JP6881387B2 - DZ layer measurement method - Google Patents

DZ layer measurement method Download PDF

Info

Publication number
JP6881387B2
JP6881387B2 JP2018085619A JP2018085619A JP6881387B2 JP 6881387 B2 JP6881387 B2 JP 6881387B2 JP 2018085619 A JP2018085619 A JP 2018085619A JP 2018085619 A JP2018085619 A JP 2018085619A JP 6881387 B2 JP6881387 B2 JP 6881387B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
layer
average value
moving average
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085619A
Other languages
Japanese (ja)
Other versions
JP2019192835A (en
Inventor
康太 藤井
康太 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018085619A priority Critical patent/JP6881387B2/en
Publication of JP2019192835A publication Critical patent/JP2019192835A/en
Application granted granted Critical
Publication of JP6881387B2 publication Critical patent/JP6881387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコンウェーハのDZ層の測定方法に関する。 The present invention relates to a method for measuring a DZ layer of a silicon wafer.

半導体デバイス用シリコンウェーハには、主にチョクラルスキー法(CZ法)により育成されたシリコン単結晶が用いられる。さらに、先端デバイス用としては、デバイス形成領域であるウェーハ表層が無欠陥であること、およびバルクには金属不純物のゲッタリングに寄与する高密度の酸素析出物(Bulk Micro Defects:BMD)が存在していることが求められる。 As a silicon wafer for a semiconductor device, a silicon single crystal grown by the Czochralski method (CZ method) is mainly used. Furthermore, for advanced devices, the wafer surface layer, which is the device formation region, is defect-free, and high-density oxygen precipitates (Bulk Micro Defects: BMD) that contribute to gettering of metal impurities are present in the bulk. Is required to be.

しかし、CZ法で育成されたシリコン単結晶中にはGrown−in欠陥と呼ばれる結晶成長中に導入された結晶欠陥が存在する。そのため、先端デバイス用ウェーハは所定の熱処理を施して製造される場合がある。この熱処理により、ウェーハ表層ではGrown−in欠陥が消滅し、無欠陥層(Denuded Zone:DZ)が形成され、バルクではBMDが高密度に形成される。 However, in the silicon single crystal grown by the CZ method, there is a crystal defect called a Green-in defect introduced during crystal growth. Therefore, the wafer for advanced devices may be manufactured by subjecting it to a predetermined heat treatment. By this heat treatment, Green-in defects disappear on the wafer surface layer, a defect-free layer (Depended Zone: DZ) is formed, and BMD is formed at a high density in the bulk.

デバイス作製時には、このDZ層は所定幅以上であることが要求されており、ウェーハ製造時における重要な品質項目である。 At the time of device manufacturing, this DZ layer is required to have a predetermined width or more, which is an important quality item at the time of wafer manufacturing.

従来、DZ層幅を測定する場合は、ウェーハを劈開もしくは、斜め研磨し、その劈開面もしくは研磨面を選択エッチングした後、目視検査員が、顕微鏡観察、および/または顕微鏡を介して撮影された画像から計測していた。例えば、ウェーハ表面から数えて所定番目のBMDまでの距離をDZ層幅として採用していた。 Conventionally, when measuring the DZ layer width, a wafer is cleaved or diagonally polished, the cleaved surface or the polished surface is selectively etched, and then a visual inspector observes the wafer and / or photographs it via a microscope. It was measured from the image. For example, the distance from the wafer surface to the predetermined BMD is adopted as the DZ layer width.

特開2002−100631号公報Japanese Unexamined Patent Publication No. 2002-100631 特開2000−068280号公報Japanese Unexamined Patent Publication No. 2000-068280

しかし、上述した方法は実際に検査員が欠陥を観察するため測定精度は高いが、目視検査であるため、スループットが悪いという問題があった。 However, the above-mentioned method has a problem that the measurement accuracy is high because the inspector actually observes the defect, but the throughput is poor because it is a visual inspection.

他方、特許文献1のように、SIMSで測定した酸素濃度分布からDZ層幅を求めることも出来るが、SIMSでは極微小な酸素析出物による酸素も検出される。しかし、このような極微小な酸素析出物はゲッタリングに寄与できない。 On the other hand, as in Patent Document 1, the DZ layer width can be obtained from the oxygen concentration distribution measured by SIMS, but SIMS also detects oxygen due to extremely small oxygen precipitates. However, such microscopic oxygen precipitates cannot contribute to gettering.

特許文献2によると、ゲッタリングに寄与するBMDサイズは、BMD密度に依存する。例えばBMD密度が1×10/cmの場合は、約40nm以上のBMDがゲッタリングに寄与する。これに対し、顕微鏡観察では、50nm以上のBMDが検出され、ゲッタリングに寄与するBMDのみを検出出来るため、顕微鏡観察により評価されるDZ層幅が重要である。 According to Patent Document 2, the BMD size that contributes to gettering depends on the BMD density. For example, when the BMD density is 1 × 10 9 / cm 3 , a BMD of about 40 nm or more contributes to gettering. On the other hand, in microscopic observation, BMD of 50 nm or more is detected, and only BMD that contributes to gettering can be detected. Therefore, the DZ layer width evaluated by microscopic observation is important.

本発明は、上記問題点に鑑みてなされたものであって、顕微鏡観察により求められるDZ層幅を、良好なスループットで求めることができるDZ層の測定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for measuring a DZ layer, which can obtain a DZ layer width obtained by microscopic observation with good throughput.

上記目的を達成するために、本発明は、シリコンウェーハの表層に形成されるDZ層の測定方法であって、SIMSで測定した酸素濃度の深さ分布から求められるDZ層幅と、顕微鏡観察により求められるDZ層幅との検量線を作成し、作成された前記検量線に基づいて、測定サンプルのSIMSにより求められたDZ層幅から、顕微鏡観察により求められるDZ層幅を求めることを特徴とするDZ層の測定方法を提供する。 In order to achieve the above object, the present invention is a method for measuring a DZ layer formed on the surface layer of a silicon wafer, based on the DZ layer width obtained from the depth distribution of oxygen concentration measured by SIMS and microscopic observation. A calibration curve with the obtained DZ layer width is created, and the DZ layer width obtained by microscopic observation is obtained from the DZ layer width obtained by SIMS of the measurement sample based on the prepared calibration curve. A method for measuring the DZ layer is provided.

このようなDZ層の測定方法であれば、顕微鏡観察により求められるDZ層幅を、良好なスループットで求めることができる。すなわち、目視検査は検量線作成時のみであることから、スループットを向上させることが出来る。また、SIMSにより求められるDZ層幅よりも重要な顕微鏡観察により求められるDZ層幅を求めることが出来る。 With such a method for measuring the DZ layer, the width of the DZ layer obtained by microscopic observation can be obtained with good throughput. That is, since the visual inspection is performed only when the calibration curve is created, the throughput can be improved. In addition, the DZ layer width obtained by microscopic observation, which is more important than the DZ layer width obtained by SIMS, can be obtained.

このとき、前記SIMS測定において、酸素濃度の移動平均値と酸素濃度の測定値の乖離が酸素濃度の移動平均値に対して±3%以内となる最も浅い深さをAとし、前記Aより深い領域で酸素濃度の移動平均値と酸素濃度の測定値が酸素濃度の移動平均値に対して±5%以上乖離した深さBをSIMSのDZ層幅とすることができる。 At this time, in the SIMS measurement, the shallowest depth at which the difference between the moving average value of the oxygen concentration and the measured value of the oxygen concentration is within ± 3% of the moving average value of the oxygen concentration is defined as A, which is deeper than the A. The depth B in which the moving average value of the oxygen concentration and the measured value of the oxygen concentration deviate by ± 5% or more from the moving average value of the oxygen concentration in the region can be defined as the DZ layer width of SIMS.

このような手順により、SIMSで測定した酸素濃度の深さ分布から好適にDZ層幅を求めることができる。 By such a procedure, the DZ layer width can be suitably obtained from the depth distribution of the oxygen concentration measured by SIMS.

このとき、前記SIMS測定において、酸素濃度の移動平均値と酸素濃度の測定値の乖離が酸素濃度の移動平均値に対して±3%以内となる最も浅い深さをAとし、前記Aより深い領域で酸素濃度の移動平均値と酸素濃度の測定値が酸素濃度の移動平均値に対して±5%以上乖離した深さBの3/4の深さまでの領域の酸素濃度の測定値より近似曲線を作成し、前記Aより深い領域で前記近似曲線と酸素濃度の移動平均値が前記近似曲線に対して±5%以上乖離した深さCをSIMSのDZ層幅とすることもできる。 At this time, in the SIMS measurement, the shallowest depth at which the difference between the moving average value of the oxygen concentration and the measured value of the oxygen concentration is within ± 3% of the moving average value of the oxygen concentration is defined as A, which is deeper than the A. The moving average value of oxygen concentration and the measured value of oxygen concentration in the region deviate by ± 5% or more from the moving average value of oxygen concentration. A curve can be created, and the depth C at which the moving average value of the oxygen concentration and the approximate curve deviates from the approximate curve by ± 5% or more in a region deeper than A can be defined as the DZ layer width of SIMS.

このような手順によっても、SIMSで測定した酸素濃度の深さ分布から好適にDZ層幅を求めることができる。 Also by such a procedure, the DZ layer width can be suitably obtained from the depth distribution of the oxygen concentration measured by SIMS.

このとき、前記酸素濃度の移動平均値は、その測定深さの前後5個以上10個以下の酸素濃度の測定値の平均値であることが好ましい。 At this time, the moving average value of the oxygen concentration is preferably the average value of the measured values of the oxygen concentration of 5 or more and 10 or less before and after the measurement depth.

SIMSの測定間隔は0.1μm以下が望ましく、移動平均値を算出するための測定点が5個以上であれば、測定値が十分に平滑化され、DZ層を誤判定してしまうことを防止できる。また、移動平均値を算出するための測定点が10個以下であれば、平滑化され過ぎてしまい、急激に酸素濃度が増加した地点を判断することができなくなるようなこともない。 The SIMS measurement interval is preferably 0.1 μm or less, and if there are 5 or more measurement points for calculating the moving average value, the measured values are sufficiently smoothed to prevent erroneous determination of the DZ layer. it can. Further, if the number of measurement points for calculating the moving average value is 10 or less, the smoothing is not performed too much, and it is not impossible to determine the point where the oxygen concentration suddenly increases.

以上のように、本発明のDZ層の測定方法によれば、顕微鏡観察により求められるDZ層幅を、良好なスループットで求めることができる。 As described above, according to the method for measuring the DZ layer of the present invention, the width of the DZ layer obtained by microscopic observation can be obtained with good throughput.

本発明のDZ層の測定方法を示すフロー図である。It is a flow chart which shows the measuring method of the DZ layer of this invention. 熱処理ウェーハの酸素濃度分布を示す図である。It is a figure which shows the oxygen concentration distribution of a heat-treated wafer. 酸素濃度の測定値と酸素濃度の移動平均値の誤差率を示す図である。It is a figure which shows the error rate of the measured value of oxygen concentration and the moving average value of oxygen concentration. 別の熱処理ウェーハの酸素濃度分布を示す図である。It is a figure which shows the oxygen concentration distribution of another heat-treated wafer. 酸素濃度の移動平均値と近似値との誤差率を示す図である。It is a figure which shows the error rate between the moving average value and the approximate value of oxygen concentration. 実施例のサンプル3の酸素濃度分布を示す図である。It is a figure which shows the oxygen concentration distribution of the sample 3 of an Example. SIMS測定から求めたDZ層幅と、顕微鏡観察から求めたDZ層幅との検量線を示す図である。It is a figure which shows the calibration curve of the DZ layer width obtained by SIMS measurement, and the DZ layer width obtained by microscopic observation.

従来、DZ層幅を測定する場合は、ウェーハを劈開もしくは、斜め研磨し、その劈開面もしくは研磨面を選択エッチングした後、目視検査員が、ウェーハ表面から数えて所定番目のBMDまでの距離をDZ層幅として採用していた。
しかし、この方法は目視検査であるため、スループットが悪いという問題があった。
Conventionally, when measuring the DZ layer width, the wafer is cleaved or diagonally polished, the cleaved surface or the polished surface is selectively etched, and then a visual inspector determines the distance from the wafer surface to the predetermined BMD. It was used as the DZ layer width.
However, since this method is a visual inspection, there is a problem that the throughput is poor.

他方、SIMSで測定した酸素濃度分布からDZ層幅を求めることも出来るが、SIMSでは極微小な酸素析出物による酸素も検出される。しかし、このような極微小な酸素析出物はゲッタリングに寄与できない。
ゲッタリングに寄与するBMDサイズは、BMD密度に依存し、例えばBMD密度が1×10/cmの場合は、約40nm以上のBMDがゲッタリングに寄与する。これに対し、顕微鏡観察では、50nm以上のBMDが検出され、ゲッタリングに寄与するBMDのみを検出出来るため、顕微鏡観察により評価されるDZ層幅が重要である。
On the other hand, the DZ layer width can be obtained from the oxygen concentration distribution measured by SIMS, but SIMS also detects oxygen due to extremely small oxygen precipitates. However, such microscopic oxygen precipitates cannot contribute to gettering.
The BMD size that contributes to gettering depends on the BMD density. For example, when the BMD density is 1 × 10 9 / cm 3 , a BMD of about 40 nm or more contributes to gettering. On the other hand, in microscopic observation, BMD of 50 nm or more is detected, and only BMD that contributes to gettering can be detected. Therefore, the DZ layer width evaluated by microscopic observation is important.

そこで本発明者は鋭意検討を重ね、SIMSで測定した酸素濃度分布から求めたDZ層幅と、顕微鏡観察から求めたDZ層幅との間には、相関があることを見出し、両者のDZ層幅の検量線を用いることで、SIMSで測定した酸素濃度分布から求めたDZ層幅から、顕微鏡観察によるDZ層幅を迅速に求められることを見出し、本発明を完成させた。 Therefore, the present inventor repeated diligent studies and found that there is a correlation between the DZ layer width obtained from the oxygen concentration distribution measured by SIMS and the DZ layer width obtained from microscopic observation, and both DZ layers. We have found that the DZ layer width by microscopic observation can be quickly obtained from the DZ layer width obtained from the oxygen concentration distribution measured by SIMS by using the width calibration curve, and completed the present invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings as an example of an embodiment, but the present invention is not limited thereto.

以下、本発明のDZ層の測定方法を、図1を参照しながら、説明する。 Hereinafter, the method for measuring the DZ layer of the present invention will be described with reference to FIG.

SIMSでは、小さいBMDも酸素濃度の測定値の変化として検出し、DZ層幅を過小に見積もってしまうため、顕微鏡観察のDZ層幅に換算する必要がある。 In SIMS, even a small BMD is detected as a change in the measured value of oxygen concentration, and the DZ layer width is underestimated. Therefore, it is necessary to convert it into the DZ layer width observed by a microscope.

そこで、初めにSIMSと顕微鏡観察の両手法でDZ層幅を測定し、両者の検量線を作成する(図1のS11参照)。この時、SIMSではDZ層幅は過小に見積もられるため、両者の値は一致しないが、本発明者が見出したように両者には相関がある。 Therefore, first, the DZ layer width is measured by both SIMS and microscopic observation methods, and a calibration curve for both is prepared (see S11 in FIG. 1). At this time, since the DZ layer width is underestimated in SIMS, the two values do not match, but as the present inventor has found, there is a correlation between the two.

具体的には、複数の熱処理ウェーハを用意し、SIMSにより求められるDZ層幅と顕微鏡観察により求められるDZ層幅の検量線を作成する。 Specifically, a plurality of heat-treated wafers are prepared, and a calibration curve of the DZ layer width obtained by SIMS and the DZ layer width obtained by microscopic observation is created.

SIMSによる酸素濃度測定において、BMDが形成されていない領域(すなわち、DZ層)ではウェーハ中の格子間酸素のみが検出されるのに対し、BMDが形成された領域では格子間酸素の他に、BMDに含まれる酸素も検出されるためDZ層よりも酸素濃度が高く検出される。よって、急激に酸素濃度が増加するとともに、酸素濃度のバラツキが増加する深さまでがDZ層であると判定出来る。 In the oxygen concentration measurement by SIMS, only interstitial oxygen in the wafer is detected in the region where BMD is not formed (that is, the DZ layer), whereas in the region where BMD is formed, in addition to interstitial oxygen, Since the oxygen contained in the BMD is also detected, the oxygen concentration is higher than that of the DZ layer. Therefore, it can be determined that the DZ layer has a depth to which the oxygen concentration rapidly increases and the variation in the oxygen concentration increases.

この時、BMD形成領域では、BMDのサイズや密度によって、酸素濃度の値が変動するため、測定間隔は0.1μm以下では、測定深さの前後5個以上10個以下の測定値の移動平均値を用いるとより判定精度を向上出来る。 At this time, in the BMD forming region, the oxygen concentration value fluctuates depending on the size and density of the BMD. Therefore, when the measurement interval is 0.1 μm or less, the moving average of the measured values of 5 or more and 10 or less before and after the measurement depth. The determination accuracy can be further improved by using the value.

移動平均値を計算するための測定点が5個以上であれば、測定値が十分に平滑化され、DZ層を誤判定してしまうことを防止することができ、移動平均値を計算するための測定点が10個以下であれば、平滑化され過ぎてしまい、急激に酸素濃度が増加した地点を判断することができなくなることを防止することができる。 If there are 5 or more measurement points for calculating the moving average value, the measured value is sufficiently smoothed, it is possible to prevent the DZ layer from being erroneously determined, and the moving average value is calculated. If the number of measurement points is 10 or less, it is possible to prevent the points from being over-smoothed and being unable to determine the points where the oxygen concentration suddenly increases.

さらに、ウェーハ表層では、表面に付着した酸素や不純物の影響で、SIMSの酸素濃度の値はウェーハ中の酸素濃度と異なっているため、この領域を除外する必要がある。 Further, in the surface layer of the wafer, the oxygen concentration value of SIMS is different from the oxygen concentration in the wafer due to the influence of oxygen and impurities adhering to the surface, so it is necessary to exclude this region.

よって、SIMSによりDZ層幅を求めるには、例えばウェーハ表面から深さ10μmまでの酸素濃度分布を測定し、各測定深さの移動平均値を算出する。その後、表面の影響を除外するため、酸素濃度の測定値と酸素濃度の移動平均値の乖離が酸素濃度の移動平均値に対して±3%以内となる最も浅い深さをAとし、この深さAより深い領域で、酸素濃度の測定値と酸素濃度の移動平均値が酸素濃度の移動平均値に対して±5%以上乖離した深さBをDZ層幅とすることができる。 Therefore, in order to obtain the DZ layer width by SIMS, for example, the oxygen concentration distribution from the wafer surface to a depth of 10 μm is measured, and the moving average value of each measurement depth is calculated. After that, in order to exclude the influence of the surface, the shallowest depth at which the difference between the measured value of oxygen concentration and the moving average value of oxygen concentration is within ± 3% of the moving average value of oxygen concentration is set as A, and this depth is set. In a region deeper than A, the depth B in which the measured value of oxygen concentration and the moving average value of oxygen concentration deviate by ± 5% or more from the moving average value of oxygen concentration can be defined as the DZ layer width.

顕微鏡観察によるDZ層幅は、従来法に倣い、サンプルを劈開もしくは、斜め研磨し、選択エッチングでBMDを顕在化させた後、顕微鏡で観察し、例えばウェーハ表面から3番目のBMDまでの深さを求めれば良い。 The width of the DZ layer by microscopic observation is determined by cleaving or diagonally polishing the sample according to the conventional method, revealing BMD by selective etching, and then observing with a microscope, for example, the depth from the wafer surface to the third BMD. Just ask.

例えば、図2のような熱処理ウェーハの酸素濃度分布を考える。図3に示す酸素濃度の測定値と酸素濃度の移動平均値の誤差率((測定値−移動平均値)/移動平均値)は、表層では10%以上乖離している。これはウェーハ表層では、表面に付着した酸素や不純物の影響で、SIMSの酸素濃度の値はウェーハ中の酸素濃度と異なっているためであり、この領域を除外する必要がある。よって、その誤差率が±3%以下となる最も浅い深さA(この例では0.21μm)を求める。 For example, consider the oxygen concentration distribution of the heat-treated wafer as shown in FIG. The error rate ((measured value-moving average value) / moving average value) between the measured value of oxygen concentration and the moving average value of oxygen concentration shown in FIG. 3 deviates by 10% or more in the surface layer. This is because the oxygen concentration value of SIMS is different from the oxygen concentration in the wafer due to the influence of oxygen and impurities adhering to the surface of the wafer surface layer, and it is necessary to exclude this region. Therefore, the shallowest depth A (0.21 μm in this example) at which the error rate is ± 3% or less is obtained.

次に、深さAより深い領域で酸素濃度の測定値と酸素濃度の移動平均値が、酸素濃度の移動平均値に対して±5%以上乖離する深さB(この例では5.16μm)をDZ層幅とすれば良い。これは、Aより深い領域においては、BMDが形成されていない領域(DZ層)では格子間酸素のみが検出される。一方、BMDが形成された領域では格子間酸素の他に、BMDに含まれる酸素も検出されるためDZ層よりも酸素濃度が高く検出される。よって、急激に酸素濃度が増加するとともに、酸素濃度のバラツキが増加した深さまでがDZ層であると判定出来る。なお、BMDのサイズや密度によって、酸素濃度の値が変動するため、移動平均値を用いると算出精度を向上させることが出来る。 Next, in a region deeper than depth A, the measured value of oxygen concentration and the moving average value of oxygen concentration deviate by ± 5% or more from the moving average value of oxygen concentration, and depth B (5.16 μm in this example). May be the DZ layer width. This is because in the region deeper than A, only interstitial oxygen is detected in the region where BMD is not formed (DZ layer). On the other hand, in the region where the BMD is formed, in addition to the interstitial oxygen, the oxygen contained in the BMD is also detected, so that the oxygen concentration is detected higher than that of the DZ layer. Therefore, it can be determined that the DZ layer is up to the depth at which the oxygen concentration rapidly increases and the variation in the oxygen concentration increases. Since the oxygen concentration value fluctuates depending on the size and density of the BMD, the calculation accuracy can be improved by using the moving average value.

上記のようにして検量線を作成した後、DZ層幅を測定したいサンプルのSIMSによるDZ層幅を求め、検量線に当てはめることで、顕微鏡観察により求められるDZ層幅を求める(図1のS12参照)。
このようにして、スループットが悪い顕微鏡観察により求められるDZ層幅を簡便に求めることが出来る。
この時、両手法で求めたDZ層幅は相関関係があるが、実測値は異なる。これは、顕微鏡観察では目視で確認出来るBMDのみを、SIMSでは目視で確認できないBMDも併せて検出するためである。
After creating the calibration curve as described above, the DZ layer width by SIMS of the sample whose DZ layer width is to be measured is obtained, and by applying the calibration curve, the DZ layer width obtained by microscopic observation is obtained (S12 in FIG. 1). reference).
In this way, the DZ layer width obtained by microscopic observation with poor throughput can be easily obtained.
At this time, the DZ layer widths obtained by both methods have a correlation, but the measured values are different. This is because only BMD that can be visually confirmed by microscopic observation is detected together with BMD that cannot be visually confirmed by SIMS.

また、酸素濃度の測定値から作成した近似曲線と酸素濃度の移動平均値が、近似曲線に対して±5%以上乖離した深さCをSIMSのDZ層幅とすることも出来る。その際、BMD形成領域では、BMDに含まれる酸素も検出してしまい、DZ層領域より酸素濃度が増加する。よって、表面の影響がないDZ層領域の、上記深さAから上記深さBの3/4までの測定値から、線形近似、指数近似、対数近似、多項式近似、累乗近似等を行い、相関係数の2乗値(R)が最も高い近似曲線を用いれば良い。 Further, the depth C in which the approximate curve created from the measured value of the oxygen concentration and the moving average value of the oxygen concentration deviate from the approximate curve by ± 5% or more can be set as the DZ layer width of SIMS. At that time, oxygen contained in BMD is also detected in the BMD forming region, and the oxygen concentration is higher than that in the DZ layer region. Therefore, linear approximation, exponential approximation, logarithmic approximation, polynomial approximation, exponentiation approximation, etc. are performed from the measured values from the depth A to the depth B 3/4 of the DZ layer region that is not affected by the surface. The approximate curve with the highest squared value (R 2) of the relational number may be used.

また、酸素濃度の測定値と酸素濃度の移動平均値の比較、近似曲線と酸素濃度の移動平均値の比較のいずれのDZ層幅の算出方法を用いても良い。 Further, any DZ layer width calculation method may be used, which is a comparison between the measured value of the oxygen concentration and the moving average value of the oxygen concentration, and a comparison between the approximate curve and the moving average value of the oxygen concentration.

例えば、図4のように、深さAから深さBの3/4(この例では3.57μm)の領域の酸素濃度の測定値から、近似曲線を作成する。具体的には、線形近似、指数近似、対数近似、多項式近似、累乗近似を行い、相関係数の2乗値(R)が最も高い近似曲線を用いれば良い。その後、図5の酸素濃度の移動平均値と近似値(近似曲線から得られる値)の誤差率から、±5%以上乖離した深さC(この例では4.79μm)をDZ層幅とすれば良い。 For example, as shown in FIG. 4, an approximate curve is created from the measured oxygen concentration in the region of 3/4 (3.57 μm in this example) of depth A to depth B. Specifically, linear approximation, exponential approximation, logarithmic approximation, polynomial approximation, and power approximation may be performed, and the approximation curve having the highest correlation coefficient squared value (R 2) may be used. After that, the depth C (4.79 μm in this example) deviated by ± 5% or more from the error rate between the moving average value of the oxygen concentration and the approximate value (value obtained from the approximate curve) in FIG. 5 is defined as the DZ layer width. It's fine.

このように酸素濃度の測定値から近似曲線を作成し、この近似曲線と酸素濃度の移動平均値の乖離をみることでも、SIMSのDZ層を判定することが出来る。ただし、BMD形成領域ではDZ層形成領域より酸素濃度が増加するため、DZ層領域のみで近似曲線を作成する必要がある。このため、深さAから深さBの3/4までの領域の酸素濃度の測定値から、近似曲線を作成する必要がある。 The DZ layer of SIMS can also be determined by creating an approximate curve from the measured values of oxygen concentration and observing the difference between the approximate curve and the moving average value of oxygen concentration. However, since the oxygen concentration in the BMD forming region is higher than that in the DZ layer forming region, it is necessary to create an approximate curve only in the DZ layer region. Therefore, it is necessary to create an approximate curve from the measured values of the oxygen concentration in the region from the depth A to the depth B 3/4.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例)
窒素濃度[N]=3×1013/cm、酸素濃度[Oi]=1.1×1018atoms/cm(ASTM’79)の直径300mmシリコンウェーハに、無欠陥層(DZ層)を形成させるため、Ar雰囲気で熱処理を行った。具体的には、最高到達温度/保持時間が1200℃/10min(サンプル1)、1200℃/20min(サンプル2)、1200℃/30min(サンプル3)の3水準とした。その後、測定間隔は0.03μmでSIMS測定を実施した。図6には、サンプル3の酸素濃度分布を示しており、5μm近傍から、急激に酸素濃度が増加していることが分かる。
(Example)
Nitrogen concentration [N 2 ] = 3 × 10 13 / cm 3 , oxygen concentration [Oi] = 1.1 × 10 18 atoms / cm 3 (ASTM'79) diameter 300 mm silicon wafer, defect-free layer (DZ layer) Was heat-treated in an Ar atmosphere. Specifically, the maximum temperature / holding time was set to three levels of 1200 ° C./10 min (sample 1), 1200 ° C./20 min (sample 2), and 1200 ° C./30 min (sample 3). After that, SIMS measurement was performed at a measurement interval of 0.03 μm. FIG. 6 shows the oxygen concentration distribution of Sample 3, and it can be seen that the oxygen concentration increases sharply from the vicinity of 5 μm.

次に、各測定深さの前後10点の酸素濃度の測定値から、酸素濃度の移動平均値を算出した。表層の酸素濃度は、表面の影響でウェーハ中の酸素濃度とは異なるため、この領域は評価対象から除外する必要がある。そこで、酸素濃度の移動平均値と酸素濃度の測定値の乖離が、酸素濃度の移動平均値に対して±3%以内となる最も浅い深さAを、各サンプルについて算出した。深さAを求めたところ、サンプル1では0.24μm、サンプル2では0.20μm、サンプル3では0.16μmと求まった(表1参照)。 Next, the moving average value of the oxygen concentration was calculated from the measured values of the oxygen concentration at 10 points before and after each measurement depth. Since the oxygen concentration in the surface layer is different from the oxygen concentration in the wafer due to the influence of the surface, this region needs to be excluded from the evaluation target. Therefore, the shallowest depth A at which the difference between the moving average value of the oxygen concentration and the measured value of the oxygen concentration is within ± 3% of the moving average value of the oxygen concentration was calculated for each sample. When the depth A was determined, it was found to be 0.24 μm in sample 1, 0.20 μm in sample 2, and 0.16 μm in sample 3 (see Table 1).

続いて、上記の深さAより深い領域において、酸素濃度の移動平均値と酸素濃度の測定値が酸素濃度の移動平均値に対して±5%以上乖離した深さB(DZ層幅)を求めた。サンプル1は1.94μm、サンプル2は3.74μm、サンプル3は5.16μmであった(表1参照)。 Subsequently, in the region deeper than the depth A, the depth B (DZ layer width) in which the moving average value of the oxygen concentration and the measured value of the oxygen concentration deviate by ± 5% or more from the moving average value of the oxygen concentration is set. I asked. Sample 1 was 1.94 μm, Sample 2 was 3.74 μm, and Sample 3 was 5.16 μm (see Table 1).

さらに、上記の深さAから、上記の深さBの3/4までの深さで、線形近似、指数近似、対数近似、多項式近似、累乗近似を行った。すると、サンプル1、2、3ともに、線形近似が最もR値(相関係数の2乗値)が高かった。その後、線形近似値と酸素濃度の移動平均値が線形近似値に対して±5%以上乖離した深さC(DZ層幅)も算出した。深さCを求めたところ、サンプル1は1.79μm、サンプル2は3.72μmと、サンプル3は4.79μmと求まった(表1参照)。 Further, linear approximation, exponential approximation, logarithmic approximation, polynomial approximation, and exponentiation approximation were performed at a depth from the above depth A to the above depth B to 3/4. Then, samples 1, 2 and 3 together, the linear approximation is most R 2 values (square value of the correlation coefficient) was high. Then, the depth C (DZ layer width) in which the linear approximation value and the moving average value of the oxygen concentration deviated from the linear approximation value by ± 5% or more was also calculated. When the depth C was determined, sample 1 was found to be 1.79 μm, sample 2 was found to be 3.72 μm, and sample 3 was found to be 4.79 μm (see Table 1).

Figure 0006881387
Figure 0006881387

次に、顕微鏡観察によりDZ層幅を求めた。従来法に倣い、サンプルを斜め研磨し選択エッチングでBMDを顕在化させた後、顕微鏡で観察し、ウェーハ表面から3番目のBMDまでの深さ(DZ層幅)を求めた(表2参照)。サンプル1は17.0μm、サンプル2は41.0μm、サンプル3は64.7μmであった。 Next, the DZ layer width was determined by microscopic observation. Following the conventional method, the sample was diagonally polished to reveal the BMD by selective etching, and then observed with a microscope to determine the depth (DZ layer width) from the wafer surface to the third BMD (see Table 2). .. Sample 1 was 17.0 μm, Sample 2 was 41.0 μm, and Sample 3 was 64.7 μm.

Figure 0006881387
Figure 0006881387

そして、SIMSのDZ層幅BおよびCと、顕微鏡観察のDZ層幅で検量線を作成した(図7参照)。その結果、測定値は異なるが、非常に良い相関が得られた。 Then, a calibration curve was prepared with the DZ layer widths B and C of SIMS and the DZ layer width of microscopic observation (see FIG. 7). As a result, although the measured values were different, a very good correlation was obtained.

次に、測定サンプルとしてDZ層幅が未知の熱処理ウェーハ(サンプル4:最高到達温度/保持時間は1200℃/15min)を用意した。SIMS測定を行い、深さBが2.96μm、深さCが2.85μmと求まり、これらを図7の検量線に当てはめた。その結果、顕微鏡観察のDZ層幅はBからは31.2μm、Cからは31.7μmと求められた。
1チップ当たりのスループットは、真空引きから測定まで併せて、約3時間であった。
Next, as a measurement sample, a heat-treated wafer having an unknown DZ layer width (Sample 4: maximum temperature reached / holding time: 1200 ° C./15 min) was prepared. SIMS measurement was performed, and the depth B was found to be 2.96 μm and the depth C was found to be 2.85 μm, and these were applied to the calibration curve in FIG. As a result, the width of the DZ layer observed under a microscope was determined to be 31.2 μm from B and 31.7 μm from C.
The throughput per chip was about 3 hours from vacuuming to measurement.

(比較例)
実施例で用いたサンプル4を斜め研磨し、選択エッチングでBMDを顕在化させた後、顕微鏡で観察し、ウェーハ表面から3番目のBMDまでの深さ(DZ層幅)を求めた。その結果、31.6μmであった。求められたDZ層幅は実施例と同等であったが、斜め研磨から顕微鏡観察まで併せると1チップ当たり約4時間30分かかり、実施例と比較するとスループットが悪かった。
(Comparison example)
The sample 4 used in the examples was obliquely polished to reveal the BMD by selective etching, and then observed with a microscope to determine the depth (DZ layer width) from the wafer surface to the third BMD. As a result, it was 31.6 μm. The obtained DZ layer width was the same as that of the example, but it took about 4 hours and 30 minutes per chip from oblique polishing to microscopic observation, and the throughput was poor as compared with the example.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

Claims (4)

シリコンウェーハの表層に形成されるDZ層の測定方法であって、
SIMSで測定した酸素濃度の深さ分布から求められるDZ層幅と、顕微鏡観察により求められるDZ層幅との検量線を作成し、作成された前記検量線に基づいて、測定サンプルのSIMSにより求められたDZ層幅から、顕微鏡観察により求められるDZ層幅を求めることを特徴とするDZ層の測定方法。
A method for measuring the DZ layer formed on the surface layer of a silicon wafer.
A calibration curve of the DZ layer width obtained from the depth distribution of the oxygen concentration measured by SIMS and the DZ layer width obtained by microscopic observation is prepared, and based on the prepared calibration curve, it is obtained by SIMS of the measurement sample. A method for measuring a DZ layer, which comprises obtaining the DZ layer width obtained by microscopic observation from the obtained DZ layer width.
前記SIMS測定において、酸素濃度の移動平均値と酸素濃度の測定値の乖離が酸素濃度の移動平均値に対して±3%以内となる最も浅い深さをAとし、前記Aより深い領域で酸素濃度の移動平均値と酸素濃度の測定値が酸素濃度の移動平均値に対して±5%以上乖離した深さBをSIMSのDZ層幅とすることを特徴とする請求項1に記載のDZ層の測定方法。 In the SIMS measurement, the shallowest depth at which the difference between the moving average value of oxygen concentration and the measured value of oxygen concentration is within ± 3% of the moving average value of oxygen concentration is defined as A, and oxygen is oxygenated in a region deeper than A. The DZ according to claim 1, wherein a depth B in which the moving average value of the concentration and the measured value of the oxygen concentration deviate from the moving average value of the oxygen concentration by ± 5% or more is defined as the DZ layer width of SIMS. How to measure layers. 前記SIMS測定において、酸素濃度の移動平均値と酸素濃度の測定値の乖離が酸素濃度の移動平均値に対して±3%以内となる最も浅い深さをAとし、前記Aより深い領域で酸素濃度の移動平均値と酸素濃度の測定値が酸素濃度の移動平均値に対して±5%以上乖離した深さBの3/4の深さまでの領域の酸素濃度の測定値より近似曲線を作成し、前記Aより深い領域で前記近似曲線と酸素濃度の移動平均値が前記近似曲線に対して±5%以上乖離した深さCをSIMSのDZ層幅とすることを特徴とする請求項1に記載のDZ層の測定方法。 In the SIMS measurement, the shallowest depth at which the difference between the moving average value of the oxygen concentration and the measured value of the oxygen concentration is within ± 3% of the moving average value of the oxygen concentration is defined as A, and oxygen is oxygenated in a region deeper than A. An approximate curve is created from the measured values of the oxygen concentration in the region up to 3/4 of the depth B where the moving average value of the concentration and the measured value of the oxygen concentration deviate by ± 5% or more from the moving average value of the oxygen concentration. The DZ layer width of SIMS is defined as a depth C in which the moving average value of the approximate curve and the oxygen concentration deviates from the approximate curve by ± 5% or more in a region deeper than A. The method for measuring the DZ layer according to. 前記酸素濃度の移動平均値は、その測定深さの前後5個以上10個以下の酸素濃度の測定値の平均値であることを特徴とする請求項2または請求項3に記載のDZ層の測定方法。 The DZ layer according to claim 2 or 3, wherein the moving average value of the oxygen concentration is an average value of the measured values of 5 or more and 10 or less oxygen concentrations before and after the measurement depth. Measuring method.
JP2018085619A 2018-04-26 2018-04-26 DZ layer measurement method Active JP6881387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085619A JP6881387B2 (en) 2018-04-26 2018-04-26 DZ layer measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085619A JP6881387B2 (en) 2018-04-26 2018-04-26 DZ layer measurement method

Publications (2)

Publication Number Publication Date
JP2019192835A JP2019192835A (en) 2019-10-31
JP6881387B2 true JP6881387B2 (en) 2021-06-02

Family

ID=68390923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085619A Active JP6881387B2 (en) 2018-04-26 2018-04-26 DZ layer measurement method

Country Status (1)

Country Link
JP (1) JP6881387B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175307A (en) * 1991-12-20 1993-07-13 Fujitsu Ltd Evaluating method for oxygen concentration of semiconductor crystal
JP4605876B2 (en) * 2000-09-20 2011-01-05 信越半導体株式会社 Silicon wafer and silicon epitaxial wafer manufacturing method
JP5621791B2 (en) * 2012-01-11 2014-11-12 信越半導体株式会社 Manufacturing method of silicon single crystal wafer and electronic device

Also Published As

Publication number Publication date
JP2019192835A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
CN102017069B (en) Silicon monocrystal wafer, method for manufacturing the silicon monocrystal wafer and method for evaluating the silicon monocrystal wafer
US10513798B2 (en) Method for determining defect region
JPH08298233A (en) Manufacture of wafer for calibration with flawless layer of depth determined correctly and wafer for calibration
JP6296001B2 (en) Manufacturing method and evaluation method of silicon epitaxial wafer
JP2006208314A (en) Method for evaluating crystal defect of silicon single-crystal wafer
JP4862857B2 (en) Standard sample for silicon single crystal wafer evaluation, its manufacturing method and evaluation method using standard sample
JP6881387B2 (en) DZ layer measurement method
JP6536502B2 (en) Method of manufacturing wafer for particle counter calibration
TW201913129A (en) Silicon wafer evaluation method and silicon wafer manufacturing method
JP2019089676A (en) Evaluation method of silicon single crystal and manufacturing method of silicon wafer
JP3874255B2 (en) Evaluation method of BMD size in silicon wafer
JP2018163951A (en) Crystal defect detection method of semiconductor single crystal substrate
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
JP6731161B2 (en) Method for identifying defect region of silicon single crystal
JP4003943B2 (en) Evaluation method of octahedral voids in silicon wafer
JP3994139B2 (en) Evaluation method of grow-in defect density of silicon wafer
JP6311542B2 (en) Crystal defect evaluation method and wafer manufacturing method
KR100384680B1 (en) A Method for detecting micro defects
KR102037744B1 (en) Method for evaluating wafer
KR102661941B1 (en) Method for evaluating of defect area of wafer
JP2004259779A (en) Method for evaluating wafer
TWI671441B (en) Silicon wafer
JP2004031845A (en) Method for evaluating gettering capability
WO2024009659A1 (en) Silicon wafer and manufacturing method therefor
KR100783440B1 (en) Method of testing defect of low interstitial oxygen concentration silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150