JP7228398B2 - Joint structure of CFT column and RC column - Google Patents
Joint structure of CFT column and RC column Download PDFInfo
- Publication number
- JP7228398B2 JP7228398B2 JP2019018098A JP2019018098A JP7228398B2 JP 7228398 B2 JP7228398 B2 JP 7228398B2 JP 2019018098 A JP2019018098 A JP 2019018098A JP 2019018098 A JP2019018098 A JP 2019018098A JP 7228398 B2 JP7228398 B2 JP 7228398B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- steel pipe
- cft
- neck
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Joining Of Building Structures In Genera (AREA)
Description
本発明は、CFT柱とRC柱の接合構造に関する。 TECHNICAL FIELD The present invention relates to a joint structure of a CFT column and an RC column.
例えば、重層物流施設では、低層階に階高10mを超える階を設け、その中に重層且つ複雑なマテハン架台を備えて倉庫設備を構成したものが提案、実用化されている。 For example, in a multi-story logistics facility, a floor having a floor height exceeding 10 m is provided on the lower floor, and a multi-story and complicated material handling frame is provided in the floor to constitute warehouse equipment, which has been proposed and put into practical use.
一方で、階高10mを超える高階高RC柱を計画することは、コンクリート打設方法やPC化の重量などの技術的困難さにより事実上適用が難しい。また、マテハン架台のための複雑な鉄骨取合い、マテハン乗り入れ時期の前倒し・工程確保に伴う高階高の層の短工期化の要請などの技術的困難さによってもやはり適用が難しい。 On the other hand, it is practically difficult to plan high-floor RC pillars with a floor height exceeding 10 m due to technical difficulties such as the concrete casting method and the weight of PC. In addition, it is also difficult to apply due to technical difficulties such as the complicated steel frame connection for the material handling frame, the advance of the material handling period, and the request for a short construction period for high floors due to securing the process.
これに対し、高階高の低層階をCFT柱で構成し、低層階のCFT柱(コンクリート充填鋼管柱)と上層階のRC柱(鉄筋コンクリート柱)とを接合することにより、上記課題を解決することができ得る。 On the other hand, the above problem is solved by constructing the lower floors with high floor heights with CFT columns and joining the CFT columns (concrete-filled steel pipe columns) of the lower floors and the RC columns (reinforced concrete columns) of the upper floors. can be done.
また、RC柱とCFT柱とを接合する構造/工法としては、CFT柱からRC柱への切替えを層単位で行うものがある(例えば、特許文献1参照)。 Moreover, as a structure/construction method for joining an RC column and a CFT column, there is a method in which switching from a CFT column to an RC column is performed layer by layer (see, for example, Patent Document 1).
この構造/工法では、CFT柱を備える下層部とRC柱を備える上層部との間に境界層が形成され、CFT柱とRC柱の接合部であるこの境界層に上下の梁間にわたって延在する鋼管が配設される。そして、鋼管内にコンクリートが充填されるとともに上層部のRC柱から延在する柱主筋が挿入され、さらに、境界層の柱のうちの柱頭部には、複数の柱主筋を囲う帯筋が配筋されるとともに境界層の柱のうちの柱頭部よりも下方の部分の鋼管の内周面にスタッドが突設されている。 In this structure/construction method, a boundary layer is formed between the lower part with the CFT column and the upper part with the RC column, and the boundary layer, which is the joint between the CFT column and the RC column, extends across the upper and lower beams. A steel pipe is installed. Then, the steel pipe is filled with concrete, and the column main reinforcement extending from the RC column in the upper layer is inserted. A stud is protruded from the inner peripheral surface of the steel pipe in the portion below the column head of the boundary layer column.
RC柱にCFT柱を接合する他の構造/工法として、CFT柱の鋼管の下端にベースプレートを設け、ベースプレートをRC柱のコンクリート部の上端面の上に載せてCFT柱を立設し、RC柱のコンクリート部内に定着したアンカーボルトを介してベースプレートをコンクリート部に固定するものもある。 As another structure/construction method for joining a CFT column to an RC column, a base plate is provided at the lower end of the steel pipe of the CFT column, the base plate is placed on the upper end surface of the concrete part of the RC column, and the CFT column is erected, and the RC column is Some fix the base plate to the concrete part via anchor bolts anchored in the concrete part.
しかしながら、上記従来の境界層に鋼管を配設する構造/工法においては、境界層の柱全体、すなわち層単位でCFT柱からRC柱への切替えを行うため、使用鋼材量が非常に多くなるという問題がある。 However, in the above-mentioned conventional structure/construction method in which steel pipes are installed in the boundary layer, the entire boundary layer column, that is, the CFT column is switched to the RC column for each layer, so the amount of steel used is said to be extremely large. There's a problem.
また、上記従来のベースプレートをRC柱のコンクリート部の上端面の上に載せてCFT柱を立設する構造/工法においては、RC柱のコンクリート部を打設する前にアンカーボルトを所定位置に配置したり、ベースプレートとアンカーボルトとをナットなどで締結したりする必要があり、現場作業が煩雑で多大な労力と時間を要するという問題がある。 In addition, in the structure/construction method in which the conventional base plate is placed on the upper end surface of the concrete part of the RC column and the CFT column is erected, anchor bolts are placed in place before the concrete part of the RC column is placed. Also, it is necessary to fasten the base plate and the anchor bolt with a nut or the like.
本発明は、上記事情に鑑み、使用鋼材量を削減でき、且つ、現場作業を軽減することができるCFT柱とRC柱の接合構造を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a joint structure between a CFT column and an RC column that can reduce the amount of steel material used and reduce the on-site work.
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above objects, the present invention provides the following means.
本発明のCFT柱とRC柱の接合構造は、下方のCFT柱と上方のRC柱とを接合するための構造であって、前記CFT柱の上端部に、鋼管を上方に延出させた形で形成された根巻鋼管部が設けられ、前記RC柱の主筋が前記根巻鋼管部の内部に挿入されるとともに、前記根巻鋼管部の内部にコンクリートが打設充填されていることを特徴とする。 The joint structure of a CFT column and an RC column of the present invention is a structure for joining a lower CFT column and an upper RC column, and has a shape in which a steel pipe extends upward from the upper end of the CFT column. is provided, the main reinforcement of the RC column is inserted into the neck wrapping steel pipe portion, and the interior of the neck wrapping steel pipe portion is filled with concrete. and
本発明のCFT柱とRC柱の接合構造においては、従来と比較し、使用鋼材量を削減でき、且つ、現場作業を軽減することができ、CFT柱とRC柱を接合する施工性、経済性を大幅に向上させることが可能になる。 In the joint structure of the CFT column and the RC column of the present invention, it is possible to reduce the amount of steel materials used and reduce the on-site work compared to the conventional structure, and the workability and economic efficiency of joining the CFT column and the RC column. can be significantly improved.
以下、図1から図5を参照し、本発明の一実施形態に係るCFT柱とRC柱の接合構造について説明する。 A joint structure of a CFT column and an RC column according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG.
はじめに、本実施形態では、例えば図1に示すように、本発明のCFT柱とRC柱の接合構造Aが重層物流施設の倉庫1の架構に適用されるものとして説明を行う。
また、この倉庫1は、例えば、低層階に階高10mを超える階を設け、その中に重層且つ複雑なマテハン架台を備えて構成されている。さらに、高階高の下層部1aをCFT柱2を備えたCFT構造、上層部1bをRC柱3と鉄骨梁4を組み合わせたハイブリッド架構を備えたRCSS構造として構成されている。
First, in this embodiment, as shown in FIG. 1, for example, the joint structure A of CFT columns and RC columns of the present invention will be described as being applied to the framework of a
In addition, the
なお、本発明のCFT柱とRC柱の接合構造Aは、重層物流施設(1)への適用だけでなく、例えば、CFT構造の低層部(下層部1a)をオフィスや商業施設、RCSS構造やRC構造の高層部(上層部1b)を住宅・ホテルを有する複合施設とする施設に採用してもよく、下層部1aにCFT柱2を備え、上層部1bにRC柱3を備えていれば、特にその適用対象を限定する必要はない。
In addition, the joint structure A of the CFT column and the RC column of the present invention can be applied not only to the multi-story logistics facility (1), but also to the lower layer part (
一方、本実施形態のCFT柱とRC柱の接合構造Aは、図2及び図3に示すように、下層部1aのCFT柱2の鋼管5をCFT柱2の頂部2aから根巻きレベル程度(約1.5m程度)上方に延出させ、その鋼管5の延出部分である根巻鋼管部6の内部に上層部1bのRC柱3の主筋7を挿入するとともにコンクリート8を打設充填して定着させるように構成されている。
On the other hand, in the joint structure A of the CFT column and the RC column of this embodiment, as shown in FIGS. about 1.5 m), inserting the
また、根巻鋼管部6の頂部6a側は、根巻鋼管部6の内面から内側に突出し周方向に延びて繋がる環状のリブプレートが補剛部9として設けられ、このリブプレートによって根巻鋼管部6を補剛し、面外変形を抑制するようにしている。さらに、図3に示すように、根巻鋼管部6に挿入される部分のRC柱3の主筋7の下端部7dには、定着板10が取り付けられている。これにより、主筋7と根巻鋼管部6内部のコンクリート8とが一体化するため、変形の漸増に伴って根巻鋼管部6内部のコンクリート8から主筋7が抜け出すことを防ぐとともに、根巻鋼管部6内部のコンクリート8のせん断耐力が確実に確保される。
In addition, on the side of the
さらに、本実施形態のCFT柱とRC柱の接合構造Aは、下記の応力伝達に関する条件を満たすように構成されている。 Furthermore, the joint structure A of the CFT column and the RC column of this embodiment is configured to satisfy the following stress transmission conditions.
まず、図3、図4に示すように、曲げモーメントの分担要素を、RC柱3の反曲点高さから根巻鋼管部6の頂部6aの切替え高さまでのRC柱部と、切替え高さからCFT柱2に接続される直下の梁4の上端までの第1テコ部と、リブプレートによる補剛部9から根巻鋼管部6の底部6bまでの第2テコ部とに区分する。
First, as shown in FIGS. 3 and 4, the bending moment sharing elements are the RC column portion from the height of the inflection point of the
そして、図4、表1に示すように、各要素の設計用応力を設定する。なお、軸力は鉄筋コンクリート部分でのみ伝達し、テコ部の鋼管6では軸力を負担しない。
Then, as shown in FIG. 4 and Table 1, the design stress of each element is set. In addition, the axial force is transmitted only to the reinforced concrete portion, and the
また、テコ部の曲げ応力と付加せん断力を図4及び式(1)~式(5)のように設定する。 Also, the bending stress and the additional shearing force of the lever portion are set as shown in FIG. 4 and formulas (1) to (5).
ここに、aは切替え高さから反曲点高さまでの距離、M1は根巻鋼管部6の底部6b高さ位置の曲げモーメント、Qは反曲点高さ位置のせん断力、h1は切替え高さから補剛部9までの距離、heは根巻鋼管部6の底部から切替え高さまでの距離、h2は根巻鋼管部6の底部6bからCFT柱2に接続される直下の梁4の上端までの距離、h0はCFT柱2に接続される直下の梁4の上端から補剛部9までの距離、R1は補剛部高さ位置のせん断力、R2はCFT柱2に接続される直下の梁4の上端高さ位置のせん断力である。
Here, a is the distance from the switching height to the height of the inflection point, M1 is the bending moment at the height of the bottom 6b of the neck wrapping
なお、本実施形態のCFT柱とRC柱の接合構造Aは、その適用範囲を以下のa)~g)、表2のように設定することが望ましい。
a)高さ60m以下の建物に適用する。
b)地震時に引抜力が発生する柱には適用しない。
c)RC柱及びCFT柱には正方形断面の部材を使用する。
d)RC柱とCFT柱は芯合わせとし、偏心は許容しない。
e)当該接合柱に直接ブレースは取付けない。
f)接合材料、被接合材料の材料規格や形状・寸法・板厚等の適用範囲は表1を基本とする。
g)本接合部及び接合部脚部での降伏ヒンジは許容しない。
In addition, it is desirable that the applicable range of the joint structure A between the CFT column and the RC column of the present embodiment be set as shown in Table 2 in a) to g) below.
a) Applies to buildings with a height of 60m or less.
b) Not applicable to columns that generate pull-out force during an earthquake.
c) Use square section members for RC and CFT columns.
d) RC and CFT columns shall be aligned and no eccentricity allowed.
e) No braces shall be attached directly to the joint post.
f) Table 1 shall be used as a basis for the applicable range of material specifications, shapes, dimensions, plate thicknesses, etc. of materials to be joined and materials to be joined.
g) Yield hinges are not permitted at main joints and joint legs.
次に、本実施形態のCFT柱とRC柱の接合構造Aを用いて下層部1aのCFT柱2と上層部1bのRC柱3を接合施工する方法の一例について説明する。
Next, an example of a method of joining the
まず、図5(a)に示すように、リブプレート(補剛部9)、根巻鋼管部6を頂部2aに溶接するなどして一体に備えたCFT柱2の鋼管5を所定位置に建て込む。
First, as shown in FIG. 5(a), the
図5(b)、図5(c)に示すように、CFT柱2の鋼管5に端部をボルト接合して鉄骨梁4を架設し、鉄骨梁4に支持させつつデッキプレート11を敷き込み、スラブ筋12を配筋する。
As shown in FIGS. 5(b) and 5(c), the ends of the
次に、図5(d)、図5(e)に示すように、根巻鋼管部6を除くCFT柱2の鋼管5の内部にコンクリート8を打設充填するとともに、スラブコンクリート13を打設する。
Next, as shown in FIGS. 5(d) and 5(e),
図5(f)に示すように、上下の所定位置にドーナツスペーサ14、四隅にガイドアングル15を取り付けたRC柱3の鉄筋ユニット16を揚重機で吊り上げ、下端部側を根巻鋼管部6の内部に挿入して鉄筋ユニット16を建て込む。また、図5(g)に示すように、RC柱3の型枠17を支保工で支持させつつ根巻鋼管部6の上方に設置する。
As shown in FIG. 5(f), the reinforcing
次に、図5(h)に示すように、RC柱3のコンクリート8を打設するとともに根巻鋼管部6の内部にコンクリート8を打設する。コンクリート8が所定の強度を発現した段階で型枠17を取り外すことにより、CFT柱2とRC柱3が本実施形態のCFT柱とRC柱の接合構造Aで一体に接続して構築される。
Next, as shown in FIG. 5(h), the
したがって、上記構成からなる本実施形態のCFT柱とRC柱の接合構造Aにおいては、従来と比較し、使用鋼材量を削減でき、且つ、現場作業を軽減することができ、CFT柱2とRC柱3を接合する施工性、経済性を大幅に向上させることが可能になる。
Therefore, in the joint structure A of the CFT column and the RC column of this embodiment having the above configuration, the amount of steel used can be reduced and the on-site work can be reduced compared to the conventional one. It becomes possible to greatly improve the workability and economic efficiency of joining the
本実施形態のCFT柱とRC柱の接合構造Aにおいては、上記の式(1)~式(5)の条件を満たすように構成されていることで、施工性、経済性に加え、信頼性の高い接合部を実現することができる。 In the joint structure A of the CFT column and the RC column of this embodiment, by being configured so as to satisfy the conditions of the above formulas (1) to (5), in addition to workability and economic efficiency, reliability can realize a joint with a high
さらに、本実施形態においては、RCSS構法にしたエリアの分だけ、躯体費用(鉄骨数量)を削減することが可能になる。さらに、CFT構造の高階高の層だけを先行して建方が行えるため、下層エリアのマテハン工期を確保できる。 Furthermore, in this embodiment, it is possible to reduce the building frame cost (the number of steel frames) by the area where the RCSS construction method is used. Furthermore, since only the high-floor floors of the CFT structure can be erected first, the material handling work period for the lower floor area can be secured.
また、RC柱3の主筋7の下端部7dには定着板10が取り付けられているため、変形の漸増に伴う根巻鋼管部6内部のコンクリート8からの主筋7の抜け出しを防ぐとともに、根巻鋼管部6内部のコンクリート8のせん断耐力が確実に確保される。
In addition, since the fixing
(変形例)
次に、上記に示す実施形態の変形例について、主に図6を用いて説明する。
以下の変形例において、前述した実施形態で用いた部材と同一の部材には同一の符号を付して、その説明を省略する。
図6に示すように、本変形例では、補強筋(主筋7とは異なる主筋)18が設けられている。補強筋18は、上下方向に延びている。補強筋18は、根巻鋼管部6とRC柱3との境界部Pをまたがって配置されている。
(Modification)
Next, a modification of the above-described embodiment will be described mainly with reference to FIG.
In the following modified examples, the same reference numerals are given to the same members as those used in the above-described embodiment, and the description thereof will be omitted.
As shown in FIG. 6, in this modified example, reinforcing bars (main bars different from the main bars 7) 18 are provided. The reinforcing bars 18 extend vertically. The reinforcing
補強筋18の下部は、根巻鋼管部6の内部に配置されている。補強筋18の下端部18dは、主筋7の下端部7dよりも上方に配置されている。補強筋18の下端部18dには、定着板19が取り付けられている。定着版19は、主筋7とコンクリート8とを一体化させるものである。なお、補強筋18の定着位置は、主筋7の下端部7dの高さ位置までとしてもよい。
A lower portion of the reinforcing
補強筋18の上部は、RC柱3の内部に配置されている。補強筋18の上端部18uは、主筋7の上端部(不図示)よりも下方に配置されている。
The upper part of the reinforcing
境界部Pから補強筋18の下端部18dまでの長さ及び境界部Pから補強筋18の上端部18uまでの長さは、コンクリート強度と鉄筋強度により設定され、例えばそれぞれ補強筋18の径の50倍程度である。
The length from the boundary P to the
本変形例では、上記の実施形態で示すリブプレート(補剛部9)は設けられていない。 In this modification, the rib plate (stiffening portion 9) shown in the above embodiment is not provided.
上記に示すCFT柱とRC柱の接合構造A1おいては、従来と比較し、使用鋼材量を削減でき、且つ、現場作業を軽減することができ、CFT柱2とRC柱3を接合する施工性、経済性を大幅に向上させることが可能になる。 In the joint structure A1 of the CFT column and the RC column shown above, the amount of steel used can be reduced and the on-site work can be reduced compared to the conventional method. It is possible to greatly improve the efficiency and economic efficiency.
次に、上記に示す実施形態のCFT柱とRC柱の接合構造Aの構造性能確認実験結果について説明する。
本実験は、高階高の低層階の柱をCFT造とし,上層の階高の途中でRC柱に切り替えるCFT柱-RC柱について構造性能確認実験を行い、想定している耐力式の妥当性を検証するものである。
Next, the results of a structural performance confirmation experiment of the joint structure A of the CFT column and the RC column of the embodiment shown above will be described.
In this experiment, the pillars of the lower floors with high floor heights are made of CFT, and the CFT pillars-RC pillars that are switched to RC pillars in the middle of the upper floors are tested to confirm the structural performance, and the validity of the assumed load bearing formula is verified. This is to verify.
試験体諸元を表3に示し、試験体図(代表例として試験体No.1のみ)を図7に示す。 Specimens of the specimen are shown in Table 3, and a diagram of the specimen (only specimen No. 1 as a representative example) is shown in FIG.
加力方法は、加力点水平変位を制御することにより、図8に示す加力サイクルにしたがい、一定軸力(軸力比η=0,+0.15,+0.4)下における正負交番繰返しせん断加力を与える。 By controlling the horizontal displacement of the force application point, the force application method is to perform positive and negative alternating cyclic shearing under a constant axial force (axial force ratio η = 0, +0.15, +0.4) according to the force cycle shown in FIG. give force.
各試験体のCFT柱脚部曲げモーメント-部材変形角関係(せん断力-部材変形角関係も併記)を図9~図14に示す。また、代表例として試験体No.1におけるR=+1.0%,5.0%(最終破壊)時の破壊状況を図15に示す。 9 to 14 show the CFT column base bending moment-member deformation angle relationship (shear force-member deformation angle relationship is also shown) for each specimen. Also, as a representative example, the specimen No. FIG. 15 shows the state of destruction when R=+1.0% and 5.0% (final destruction) in 1.
図15では、代表例として試験体NO.1の破壊状況を示しているが、他の試験体NO.2~6においても試験体NO.1と同様に、根巻鋼管部6とRC柱3との境界部P近傍の最外縁の主筋7が降伏し、境界部Pよりも上方(RC柱3)のコンクリートが剥落した。CFT柱とRC柱の接合構造Aにおいては、上記の式(1)~式(5)の条件を満たすように構成されていることで、根巻鋼管部6内部のコンクリート8がせん断破壊しないことを確認した。試験体No.6のように、根巻鋼管部6を含めてCFT柱2の内部にせん断補強筋が設けられていない構成であっても、根巻鋼管部6内部のコンクリート8はせん断破壊に至らなかった。
In FIG. 15, as a representative example, test specimen No. 1 shows the state of destruction of the other test specimen No. 1. 2 to 6, the specimen No. 1, the outermost
図13に示すように、試験体No.5では軸力を無しとしているため、履歴ループ面積が小さく、エネルギー吸収能が低い結果となっている。 As shown in FIG. 13, test specimen No. 5 has no axial force, so the hysteresis loop area is small and the energy absorption capacity is low.
以上、本発明に係るCFT柱とRC柱の接合構造の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the joint structure of the CFT column and the RC column according to the present invention has been described above, the present invention is not limited to the above-described one embodiment, and can be changed as appropriate without departing from the scope of the present invention. be.
1 重層物流施設(倉庫)
1a 下層部
1b 上層部
2 CFT柱
2a 頂部
3 RC柱
4 鉄骨梁
5 鋼管
6 根巻鋼管部
6a 頂部
6b 底部
7 主筋
8 コンクリート
9 補剛部
10 定着板
11 デッキプレート
12 スラブ筋
13 スラブコンクリート
14 ドーナツスペーサ
15 ガイドアングル
16 鉄筋ユニット
17 型枠
A CFT柱とRC柱の接合構造
1 Multi-layer logistics facility (warehouse)
Claims (3)
前記CFT柱の上端部に、鋼管を上方に延出させた形で形成された根巻鋼管部が設けられ、
前記RC柱の主筋が前記根巻鋼管部の内部に挿入されるとともに、前記根巻鋼管部の内部にコンクリートが打設充填され、
前記根巻鋼管部は、内面から内側に突出する補剛部を備え、
応力伝達に関する条件として、
曲げモーメントの分担要素を、前記RC柱の反曲点高さから前記根巻鋼管部の頂部の切替え高さまでのRC柱部と、前記切替え高さから前記CFT柱に接続される直下の梁の上端までの第1テコ部と、前記補剛部から前記根巻鋼管部の底部までの第2テコ部とに区分し、
前記第1テコ部及び前記第2テコ部の曲げ応力と付加せん断力が下記の式(1)~式(5)を満たすように設置されていることを特徴とするCFT柱とRC柱の接合構造。
A neck-wrapped steel pipe portion formed by extending a steel pipe upward is provided at the upper end of the CFT column,
The main reinforcement of the RC column is inserted into the neck wrapping steel pipe portion, and concrete is placed and filled inside the neck wrapping steel pipe portion ,
The neck-wrapped steel pipe portion has a stiffening portion projecting inward from the inner surface,
As a condition for stress transmission,
The bending moment sharing elements are the RC column part from the height of the reflexion point of the RC column to the switching height of the top of the neck winding steel pipe part, and the beam directly below connected to the CFT column from the switching height. Divided into a first lever portion extending to the upper end and a second lever portion extending from the stiffening portion to the bottom portion of the neck wrapping steel pipe portion,
Joint of CFT column and RC column characterized in that the bending stress and additional shear force of the first lever portion and the second lever portion are installed so as to satisfy the following formulas (1) to (5) structure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018018088 | 2018-02-05 | ||
JP2018018088 | 2018-02-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019138137A JP2019138137A (en) | 2019-08-22 |
JP7228398B2 true JP7228398B2 (en) | 2023-02-24 |
Family
ID=67693457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019018098A Active JP7228398B2 (en) | 2018-02-05 | 2019-02-04 | Joint structure of CFT column and RC column |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7228398B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7529453B2 (en) | 2020-06-19 | 2024-08-06 | 清水建設株式会社 | Joint structure between CFT column and RC column |
CN113982106A (en) * | 2021-12-07 | 2022-01-28 | 广西路建集团建筑工程有限公司 | Transition section structure of reinforced concrete column and steel pipe concrete column and construction method |
CN114575532B (en) * | 2022-01-27 | 2024-07-19 | 浙江大学建筑设计研究院有限公司 | Prefabricated unit of assembled hybrid column with bracket and connecting node |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000282578A (en) | 1999-01-27 | 2000-10-10 | Maeda Corp | Structure of column |
JP2017053101A (en) | 2015-09-07 | 2017-03-16 | 清水建設株式会社 | Design method for structure for joining columns together, and structure for joining columns together |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0518003A (en) * | 1991-07-09 | 1993-01-26 | Ooki Kensetsu Kk | Joining method of steel pipe concrete column and half-precast reinforced concrete column |
JPH09264049A (en) * | 1996-03-29 | 1997-10-07 | Taisei Corp | Aseismic structure of building |
-
2019
- 2019-02-04 JP JP2019018098A patent/JP7228398B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000282578A (en) | 1999-01-27 | 2000-10-10 | Maeda Corp | Structure of column |
JP2017053101A (en) | 2015-09-07 | 2017-03-16 | 清水建設株式会社 | Design method for structure for joining columns together, and structure for joining columns together |
Also Published As
Publication number | Publication date |
---|---|
JP2019138137A (en) | 2019-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8640419B2 (en) | Method of constructing prefabricated steel reinforced concrete (PSRC) column using angle steels and PSRC column using angle steels | |
JP4823790B2 (en) | Column unit and method of building building using column unit | |
JP7228398B2 (en) | Joint structure of CFT column and RC column | |
JP5007380B2 (en) | Seismic isolation / damping mechanism | |
KR20180012809A (en) | Prefabricated column and beam type structure | |
JP2010242390A (en) | Joining method and structure of column-beam joint part having steel brace | |
KR101258842B1 (en) | On-site Joint of the Prefabricated Re-bar Column to Re-bar Girders | |
JP7050542B2 (en) | Mixed structure of reinforced concrete columns and steel beams | |
JP6339923B2 (en) | How to build a building frame | |
JP2010261270A (en) | Composite structure and method for constructing composite structure building | |
Bracci et al. | Seismic design and constructability of RCS special moment frames | |
US20220018112A1 (en) | Modular building systems | |
KR100578641B1 (en) | Steel-Concrete Hybrid Column, Hybrid Structure System Using the Same, and Construction Method Thereof | |
JP2009013592A (en) | Frame assembling method and frame of building | |
TWI816527B (en) | Architecture structure and method of constructing the same | |
JP5248784B2 (en) | Column and beam joint structure | |
CN216305072U (en) | Combined floor slab and concrete beam connecting structure of combined tower | |
JP7529596B2 (en) | Joint structure between steel pipe concrete column and steel beam and its construction method | |
JP7529813B2 (en) | Structure and its construction method | |
JPH0560891A (en) | Steel concrete reactor containment and construction method | |
JPH0673783A (en) | Construction of steel framed reinforced concrete column and steel beam | |
KR101826093B1 (en) | Platform for Prefabricated Column with Spirals | |
JP2006037530A (en) | Building structure skeleton and building structure making use thereof | |
JPH0742805B2 (en) | Steel bar truss built-in rebar concrete column | |
JP2022163290A (en) | Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210414 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7228398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |