiC単結晶の評価方法であって、
(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させ、
(2)前記SiC単結晶と前記光学媒質との界面に赤外線を照射し、
(3)得られた赤外線スペクトルから966〜971cm−1の範囲で吸収波数のピーク値が変化する吸収ピーク強度を求め、
(4)得られた吸収ピーク強度に基いてSiC単結晶中の窒素濃度を評価する、
前記方法に関する。
The inventors of the present invention have completed the present invention as a result of intensive studies to achieve the above object.
The present invention is a method for evaluating a SiC single crystal for evaluating the nitrogen concentration in a crystal,
(1) An optical medium having a refractive index higher than that of the SiC single crystal is brought into contact with the surface of the SiC single crystal,
(2) irradiating the interface between the SiC single crystal and the optical medium with infrared rays;
(3) Obtain the absorption peak intensity at which the peak value of the absorption wave number changes in the range of 966 to 971 cm −1 from the obtained infrared spectrum,
(4) Evaluating the nitrogen concentration in the SiC single crystal based on the obtained absorption peak intensity,
It relates to said method.

また、本発明は、SiC単結晶の製造方法であって、
SiC単結晶を成長させる工程、および
得られたSiC単結晶中の窒素濃度を前記の評価方法によって評価する工程、
を含む、前記方法に関する。
本発明において、前記の吸収ピーク強度とは、後述の実施例の欄で詳述する測定法で測定したフーリエ変換赤外(FTIR)測定による赤外吸収スペクトルにおける966〜971cm−1の範囲での吸収ピーク信号に基く数値である。
また、本発明において、SiC単結晶よりも屈折率の高いとは、少なくとも966〜971cm−1の範囲で屈折率が高いことを意味する。
また、本明細書において非破壊的に評価するとは、窒素濃度が未知のSiC単結晶を破壊しないで評価することを意味する。
The present invention is also a method for producing a SiC single crystal,
A step of growing a SiC single crystal, and a step of evaluating the nitrogen concentration in the obtained SiC single crystal by the evaluation method,
The method.
In the present invention, the above-mentioned absorption peak intensity is a range of 966 to 971 cm −1 in an infrared absorption spectrum by Fourier transform infrared (FTIR) measurement measured by a measurement method described in detail in the column of Examples described later. It is a numerical value based on the absorption peak signal.
In the present invention, the higher refractive index than the SiC single crystal means that the refractive index is at least in the range of 966 to 971 cm −1 .
Moreover, nondestructive evaluation in this specification means evaluating without destroying the SiC single crystal whose nitrogen concentration is unknown.

本発明によれば、結晶中に窒素を5x1015atom/cm以上、好適には2x1016atom/cm以上の濃度で含むSiC単結晶の窒素濃度を非破壊的に評価し得る。
また、本発明によれば、SiC単結晶の窒素濃度が非破壊的に評価されて結晶中に窒素を5x1015atom/cm以上、好適には2x1016atom/cm以上の濃度で含むSiC単結晶を容易に得ることができる。
According to the present invention, it is possible to nondestructively evaluate the nitrogen concentration of a SiC single crystal containing nitrogen in the crystal at a concentration of 5 × 10 15 atoms / cm 3 or more, preferably 2 × 10 16 atoms / cm 3 or more.
Further, according to the present invention, the nitrogen concentration of the SiC single crystal nondestructively evaluated by nitrogen 5x10 15 atom / cm 3 or more in the crystal, SiC containing preferably at a concentration of 2x10 16 atom / cm 3 or more A single crystal can be easily obtained.

図1は、予め窒素濃度が測定された4H−SiC単結晶および窒素濃度が未知の4H−SiC単結晶について本発明の実施態様におけるフーリエ変換赤外吸収(FTIR)測定データの吸収ピーク強度を強度補正した赤外吸収スペクトルである。FIG. 1 shows the absorption peak intensities of Fourier transform infrared absorption (FTIR) measurement data in the embodiment of the present invention for 4H-SiC single crystals whose nitrogen concentration was previously measured and 4H-SiC single crystals whose nitrogen concentration was unknown. It is a corrected infrared absorption spectrum. 図2は、予め窒素濃度が測定された4H−SiC単結晶および窒素濃度が未知の4H−SiC単結晶について本発明の実施態様におけるフーリエ変換赤外吸収(FTIR)測定データの吸収ピーク強度を強度補正した赤外吸収スペクトルの吸収ピークの高さとして求められる吸収強度と4H−SiC単結晶中の窒素濃度との相関を示すグラフである。FIG. 2 shows the intensity of the absorption peak of the Fourier transform infrared absorption (FTIR) measurement data in the embodiment of the present invention for a 4H—SiC single crystal whose nitrogen concentration was previously measured and a 4H—SiC single crystal whose nitrogen concentration was unknown. It is a graph which shows the correlation with the absorption intensity calculated | required as the height of the absorption peak of the corrected infrared absorption spectrum, and the nitrogen concentration in a 4H-SiC single crystal. 図3は、本発明の範囲外の評価方法により予め窒素濃度が測定された4H−SiC単結晶について公知の文献[Journal of The Electrochemical Society 147 (6)2324-2327(2000)]に従って求めた固定信号である980cm−1相当の固定波数による吸収ピーク強度と4H−SiC単結晶中の窒素濃度との相関を示すグラフである。FIG. 3 shows a fixed value obtained according to a known document [Journal of The Electrochemical Society 147 (6) 2324-2327 (2000)] for a 4H—SiC single crystal whose nitrogen concentration was previously measured by an evaluation method outside the scope of the present invention. It is a graph which shows the correlation with the absorption peak intensity | strength by the fixed wave number equivalent to 980cm < -1 > which is a signal, and the nitrogen concentration in 4H-SiC single crystal. 図4は、窒素濃度の異なる3種類の4H−SiC単結晶について測定した吸収ピーク強度を補正していない赤外吸収スペクトルである。FIG. 4 is an infrared absorption spectrum in which the absorption peak intensities measured for three types of 4H—SiC single crystals having different nitrogen concentrations are not corrected. 図5は、不純物として窒素を含むSiC単結晶について本発明の実施態様の測定方法および従来法により測定した吸収ピーク強度を補正していない赤外吸収スペクトルである。FIG. 5 is an infrared absorption spectrum in which the absorption peak intensity measured by the measurement method of the embodiment of the present invention and the conventional method is not corrected for a SiC single crystal containing nitrogen as an impurity. 図6は、SiC単結晶について本発明の範囲外の測定方法における光を照射したときの屈折率の波数依存性を示すグラフである。FIG. 6 is a graph showing the wave number dependence of the refractive index when a single crystal of SiC is irradiated with light in a measurement method outside the scope of the present invention. 図7は、SiC単結晶について本発明の測定方法における光を照射したときの屈折率の波数依存性を示すグラフである。FIG. 7 is a graph showing the wave number dependence of the refractive index when an SiC single crystal is irradiated with light in the measurement method of the present invention. 図8は、実施例においてSiC単結晶と光学媒質との界面に赤外線を照射している状態を示す模式図である。FIG. 8 is a schematic diagram showing a state in which infrared rays are applied to the interface between the SiC single crystal and the optical medium in the example.

特に、本発明において、以下の実施態様を挙げることができる。
1)窒素濃度が既知で該濃度が異なる複数のSiC単結晶について前記(1)〜(3)によって吸収ピーク強度を求め、予め窒素濃度と吸収ピーク強度との相関を求めておく前記の評価方法。
2)前記赤外線スペクトルが、前記界面で赤外線を全反射させて得られる反射光のスペクトルである前記の評価方法。
3)前記光学媒質が、AsSe、SiおよびGeから選ばれる前記の評価方法。
4)前記SiC単結晶がバルクである前記の評価方法。
5)前記SiC単結晶が、4H型である前記の評価方法。
6)前記SiC単結晶を溶液法によって成長させる前記の製造方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The evaluation method described above, wherein the absorption peak intensity is obtained by (1) to (3) for a plurality of SiC single crystals having known nitrogen concentrations and different concentrations, and the correlation between the nitrogen concentration and the absorption peak intensity is obtained in advance. .
2) The evaluation method, wherein the infrared spectrum is a spectrum of reflected light obtained by totally reflecting infrared rays at the interface.
3) The evaluation method described above, wherein the optical medium is selected from As 2 Se 3 , Si and Ge.
4) The above evaluation method, wherein the SiC single crystal is bulk.
5) The said evaluation method whose said SiC single crystal is 4H type.
6) The manufacturing method described above, wherein the SiC single crystal is grown by a solution method.

本発明の実施態様のSiC単結晶の評価方法においては、
(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させ、
(2)前記SiC単結晶と前記光学媒質との界面に赤外線を照射し、
(3)得られた赤外線スペクトルから966〜971cm−1の範囲で吸収波数のピーク値が変化する吸収ピーク強度を求め、
(4)得られた吸収ピーク強度に基いてSiC単結晶中の窒素濃度を評価する、
ことが必要であり、これによって結晶中に窒素を5x1015atom/cm以上、好適には2x1016atom/cm以上の濃度で含むSiC単結晶の窒素濃度を非破壊的に定量的に評価することができる。
In the method for evaluating a SiC single crystal according to an embodiment of the present invention,
(1) An optical medium having a refractive index higher than that of the SiC single crystal is brought into contact with the surface of the SiC single crystal,
(2) irradiating the interface between the SiC single crystal and the optical medium with infrared rays;
(3) Obtain the absorption peak intensity at which the peak value of the absorption wave number changes in the range of 966 to 971 cm −1 from the obtained infrared spectrum,
(4) Evaluating the nitrogen concentration in the SiC single crystal based on the obtained absorption peak intensity,
Thus, the nitrogen concentration of the SiC single crystal containing nitrogen in the crystal at a concentration of 5 × 10 15 atoms / cm 3 or more, preferably 2 × 10 16 atoms / cm 3 or more is quantitatively evaluated nondestructively. can do.

以下、図面を参照して本発明の実施の形態を詳説する。
図1に示すように、本発明の実施態様における赤外吸収スペクトルは、予め窒素濃度が測定され該濃度が異なる複数の4H−SiC単結晶について、本発明の実施態様の評価方法により赤外線を照射してフーリエ変換赤外吸収(FTIR)測定し、得られた吸収ピーク強度を強度補正した、縦軸が正規化した吸収強度で横軸が対数目盛りの波数である赤外吸収スペクトルであり、966〜971cm−1の範囲で吸収波数のピーク値を有している。
そして、図2に示すように、予め窒素濃度が測定され該濃度が異なる複数の4H−SiC単結晶の赤外吸収スペクトルの吸収強度を、4H−SiC単結晶中の窒素濃度に対してプロットすることにより1つの曲線を作成し得る。
そして、この曲線を検量線として用いて、窒素濃度が未知の4H−SiC単結晶について本発明の実施態様の評価方法によりフーリエ変換赤外吸収(FTIR)測定し、得られた吸収ピーク強度から、4H−SiC単結晶中の窒素濃度を求めることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the infrared absorption spectrum in the embodiment of the present invention is obtained by irradiating infrared rays by the evaluation method of the embodiment of the present invention on a plurality of 4H—SiC single crystals having different nitrogen concentrations measured in advance. Infrared absorption spectrum in which the Fourier transform infrared absorption (FTIR) measurement is performed and the obtained absorption peak intensity is corrected, the vertical axis is the normalized absorption intensity and the horizontal axis is the logarithmic wave number, 966 It has a peak value of absorption wave number in a range of ˜971 cm −1 .
Then, as shown in FIG. 2, the absorption intensity of the infrared absorption spectrum of a plurality of 4H—SiC single crystals having different nitrogen concentrations measured in advance is plotted against the nitrogen concentration in the 4H—SiC single crystal. By doing so, one curve can be created.
Then, using this curve as a calibration curve, 4H-SiC single crystal with unknown nitrogen concentration was subjected to Fourier transform infrared absorption (FTIR) measurement by the evaluation method of the embodiment of the present invention, and from the obtained absorption peak intensity, The nitrogen concentration in the 4H—SiC single crystal can be determined.

本発明の実施態様においては、前記の(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させ、(2)前記SiC単結晶と前記光学媒質との界面に赤外線を照射し、(3)得られた赤外線スペクトルから966〜971cm−1の範囲で吸収波数のピーク値が変化する吸収ピーク強度を求めることによって、図2に示すように4H−SiC単結晶中の吸収ピーク強度の各値に対して窒素濃度が一義的に対応した相関である検量線、あるいは相関式を得ることができる。そして、この相関に基いて窒素濃度が未知のSiC単結晶について前記の(1)〜(3)によって得た吸収ピーク強度を用いてSiC単結晶の窒素濃度を非破壊的に定量的に評価することができるのである。 In an embodiment of the present invention, (1) an optical medium having a refractive index higher than that of the SiC single crystal is brought into contact with the surface of the SiC single crystal, and (2) an interface between the SiC single crystal and the optical medium. Irradiation with infrared rays (3) By obtaining the absorption peak intensity at which the peak value of the absorption wave number changes in the range of 966 to 971 cm −1 from the obtained infrared spectrum, as shown in FIG. 2, in the 4H—SiC single crystal It is possible to obtain a calibration curve or correlation equation that is a correlation in which the nitrogen concentration uniquely corresponds to each value of the absorption peak intensity. Based on this correlation, the nitrogen concentration of the SiC single crystal is quantitatively evaluated nondestructively using the absorption peak intensities obtained by the above (1) to (3) for the SiC single crystal whose nitrogen concentration is unknown. It can be done.

これに対して、本発明の範囲外の評価方法、例えば前記(1)および(2)によって得られた予め窒素濃度が測定されて該濃度が異なる複数の4H−SiC単結晶の赤外吸収スペクトルについて、公知の文献[Journal of The Electrochemical Society 147 (6)2324-2327(2000)]に記載の980cm−1相当とされる固定波数による吸収強度(ピーク強度)を窒素濃度に対してプロットすると、図3に示すように、1つの曲線が作成される。しかし、得られた曲線は広い窒素濃度範囲において4H−SiC単結晶中の吸収ピーク強度の各値に対して2つの窒素濃度が対応するものである。つまり、前記の本発明の範囲外の評価方法によれば吸収ピーク強度を用いてSiC単結晶の窒素濃度を一義的に決めることができないのである。 On the other hand, the infrared absorption spectra of a plurality of 4H-SiC single crystals having different nitrogen concentrations measured in advance by the evaluation methods outside the scope of the present invention, for example, (1) and (2) above. When the absorption intensity (peak intensity) at a fixed wave number corresponding to 980 cm −1 described in a known document [Journal of The Electrochemical Society 147 (6) 2324-2327 (2000)] is plotted against the nitrogen concentration, As shown in FIG. 3, one curve is created. However, in the obtained curve, two nitrogen concentrations correspond to each value of the absorption peak intensity in the 4H—SiC single crystal in a wide nitrogen concentration range. That is, according to the evaluation method outside the scope of the present invention, the nitrogen concentration of the SiC single crystal cannot be uniquely determined using the absorption peak intensity.

前記の(1)〜(3)を満足させることによって得られる本発明の実施態様における赤外吸収スペクトルは、前述のように4H−SiC単結晶について赤外線を照射してフーリエ変換赤外吸収(FTIR)測定して得られた吸収ピーク強度を後述の実施例の欄に示すようにフォークト(Voigt)関数にてピーク分離し強度補正した赤外吸収スペクトルである。
前記赤外吸収スペクトルを与えるピーク分離し強度補正前の赤外吸収スペクトルは、フーリエ変換赤外吸収(FTIR)測定して得られた吸収強度のデータを示し、図4に示すように、966〜971cm−1の範囲に微小なピークを有している。図4(a)はSIMSで測定された窒素濃度が1.5x1019atom/cm、図4(b)はSIMSで測定された窒素濃度が7.0x1018atom/cm、図4(c)はSIMSで測定された窒素濃度が7.6x1017atom/cmである4H−SiC単結晶の各々前記ピーク分離し強度補正前の赤外吸収スペクトルスペクトルである。
The infrared absorption spectrum in the embodiment of the present invention obtained by satisfying the above (1) to (3) is a Fourier transform infrared absorption (FTIR) by irradiating the 4H-SiC single crystal with infrared rays as described above. ) This is an infrared absorption spectrum in which the absorption peak intensity obtained by measurement is peak-separated by a Vogt function and the intensity is corrected, as shown in the Examples section below.
The infrared absorption spectrum before peak separation and intensity correction giving the infrared absorption spectrum shows data of absorption intensity obtained by Fourier transform infrared absorption (FTIR) measurement. As shown in FIG. It has a minute peak in the range of 971 cm −1 . 4A shows a nitrogen concentration measured by SIMS of 1.5 × 10 19 atoms / cm 3 , and FIG. 4B shows a nitrogen concentration measured by SIMS of 7.0 × 10 18 atoms / cm 3 , FIG. ) Is an infrared absorption spectrum of each 4H-SiC single crystal having a nitrogen concentration measured by SIMS of 7.6 × 10 17 atoms / cm 3 before the peak separation and before intensity correction.

前記の要件(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させることなく4H−SiC単結晶に赤外線を照射しても、透過法では図5(a)に示すように、反射法では図5(b)に示すように、いずれもベースラインに歪みが生じる異常分散が起こり、目的とする4H−SiC単結晶の赤外吸収スペクトルを得ることができない。
また、SiC単結晶は、赤外光領域での光の吸収が大きい。そのため、バルク状の単結晶の厚い基板に関しては、SiC単結晶による光の吸収の影響を受けることから、反射を用いた方法が好適に採用され得る。
本発明の実施態様の評価方法によって前記の要件(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させ、(2)4H−SiC単結晶と前記光学媒質との界面に赤外線を照射することにより、反射法では図5(c)に示すように、ベースラインの歪みが解消されて目的とする不純物である窒素に基くピークを示す4H−SiC単結晶の赤外吸収スペクトルを得ることができるのである。
The above requirement (1) Even if the 4H-SiC single crystal is irradiated with infrared rays without bringing the optical medium having a refractive index higher than that of the SiC single crystal into contact with the surface of the SiC single crystal, the transmission method uses FIG. As shown in FIG. 5, in the reflection method, as shown in FIG. 5B, anomalous dispersion in which distortion occurs in the base line occurs, and the infrared absorption spectrum of the target 4H—SiC single crystal cannot be obtained.
Moreover, the SiC single crystal has a large light absorption in the infrared light region. Therefore, for a thick substrate having a bulk single crystal, a method using reflection can be suitably employed because it is affected by light absorption by the SiC single crystal.
According to the evaluation method of the embodiment of the present invention, the above requirement (1) an optical medium having a refractive index higher than that of the SiC single crystal is brought into contact with the surface of the SiC single crystal, and (2) the 4H-SiC single crystal and the optical medium In the reflection method, as shown in FIG. 5C, the baseline distortion is eliminated and the 4H—SiC single crystal red showing a peak based on nitrogen, which is the target impurity, is irradiated in the reflection method. An external absorption spectrum can be obtained.

本発明の実施態様の評価方法において、前記の要件(1)〜(2)を満足することによってベースラインの歪みが解消されて目的とする不純物である窒素に基くピークを示す4H−SiC単結晶の赤外吸収スペクトルを得ることができる理論的な解明は十分にはなされていないが、以下のように考えることができる。SiC単結晶よりも屈折率の高い光学媒質を接触させないで例えば、入射媒質を大気として赤外線を照射すると、1000cm−1近傍で空気の屈折率に対して4H−SiC単結晶の屈折率が急変(n=2.0→0.05)し、屈折率の大小関係が逆転する。このことが、図6に示すように、赤外吸収スペクトルにおいてベースラインの歪み(異常分散)を生じさせる。これに対して、SiC単結晶よりも屈折率の高い光学媒質を接触させると、図7に示すように、この屈折率の急変が起こらずベースライン歪みが解消されることによると考えられる。 In the evaluation method according to the embodiment of the present invention, the 4H-SiC single crystal exhibiting a peak based on nitrogen, which is the target impurity, by eliminating the distortion of the baseline by satisfying the above requirements (1) to (2) Although the theoretical elucidation that can obtain the infrared absorption spectrum is not sufficiently made, it can be considered as follows. For example, when an infrared ray is irradiated with the incident medium as the atmosphere without contacting an optical medium having a higher refractive index than that of the SiC single crystal, the refractive index of the 4H—SiC single crystal suddenly changes with respect to the refractive index of air in the vicinity of 1000 cm −1 ( n = 2.0 → 0.05), and the magnitude relationship of the refractive index is reversed. This causes baseline distortion (anomalous dispersion) in the infrared absorption spectrum, as shown in FIG. On the other hand, when an optical medium having a higher refractive index than that of the SiC single crystal is brought into contact, it is considered that this sudden change in the refractive index does not occur and the baseline distortion is eliminated as shown in FIG.

前記のSiC単結晶よりも屈折率の高い光学媒質としては、1000cm−1近傍、少なくとも966〜971cm−1でSiC単結晶の屈折率(2.0〜0.05)よりも屈折率の高いAsSe、(屈折率=3.15)、Si(屈折率=4.40)およびGe(4.00)から選ばれる材料が挙げられる。
本発明の実施態様の評価方法において、不純物である窒素を含むSiC単結晶と前記光学媒質との界面に赤外線を照射する際に、好適には前記界面で赤外線を全反射させて吸収ピークの強度を求め得る。前記の赤外線の照射において、入射角は高屈折率媒質の種類によって異なるが、通常45°以上85°以下であり得る。
The high optical medium refractive index than the SiC single crystal, having a refractive index higher than the refractive index of the SiC single crystal at 1000 cm -1 vicinity, at least 966~971cm -1 (2.0~0.05) As 2 Se 3 , (refractive index = 3.15), Si (refractive index = 4.40), and Ge (4.00).
In the evaluation method of the embodiment of the present invention, when irradiating infrared rays to the interface between the SiC single crystal containing nitrogen as an impurity and the optical medium, the intensity of the absorption peak is preferably achieved by totally reflecting the infrared rays at the interface. Can ask for. In the infrared irradiation described above, the incident angle varies depending on the type of the high refractive index medium, but can usually be 45 ° to 85 °.

本発明の実施態様において、前記のようにして、例えば920〜1000cm−1の観察範囲で得られたフーリエ変換赤外測定データについて、966〜971cm−1にある吸収ピーク強度を、赤外吸収測定で一般的に用いられているフォークト(Voigt)関数にてピーク分離し強度補正を行って求めることができる。
前記の吸収ピーク強度として、ピーク信号の波高値(ピークの高さ)あるいはピーク信号の積分強度、好適にはピーク信号の波高値(ピークの高さ)を用い得る。
In the embodiment of the present invention, for the Fourier transform infrared measurement data obtained, for example, in the observation range of 920 to 1000 cm −1 as described above, the absorption peak intensity at 966 to 971 cm −1 is measured by infrared absorption measurement. The peak can be separated by a Vogt function generally used in the above and the intensity can be corrected.
As the absorption peak intensity, the peak value of the peak signal (peak height) or the integrated intensity of the peak signal, preferably the peak value of the peak signal (peak height) can be used.

本発明におけるSiC単結晶とは、例えば、バルク、ホモエピタキシャルおよびSiC基板上のSiCエピタキシャル薄膜等を挙げることができる。
本発明の評価方法は任意のタイプのSiC単結晶に適用し得るが、好適には4H型である4H−SiC単結晶に適用し得る。
前記のSiC単結晶は、SiC単結晶を結晶成長する際にドナー元素である窒素(N)を含有させて、SiC単結晶を成長させるための任意の成長法、例えば溶液法又は気相法によってSiC単結晶を成長させる方法によって得ることができる。
前記SiC単結晶の成長法における種結晶としては、成長させようとする結晶と同じ結晶構造のSiCバルク単結晶を使用することが好ましく、例えば溶液法では4H―SiCの単結晶が挙げられる。
前記の溶液法においては、成長炉内に断熱材を介して備えられたSi含有融液を収容する坩堝、該成長炉の周囲に設けられ該融液を加熱して一定温度に維持するための高周波コイルおよび昇降可能な支持棒が備えられ前記支持棒の先端に種結晶が設置された溶液法によるSiC単結晶成長装置を用いてSiC単結晶を結晶成長させ得る。
Examples of the SiC single crystal in the present invention include bulk, homoepitaxial, and SiC epitaxial thin films on a SiC substrate.
The evaluation method of the present invention can be applied to any type of SiC single crystal, but is preferably applicable to a 4H-SiC single crystal that is 4H type.
The SiC single crystal contains nitrogen (N) which is a donor element when the SiC single crystal is grown, and is grown by any growth method for growing the SiC single crystal, for example, a solution method or a vapor phase method. It can be obtained by a method of growing a SiC single crystal.
As the seed crystal in the SiC single crystal growth method, it is preferable to use an SiC bulk single crystal having the same crystal structure as the crystal to be grown. For example, in the solution method, a 4H—SiC single crystal is used.
In the solution method described above, a crucible for accommodating a Si-containing melt provided in a growth furnace via a heat insulating material, and provided around the growth furnace for heating the melt to maintain a constant temperature. A SiC single crystal can be grown using a SiC single crystal growth apparatus based on a solution method in which a high frequency coil and a support rod capable of moving up and down are provided and a seed crystal is placed at the tip of the support rod.

前記のSi含有融液としては、Siの融液用い、坩堝から炭素(C)が供給され、Nガスを炉内に供給することでN添加したSiC単結晶が得られる。
前記の成長法において、融液中の窒素量をSiCに対して0.01〜0.5atm%の範囲内で変化させることによって、SiC単結晶中の不純物である窒素の濃度を変化させることができる。
As the Si-containing melt, a Si melt is used, carbon (C) is supplied from a crucible, and N 2 gas is supplied into the furnace to obtain an N-added SiC single crystal.
In the above growth method, the concentration of nitrogen as an impurity in the SiC single crystal can be changed by changing the amount of nitrogen in the melt within a range of 0.01 to 0.5 atm% with respect to SiC. it can.

前記の温度の制御は、高周波誘導加熱によって加熱し、例えば放射温度計による融液面の温度観察および/又は支持部品(例えば炭素棒)内側に設置した熱電対、例えばW−Re(タングステン/レニューム)熱電対を用いて温度測定を行って求められた測定温度に基づいて温度制御装置によって行うことができる。
前記の溶液法によるSiC単結晶製造装置を用いてSiC単結晶を成長させる方法においては、溶液法におけるそれ自体公知の成長法、例えば黒鉛坩堝の形状、加熱方法、加熱時間、雰囲気、昇温速度および冷却速度を適用して結晶成長することができる。
例えば、高周波誘導加熱による加熱時間(原料の仕込みからSiC飽和濃度に達するまでの凡その時間)としては坩堝の大きさにもよるが30分間〜200時間程度(例えば3〜10時間程度)で、雰囲気としては希ガス、例えばHe、Ne、Arなどの不活性ガスやそれらの一部をNで置き換えたものが挙げられる。また、不活性ガスの一部をメタンガスで置き換えてもよい。
前記の結晶成長における成長温度は1800〜2100℃の温度に加熱した融液中で行うことが好ましい。
The temperature is controlled by high-frequency induction heating, for example, by observing the temperature of the melt surface with a radiation thermometer and / or a thermocouple installed inside a supporting part (for example, a carbon rod), for example, W-Re (tungsten / lenium). ) It can be performed by the temperature controller based on the measured temperature obtained by measuring the temperature using a thermocouple.
In the method of growing a SiC single crystal using the SiC single crystal production apparatus by the solution method, a growth method known per se in the solution method, for example, the shape of the graphite crucible, the heating method, the heating time, the atmosphere, the temperature rising rate The crystal can be grown by applying a cooling rate.
For example, the heating time by high-frequency induction heating (approximately the time from the preparation of raw materials to the SiC saturation concentration) is about 30 minutes to 200 hours (for example, about 3 to 10 hours), depending on the size of the crucible, The atmosphere includes a rare gas, for example, an inert gas such as He, Ne, Ar, or a part of them replaced with N 2 . Further, a part of the inert gas may be replaced with methane gas.
The growth temperature in the crystal growth is preferably performed in a melt heated to a temperature of 1800 to 2100 ° C.

前記の昇華法においては、例えば、黒鉛製の坩堝内にSiC粉末を昇華原料として充填した黒鉛製の坩堝の蓋の内面に種結晶を取り付け、石英管の内部に設置し、Arガス及びN2ガスを二重石英管の内部に流し、SiC粉末が例えば2300℃以上の温度、例えば2300℃になりSiC単結晶基板が2200℃以上の温度、例えば2200℃になるようにし、石英管内を減圧にして種結晶上にSiC単結晶を成長させることができる。前記の原料にはさらにGa、In、Ge又はTeを含有させ得る。
N添加されたSiC単結晶としては、前述のように溶液成長法や昇華法で結晶成長を行った4H−SiC単結晶上にCVD(化学気相堆積)法にて、Si原料にモノシラン又はモノメチルシラン、C原料にプロパン又はメタンなどを用い、これらの原料をHなどのキャリアガスで1400〜2000℃に加熱された反応炉内に、N原料となるNがスとともに導入することで、N添加されたSiC単結晶膜を得ることができる。
In the sublimation method, for example, a seed crystal is attached to the inner surface of a graphite crucible lid filled with SiC powder as a sublimation raw material in a graphite crucible, placed inside a quartz tube, Ar gas and N 2 Gas is allowed to flow inside the double quartz tube so that the SiC powder has a temperature of, for example, 2300 ° C. or higher, for example, 2300 ° C., and the SiC single crystal substrate has a temperature of 2200 ° C. or higher, for example, 2200 ° C. Thus, a SiC single crystal can be grown on the seed crystal. The raw material may further contain Ga, In, Ge, or Te.
As for the SiC single crystal with N added, as described above, the 4H-SiC single crystal grown by the solution growth method or the sublimation method is CVD (chemical vapor deposition), and the Si raw material is monosilane or monomethyl. By using propane, methane, or the like as the silane and C raw materials, and introducing these raw materials into a reaction furnace heated to 1400 to 2000 ° C. with a carrier gas such as H 2, N 2 serving as the N raw material is introduced together with soot. A SiC single crystal film to which N is added can be obtained.

本発明の製造方法は、前記のSiC単結晶を成長させる工程、および得られたSiC単結晶中の窒素濃度を前記の評価方法によって評価する工程を含む、SiC単結晶の製造方法である。
前記の製造方法によって、SiC単結晶の窒素濃度が非破壊的に評価されて結晶中に窒素を5x1015atom/cm以上、好適には2x1016atom/cm以上、特に1018〜ax1019atom/cm(a=1〜5)の高濃度で含むSiC単結晶を容易に得ることができる。
The production method of the present invention is a method for producing a SiC single crystal, comprising the steps of growing the SiC single crystal and evaluating the nitrogen concentration in the obtained SiC single crystal by the evaluation method.
By the manufacturing method, the nitrogen concentration of the SiC single crystal is evaluated nondestructively, and nitrogen is contained in the crystal at 5 × 10 15 atoms / cm 3 or more, preferably 2 × 10 16 atoms / cm 3 or more, particularly 10 18 to ax10 19. An SiC single crystal containing a high concentration of atom / cm 3 (a = 1 to 5) can be easily obtained.

以下、本発明の実施例を示す。
以下に示す測定法は例示であって、当業者が同等と考える測定法も同様に用い得る。
以下の各例において、SiC単結晶の赤外吸収スペクトルは、高屈折率の光学媒質をSiC単結晶上に接触させ、下記の条件で図8に示す照射方法でSiC単結晶と光学媒質との界面に赤外線を照射し、フーリエ変換赤外(FTIR)測定を行った。
測定装置:測定装置としてフーリエ変換赤外分光光度計 Bio−Rad FTS 5
75c
光学媒質:Ge(ゲルマニウム)
測定方法:全反射法
赤外線の照射条件:入射角85°
測定条件:分解能4cm−1、積算回数128回、ゲイン1、アパーチャ:オープン、
測定温度:室温、測定波数領域:600〜1200cm−1
Examples of the present invention will be described below.
The measurement methods shown below are examples, and measurement methods considered equivalent to those skilled in the art can be used as well.
In each of the following examples, the infrared absorption spectrum of the SiC single crystal is obtained by bringing an optical medium having a high refractive index into contact with the SiC single crystal and performing the irradiation method shown in FIG. The interface was irradiated with infrared rays, and Fourier transform infrared (FTIR) measurement was performed.
Measuring device: Fourier transform infrared spectrophotometer Bio-Rad FTS 5 as measuring device
75c
Optical medium: Ge (germanium)
Measurement method: Total reflection method Irradiation condition: Incident angle 85 °
Measurement conditions: resolution 4 cm −1 , integration count 128 times, gain 1, aperture: open,
Measurement temperature: room temperature, measurement wavenumber region: 600-1200 cm −1

また、以下の各例において、各SiC単結晶についての吸収ピークの強度は、前記のようにして600〜1200cm−1間でデータを取得した。920〜1000cm−1の観察範囲で得られたフーリエ変換赤外測定データについて、966〜971cm−1にある吸収ピーク信号の強度を、赤外吸収測定で一般的に用いられているフォークト(Voigt)関数にて強度補正を行いピーク信号の波高値によって求めた。 Moreover, in each of the following examples, the intensity of the absorption peak for each SiC single crystal was acquired between 600 and 1200 cm −1 as described above. For Fourier transform infrared measurement data obtained in the observation range of 920 to 1000 cm −1 , the intensity of the absorption peak signal in the range of 966 to 971 cm −1 is the Vogt generally used for infrared absorption measurement. The intensity was corrected by the function and obtained from the peak value of the peak signal.

実施例1
1.不純物として窒素を含む4H−SiC単結晶の成長
溶液成長法を用いた4H−SiC単結晶成長において、原料としてSi60atm%、Cr40atm%、SiCに対してN(全量を窒素ガスとして供給)0.02〜0.2atm%を黒鉛製の坩堝内に投入し、成長温度2010℃の温度に加熱した融液中、種結晶として4H−SiC単結晶を1〜200時間浸漬し、約10時間結晶成長させた。
得られたSiC単結晶は下記のN濃度を有していた。
N濃度 7.0x1017〜1.5x1019atom/cm−3
また、CVD法を用いた4H−SiC単結晶薄膜の成長法において、ホットウォール型のCVD装置に、原料としてモノシラン10ccm(cm/min.)、プロパン5ccm、Nガス20〜250ccmおよびキャリアガスとしてHを25Lm流し、成長温度1500℃で1時間程度加熱することで、前述の溶液法成長4H−SiC基板及び昇華法成長4H−SiC基板上に4H−SiCの単結晶薄膜を厚さ10μm形成した。N濃度は2.0x1016〜3.0x1017atom/cm−3であった。
Example 1
1. Growth of 4H-SiC single crystal containing nitrogen as an impurity In 4H-SiC single crystal growth using a solution growth method, Si as a raw material is 60 atm%, Cr is 40 atm%, and N is supplied to SiC (total amount is supplied as nitrogen gas) 0.02. ˜0.2 atm% is put into a graphite crucible, and 4H—SiC single crystal is immersed as a seed crystal in a melt heated to a growth temperature of 2010 ° C. for 1 to 200 hours to grow the crystal for about 10 hours. It was.
The obtained SiC single crystal had the following N concentration.
N concentration 7.0 × 10 17 to 1.5 × 10 19 atoms / cm −3
Further, in the growth method of 4H—SiC single crystal thin film using CVD, monosilane 10 ccm (cm 3 / min.), Propane 5 ccm, N 2 gas 20 to 250 ccm, and carrier gas are used in a hot wall type CVD apparatus. and H 2 flow 25Lm as, by heating for about one hour at a growth temperature of 1500 ° C., the thickness 10μm of the single-crystal thin film of 4H-SiC in the foregoing solution process growth 4H-SiC substrate and sublimation growth 4H-SiC substrate Formed. The N concentration was 2.0 × 10 16 to 3.0 × 10 17 atoms / cm −3 .

2.4H−SiC単結晶の評価
上記の方法で成長させた、予め窒素濃度をSIMSで測定して評価して窒素濃度が各々1.5x1019atom/cm、7.0x1018atom/cm、7.6x1017atom/cmおよび2.0x1016atom/cmである4種類の4H−SiC単結晶について、前記の条件で赤外線を照射して全反射させて赤外吸収スペクトルを得た。
得られた赤外吸収スペクトルを図1に示す。
各SiC単結晶の吸収ピーク強度と窒素濃度との関係を、縦軸に吸収強度、横軸に窒素濃度を対数表示にして相関させて、検量線を作成し、図2として示す。
2.4 Evaluation of Single Crystal of H-SiC The nitrogen concentration was 1.5x10 19 atom / cm 3 and 7.0x10 18 atom / cm 3 , respectively, which were grown by the above method and evaluated by SIMS in advance. , 7.6 × 10 17 atoms / cm 3 and 2.0 × 10 16 atoms / cm 3 of 4 types of 4H—SiC single crystals were irradiated with infrared rays under the above conditions to be totally reflected to obtain infrared absorption spectra. .
The obtained infrared absorption spectrum is shown in FIG.
A calibration curve is created by correlating the relationship between the absorption peak intensity and the nitrogen concentration of each SiC single crystal with the absorption intensity on the vertical axis and the nitrogen concentration on the horizontal axis in logarithmic form, and is shown in FIG.

一方、窒素濃度が未知の4H−SiC単結晶について、上記と同様にして前記の条件で赤外線を照射して全反射させて赤外吸収スペクトルを得た。
得られた赤外吸収スペクトルを図1のa点として示す。
この4H−SiC単結晶の吸収ピークの強度は、0.0527であった。
図2の検量線から、窒素濃度は7x1018atom/cmと評価された。
On the other hand, 4H-SiC single crystal with unknown nitrogen concentration was irradiated with infrared rays under the same conditions as described above and totally reflected to obtain an infrared absorption spectrum.
The obtained infrared absorption spectrum is shown as point a in FIG.
The intensity of the absorption peak of this 4H—SiC single crystal was 0.0527.
From the calibration curve in FIG. 2, the nitrogen concentration was estimated to be 7 × 10 18 atoms / cm 3 .

比較例1
SIMSで予め窒素濃度を評価して窒素濃度が各々1.5x1019atom/cm、7.0x1018atom/cm、7.6x1017atom/cmおよび2.0x1016atom/cmである4種類の4H−SiC単結晶について、実施例1と同様にして赤外吸収スペクトルを得た。この赤外吸収スペクトルから980cm−1相当とされる固定波数による吸収強度(ピーク強度)を窒素濃度に対してプロットした。結果を図3に示す。
この図3からは、窒素濃度が未知の4H−SiC単結晶の吸収ピークの強度を求めても一義的に窒素濃度を評価できないことが明らかである。
Comparative Example 1
SIMS to evaluate in advance the nitrogen concentration in the nitrogen concentration respectively 1.5x10 19 atom / cm 3 to, 7.0x10 18 atom / cm 3, is 7.6x10 17 atom / cm 3 and 2.0x10 16 atom / cm 3 For four types of 4H—SiC single crystals, infrared absorption spectra were obtained in the same manner as in Example 1. From the infrared absorption spectrum, the absorption intensity (peak intensity) at a fixed wave number corresponding to 980 cm −1 was plotted against the nitrogen concentration. The results are shown in FIG.
From FIG. 3, it is clear that the nitrogen concentration cannot be uniquely evaluated even if the intensity of the absorption peak of the 4H—SiC single crystal whose nitrogen concentration is unknown is obtained.

比較例2
SIMSで予め窒素濃度を評価して窒素濃度が1.5x1019atom/cmである4H−SiC単結晶について、光学媒質としてGeを用いないで代りに大気を用いた他は実施例1と同様にして赤外吸収スペクトルを得た。この赤外吸収スペクトルを図5(b)に示す。
図5(b)から、この評価方法ではベースラインに歪みが生じる異常分散が起こり、不純物に基くピークを示す赤外吸収スペクトルを得ることがでず、4H−SiC単結晶中の窒素濃度を評価できないことが明らかである。
Comparative Example 2
The 4H-SiC single crystal whose nitrogen concentration was evaluated in advance by SIMS and the nitrogen concentration was 1.5 × 10 19 atoms / cm 3 was the same as in Example 1 except that air was used instead of Ge as the optical medium. Infrared absorption spectrum was obtained. This infrared absorption spectrum is shown in FIG.
From FIG. 5B, in this evaluation method, anomalous dispersion in which distortion occurs in the baseline occurs, and an infrared absorption spectrum showing a peak based on impurities cannot be obtained, and the nitrogen concentration in the 4H—SiC single crystal is evaluated. Obviously you can't.

本発明のSiC単結晶の評価方法によって、結晶中に窒素を5x1016atom/cm以上の濃度で含むSiC単結晶の窒素濃度を非破壊的に評価し得る。
また、本発明の製造方法によれば、SiC単結晶の窒素濃度が非破壊的に評価されて結晶中に窒素を5x1016atom/cm以上の濃度で含むSiC単結晶を容易に得ることができる。
By the method for evaluating a SiC single crystal of the present invention, the nitrogen concentration of a SiC single crystal containing nitrogen at a concentration of 5 × 10 16 atoms / cm 3 or more can be evaluated nondestructively.
Further, according to the manufacturing method of the present invention, it is possible to easily obtain a SiC single crystal in which the nitrogen concentration of the SiC single crystal is evaluated nondestructively and nitrogen is contained in the crystal at a concentration of 5 × 10 16 atoms / cm 3 or more. it can.

Claims (8)

結晶中の窒素濃度を評価するSiC単結晶の評価方法であって、
(1)SiC単結晶の表面に前記SiC単結晶よりも屈折率の高い光学媒質を接触させ、
(2)前記SiC単結晶と前記光学媒質との界面に赤外線を照射し、
(3)得られた赤外線スペクトルから966〜971cm−1の範囲で吸収波数のピーク値が変化する吸収ピーク強度を求め、
(4)得られた吸収ピーク強度に基いてSiC単結晶中の窒素濃度を評価する、
前記方法。
A method for evaluating a SiC single crystal for evaluating a nitrogen concentration in a crystal,
(1) An optical medium having a refractive index higher than that of the SiC single crystal is brought into contact with the surface of the SiC single crystal,
(2) irradiating the interface between the SiC single crystal and the optical medium with infrared rays;
(3) Obtain the absorption peak intensity at which the peak value of the absorption wave number changes in the range of 966 to 971 cm −1 from the obtained infrared spectrum,
(4) Evaluating the nitrogen concentration in the SiC single crystal based on the obtained absorption peak intensity,
Said method.
窒素濃度が既知で該濃度が異なる複数のSiC単結晶について前記(1)〜(3)によって吸収ピーク強度を求め、予め窒素濃度と吸収ピーク強度との相関を求めておく請求項1に記載の評価方法。   The absorption peak intensity is obtained by the above (1) to (3) for a plurality of SiC single crystals having a known nitrogen concentration and different concentrations, and a correlation between the nitrogen concentration and the absorption peak intensity is obtained in advance. Evaluation method. 前記赤外線スペクトルが、前記界面で赤外線を全反射させて得られる反射光のスペクトルである請求項1又は2に記載の評価方法。   The evaluation method according to claim 1, wherein the infrared spectrum is a spectrum of reflected light obtained by totally reflecting infrared rays at the interface. 前記光学媒質が、AsSe、SiおよびGeから選ばれる請求項1〜3のいずれか1項に記載の評価方法。 The evaluation method according to claim 1, wherein the optical medium is selected from As 2 Se 3 , Si, and Ge. 前記SiC単結晶がバルクである請求項1〜4のいずれか1項に記載の評価方法。   The evaluation method according to claim 1, wherein the SiC single crystal is bulk. 前記SiC単結晶が、4H型である請求項1〜5のいずれか1項に記載の評価方法。   The evaluation method according to claim 1, wherein the SiC single crystal is a 4H type. SiC単結晶の製造方法であって、
SiC単結晶を成長させる工程、および
得られたSiC単結晶中の窒素濃度を請求項1〜6のいずれか1項に記載の評価方法によって評価する工程、
を含む、前記方法。
A method for producing a SiC single crystal, comprising:
A step of growing a SiC single crystal, and a step of evaluating the nitrogen concentration in the obtained SiC single crystal by the evaluation method according to any one of claims 1 to 6,
Said method.
前記SiC単結晶を溶液法によって成長させる請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the SiC single crystal is grown by a solution method.
JP2012242162A 2012-11-01 2012-11-01 Method for evaluating SiC single crystal and method for producing SiC single crystal using the same Expired - Fee Related JP5895818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242162A JP5895818B2 (en) 2012-11-01 2012-11-01 Method for evaluating SiC single crystal and method for producing SiC single crystal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242162A JP5895818B2 (en) 2012-11-01 2012-11-01 Method for evaluating SiC single crystal and method for producing SiC single crystal using the same

Publications (2)

Publication Number Publication Date
JP2014092411A true JP2014092411A (en) 2014-05-19
JP5895818B2 JP5895818B2 (en) 2016-03-30

Family

ID=50936586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242162A Expired - Fee Related JP5895818B2 (en) 2012-11-01 2012-11-01 Method for evaluating SiC single crystal and method for producing SiC single crystal using the same

Country Status (1)

Country Link
JP (1) JP5895818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114226A1 (en) * 2015-01-13 2017-11-09 東洋紡株式会社 Water quality evaluation method, quantitative method and water treatment method for treated water
JP2021032578A (en) * 2019-08-16 2021-03-01 信越半導体株式会社 Nitrogen concentration measurement method
JP2021170036A (en) * 2018-11-15 2021-10-28 アンリツ株式会社 Material characteristic inspection device
CN114112249A (en) * 2021-11-24 2022-03-01 长沙新材料产业研究院有限公司 Method, device and medium for testing vacuum leakage rate of MPCVD equipment
WO2023051617A1 (en) * 2021-09-28 2023-04-06 西安奕斯伟材料科技有限公司 Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297247A (en) * 1994-04-20 1995-11-10 Toshiba Corp Method of evaluating substrate
JPH11132941A (en) * 1997-08-15 1999-05-21 Bio Rad Lab Inc Image-generating atr spectroscope and method for acquisition of spectrum absorption image
WO2005114232A2 (en) * 2004-05-14 2005-12-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik Method and apparatus for the determination of the concentration of impurities in a wafer
JP2011102206A (en) * 2009-11-10 2011-05-26 Toyota Motor Corp METHOD FOR MANUFACTURING N-TYPE SiC SINGLE CRYSTAL, N-TYPE SiC SINGLE CRYSTAL OBTAINED BY THE METHOD, AND APPLICATION OF THE CRYSTAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297247A (en) * 1994-04-20 1995-11-10 Toshiba Corp Method of evaluating substrate
JPH11132941A (en) * 1997-08-15 1999-05-21 Bio Rad Lab Inc Image-generating atr spectroscope and method for acquisition of spectrum absorption image
WO2005114232A2 (en) * 2004-05-14 2005-12-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Institut Für Innovative Mikroelektronik Method and apparatus for the determination of the concentration of impurities in a wafer
JP2011102206A (en) * 2009-11-10 2011-05-26 Toyota Motor Corp METHOD FOR MANUFACTURING N-TYPE SiC SINGLE CRYSTAL, N-TYPE SiC SINGLE CRYSTAL OBTAINED BY THE METHOD, AND APPLICATION OF THE CRYSTAL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015026769; SUNKARI S , et.al.: 'Investigation of Longitudinal-Optical Phonon-Plasmon Coupled Modes in SiC Epitaxial Film Using Fouri' Journal of ELECTRONIC MATERLIALS Vol.34, No.4, 200504, p.320-323 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114226A1 (en) * 2015-01-13 2017-11-09 東洋紡株式会社 Water quality evaluation method, quantitative method and water treatment method for treated water
JP2021170036A (en) * 2018-11-15 2021-10-28 アンリツ株式会社 Material characteristic inspection device
JP2021032578A (en) * 2019-08-16 2021-03-01 信越半導体株式会社 Nitrogen concentration measurement method
JP7230741B2 (en) 2019-08-16 2023-03-01 信越半導体株式会社 Nitrogen concentration measurement method
WO2023051617A1 (en) * 2021-09-28 2023-04-06 西安奕斯伟材料科技有限公司 Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
CN114112249A (en) * 2021-11-24 2022-03-01 长沙新材料产业研究院有限公司 Method, device and medium for testing vacuum leakage rate of MPCVD equipment
CN114112249B (en) * 2021-11-24 2023-10-27 航天科工(长沙)新材料研究院有限公司 Method, device and medium for testing vacuum leak rate of MPCVD equipment

Also Published As

Publication number Publication date
JP5895818B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5895818B2 (en) Method for evaluating SiC single crystal and method for producing SiC single crystal using the same
CN105658846B (en) The manufacturing method of silicon carbide single crystal wafer and single-crystal silicon carbide ingot
Berencén et al. Structural and optical properties of pulsed-laser deposited crystalline β-Ga2O3 thin films on silicon
US9541452B2 (en) Calibration curve formation method, impurity concentration measurement method, and semiconductor wafer manufacturing method
Hartmann et al. Favourable growth conditions for the preparation of bulk AlN single crystals by PVT
JP2009027100A (en) Substrate temperature measuring apparatus and substrate temperature measurement method
Freitas Jr et al. Structural and optical properties of thick freestanding AlN films prepared by hydride vapor phase epitaxy
Komar et al. Characterization of CdZnTe crystals grown by HPB method
Belas et al. High temperature optical absorption edge of CdTe single crystal
Shpotyuk et al. Effect of Ga incorporation in the As30Se50Te20 glass
Schätzle et al. A Chemical Vapor Deposition Diamond Reactor for Controlled Thin‐Film Growth with Sharp Layer Interfaces
Popovych et al. The effect of chlorine doping concentration on the quality of CdTe single crystals grown by the modified physical vapor transport method
US10317338B2 (en) Method and assembly for determining the carbon content in silicon
CN114411258B (en) Growth method and growth equipment of silicon carbide crystals
Doyle et al. Mercury cadmium selenide for infrared detection
WO2015140227A2 (en) High transmittance single crystal yap scintillators
Matuchova et al. Electrical, optical and structural properties of lead iodide
JP6118288B2 (en) Method for measuring carbon concentration in nitride semiconductor and method for producing nitride semiconductor
Xiao et al. Terahertz optoelectronic properties of synthetic single crystal diamond
Iqbal et al. Structural and some other properties of silicon deposited in an SiCl4 H2 rf discharge
Hartnett et al. Potential limitations for using CVD diamond as LWIR windows
Johnson et al. Synthesis and characterization of bulk, vitreous cadmium germanium arsenide
Molloy et al. Solid solution GaSe 1− x S x crystals for THz applications
Mustafaeva et al. Influence of the composition of (TlGaS2) 1–х (TlInSe2) x solid solutions on their physical properties
Chen et al. Effects of crystallinity and chemical variation on apparent band-gap shift in polycrystalline indium nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees