JP7227391B2 - センサハウジングの障害物を検出するための方法およびシステム - Google Patents

センサハウジングの障害物を検出するための方法およびシステム Download PDF

Info

Publication number
JP7227391B2
JP7227391B2 JP2021551603A JP2021551603A JP7227391B2 JP 7227391 B2 JP7227391 B2 JP 7227391B2 JP 2021551603 A JP2021551603 A JP 2021551603A JP 2021551603 A JP2021551603 A JP 2021551603A JP 7227391 B2 JP7227391 B2 JP 7227391B2
Authority
JP
Japan
Prior art keywords
lidar device
housing
scan
lidar
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021551603A
Other languages
English (en)
Other versions
JP2022524316A (ja
Inventor
ショータン,ギル
ワハター,ルーク
ブラレイ,コリン
ラウターバッハ,クリスチャン
フー,シャオシャン
ゾウ,ミン
Original Assignee
ウェイモ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウェイモ エルエルシー filed Critical ウェイモ エルエルシー
Publication of JP2022524316A publication Critical patent/JP2022524316A/ja
Application granted granted Critical
Publication of JP7227391B2 publication Critical patent/JP7227391B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • G01S2007/4977Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Description

関連出願の相互参照
本出願は、2019年3月14日に出願された米国仮特許出願第62/818,707号の優先権を主張し、その全体は参照により本明細書に組み込まれる。
数ある中でもとりわけ、光検出測距(LIDAR)センサ、電波探知測距(RADAR)センサ、および音波探知測距(SONAR)センサなどのアクティブセンサは、周辺環境に向けて信号を放出し、放出された信号の反射を検出することによって、周辺環境をスキャンすることができるセンサである。
例えば、LIDARセンサは、環境における反射表面を示す「点群」を組み立てるように、シーン全体をスキャンしながら環境特徴までの距離を判定することができる。点群の個々の点は、例えば、レーザパルスを送信し、環境におけるオブジェクトから反射された戻りパルスがあればそれを検出し、その後、パルスの送信とその反射パルスの受信との間の時間遅延に従ってオブジェクトまでの距離を測定することによって判定することができる。その結果、例えば、環境における反射特徴の位置を示す点の三次元マップを生成することができる。
一例では、方法が提供される。この方法は、ハウジングの内側に配設された光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得することを含む。複数のスキャンの各スキャンを取得することは、ハウジングの複数のセクションを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することと、LIDARデバイスに向かって反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、を含む。この方法はまた、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することを含む。
別の例では、光検出測距(LIDAR)デバイスが提供される。LIDARデバイスには、ハウジングおよびコントローラが含まれている。コントローラは、LIDARデバイスに動作を実行させるように構成される。動作は、LIDARデバイスの視野(FOV)の複数のスキャンを取得することを含む。動作は、複数のスキャンのスキャンごとに、ハウジングを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することをさらに含む。動作は、複数のスキャンのスキャンごとに、送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することをさらに含む。動作は、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することをさらに含む。
一例では、システムが提供される。このシステムには、ハウジングおよびハウジングの内側に配設された光検出測距(LIDAR)デバイスが含まれる。LIDARデバイスは、ハウジングを通して視野(FOV)をスキャンするように構成される。LIDARデバイスは、FOVのスキャンごとに、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信するように構成される。LIDARデバイスは、FOVのスキャンごとに、LIDARデバイスに反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを受信するように構成される。LIDARデバイスには、1つ以上のプロセッサ、および1つ以上のプロセッサによって実行されると、システムに動作を実行させる命令を格納するデータストレージも含まれる。動作は、LIDARデバイスから、LIDARデバイスによって取得されたFOVの複数のスキャンを示すデータを受信することを含む。動作はまた、受信されたデータに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することを含む。
さらに別の例では、システムは、ハウジングの内側に配設された光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得するための手段を含む。複数のスキャンの各スキャンを取得することは、ハウジングを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することと、LIDARデバイスに向かって反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、を含む。このシステムはまた、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出するための手段を含む。
これらの態様、ならびに他の態様、利点、および代替物は、当業者には、以下の詳細な説明を添付の図面を適宜参照して読み取ることにより明らかになるであろう。
例示的な実施形態による、車両を示す。 例示的な実施形態による、図1Aに示される車両の上面に位置決めされたセンサユニットの斜視図である。 例示的な実施形態による、図1Aに示される車両の前面に位置決めされたセンサユニットの斜視図である。 例示的な実施形態による、周囲環境をスキャンする図1Aに示される車両を上面図で示す。 例示的な実施形態による、車両のブロック図である。 例示的な実施形態による、システムのブロック図である。 例示的な実施形態による、LIDARデバイスを示す。 図4AのLIDARデバイスの断面図を示す。 例示的な実施形態による方法のフローチャートである。 例示的な実施形態による別の方法のフローチャートである。
以下の詳細な説明は、添付の図を参照して、開示されたシステムおよび方法の様々な特徴および機能を記載する。図において、文脈上別段の指示がない限り、同様の記号は、同様の構成要素を識別する。本明細書に記載の例証的なシステムおよび方法の実施形態は、限定的であることを意味するものではない。開示されたシステム、デバイス、および方法の特定の態様を、多種多様な異なる構成で配置および組み合わせ得ることが容易に理解されるであろう。
I.概要
いくつかのシナリオでは、アクティブセンサのFOVは、オブジェクト、障害物、破片、汚れ、引っかき傷、変形、および/または他のタイプの障害物によって(少なくとも部分的に)妨げられる可能性がある。障害物は、アクティブセンサによって送信された1つ以上の信号(またはその一部分)が障害物の背後にある環境の領域に到達するのを防ぎ、かつ/または、環境から伝播する1つ以上の信号(またはその一部分)が、アクティブセンサによって受信されるのを防ぐ。いくつかのタイプの障害物は、アクティブセンサから物理的に分離されている(例えば、取り付けられていない)場合がある。他のタイプの障害物は、アクティブセンサ上に配設されるか、または別様に取り付けられている可能性がある(例えば、アクティブセンサ上に配設された蓄積された汚れまたは他の破片など)。
本明細書のいくつかの例示的な実装は、センサのFOVを少なくとも部分的に妨げる障害物の検出に関連している。
本明細書の一例のシステムは、ハウジングの内側に配設されたLIDARデバイスを含む。LIDARは、光パルスを放出し、放出された光パルスの戻り反射を検出することによってFOVをスキャンするように構成され得る。これを容易にするために、ハウジングは、放出された光パルスをハウジングから、および反射光パルスをハウジング内に少なくとも部分的に送信する1つ以上の光学部品(例えば、光フィルタ、光学窓など)を含み得るか、またはそれらから形成され得る。
システムは、LIDARデバイスのFOVの複数のスキャンを取得するように構成され得る。FOVの各スキャンを取得することは、(i)LIDARデバイスからハウジングに向かって(およびそれを通して)異なる方向に放出された複数の光パルスを送信すること、および(ii)送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することを含み得る。一例として、LIDARデバイスから第1の方向に放出された第1の光パルスは、ハウジングの第1のセクションを通してFOVに向かって伝播し得、第2の方向に放出された第2の光パルスは、ハウジングの第2のセクションを通して伝播し得る。いくつかの例では、第1および第2のセクションは、ハウジングの物理的に別個のセクションに対応し得る。あるいは、他の例では、第1のセクションは、第2のセクションと少なくとも部分的に重なる場合がある。例えば、第1および第2の光パルスは、少なくとも部分的に互いに交差する2つの異なる発散ビーム経路に沿ってLIDARデバイスから発散するように構成され得る。
さらに、システムは、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出するように構成され得る。例えば、障害物がハウジングに配設されている場合、システムは、ハウジングで反射されてLIDARデバイスに戻る検出された光パルスの光強度(例えば、「フィードバックリターン」)に基づいて、かつ/または、検出された光パルスが、ハウジングの外のオブジェクトから戻ってきた光パルスを含むかどうか(例えば、「ワールドリターン」)に基づいて障害物を検出し得る。
いくつかの例では、システムは、障害物がハウジングに結合されているかどうかを判定するように構成され得る。第1の例では、この判定は、フィードバックリターンの光強度、フィードバックリターンの範囲、および/または障害物が存在するハウジングの所与のセクションから受信したワールドリターンのカウントに基づいてもよい。第2の例では、この判定は、第1のスキャン中にハウジングの第1のセクションを通して、および第2のスキャン中にハウジングの第2のセクションを通してスキャンされたオブジェクトに関連付けられたワールドリターンを比較することに基づいてもよい。第3の例では、この判定は、LIDARデバイスを使用して取得されたオブジェクトの第1のスキャンを、システム内の別のセンサ(例えば、別のLIDARデバイス)を使用して取得されたオブジェクトの第2のスキャンと比較することに基づいてもよい。他の例も、同様に可能である。
障害物のタイプに応じて、いくつかの例では、LIDARデバイス(またはシステム)が障害物の検出にどのように応答するかを決定できる。第1の例では、障害物がハウジングに配設されていると判定された場合(例えば、汚れ、ほこり、鳥の糞など)、LIDARデバイスまたはシステムが洗浄機構(例えば、液体スプレー、高圧ガス管、ワイパーなど)をアクティブにして、遮蔽物の除去を試みることができる。遮蔽物が両方の光学窓(例えば、LIDARデバイスの一部分を覆うビニール袋など)を妨げると判定される第2の例では、LIDARデバイスは、他の可能性の中でもとりわけ、遮蔽物が除去される(例えば、遮蔽しているビニール袋が風で吹き飛ばされる可能性がある)のを所与の時間(またはハウジングの所与の回転数)待つこと、または、FOVの一部分が妨げられていることをLIDARを使用するシステムに警告することを決定することができる。
II.例示的なシステムおよびデバイス
次に、例示的なシステムおよびデバイスについてより詳細に説明する。一般に、本明細書に開示される実施形態は、システムの環境をスキャンする1つ以上のセンサを含む任意のシステムで使用することができる。本明細書に記載の例証的な実施形態は、LIDAR、レーダ、ソナー、カメラなどのセンサを使用する車両を含む。しかしながら、例示的なシステムはまた、他の可能性の中でもとりわけ、ロボットデバイス、産業システム(例えば、組立ラインなど)、または移動通信システムまたはデバイスなどの他のデバイスにおいて実装され、またはその形態を取り得る。
「車両」という用語は、本明細書では、例えば、航空機、ウォータークラフト、宇宙船、自動車、トラック、バン、セミトレーラートラック、オートバイ、ゴルフカート、オフロード車、倉庫輸送車、または農用車のほか、ローラーコースター、トロリー、トラム、電車などのトラックに乗る運送車を含むあらゆる移動オブジェクトを包含すると広く解釈される。
図1Aは、例示的な実施形態による、車両100を示す。特に、図1Aは、車両100の右側面図、前面図、背面図、および上面図を示す。上記のように、車両100は図1Aに自動車として示されているが、他の実施形態が可能である。さらに、いくつかの実施形態では、車両100は、自律モードまたは半自律モードで動作するように構成され得る。しかしながら、本明細書に記載の実施形態は、自律的に動作するように構成されていない車両にも適用可能である。したがって、例示的な車両100は、限定することを意味するものではない。示されるように、車両100は、5つのセンサユニット102、104、106、108、および110ならびにホイール112によって例示される4つのホイールとを含む。
いくつかの実施形態では、センサユニット102~110の各々は、車両100の周りの環境をスキャンすることを可能にする特定の構成特性を有する1つ以上の光検出測距デバイス(LIDAR)を含み得る。追加的または代替的に、いくつかの実施形態では、センサユニット102~110は、他の可能性の中でもとりわけ、全地球測位システムセンサ、慣性測定ユニット、無線検出測距(RADAR)ユニット、カメラ、レーザ距離計、LIDAR、および/または音響センサなどの異なるタイプのセンサを含み得る。
示されるように、センサユニット102は、ホイール112が装着されている車両100の下面とは反対側の車両100の上面に装着される。さらに、示されるように、センサユニット104~110は各々、車両100の上面以外のそれぞれの側に装着される。例えば、センサユニット104は、車両100の前面に位置決めされ、センサ106は、車両100の背面に位置決めされ、センサユニット108は、車両100の右側面に位置決めされ、センサユニット110は、車両100の左側面に位置決めされる。
センサユニット102~110は、車両100の特定の場所に装着されているが、いくつかの実施形態では、センサユニット102~110は、車両100の内側または外側のいずれかで、他の場所に装着することができる。例えば、図1Aは、車両100のバックミラーに装着されたセンサユニット108を示しているが、センサユニット108は、代替的に、車両100の右側面に沿った別の場所に位置決めされ得る。さらに、5つのセンサユニットが示されているが、いくつかの実施形態では、より多くのまたはより少ないセンサユニットが、車両100に含まれ得る。しかしながら、例のために、センサユニット102~110は、図1Aに示されるように位置決めされている。
いくつかの実施形態では、センサユニット102~110のうちの1つ以上は、センサが可動に装着され得る1つ以上の可動マウントを含み得る。例えば、可動マウントは、回転プラットフォームを含み得る。回転プラットフォームに装着されたセンサは、センサが車両100の周りの様々な方向から情報を取得し得るように回転することができる。例えば、センサユニット102は、回転プラットフォームを異なる方向などに作動させることによって調整することができる視線方向を有するLIDARを含み得る。代替的または追加的に、可動マウントは、傾斜プラットフォームを含み得る。傾斜プラットフォームに装着されたセンサは、センサが様々な角度から情報を取得し得るように、所与の範囲の角度および/または方位角内で傾斜することができる。可動マウントは、他の形式も取り得る。
さらに、いくつかの実施形態では、センサユニット102~110のうちの1つ以上は、センサおよび/または可動マウントを動かすことによってセンサユニットにおけるセンサの位置および/または向きを調整するように構成されたアクチュエータを含み得る。例示的なアクチュエータは、他の例の中でもとりわけ、モータ、空気圧アクチュエータ、油圧ピストン、リレー、ソレノイド、および/または圧電アクチュエータを含む。
示されるように、車両100は、車両を運転面に沿って移動させるように回転するように構成されたホイール112などの1つ以上のホイールを含む。いくつかの実施形態では、ホイール112は、リムに結合された少なくとも1つのタイヤを含み得る。そのために、ホイール112は、金属とゴムの任意の組み合わせ、または他の材料の組み合わせを含み得る。車両100は、これら示されたものに加えて、またはその代わりに1つ以上の他の構成要素を含み得る。
図1Bは、図1Aに示される車両100の上面に位置決めされたセンサユニット102の斜視図である。示されるように、センサユニット102は、第1のLIDAR120、第2のLIDAR122、分割構造124、およびハウジング126を含む。上記のように、センサユニット102は、追加的または代替的に、図1Bに示されるもの以外のセンサを含み得る。しかしながら、例のために、センサユニット102は、図1Bに示される構成要素を含む。
いくつかの例では、第1のLIDAR120は、1つ以上の光パルスを放出し、車両100の環境内のオブジェクトからの光パルスの反射を検出しながら、軸(例えば、垂直軸など)の周りを回転することによって、車両100の周りの環境をスキャンするように構成され得る。いくつかの実施形態では、第1のLIDAR120は、軸の周りを繰り返し回転して、環境内のオブジェクトの動きを迅速に検出するのに十分に高いリフレッシュレートで環境をスキャンできるように構成され得る。一実施形態では、第1のLIDAR120は、10Hzのリフレッシュレート(例えば、毎秒第1のLIDAR120の10回の完全な回転)を有し得、それにより、車両の周りの360度の視野(FOV)を毎秒10回スキャンする。このプロセスを通じて、例えば、周囲環境の3Dマップは、第1のLIDAR120からのデータに基づいて判定され得る。一実施形態では、第1のLIDAR120は、905nmの波長を有する64個のレーザビームを放出する複数の光源を含み得る。この実施形態では、第1のLIDAR120からのデータに基づいて判定された3Dマップは、0.2°(水平)×0.3°(垂直)の角度分解能を有し得、第1のLIDAR120は、環境の360°(水平)×20°(垂直)FOVを有し得る。この構成では、3Dマップは、例えば、車両100から100メートルの(中)範囲内のオブジェクトを検出する、または識別するのに十分な解像度を有することができる。ただし、他の構成(例えば、光源の数、角度分解能、波長、範囲など)も可能である。
いくつかの実施形態では、第2のLIDAR122は、車両100の周りの環境のより狭いFOVをスキャンするように構成され得る。例えば、第2のLIDAR122は、第1のLIDAR120と同じまたは類似の(例えば、垂直)軸の周りの完全な回転未満で回転するように構成され得る。さらに、いくつかの例では、第2のLIDAR122は、第1のLIDAR120よりも低いリフレッシュレートを有し得る。例えば、この配置では、車両100は、第2のLIDAR122からのデータを使用して、環境のより狭いFOVの3Dマップを判定することができる。この場合の3Dマップは、第1のLIDAR120からのデータに基づいて判定された対応する3Dマップよりも高い角度分解能を有し得、したがって、車両から比較的遠い距離にあるオブジェクトの検出/識別および第1のLIDAR120のスキャン範囲内のより小さなオブジェクトの識別を可能にし得る。一実施形態では、第2のLIDAR122は、8°(水平)×15°(垂直)のFOV、4Hzのリフレッシュレートを有し得、1550nmの波長を有する狭いビームを放出し得る。さらに、この実施形態では、第2のLIDAR122からのデータに基づいて判定された3Dマップは、0.1°(水平)×0.03°(垂直)の角度分解能を有し得、それにより、車両100から300メートルの(長い)範囲内のオブジェクトの検出/識別を可能にする。ただし、他の構成(例えば、光源の数、角度分解能、波長、範囲など)も可能である。
いくつかの例では、車両100は、第2のLIDAR122の視線方向を調整するように構成され得る。例えば、第2のLIDAR122は、第2のLIDAR122の視線方向を図1Bに示される方向以外の方向に調整することを可能にするステッパモータ(図示せず)に装着され得る。したがって、いくつかの例では、第2のLIDAR122は、車両100からの様々な視線方向に沿って(狭い)FOVをスキャンするように操縦可能であり得る。
分割構造124は、第1のLIDAR120を支持する、かつ/または第1のLIDAR120を第2のLIDAR122から光学的に分離するのに適した任意の固体材料から形成することができる。材料の例には、他の可能性の中でもとりわけ、金属、プラスチック、発泡体が含まれ得る。
ハウジング126は、波長範囲内の波長を有する光に対して実質的に透明であり、波長範囲外の波長を有する光に対して実質的に不透明である任意の材料から形成された光フィルタを含み得る。説明の便宜上、「ハウジング126」および「ライトフィルタ126」という用語は、本明細書では、図1Bに示されるハウジング126の同じ物理的構造を指すために交換可能に使用され得ることに留意されたい。
いくつかの例では、光フィルタ126は、第1のLIDAR120によって放出される光の第1の波長(例えば、905nm)および第2のLIDAR122によって放出される光の第2の波長(例えば、1550nm)を有する光が光フィルタ126を通して伝播することを可能にし得る。示されるように、光フィルタ126は、第1のLIDAR120および第2のLIDAR122を囲むように形作られている。さらに、いくつかの例では、光フィルタ126は、他の可能性の中でもとりわけ、ほこりの蓄積または空中の破片との衝突など、第1のLIDAR120および第2のLIDAR122への環境損傷を防止し得る。いくつかの例では、光フィルタ126は、光フィルタ126を通して伝播する可視光を低減するように構成され得る。次に、光フィルタ126は、例えば、外部の観察者の視界からのセンサユニット102の構成要素の可視性を低減しながら、第1のLIDAR120および第2のLIDAR122を囲むことによって車両100の美的外観を改善し得る。他の例では、光フィルタ126は、可視光、ならびに第1のLIDAR120および第2のLIDAR122からの光を可能にするように構成され得る。
いくつかの実施形態では、光フィルタ126の一部分は、異なる波長範囲が光フィルタ126を通して伝播することを可能にするように構成され得る。例えば、光フィルタ126の上部分(例えば、分割構造124の上方)は、第1のLIDAR120の第1の波長を含む第1の波長範囲内の光の伝播を可能にするように構成され得、光フィルタの下部分126(例えば、分割構造124の下方)は、第2のLIDAR122の第2の波長を含む第2の波長範囲内の光の伝播を可能にするように構成され得る。他の実施形態では、光フィルタ126に関連付けられた波長範囲は、第1のLIDAR120の第1の波長および第2のLIDAR122の第2の波長の両方を含み得る。
図1Cは、図1Aに示される車両100の前面に位置決めされたセンサユニット104の斜視図である。いくつかの例では、センサユニット106、108、および110は、図1Cに示されるセンサユニット104と同様に構成され得る。示されるように、センサユニット104は、第3のLIDAR130およびハウジング136を含む。上記のように、センサユニット104は、追加的または代替的に、図1Cに示されるもの以外のセンサを含み得る。しかしながら、例のために、センサユニット104は、図1Cに示される構成要素を含む。
いくつかの例では、第3のLIDAR130は、第3のLIDAR130が位置決めされている車両100の所与の側(すなわち、前面)から離れて延びる車両100の周囲の環境のFOVをスキャンするように構成され得る。一例では、第3のLIDAR130は、第2のLIDAR122よりも広いFOVにわたって(例えば、水平に)回転するが、第1のLIDAR120の360度FOVよりも小さいように構成され得る。一実施形態では、第3のLIDAR130は、270°(水平)×110°(垂直)のFOV、4Hzのリフレッシュレートを有し得、905nmの波長を有するレーザビームを放出し得る。この実施形態では、第3のLIDAR130からのデータに基づいて判定された3Dマップは、1.2°(水平)×0.2°(垂直)の角度分解能を有し得、それにより、車両100までの30メートルの(短い)範囲内のオブジェクトの検出/識別を可能にする。ただし、他の構成(例えば、光源の数、角度分解能、波長、範囲など)も可能である。
ハウジング136は、図1Bのハウジング126と同様であり得る。例えば、ハウジング136は、第3のLIDAR130を囲むように形作られた光フィルタを含み得る。さらに、例えば、ハウジング136は、第3のLIDAR130によって放出光の波長を含む波長範囲内の光がハウジング136を通して伝播することを可能にするように構成され得る。
上記のように、車両100のセンサユニット102~110は、代替的または追加的に、異なるタイプのセンサ(例えば、レーダ、カメラなど)を含み得、車両100の内側または外側の異なる位置に装着され得る。
図1Dは、車両100が周囲の環境をスキャンしているシナリオにおける車両100の上面図を示している。上記の議論に沿って、車両100の様々なセンサの各々は、そのそれぞれのリフレッシュレート、FOV、または他の任意の要因に従って特定の解像度を有することができる。次に、様々なセンサは、車両100からの距離のそれぞれのスキャン範囲内のオブジェクトの検出および/または識別に適している可能性がある。
図1Dに示されるように、輪郭160および162は、センサユニット102の第1のLIDAR120からのデータに基づいてオブジェクトが検出/識別され得る車両100までの距離の例示的な範囲を示す。示されるように、例えば、輪郭160内の近接オブジェクトは、車両100の上面にセンサユニット102が位置決めされているために、適切に検出され、かつ/または識別されない場合がある。しかしながら、例えば、輪郭160の外側で、輪郭162によって画定される中距離(例えば、100メートルなど)内のオブジェクトは、第1のLIDAR120からのデータを使用して適切に検出/識別され得る。さらに、示されるように、第1のLIDAR120の水平FOVは、車両100の周りのすべての方向に360°に及ぶことができる。
示されるシナリオでは、輪郭164は、センサユニット102の第2のLIDAR122からのより高い解像度のデータを使用してオブジェクトが検出され、かつ/または識別され得る環境の領域を示し得る。示されるように、輪郭164は、例えば、より長い距離範囲(例えば、300メートルなど)内で、輪郭162よりも車両100から遠く離れたオブジェクトを包含し得る。輪郭164は、第2のLIDAR122のより狭いFOV(水平方向)を示しているが、いくつかの例では、車両100は、第2のLIDAR122の視野方向を図1Dに示される方向以外の任意の方向に調整するように構成され得る。例えば、車両100は、第1のLIDAR120からのデータを使用して(例えば、輪郭162内で)オブジェクトを検出し、第2のLIDAR122の視線方向をオブジェクトを含むFOVに調整し、次いで、第2のLIDAR122からの高解像度データを使用して、オブジェクトを識別し得る。一実施形態では、第2のLIDAR122の水平FOVは、8°であり得る。
さらに、図1Dに示されるように、輪郭166は、センサユニット104の第3のLIDAR130によってスキャンされた環境の領域を示し得る。示されるように、輪郭166によって示される領域は、例えば、第1のLIDAR120および/または第2のLIDAR122によってスキャンされ得ない環境の部分を含む。さらに、例えば、第3のLIDAR130からのデータは、車両100までの短い距離(例えば、30メートルなど)内のオブジェクトを検出し、かつ/または識別するのに十分な解像度を有し得る。
上記のスキャン範囲、解像度、およびFOVは、例示のみを目的としたものであり、車両100の様々な構成に応じて変化し得ることに留意されたい。さらに、図1Dに示される輪郭160~166は、必ずしも一定の縮尺である必要はなく、説明の便宜のために示されるように示されている。
さらに、上記のように、車両100は、とりわけ、LIDAR、レーダ、ソナー、超音波センサ、および/またはカメラなどの複数のタイプのセンサを含み得る。さらに、例えば、様々なセンサが、それぞれのセンサのそれぞれのFOV内のオブジェクトの検出および/または識別に適している可能性がある。
そのために、矢印182aおよび182bは、図1Aのセンサユニット108内のセンサまたは任意の他のセンサなど、車両100の側に沿って装着されたセンサのFOVによって画定される環境の領域を示し得る。例えば、矢印182aおよび182bに関連付けられたセンサは、矢印182aおよび182bの間で車両100から離れて延びる環境の一部をスキャンするように構成されたレーダセンサであり得る。追加的または代替的に、いくつかの例では、矢印182aおよび182bに関連付けられたセンサは、任意の他のタイプのセンサ(例えば、ソナー、カメラなど)を含み得る。しかしながら、例のために、矢印182aおよび182bは、本明細書では、レーダセンサのFOVの範囲として説明されている。この例では、レーダセンサは、少なくとも閾値レーダ断面積を有するオブジェクト(矢印182aおよび182bの間の環境の領域内)を検出するように構成され得る。一実施形態では、閾値レーダ断面積は、オートバイ、スクーター、自動車、および/または任意の他の車両(例えば、0.5平方メートルなど)の寸法に関係し得る。他の例の閾値レーダ断面積値も可能である。
同様に、矢印184aおよび184bは、例えば、図1Aのセンサユニット110内のセンサなど、車両100の反対側に沿って装着された別のセンサ(例えば、別のレーダ)のFOV内にある環境の領域を示し得る。
図1Dに示される矢印182a、182bおよび/または184a、184bの間の角度は、縮尺どおりではなく、例示のみを目的としていることに留意されたい。したがって、いくつかの例では、センサユニット108および110内のセンサの水平FOVも同様に変化し得る。
図2は、例示的な実施形態による、車両200の簡略化されたブロック図である。車両200は、例えば、車両100と同様であり得る。車両200は、推進システム202、センサシステム204、制御システム206、周辺機器208およびコンピュータシステム210を含む。他の実施形態では、車両200は、より多くの、より少ない、または異なるシステムを含み得、各システムは、より多くの、より少ない、または異なる構成要素を含み得る。さらに、示されたシステムおよび構成要素は、任意の数の方法で組み合わされ、または分割され得る。
推進システム202は、車両200に動力運動を提供するように構成され得る。示されるように、推進システム202は、エンジン/モータ218、エネルギー源220、トランスミッション222、およびホイール/タイヤ224を含む。
エンジン/モータ218は、他の可能なタイプのモータおよび/またはエンジンの中でもとりわけ、内燃機関、電気モータ、蒸気エンジン、またはスターリングエンジンであり得るか、またはそれらを含み得る。他のモータおよびエンジンも可能である。いくつかの実施形態では、推進システム202は、複数のタイプのエンジンおよび/またはモータを含み得る。例えば、ガソリン電気ハイブリッド車は、ガソリンエンジンおよび電気モータを含むことができる。他の例も可能である。
エネルギー源220は、エンジン/モータ218に全体的または部分的に動力を供給するエネルギー源であり得る。すなわち、エンジン/モータ218は、エネルギー源220を機械的エネルギーに変換するように構成され得る。エネルギー源220の例は、ガソリン、ディーゼル、プロパン、他の圧縮ガス系燃料、エタノール、ソーラパネル、バッテリ、および/または他の電力源を含む。エネルギー源220は、追加的または代替的に、燃料タンク、バッテリ、コンデンサ、および/またはフライホイールの任意の組み合わせを含むことができる。いくつかの実施形態では、エネルギー源220は、車両200の他のシステムにもエネルギーを提供し得る。
トランスミッション222は、機械的動力をエンジン/モータ218からホイール/タイヤ224に伝達するように構成され得る。この目的のために、トランスミッション222は、ギアボックス、クラッチ、差動装置、駆動シャフト、および/または他の要素を含み得る。トランスミッション222が駆動シャフトを含む実施形態では、駆動シャフトは、ホイール/タイヤ224に結合されるように構成された1つ以上の車軸を含むことができる。
車両200のホイール/タイヤ224は、一輪車、自転車/オートバイ、三輪車、または乗用車/トラックの四輪車のフォーマットを含む様々なフォーマットで構成され得る。6つ以上のホイールを含むものなど、他のホイール/タイヤフォーマットも、可能である。車両224のホイール/タイヤ224は、他のホイール/タイヤ224に対して差動的に回転するように構成され得る。いくつかの実施形態では、ホイール/タイヤ224は、トランスミッション222に固定的に取り付けられた少なくとも1つのホイール、および運転面と接触することができるホイールのリムに結合された少なくとも1つのタイヤを含み得る。ホイール/タイヤ224は、金属とゴムの任意の組み合わせ、または他の材料の組み合わせを含み得る。推進システム202は、追加的または代替的に、示されているもの以外の構成要素を含み得る。
センサシステム204は、車両200が置かれている環境についての情報を感知するように構成されたいくつかのセンサならびにセンサの位置および/または向きを修正するように構成された1つ以上のアクチュエータ236を含み得る。示されるように、センサシステム204のセンサは、環境センサ225、全地球測位システム(GPS)226、慣性測定ユニット(IMU)228、レーダユニット230、レーザ距離計および/またはLIDARユニット232、ならびにカメラ234を含む。センサシステム204は、例えば、他の可能性の中でもとりわけ、車両200の内部システム(例えば、Oモニタ、燃料計、エンジンオイル温度など)、距離センサ(例えば、ソナー、超音波センサなど)を監視するセンサを含む追加のセンサも含み得る。さらに、センサシステム204は、複数のLIDARを含み得る。いくつかの例では、センサシステム204は、各々がそれぞれの位置(例えば、上面、下面、前面、背面、右側面、左側面など)で車両に装着された複数のセンサユニットとして実装され得る。他のセンサも可能である。
環境センサ225は、車両200の環境の状態を測定する任意のタイプのセンサ(例えば、温度センサ、湿度センサなど)を含み得る。例えば、環境センサ225は、熱電対、サーミスタ、サーモスタット、抵抗性温度検出器、または車両200の環境の温度の測定値を提供するように構成された任意の他のタイプの温度センサなどの温度センサを含み得る。
GPS226は、車両200の地理的場所を推定するように構成された任意のセンサ(例えば、場所センサ)であり得る。この目的のために、GPS226は、地球に対する車両200の位置を推定するように構成されたトランシーバを含み得る。GPSモジュール226は、他の形式も取り得る。
IMU228は、慣性加速度に基づいて車両200の位置および向きの変化を感知するように構成されたセンサの任意の組み合わせであり得る。いくつかの実施形態では、センサの組み合わせは、例えば、加速度計およびジャイロスコープを含み得る。センサの他の組み合わせも可能である。
レーダユニット230は、無線信号を使用して車両200が置かれている環境内のオブジェクトを感知するように構成された任意のセンサであり得る。いくつかの実施形態では、オブジェクトを感知することに加えて、レーダユニット230は、オブジェクトの速度および/または方向を感知するように追加的に構成され得る。
同様に、レーザ距離計またはLIDARユニット232は、レーザを使用して車両200が置かれている環境内のオブジェクトを感知するように構成された任意のセンサであり得る。特に、レーザ距離計またはLIDARユニット232は、レーザを放出するように構成されたレーザ源および/またはレーザスキャナならびにレーザの反射を検出するように構成された検出器を含み得る。レーザ距離計またはLIDARユニット232は、(例えば、ヘテロダイン検出を使用して)コヒーレントまたはインコヒーレント検出モードで動作するように構成され得る。いくつかの例では、LIDARユニット232は、車両200の周りの環境の特定の領域をスキャンするのに適した固有の位置および/または構成を各々が有する複数のLIDARを含み得る。
カメラ234は、車両200が置かれている環境の画像を捕捉するように構成された任意のカメラ(例えば、スチルカメラ、ビデオカメラなど)であり得る。この目的のために、カメラは上記のいずれかの形態を取り得る。センサシステム204は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
制御システム206は、車両200およびその構成要素の動作を制御するように構成され得る。この目的のために、制御システム206は、ステアリングユニット238、スロットル240、ブレーキユニット242、センサ融合アルゴリズム244、コンピュータビジョンシステム246、ナビゲーションまたは経路設定システム248、および障害物回避システム250を含み得る。
ステアリングユニット238は、車両200の方向を調整するように構成された機構の任意の組み合わせであり得る。スロットル240は、エンジン/モータ218の動作速度、ひいては、車両200の速度を制御するように構成された機構の任意の組み合わせであり得る。ブレーキユニット242は、車両200を減速させるように構成された機構の任意の組み合わせであり得る。例えば、ブレーキユニット242は、ホイール/タイヤ224を遅くするように、摩擦を使用し得る。別の例として、ブレーキユニット242は、ホイール/タイヤ224の運動エネルギーを電流に変換するように構成され得る。ブレーキモジュール242は、他の形式も取り得る。
センサ融合アルゴリズム244は、センサシステム204からのデータを入力として受け入れるように構成されたアルゴリズム(またはアルゴリズムを格納するコンピュータプログラム製品)であり得る。データは、例えば、センサシステム204のセンサで感知された情報を表すデータを含み得る。センサ融合アルゴリズム244は、例えば、カルマンフィルタ、ベイジアンネットワーク、本明細書に記載の方法のいくつかの機能のためのアルゴリズム、または任意の他のアルゴリズムを含み得る。センサ融合アルゴリズム244は、例えば、車両100が置かれている環境における個々のオブジェクトおよび/または特徴の評価、特定の状況の評価、および/または特定の状況に基づいて考えられる影響の評価を含む、センサシステム204からのデータに基づく様々な査定を提供するようにさらに構成され得る。他の査定も可能である。
コンピュータビジョンシステム246は、例えば、交通信号および障害物を含む、車両200が置かれている環境におけるオブジェクトおよび/または特徴を識別するために、カメラ234によって捕捉された画像を処理し、かつ分析するように構成された任意のシステムであり得る。この目的のために、コンピュータビジョンシステム246は、オブジェクト認識アルゴリズム、運動からの構造復元(Structure From Motion)(SFM)アルゴリズム、ビデオ追跡、または他のコンピュータビジョン技術を使用し得る。いくつかの実施形態では、コンピュータビジョンシステム246は、環境をマッピングし、オブジェクトを追跡し、オブジェクトの速度を推定するなどのために追加的に構成され得る。
ナビゲーションおよび経路設定システム248は、車両200の運転経路を判定するように構成された任意のシステムであり得る。ナビゲーションおよび経路設定システム248は、車両200が運転中である間に運転経路を動的に更新するように追加的に構成され得る。いくつかの実施形態では、ナビゲーションおよび経路設定システム248は、車両200の運転経路を判定するように、センサ融合アルゴリズム244、GPS226、LIDARユニット232および1つ以上の所定のマップからデータを組み込むように構成され得る。
障害物回避システム250は、車両200が置かれている環境における障害物を識別し、評価し、かつ回避するか、または他の方法で通り抜けるように構成された任意のシステムであり得る。制御システム206は、追加的または代替的に、示されているもの以外の構成要素を含み得る。
周辺機器208は、車両200が外部センサ、他の車両、外部コンピューティングデバイスおよび/またはユーザと相互作用することを可能にするように構成され得る。この目的のために、周辺機器208は、例えば、無線通信システム252、タッチスクリーン254、マイクロフォン256、および/またはスピーカ258を含み得る。
無線通信システム252は、直接または通信ネットワークを介して、1つ以上の他の車両、センサ、または他のエンティティに無線で結合されるように構成された任意のシステムであり得る。この目的のために、無線通信システム252は、直接または無線ネットワークを介して、他の車両、センサ、または他のエンティティと通信するためのアンテナおよびチップセットを含み得る。チップセットまたは無線通信システム252は、概して、他の可能性の中でもとりわけ、Bluetooth、IEEE802.11(任意のIEEE802.11改訂版を含む)に記載されている通信プロトコル、セルラー技術(GSM、CDMA、UMTS、EV-DO、WiMAX、またはLTEなど)、Zigbee、専用狭域通信(DSRC)、および無線周波数識別(RFID)通信などの1つ以上のタイプの無線通信(例えば、プロトコル)に従って通信するように配置され得る。無線通信システム252は、他の形式も取り得る。
タッチスクリーン254は、ユーザが車両200にコマンドを入力するために使用され得る。この目的のために、タッチスクリーン254は、他の可能性の中でもとりわけ、静電容量感知、抵抗感知、または弾性表面波プロセスを介して、ユーザの指の位置および動きのうちの少なくとも1つを感知するように構成され得る。タッチスクリーン254は、タッチスクリーン表面に平行または面一である方向、タッチスクリーン表面に直交する方向、またはその両方における指の動きを感知することができ得、タッチスクリーン表面に加えられる圧力のレベルを感知することもでき得る。タッチスクリーン254は、1つ以上の半透明または透明の絶縁層および1つ以上の半透明または透明の導電層で形成され得る。タッチスクリーン254は、他の形式も取り得る。
マイクロフォン256は、車両200のユーザから音響(例えば、音声コマンドまたは他の音響入力)を受信するように構成され得る。同様に、スピーカ258は、車両200のユーザに音響を出力するように構成され得る。周辺機器208は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
データストレージ210は、同様に、推進システム202、センサシステム204、制御システム206、および周辺機器208のうちの1つ以上に、データを送信し、それからデータを受信し、それと相互作用し、かつ/またはそれを制御するように構成され得る。この目的のために、コンピュータシステム210は、システムバス、ネットワーク、および/または他の接続機構(図示せず)によって、推進システム202、センサシステム204、制御システム206、および周辺機器208のうちの1つ以上に通信可能にリンクされ得る。
一例では、コンピュータシステム210は、燃料効率を改善するためにトランスミッション222の動作を制御するように構成され得る。別の例として、コンピュータシステム210は、カメラ234に環境の画像を捕捉させるように構成され得る。さらに別の例として、コンピュータシステム210は、センサ融合アルゴリズム244に対応する命令を格納し、かつ実行するように構成され得る。さらに別の例として、コンピュータシステム210は、LIDARユニット232を使用して、車両200の周囲の環境の3D表現を判定するための命令を格納し、かつ実行するように構成され得る。他の例も可能である。
示されるように、コンピュータシステム210は、プロセッサ212およびデータストレージ214を含む。プロセッサ212は、1つ以上の汎用プロセッサおよび/または1つ以上の専用プロセッサを備え得る。プロセッサ212が2つ以上のプロセッサを含む限り、そのようなプロセッサは、別々にまたは組み合わせて動作することができる。次に、データストレージ214は、光学的、磁気的、および/または有機的ストレージなどの1つ以上の揮発性および/または1つ以上の不揮発性ストレージの構成要素を備えてもよく、データストレージ214は、全体的または部分的にプロセッサ212と統合されてもよい。
いくつかの実施形態では、データストレージ214は、様々な車両機能(例えば、図4に示され、以下に説明される方法400)を実行するためにプロセッサ212によって実行可能な命令216(例えば、プログラムロジック)を含み得る。データストレージ214は、同様に、推進システム202、センサシステム204、制御システム206、および/または周辺機器208のうちの1つ以上に、データを送信し、それからデータを受信し、それと相互作用し、かつ/またはそれを制御するための命令を含む、追加の命令を含み得る。コンピュータシステム210は、追加的または代替的に、示されているもの以外の構成要素を含み得る。
示されるように、車両200は、車両200の構成要素の一部またはすべてに電力を供給するように構成され得る電源260をさらに含む。この目的のために、電源260は、例えば、再充電可能なリチウムイオンまたは鉛蓄バッテリを含み得る。いくつかの実施形態では、電池の1つ以上のバンクが、電力を提供するように構成され得る。他の電源材料および構成も可能である。いくつかの実施形態では、電源260およびエネルギー源220は、いくつかの全電気自動車のように、ともに実装され得る。
いくつかの実施形態では、車両200は、これら示されたものに加えて、またはその代わりに1つ以上の要素を含み得る。例えば、車両200は、1つ以上の追加のインターフェースおよび/または電源を含み得る。他の追加の構成要素も可能である。そのような実施形態では、データストレージ214は、追加の構成要素を制御し、かつ/またはそれと通信するように、プロセッサ212によって実行可能な命令をさらに含み得る。
さらに、図2は構成要素およびシステムを車両200に統合されているものとして示されているが、いくつかの実施形態では、1つ以上の構成要素またはシステムは、有線または無線接続を使用して車両200に取り外し可能に装着される、または他の方法で(機械的または電気的に)接続され得る。一例では、センサシステム204内の1つ以上のセンサの動作命令を判定するコンピューティングシステム210の一部分は、無線通信インターフェース(例えば、無線通信システム252など)を介して車両200と通信している車両200の外側(例えば、リモートサーバなど)に配設され得る。車両200は、他の形式も取り得る。
図3は、例示的な実施形態による、車両300の簡略化されたブロック図である。図示のように、システム300は、電源装置302、コントローラ304、回転プラットフォーム310、固定プラットフォーム312、1つ以上のアクチュエータ314、回転リンク316、送信機320、受信機330、1つ以上の光学素子340、ハウジング350および1つ以上の洗浄装置360を含む。いくつかの実施形態では、システム300は、より多くの、より少ない、または異なる構成要素を含んでもよい。追加的に、示された構成要素は、任意の数の方法で組み合わされ、または分割され得る。
電源装置302は、電力を供給し、受け、かつ/またはシステム300の様々な構成要素に分散させるように構成され得る。そのために、電源装置302は、システム300内に配設され、任意の実現可能な方法でシステム300の様々な構成要素に接続されて、それらの構成要素に電力を供給するための電源(例えば、バッテリセルなど)を含んでもよいか、または別様にその形態を取ってもよい。追加的または代替的に、電源装置302は、(例えば、システム300が装着されている車両に配置された電源から)1つ以上の外部電源から電力を受け、受けた電力をシステム300の様々な構成要素に送信するように構成された電源アダプタを含んでもよいか、または別様にその形態を取ってもよい。
コントローラ304は、システム300の特定の動作を容易にするように配置された1つ以上の電子構成要素および/またはシステムを含み得る。コントローラ304は、任意の実現可能な方法でシステム300内に配設することができる。一実施形態では、コントローラ304は、少なくとも部分的に、回転リンク316の中央空洞領域内に配設されてもよい。
いくつかの例では、コントローラ304は、システム300の様々な構成要素への制御信号の転送および/またはシステム300の様々な構成要素からコントローラ304へのデータの転送に使用される配線を含むか、または別様にそれに結合され得る。例えば、コントローラ304が受信するデータは、他の可能性の中でもとりわけ、受信機330による信号の検出を示すセンサデータを含み得る。さらに、コントローラ304によって送信される制御信号は、他の可能性の中でもとりわけ、送信機320による信号の放出を制御すること、受信機330による信号の検出を制御すること、および/または回転プラットフォーム310を回転させるようにアクチュエータ314を制御することなどによって、システム300の様々な構成要素を動作させてもよい。
示されるように、コントローラ304は、1つ以上のプロセッサ306およびデータストレージ108を含んでもよい。いくつかの例では、データストレージ108は、プロセッサ306によって実行可能なプログラム命令を格納して、システム300に本明細書に記載の様々な動作を実行させてもよい。そのために、プロセッサ306は、1つ以上の汎用プロセッサおよび/または1つ以上の専用プロセッサを備え得る。コントローラ304が2つ以上のプロセッサを含む限り、そのようなプロセッサは、別々にまたは組み合わせて動作することができる。いくつかの例では、データストレージ108は、光学的、磁気的、および/または有機的ストレージなどの1つ以上の揮発性および/または1つ以上の不揮発性ストレージの構成要素を備えていてもよく、データストレージ108は、任意で、全体的または部分的にプロセッサと統合されてもよい。
いくつかの例では、コントローラ304は、外部コントローラとシステム300の様々な構成要素との間の制御信号および/またはデータの転送を容易にするのに役立つように、外部コントローラなど(例えば、システム300が装着される車両に配置されたコンピューティングシステム)と通信してもよい。追加的または代替的に、いくつかの例では、コントローラ304は、本明細書で記載される1つ以上の動作を実行するように配線された回路を含み得る。例えば、コントローラ304は、送信機320によるパルスまたは他の信号の放出をトリガするためのパルスタイミング信号を提供する、1つ以上のパルサー回路を含み得る。追加的または代替的に、いくつかの例では、コントローラ304は、1つ以上の専用プロセッサ、サーボ、または他のタイプのコントローラを含み得る。例えば、コントローラ304は、特定の周波数または位相で回転プラットフォームを回転させるアクチュエータ314を動作させる、比例積分微分(PID)コントローラまたは他の制御ループフィードバック機構を含み得る。他の例も、同様に可能である。
回転プラットフォーム310は、軸の周りを回転するように構成され得る。そのために、回転プラットフォーム310を、その上に装着された1つ以上の構成要素を支持するのに好適な任意の固体材料から形成することができる。例えば、送信機320および受信機330は、これらの構成要素の各々が回転プラットフォーム310の回転に基づいて環境に対して移動するように、回転プラットフォーム310上に配置され得る。特に、これらの構成要素は、システム300が様々な方向から情報を取得し得るように、軸の周りを回転することができる。例えば、回転軸が垂直軸である場合、システム300の指向方向は、垂直軸の周りで回転プラットフォーム310を作動させることによって水平に調整することができる。
固定プラットフォーム312は、任意の形状または形態を取ってもよく、例えば、車両の上部、ロボットプラットフォーム、組み立てライン機械、またはその周辺環境をスキャンするためにシステム300を採用する、任意の他のシステムなどの様々な構造に結合するように構成されてもよい。また、固定プラットフォームの結合は、任意の実行可能なコネクタ構成(例えば、ボルト、ねじなど)を介して実行され得る。
アクチュエータ314は、モータ、空気圧アクチュエータ、油圧ピストン、および/または圧電アクチュエータ、および/または任意の他のタイプのアクチュエータを含んでもよい。一例では、アクチュエータ314は、回転プラットフォーム310の回転軸の周りで回転プラットフォーム310を作動させるように構成された第1のアクチュエータを含んでもよい。別の例では、アクチュエータ314は、システム300の1つ以上の構成要素を異なる回転軸の周りで回転させるように構成された第2のアクチュエータを含んでもよい。例えば、第2のアクチュエータは、光学素子(例えば、ミラーなど)を第2の軸(例えば、水平軸など)を中心に回転させて、放出される光パルスの方向(例えば、垂直など)を調整してもよい。さらに別の例では、アクチュエータ314は、システム300の1つ以上の構成要素を傾斜させる(または別様に移動させる)ように構成された第3のアクチュエータを含んでもよい。例えば、第3のアクチュエータは、他の可能性の中でもとりわけ、放出された光パルスの光路に沿ってフィルタまたは他のタイプの光学素子340を移動する、または交換するために使用することができるか、または回転プラットフォームを(例えば、システム300などによってスキャンされた視野(FOV)の範囲を調整するために)傾斜させるために使用することができる。
回転リンク316は、固定プラットフォーム312を回転プラットフォーム310に直接的に、または間接的に結合する。そのために、回転リンク316は、固定プラットフォーム312に対する軸の周りの回転プラットフォーム310の回転を提供する、任意の形状、形態、および材料をとり得る。例えば、回転リンク316は、アクチュエータ314からの作動に基づいて回転するシャフトなどの形態をとり、それにより、アクチュエータ314から回転プラットフォーム310に機械力を伝達することができる。一実施形態では、回転リンク316は、システム300の1つ以上の構成要素を配設することができる中央空洞を有することができる。いくつかの例では、回転リンク316はまた、固定プラットフォーム312と回転プラットフォーム310(および/または送信機320および受信機330などのその上の構成要素)との間でデータおよび/または命令を転送するための通信リンクを提供し得る。
送信機320は、システム300の環境に向けて信号を送信するように構成されてもよい。示されるように、送信機320は、1つ以上のエミッタ322を含み得る。エミッタ322は、システム300の構成に応じて、様々なタイプのエミッタを含んでもよい。
システム300がLIDARデバイスとして構成される第1の例では、送信機320は、波長範囲内の波長を有する1つ以上の光ビームおよび/またはパルスを放出する1つ以上の光エミッタ322を含んでもよい。波長範囲は、例えば、電磁スペクトルの紫外、可視、および/または赤外部分にあり得る。いくつかの例では、波長範囲は、レーザによって提供されるような、狭い波長範囲とすることができる。例示的な光エミッタ322の非網羅的なリストは、レーザダイオード、ダイオードバー、発光ダイオード(LED)、垂直共振器面発光レーザ(VCSEL)、有機発光ダイオード(OLED)、ポリマー発光ダイオード(PLED)、発光ポリマー(LEP)、液晶ディスプレイ(LCD)、微小電気機械システム(MEMS)、ファイバーレーザ、ならびに/または選択的に光を送信し、反射し、かつ/もしくは放出して、複数の放出された光ビームおよび/もしくはパルスを提供するように構成された任意の他のデバイスを含む。
システム300がアクティブ赤外線(IR)カメラとして構成される第2の例では、送信機320は、シーンを照明するためにIR放射を放出するように構成された1つ以上のエミッタ322を含んでもよい。そのために、送信機320は、IR放射を提供するように構成された任意のタイプのエミッタ(例えば、光源など)を含み得る。
いくつかの実装形態では、システム300(および/または送信機320)は、システム300のFOVを画定する、相対的な空間配置において複数の信号(例えば、光ビーム、IR信号など)を放出するように構成することができる。例えば、各ビーム(または信号)は、FOVの一部に向けて伝播するように構成され得る。この例では、複数の隣接する(かつ/または部分的に重なる)ビームは、システム300によって実行されるスキャン動作中にFOVの複数のそれぞれの部分をスキャンするように方向付けてもよい。他の例も、同様に可能である。
受信機330は、送信機320によって放出された信号の反射を検出するように構成された1つ以上の検出器332を含み得る。
システム300がアクティブIRカメラとして構成される第1の例では、受信機330は、送信機320によって送信され、かつシーンから受信機330に向けて反射されるIR光の光源波長を検出するように構成されている1つ以上の光検出器332(例えば、電荷結合素子(CCD)など)を含んでもよい。
システム300がLIDARデバイスとして構成される第2の例では、受信機330は、環境からシステム300に戻る送信機320によって放出される光パルスまたはビームの反射を傍受し、かつ検出するように配置された1つ以上の光検出器332を含んでもよい。光検出器332の例には、フォトダイオード、アバランシェフォトダイオード(APD)、シリコンフォトマルチプライヤ(SiPM)、シングルフォトンアバランシェダイオード(SPAD)、マルチピクセルフォトンカウンタ(MPPC)、フォトトランジスタ、カメラ、アクティブピクセルセンサ(APS)、電荷結合素子(CCD)、極低温検出器、および/または他の光センサを含んでもよい。場合によっては、受信機330は、送信機320によって放出光と同じ波長範囲の波長を有する光を検出するように構成されてもよい。このようにして、例えば、システム300は、システム300によって発生した受信光を、環境内の外部光源によって発生した他の光から区別してもよい。
いくつかの実装形態では、受信機330は、互いに接続された感知素子のアレイを含む検出器を含んでもよい。例えば、システム300がLIDARデバイスとして構成される場合、複数の光感知素子を並列に接続して、単一の感知素子の検出領域より大きな光検出領域を有する光検出器アレイ(例えば、アレイ内の個々の検出器の感知面の組み合わせなど)を提供することができる。光検出器アレイは、様々な方法で配置することができる。例えば、アレイの個々の検出器は、1つ以上の基板(例えば、プリント回路基板(PCB)、フレキシブルPCBなど)上に配設し、システム300の光学レンズ(例えば、光学素子340)の光路に沿って進行する、入射光を検出するように配置することができる。また、そのような光検出器アレイは、任意の実行可能な方法で配置された任意の実行可能な数の検出器を含んでもよい。
いくつかの例では、システム300は、システム300(ならびに/または送信機320および受信機330)の回転速度を変更することによって、水平スキャン分解能を選択する、または調整することができる。追加的または代替的に、水平スキャン分解能は、送信機320によって放出される信号のパルス速度を調整することによって修正することができる。第1の例では、送信機320は、毎秒15,650パルスのパルス速度でパルスを放出し、パルスを放出しながら10Hz(すなわち、毎秒10回の完全な360°回転)で回転するように構成され得る。この例では、受信機330は、0.23°の水平角分解能(例えば、連続するパルス間の水平角分離)を有し得る。第2の例では、システム300が毎秒15,650パルスのパルス速度を維持しながら、代わりに20Hzで回転される場合、水平角分解能は、0.46°になり得る。第3の例では、送信機320が10Hzの回転速度を維持しながら毎秒31,300パルスの速度でパルスを放出する場合、水平角分解能は、0.115°になり得る。いくつかの例でが、システム300は、システム300の完全な360°回転未満内で特定の範囲の視野をスキャンするように、代替的に構成され得る。他の実装形態も、同様に可能である。
上記のパルス速度、角分解能、回転数、および視野範囲は、単なる例であり、したがって、これらのスキャン特性の各々は、システム300の様々な用途に従って変わり得ることに留意されたい。
光学素子340は、送信機320、受信機330、および/またはハウジング350に任意に含まれるか、または別様に結合され得る。第1の例では、光学素子340は、エミッタ322によって放出された光をシーン(またはその中の領域)に向けるように配置された1つ以上の光学素子を含み得る。第2の例では、光学素子340は、シーン(またはその中の領域)から検出器332に向かって光を集束するように配置された1つ以上の光学素子を含み得る。第3の例では、光学素子340は、ハウジング350を通して周囲環境から、または周囲環境に光信号を選択的に送信するためのインターフェースとして、ハウジング350に配設された1つ以上の光学素子(例えば、光フィルタ、光学窓など)を含み得る。
そのため、光学素子340は、物理的空間を通る光の伝播を導くように、かつ/または光の特性を調整するように配置されている、フィルタ、開口部、ミラー、導波路、レンズ、または他のタイプの光学部品の任意の実行可能な組み合わせを含んでもよい。
いくつかの例では、コントローラ304は、アクチュエータ314を動作して、環境に関する情報を取得するように回転プラットフォーム310を様々な方法で回転させることができる。一例では、回転プラットフォーム310は、いずれかの方向に回転させることができる。別の例では、回転プラットフォーム310は、システム300が環境の360°視野をスキャンするように、完全な回転を実行し得る。さらに、回転プラットフォーム310は、システム300に様々なリフレッシュレートで環境をスキャンさせるように、様々な周波数で回転することができる。一実施形態では、システム300は、10Hzのリフレッシュレート(例えば、システム300の毎秒10回の完全な回転)を有するように構成されてもよい。他のリフレッシュレートも、可能である。
代替的または追加的に、システム300は、(送信機320によって放出された)放出信号の指向方向を様々な方法で調整するように構成されてもよい。一実装形態では、送信機320の信号エミッタ(例えば、光源、アンテナ、音響トランスデューサなど)は、フェーズドアレイ構成または他のタイプのビームステアリング構成(例えば、ビームパターン内の特定の場所がヌルであり得るなど)に従って動作され得る。
システム300がLIDARデバイスとして構成される第1の例では、送信機320おける光源またはエミッタは、光源によって放出される光波の位相を制御するフェーズドアレイ光学系に結合することができる。例えば、コントローラ304は、フェーズドアレイ光学系(例えば、フェーズドアレイビームステアリング)を調整して、(例えば、回転プラットフォーム310が回転していない場合でも)送信機320によって放出される光信号の有効指向方向を変更するように構成することができる。
ハウジング350は、任意の形状、形態、および材料を取ることができ、システム300の1つ以上の構成要素を収容するように構成され得る。いくつかの例では、送信機320、受信機330、および場合によってはシステム300の他の構成要素は、各々、ハウジング350内に配設されてもよい。いくつかの例では、ハウジング350は、ドーム型のハウジングとすることができる。いくつかの例では、ハウジングは、送信機320によって送信される光の波長に対して少なくとも部分的に透明である光フィルタリング材料から形成され得る。他の例では、ハウジング350の部分は、これらの波長に対して不透明な材料で構成され得、または材料を含み得る。いくつかの例では、ハウジング350は、少なくともいくつかの信号がハウジング350の内部空間に入ることを防ぎ、これにより、システム300の1つ以上の構成要素への周囲信号の熱およびノイズの影響を緩和するのに役立ち得る。ハウジング350の他の構成も可能である。
いくつかの例では、ハウジング350は、ハウジング350が回転プラットフォーム310の回転に基づいて回転するように構成されるように、回転プラットフォーム310に結合され得る。このようにして、送信機320および受信機330は、ハウジング350内に配設されている間、ハウジング350とともに回転し得る。他の例では、ハウジング350は、ハウジング350が回転プラットフォーム310によって回転される他の構成要素とともに回転しないように、固定プラットフォーム312または他の構造に結合され得る。したがって、例えば、送信機320から放出された光パルスは、回転プラットフォーム310がその軸の周りを回転するときに、ハウジング350の異なるセクションに向かって、および環境に向かって異なる方向に伝播することができる。
洗浄装置360は、システム300の1つ以上の構成要素(例えば、光学素子340など)の洗浄を容易にするために、任意選択でシステム300に含まれ得る。そのために、洗浄装置360は、1つ以上の洗浄機構を含み得る。第1の例示的な洗浄装置360は、システム300の1つ以上の構成要素(例えば、光学素子340、ハウジング350など)に液体を堆積させるように構成された液体スプレーを含み得る。例えば、液体は、光学部品の表面に配設された遮蔽物(例えば、汚れ、ほこりなど)を溶解する、または機械的に除去することを試みるために適用することができる。第2の例示的な洗浄装置360は、光学部品の表面上の遮蔽物にガスを適用するように構成された高圧ガスポンプを含み得る。第3の例示的な洗浄装置360は、システム300内の構成要素の表面から遮蔽物を除去することを試みるように構成されたワイパー(例えば、フロントガラスワイパーと同様のもの)を含み得る。他の例も可能である。
システム300のこの構成は、例示的な目的でのみ記載されており、限定することを意味するものではないことに留意されたい。上記のように、いくつかの例では、システム300は、示されているものよりも少ない構成要素で代替的に実装することができる。一例では、システム300は、回転プラットフォーム300なしで実装することができる。例えば、送信機320は、送信機320および受信機330を必ずしも回転させることなく、システム300の特定のFOV(例えば、水平および垂直)を画定するように空間的に配置された複数の信号を送信するように構成することができる。別の例では、送信機320から放出された光パルスは、異なるタイプのビームステアリング光学配置(例えば、回転ミラーなど)を使用することによって、異なる方向に操縦することができる。他の例も、同様に可能である。
図4Aは、例示的な実施形態による、LIDARデバイス400を示す。示されるように、LIDAR400は、レンズ440およびプラットフォーム410を含む。さらに、LIDAR400によって放出された光ビーム404は、レンズ440から第1のLIDAR400の視線方向に沿ってLIDAR400の環境に向かって伝播し、環境内の1つ以上のオブジェクトで反射光406として反射する。
図示されていないが、LIDAR400はまた、図1Bに示されるハウジング126と同様のハウジング、図1Cに示されるハウジング136、および/またはシステム300のハウジング350を含み得る。一例では、LIDARデバイス400は、図1Bに示されるLIDARデバイス120と同様であり得、LIDARデバイス120の代わりに、またはLIDARデバイス120に加えて、ハウジング126の内部に配設され得る。他の例も、同様に可能である。
いくつかの例では、LIDAR400は、実質的に円筒形の形状を有し、LIDAR400の軸の周りを回転するように構成され得る。一実施形態では、LIDAR400は、約10センチメートルの直径を有する。いくつかの例では、LIDAR400の回転軸は、実質的に垂直である。例えば、LIDAR400を垂直軸の周りで回転させることにより、LIDAR400の360度の水平視野(FOV)の3次元マップを判定できる。追加的または代替的に、いくつかの例では、LIDAR400の回転軸を傾斜させて、水平FOVを調整することができる。
レンズ440は、放出光ビーム404をコリメートし、LIDAR400の環境内の1つ以上のオブジェクトからの反射光406をLIDAR400内の検出器に集束させるための光パワーを有し得る。コリメート用の送信レンズおよび集束用の受信レンズの代わりに、同じレンズ440を使用してこれらの機能の両方を実行することにより、サイズ、コスト、および/または複雑さに関する利点を提供することができる。
いくつかの例では、プラットフォーム410は、軸の周りを回転して、LIDAR400を取り巻く環境の360度の視野をスキャンするように構成され得る。他の例では、プラットフォーム410は、完全な360度の範囲よりも小さい角度の範囲にわたって回転するように構成され得る。したがって、いくつかの例では、回転プラットフォーム410は、LIDAR400の回転軸を変更するように1つ以上の方向に傾斜し得る、可動プラットフォームを備え得る。
図4Bは、LIDAR400の断面図である。示されるように、LIDAR400は、送信機420、受信機430、共有空間450、およびレンズ440を含む。例示の目的で、図4Bはxyz軸を示しており、z軸はページの外側を指している。
送信機420は、レンズ440によって画定される湾曲した焦点面428に沿って配置され得る複数の光源422a~cを含む。複数の光源422a~cは、それぞれ、波長範囲内の波長を有する複数の光ビーム402a~cを放出するように構成することができる。例えば、複数の光源422a~cは、波長範囲内の波長を有する複数の光ビーム402a~cを放出するレーザダイオードを備え得る。複数の光ビーム402a~cは、ミラー424によって、出口開口部426を通して共有空間450内に、そしてレンズ440に向かって反射される。
光源422a~cは、レーザダイオード、発光ダイオード(LED)、垂直共振器面発光レーザ(VCSEL)、有機発光ダイオード(OLED)、ポリマー発光ダイオード(PLED)、発光ポリマー(LEP)、液晶ディスプレイ(LCD)、微小電気機械システム(MEMS)、または選択的に光を送信し、反射し、かつ/もしくは放出して、複数の放出された光ビーム402a~cを提供するように構成された任意の他のデバイスを含み得る。いくつかの例では、光源422a~cは、受信機430に含まれる検出器432a~cによって検出することができる波長範囲で放射光ビーム402a~cを放出するように構成することができる。波長範囲は、例えば、電磁スペクトルの紫外、可視、および/または赤外部分にあってもよい。いくつかの例では、波長範囲は、レーザによって提供されるような、狭い波長範囲であり得る。一実施形態では、波長範囲は、905nmの光源波長を含む。追加的に、光源422a~cは、放射光ビーム402a~cをパルスの形態で放出するように構成することができる。いくつかの例では、複数の光源422a~cは、1つ以上の基板(例えば、プリント回路基板(PCB)、フレキシブルPCBなど)上に配設され、複数の光ビーム402a~cを出口開口部426に向けて放出するように配置され得る。
図4Bは、湾曲した焦点面428が水平面(例えば、xy平面)で湾曲していることを示しているが、追加的または代替的に、光源422a~cは、垂直面で湾曲している焦点面に沿って配置され得る。例えば、湾曲した焦点面428は、垂直面に曲率を有することができ、複数の光源422a~cは、湾曲した焦点面428に沿って垂直に配置され、ミラー424に向けられた光ビームを放出するように構成され、出口開口部426を通して反射される追加の光源を含むことができる。この例では、検出器432a~cはまた、光源422a~cの追加の光源に対応する追加の検出器を含み得る。さらに、いくつかの例では、光源422a~cは、湾曲した焦点面428に沿って水平に配置された追加の光源を含み得る。一実施形態では、光源422a~cは、905nmの波長を有する光を放出する64個の光源を含み得る。例えば、64個の光源は、湾曲した焦点面428に沿って、各々が16個の光源を備える4つの列に配置され得る。この場合、検出器432a~cは、湾曲した焦点面438に沿って同様に配置された64個の検出器(例えば、各々16個の検出器を備える4つの列など)を含み得る。他の実施形態では、光源422a~cおよび検出器432a~cは、図4Bに示されるものよりも追加もしくは少ない光源および/または検出器を含み得る。
湾曲した焦点面428に沿った複数の光源422a~cの配置により、いくつかの例では、複数の光ビーム402a~cは、出口開口部426に向かって収束し得る。したがって、これらの例では、出口開口部426は、複数の光ビーム402a~cの垂直方向および水平方向の範囲を収容しながら、最小のサイズであり得る。さらに、いくつかの例では、湾曲した焦点面428は、レンズ440によって画定することができる。例えば、湾曲した焦点面428は、レンズ440の形状および組成により、レンズ440の焦点面に対応し得る。この例では、複数の光源422a~cは、送信機のレンズ440によって画定される焦点面に沿って配置することができる。
複数の光ビーム402a~cは、送信機420、出口開口部426、および共有空間450を通してレンズ440に向かって延びる送信経路内を伝播する。レンズ440は、複数の光ビーム402a~cをコリメートして、コリメートされた光ビーム404a~cをLIDARデバイス400の環境に提供し得る。コリメートされた光ビーム404a~cは、それぞれ、複数の光ビーム402a~cに対応し得る。いくつかの例では、コリメートされた光ビーム404a~cは、反射光406として、LIDAR400の環境内の1つ以上のオブジェクトで反射する。反射光406は、共有空間450を通して受信機430に向かって延びる受信経路に沿って移動する集束光408として、レンズ440によって共有空間450に集束され得る。例えば、集束光408は、受信機430に向かって伝播する集束光408a~cとして、反射面442によって反射され得る。
したがって、レンズ440は、レンズ440の形状および組成に基づいて、複数の光ビーム402a~cをコリメートすることおよび反射光406を集束させることの両方が可能であり得る。一実施形態では、レンズ440は、LIDAR400の外側に面する非球面440aおよび共有空間450に面するトロイダル面440bを有することができる。コリメート用の送信レンズおよび集束用の受信レンズの代わりに、同じレンズ440を使用してこれらの機能の両方を実行することにより、サイズ、コスト、および/または複雑さに関する利点を提供することができる。
示されるように、出口開口部426は、送信機420を共有空間450から分離する壁444に含まれる。いくつかの例では、壁444は、反射材料442でコーティングされた透明材料(例えば、ガラス)から形成することができる。この例では、出口開口部426は、反射材料442によってコーティングされていない壁444の部分に対応し得る。追加的または代替的に、出口開口部426は、壁444に穴または切り欠きを含み得る。
集束された光408は、反射面442によって反射され、受信機430の入口開口部434に向けられる。いくつかの例では、入口開口部434は、複数の光源422a~cによって放出される複数の光ビーム402a~cの波長範囲(例えば、光源波長)の波長を送信し、他の波長を減衰させるように構成されたフィルタリングウィンドウ(例えば、「光フィルタ」)を備え得る。いくつかの例では、入口開口部434は、集束光408a~cのある部分を反射し、集束光408a~cの別の部分が検出器432a~cに向かって伝播することを可能にするように構成されたハーフミラーを備え得る。したがって、示されるように、集束光408a~cの少なくとも一部分は、複数の検出器432a~cに向かって伝播する。
複数の検出器432a~cは、受信機430の湾曲した焦点面438に沿って配置することができる。図4Bは、湾曲した焦点面438がxy平面(水平面)に沿って湾曲していることを示しているが、追加的または代替的に、湾曲した焦点面438は、垂直面で湾曲させることができる。焦点面438の曲率は、レンズ440によって画定され得る。例えば、湾曲した焦点面438は、受信機430での受信経路に沿ってレンズ440によって投射される光の焦点面に対応し得る。
検出器432a~cは、フォトダイオード、アバランシェフォトダイオード、フォトトランジスタ、カメラ、アクティブピクセルセンサ(APS)、電荷結合素子(CCD)、極低温検出器、または、放射光ビーム402a~cの波長範囲内の波長を有する集束光408a~cを受信するように構成された任意の他の光センサを備え得る。
集束光408a~cの各々は、放出された光ビーム402a~cの反射にそれぞれ対応することができ、それぞれ、複数の検出器432a~cに向けられる。例えば、検出器432aは、LIDAR400の環境内の1つ以上のオブジェクトで反射されたコリメートされた光ビーム404aに対応する集束光408aを受信するように構成され、かつ配置されている。この例では、コリメートされた光ビーム404aは、光源422aによって放出された光ビーム402aに対応する。したがって、検出器432aは、光源422aによって放出された光を受信し、検出器432bは、光源422bによって放出された光を受信し、検出器432cは、光源422cによって放出された光を受信する。
受信光408a~cを放出された光ビーム402a~cと比較することによって、LIDAR400の環境内の1つ以上のオブジェクトの少なくとも1つの態様を判定することができる。例えば、複数の光ビーム402a~cが複数の光源422a~cによって放出された時間と、複数の検出器432a~cが集束光408a~cを受信した時間を比較することによって、LIDAR400およびLIDAR400の環境内の1つ以上のオブジェクトを判定することができる。いくつかの例では、形状、色、材料などの他の態様も判定され得る。
いくつかの例では、LIDAR400を軸の周りで回転させて、LIDAR400の周囲の3次元マップを判定することができる。例えば、LIDAR400は、矢印490によって示されるように、ページの外を指す軸の周りで回転され得る。矢印490は、LIDAR400が反時計回り方向に回転していることを示しているが、追加的または代替的に、LIDAR400は時計回り方向に回転させることができる。いくつかの例では、LIDAR400は、軸の周りを360度回転され得る。他の例では、LIDAR400は、異なる範囲の角度にわたって前後に回転され得る。例えば、LIDAR400は、完全に回転することなく軸の周りを前後に枢動するプラットフォームに装着することができる。
したがって、光源422a~cおよび検出器432a~cの配置は、LIDAR400が特定の垂直視野を有することを可能にし得る。一実施形態では、LIDAR400の垂直FOVは20°である。さらに、LIDAR400の回転は、LIDAR400が360°の水平FOVを有することを可能にし得る。さらに、回転速度は、デバイスが特定のリフレッシュレートを有することを可能にし得る。一実施形態では、リフレッシュレートは10Hzである(例えば、1秒あたり10 360度回転。光源422a~cおよび検出器432a~cの配置に伴うリフレッシュレートはまた、LIDAR400が特定の角度分解能を有することを可能にし得る。一例では、角度分解能は0.2°x0.3°である。ただし、リフレッシュレートおよび角度分解能など、上記の様々なパラメータは、LIDAR400の構成によって異なる場合がある。
LIDAR400は、図4A~4Bに示されているものよりも追加の、より少ない、または異なる構成要素を含み得ることに留意されたい。例えば、LIDAR400は、送信された光をコリメートし、受信された光を集束するための単一のレンズ440を含むことが示されているが、LIDAR400は、代替的に、送信された光をコリメートするための送信レンズおよび受信された光を集束するための別個の受信レンズを使用して実装され得る。他の例も可能である。
III.例示的な方法およびコンピュータ可読媒体
LIDAR400について説明された例示的な配置は、限定することを意味するものではないことに留意されたい。したがって、本明細書に記載の方法およびプロセスは、LIDARデバイス400および他のLIDAR配置を含む、様々な異なるLIDAR構成で使用することができる。追加的に、本明細書に記載の方法およびプロセスは、システム100の説明にあるアクティブ感知システム(例えば、ソナー、レーダ、LIDARなど)のいずれかなど、様々な異なるタイプのアクティブセンサとともに使用することができる。
図5は、例示的な実施形態による方法500のフローチャートである。図5に示される方法500は、例えば、車両100、200、300および/またはLIDARデバイス400のうちのいずれかとともに使用され得る方法の実施形態を提示する。方法500は、ブロック502~508のうちの1つ以上によって例解されるように、1つ以上の動作、機能、またはアクションを含み得る。ブロックは連続した順序で例示されているが、これらのブロックは、場合によっては、並行して、および/または本明細書で記載されたものとは異なる順序で実行され得る。また、様々なブロックは、より少ないブロックに組み合わされ、さらなるブロックに分割され、および/または所望の実装に基づいて除去されることができる。
加えて、方法500および本明細書で開示される他の処理および方法について、フローチャートは、本実施形態のうちの1つの可能な実装の機能および動作を示す。この点で、各ブロックは、モジュール、セグメント、製造または動作処理の一部分、または処理の特定の論理機能またはステップを実装するためにプロセッサによって実行可能な1つ以上の命令を含むプログラムコードの一部分を表し得る。プログラムコードは、例えば、ディスクまたはハードドライブを含むストレージデバイスのような任意のタイプのコンピュータ可読媒体に格納され得る。コンピュータ可読媒体は、例えば、レジスタメモリ、プロセッサキャッシュ、およびランダムアクセスメモリ(RAM)のような短期間にデータを格納するコンピュータ可読媒体などの非一時的なコンピュータ可読媒体を含み得る。コンピュータ可読媒体は、例えばリードオンリーメモリ(ROM)、光ディスクまたは磁気ディスク、コンパクトディスクリードオンリーメモリ(CD-ROM)のような補助ストレージまたは永続長期ストレージなどの非一時的なコンピュータ可読媒体を含むこともできる。コンピュータ可読媒体は、任意の他の揮発性または不揮発性ストレージシステムとすることもできる。コンピュータ可読媒体は、例えば、コンピュータ可読ストレージ媒体、または有形のストレージデバイスであると考えられ得る。
加えて、方法500ならびに本明細書で開示される他の処理および方法について、フローチャート内の1つ以上のブロックは、処理内の特定の論理機能を実行するために配線される回路を表し得る。
ブロック502において、方法500は、光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得することを含む。例えば、図4Aを再び参照すると、LIDAR400のFOVは、LIDAR400の回転軸の周りのLIDAR400の回転によって画定される角度の範囲にわたって延びることができる。この例では、LIDAR400は、異なる方向に光パルスをFOVに放出しながら(および放出された光パルスの戻り反射を検出しながら)、プラットフォーム410を第1の角度位置(例えば、0度など)から最終角度位置(例えば、360度など)まで軸の周りを回転させることによって、FOVの各スキャンを実行するように構成され得る。追加的または代替的に、例えば図4Bを再び参照すると、FOVは、LIDAR400の光エミッタ(422a、422b、422cなど)の位置(および相対的配置)によって画定され得、かつ/または、LIDAR400のビームステアリング光学素子(例えば、レンズ440など)の構成によって画定され得る。したがって、例えば、LIDAR400の光学的配置および構成は、放出された光パルス404a、404b、および/または404cを、LIDAR400から離れた角度方向の範囲にわたって空間的に分散させる(かつ/またはそれぞれの放出された光ビームまたはパルスの発散の程度を制御させる)ことができる。他の例も可能である。
いくつかの例では、方法500は、連続するスキャン期間中にFOVの完全なスキャンのシーケンスを取得すること、および完全なスキャンのシーケンスからブロック502で取得された複数のスキャンを選択することを含む。例えば、図4Aを再び参照すると、LIDAR400は、FOVをスキャンしている間、回転軸の周りで(例えば、プラットフォーム410を介して)繰り返し回転するように構成され得る。この例では、LIDAR400の各完全回転は、完全なスキャンのシーケンスの単一の完全スキャンに対応する場合がある。さらに、この例では、方法500のシステム(例えば、システム300、車両200など)は、様々な要因に基づいて、完全なスキャンのシーケンスから複数のスキャンを選択することができる。
第1の例では、システムは、LIDARデバイスが環境内の異なる場所にある間に収集された特定のスキャンを選択する場合がある。例えば、LIDARデバイスが車両(例えば、車両100、200など)に装着されている場合、システムは、LIDARデバイスが、シーケンスから前のスキャンが選択されたときとは比較的異なる場所にある間に実行された場合、シーケンスの所与のスキャンを選択することができる。これを容易にするために、例えば、システムは、LIDARデバイスがいるシス装着されているシステムの場所を示すように構成された1つ以上のセンサ(例えば、車両200のGPS226など)を使用して、複数のスキャン中にLIDARデバイスの様々な場所を判定することができる。
したがって、第1の例では、方法500は、完全なスキャンのシーケンスの第1のスキャン中のLIDARデバイスの環境におけるLIDARデバイスの第1の場所、および完全なスキャンのシーケンスの第2のスキャン中のLIDARデバイスの第2の場所を判定することを含み得る。さらに、第1の例では、複数のスキャンを選択することは、第1の場所と第2の場所との比較に基づいて、第1のスキャンおよび第2のスキャンを選択することを含み得る。
LIDARデバイスがシステムに装着されている第2の例では、システムは、LIDARデバイスが環境内で異なるポーズを取っている間に(すなわち、システムが環境内で異なる方向にある間に)収集された特定のスキャンを選択することができる。これを容易にするために、システムは、環境に対するシステムの向きを示すように構成された1つ以上のセンサ(例えば、車両200のIMU228など)を使用して、複数のスキャン中にそのポーズまたは向きを判定することができる。
したがって、LIDARデバイスが環境内で移動するように構成されたシステムに装着されている第2の例では、方法500は、完全スキャンのシーケンスの第1のスキャン中に環境に対するシステムの第1の向き、および完全スキャンのシーケンスの第2のスキャン中にシステムの第2の向きを判定することを含む。さらに、第2の例では、複数のスキャンを選択することは、第1の向きと第2の向きとの比較に基づいて、第1のスキャンおよび第2のスキャンを選択することを含み得る。
いくつかの例では、方法500のシステムは、ブロック502で取得された複数のスキャンに関連付けられたLIDARデバイスのポーズおよび場所を多様化することによって、ハウジングの特定のセクションに配設された障害物をより効率的に検出するように構成され得る。例えば、第1のスキャン中に特定のセクションを通してスキャンされた環境の第1の領域は、第1および第2のスキャンを収集している間のLIDARデバイスの場所および/またはポーズの変更により、第2のスキャン中に同じ特定のセクションを通してスキャンした第2の領域とは異なる場合がある。
ブロック504において、方法500は、複数のスキャンのスキャンごとに、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することを含む。したがって、いくつかの例では、LIDARデバイスは、ハウジング内に配設され、ハウジングを通してFOVをスキャンするように構成され得る。
例えば、図1Bを再び参照すると、LIDAR120は、LIDAR120がハウジング126の内側で回転している間に、異なる方向に光パルスを放出するように構成され得る。この例では、放出された各光パルスは、ハウジング126のそれぞれのセクションを通して(そしてFOVに)伝播することができる。それぞれのセクションの形状、場所、およびサイズは、他の可能な要因の中でもとりわけ、放出された光パルスのビーム発散および放出された光パルスがLIDAR120によって放出されるそれぞれの方向などの様々な要因に依存し得る。
したがって、いくつかの例では、ブロック504で複数の光パルスを送信することは、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出すること、および/またはハウジングの複数のセクションを通して複数の光パルスを送信することを含む。
第1の例では、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することは、LIDARデバイスが複数の光パルスを放出している間に、LIDARデバイスを軸の周りで回転させることを含む。例えば、軸の周りのLIDARデバイスは、上記の議論に沿って、ハウジングに対してLIDARデバイスを回転させることを含み得る。さらに、例えば、LIDARデバイスを軸の周りで回転させることは、LIDARデバイスの1つ以上の光エミッタをハウジングに対して移動させる可能性がある。さらに、この例では、1つ以上の光エミッタは、(ブロック504の)送信された複数の光パルスを放出するように構成され得る。例えば、図4Bを再び参照すると、光エミッタ422a、422b、422cの各々は、特定の相対的配置でLIDARデバイス400の内側に装着され得る。したがって、矢印490によって示されるLIDAR400の回転は、光エミッタをLIDAR400とともに移動させることができる。さらに、ここで図1Bを参照すると、LIDAR400がLIDAR120の代わりにハウジング126の内側に配設される実装において、LIDAR400の光エミッタは、したがって、LIDAR400の回転に応答してハウジング126に対して移動することができる。
第2の例では、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することは、LIDARデバイス内の光エミッタに、1つ以上の光学素子を含むLIDARデバイス内のビームステアリング装置に向けて一連の光パルスを放出させることと、1つ以上の光学素子を介して、一連の光パルスの各光パルスを、ハウジングに向かって異なるそれぞれの方向に操縦することと、を含む。例えば、図1Cを再び参照すると、LIDAR130は、回転ミラーまたはある種の光学素子(例えば、MEMSアレイ、光位相変調システム、またはその他のビームステアリングデバイス)に向けて一連の光パルスを(例えば、周期的になど)放出する光エミッタ(図示せず)を含み得る。この例では、LIDAR130は、回転ミラーを回転させて、光エミッタから放出された一連の各光パルスを、異なるそれぞれの方向に、ハウジング136の異なるセクションに向かって向けることができる。他の例も可能である。
いくつかの例では、ブロック504で複数の光パルスを送信することは、LIDARデバイスの第1の光エミッタに、第1の発散光ビームを放出させ、かつLIDARデバイスの第2の光エミッタに、第2の発散光ビームを放出させることと、第1の発散光ビームをハウジングの第1のセクションを通して、かつ第2の発散光ビームをハウジングの第2のセクションを通して送信することと、を含む。例えば、図4Bを再び参照すると、レンズ440は、放出された光ビーム404aを第1の発散光ビームとして第1の方向に向け、放出された光ビーム404bを第2の発散光ビームとして第2の方向に向けるように構成され得る。図1Bを再び参照すると、LIDAR120がLIDAR400に対応する例を考える。したがって、この例では、第1の方向に放出された発散光ビーム404aは、ハウジング126の第1のセクションでハウジング126と交差することができ、したがって、第2の方向に放出された発散光ビーム404bは、ハウジング126の第2のセクションでハウジング126と交差することができる。
いくつかの例では、ハウジングの第1のセクションは、ハウジングの第2のセクションと少なくとも部分的に重なっている。上記の例を続けると、発散する光ビーム404aおよび404bのそれぞれのビーム経路は、ビーム404aによって照明されるハウジングの第1のセクションの一部分もまた、ビーム404bによって照明されたハウジング126の第2のセクションに含まれるように、ハウジング126の前で、またはハウジング126で互いに交差することができる。
ブロック506において、方法500は、複数のスキャンのスキャンごとに、送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することを含む。例えば、図4Bを再び参照すると、LIDAR400は、放出された光パルスによって照明されたFOV内のそれぞれの領域からLIDAR400に戻る放出された光パルス404a、404b、404cの反射部分を、これらのそれぞれの集束された反射光部分(例えば、集束光408a、408b、408c)を受信するように整列されるそれぞれの光検出器432a、432b、432cに集束させることができる。他の例も可能である。
ブロック508において、方法500は、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することを含む。いくつかの例では、ブロック508での検出は、ブロック502で取得された複数のスキャンに基づくことができる。
いくつかのシナリオでは、LIDARデバイスは、(遮蔽物または障害物が存在しない場合でも)特定の送信された光パルスの反射を検出できない場合がある。第1のシナリオでは、送信された、かつ/または反射された光パルスの一部は、環境要因(例えば、空気中の小さな粒子、電磁ノイズ、気象条件など)により、予想される光路から逸れる可能性がある。第2のシナリオでは、LIDARデバイスのフィルタ、LIDARの開口部によってそれたパルス、不整列エラーのために迂回されたパルス、またはシステムの他の固有の特性(例えば、検出器の感度、固有の測定エラー、厚さの変動)のために検出されないパルスハウジングなど)などのシステムまたはLIDARデバイスの特性(つまり、外部遮蔽物によるものではない)が原因で、送信された、かつ/または反射された光パルスの一部が検出されない場合がある。第3のシナリオでは、1つ以上の光パルスがFOV内のオブジェクト(例えば、LIDARデバイスを短時間だけ妨げる飛んでいる紙片、LIDARデバイスが装着されているシステムの近くを通過する大型トラック)によって一時的に妨げられる場合がある。
したがって、いくつかの例では、方法500のシステムは、障害物がLIDARデバイスに物理的に結合されている(例えば、LIDARデバイスに取り付けられている、または別の近くの構造に取り付けられているなど)可能性、FOVの遮蔽部分の程度、障害物の材料タイプ、および/または応答アクションが実行されない場合(例えば、洗浄装置がアクティブ化されないなど)に、障害物がLIDARデバイスに物理的に結合されたままになる可能性があるかどうかを判定するように構成され得る。例えば、システムは、他の可能な要因の中でもとりわけ、戻り光パルスの強度または数、戻り光パルスを反射したFOV内のオブジェクトの推定範囲(つまり、距離)、LIDARデバイスが現在置かれている環境の領域における特定のタイプの障害物の普及に関する事前情報、LIDARデバイスが搭載されている車両の速度、および/または他のセンサからのデータを裏付ける要因などの様々な要因を評価することによって、これらの判定を行うことができる。
いくつかの例では、方法500は、ブロック508で検出された障害物がLIDARデバイスに結合されているかどうかを判定することを含み得る。したがって、例えば、方法500のシステムは、環境内のシステムの位置に関係なく、ハウジングまたはその近くに物理的に取り付けられたままである障害物を、システム(例えば、車両100など)環境内の異なる位置に移動する場合に、もう存在しない可能性がある外部障害物から区別し得る。
第1の例では、方法500は、ブロック502で取得された複数のスキャンに基づいて、障害物がLIDARデバイスに結合されているかどうかを判定することを含み得る。例えば、方法500のシステムは、FOVに向けて送信される光パルスの第1のそれぞれの数、およびブロック506でLIDARデバイスによって検出される対応する反射光パルスの第2のそれぞれの数を監視することができる。様々な要因に応じて、システムは監視された数値を使用して、FOV(またはその一部)がLIDARデバイスまたはその近くで物理的に結合された障害物によって妨げられているかどうかを判定できる。例えば、反射光パルスの第2のそれぞれの数が、複数のスキャンの複数のスキャン中に閾値数よりも低いままである場合、システムは、LIDARデバイスがFOVをスキャンするのを妨げる障害物が存在する可能性が高いと判定し得る。あるいは、例えば、1つまたは少数のスキャンのみが、検出された光パルスの閾値数未満に関連付けられている場合、システムは、障害物が存在する可能性が低い(かつ/またはハウジングに物理的に取り付けられている可能性が低いなど)と判定し得る。障害物がLIDARデバイスに結合されているかどうかを判定するための基礎として複数のスキャンを使用するための他の例も可能である。
第2の例では、障害物がLIDARデバイスに結合されているかどうかを判定することは、LIDARデバイスの環境内のLIDARデバイスの第1の場所から第2の場所への移動に応答して、障害物がLIDARデバイスに対してオフセット位置に留まるかどうかを判定することを含み得る。例えば、LIDARデバイスが車両(例えば、車両100、200など)に装着されている場合、車両のコンピューティングシステム(例えば、コンピューティングシステム210)は、第1のスキャン(LIDARデバイスが第1の場所にあるときに実行される)と第2のスキャン(LIDARデバイスが第2の場所にあるときに実行される)によって示されるLIDARデバイスと障害物との間の距離の測定値を比較することができる。比較により、障害物がLIDARデバイスに対して特定のオフセット位置に留まっていることが示された場合、コンピューティングシステムは、障害物がLIDARデバイスに物理的に結合されている(例えば、ハウジングに取り付けられている、または車両に取り付けられている)と判定できる。代替的または追加的に、この例では、車両(したがってLIDARデバイス)が第1の場所から第2の場所に移動した後、障害物までの距離が変化する、かつ/またはもはや存在しない場合、コンピューティングシステムは次いで、遮蔽物がLIDARデバイスに結合されていない(例えば、LIDARデバイスに物理的に接続されていない(または近くにない)環境内の近くのオブジェクトなど)ことを判定し得る。
したがって、いくつかの例では、障害物がLIDARデバイスに結合されているかどうかを判定することは、障害物がハウジングに物理的に取り付けられているかどうかを判定することを含む。さらに、いくつかの例では、LIDARデバイスは、環境内を移動するように構成されたシステム(例えば、車両100、200など)に装着されている。これらの例では、障害物がLIDARデバイスに結合されているかどうかを判定することは、障害物がシステムに物理的に接続されているかどうかを判定することを含む。
いくつかの例では、方法500は、障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することを含む。
第1の例では、方法500のシステムは、閾値未満の距離からLIDARデバイスに反射される複数の戻り光パルス(ブロック506で検出される)の第1のサブセットをフィードバックリターンとして識別することができる。フィードバックリターンは、例えば、ハウジングまたはその近くで反射される反射光パルスに対応し得る。いくつかの実装形態では、閾値距離は、複数の送信された光パルスのパルス長に基づくことができる。例えば、送信された光パルスの長さが1メートルの場合、LIDARから1メートル以下の距離から反射されたその光パルスの反射はフィードバックリターンと見なされる場合がある。一実施形態では、閾値距離は3メートル未満である。他の閾値距離も可能である。
次に、第1の例を続けると、システムは、輝度閾値よりも大きい光強度を有するフィードバックリターン内の明るい光パルスを識別することができる。例えば、明るい光パルスは、障害物によって反射された光パルスに対応し得る(例えば、障害物は、ハウジング自体の材料よりも透明性が低く、かつ/または反射性が高い可能性がある)。いくつかの実装形態では、方法500は、スキャンのフィードバックリターンの光強度に基づいて、複数のスキャンのスキャンごとの輝度閾値を調整することを含み得る。例えば、各スキャンからの戻り光パルスのそれぞれの輝度は、環境要因(例えば、夜間のスキャン対日中のスキャンなど)によって変化する可能性がある。したがって、各スキャンの輝度閾値を調整して、ハウジングの妨げられたセクションに関連付けられたフィードバックリターンと妨げられていないセクションに関連付けられたフィードバックリターンとの間の輝度変動をより正確かつ/または確実に検出することができる。
一実施形態では、特定のスキャンの輝度閾値は、特定のスキャンにおける特定のチャネル(例えば、光検出器の1つ)による光強度測定値に基づいて調整することができる。例えば、図4Bに戻って参照すると、スキャンされたシーンは、いくつかの行(r)およびいくつかの列(c)を有する値のテーブルとして表され得る。各行は、それぞれのLIDARチャネル(例えば、光検出器432a、432b、または432c)によって示される測定値(例えば、光強度値、範囲値など)に対応し得る。いくつかの実施形態では、チャネルごとのそれぞれの輝度閾値は、そのチャネルによって示される測定値のパーセンタイル(P)に従って計算することができる。一実施形態では、輝度閾値は、P=25%となるように選択することができる。この実施形態では、視野の最大1-P=75%をカバーする障害物は、それらが輝度閾値よりも大きいために検出され得る。さらに、場合によっては、輝度閾値は、パーセンタイル値に乗算されたスケール係数を使用して、かつ/または定数を足ことによって調整できる。例えば、測定値の最も暗い25%よりも5倍明るい(例えば、スケール係数)明るい閾値の例を選択できる。他のパーセンタイル値、スケール係数値、および/または定数も可能であることに留意されたい。
次に、第1の例を続けると、システムは、光パルスの総数に対する明るい光パルスの比が第1の閾値比未満(例えば、95%未満またはその他の割合)である場合、ハウジングの1つ以上のセクションが障害物によって妨げられていないことを判定し得る。
したがって、第1の例では、方法500は、閾値距離未満から反射される複数の戻り光パルスの第1のサブセットをフィードバックリターンとして識別することと、閾値輝度よりも大きい光強度を有する明るい光パルスに基づいて、フィードバックリターンの明るい光パルスを識別することと、ハウジングの1つ以上のセクションが、第1の閾値比よりも小さいフィードバックリターンの合計に対する明るい光パルスの比に基づいて、障害物によって妨げられていないことを判定することと、を含み得る。より一般的には、場合によっては、方法500は、明るい光パルスのカウントを判定することと、判定されたカウントに基づいて障害物を検出することと、を含み得る。
追加的または代替的に、第2の例では、方法500のシステムは、LIDARデバイスまでの閾値距離よりも大きい距離から反射される複数の戻り光パルス(ブロック506で検出される)の第2のサブセットをワールドリターンとして識別することができる。次に、システムは、ワールドリターンの数に対する(ブロック504の)送信された複数の光パルスの数の比が第2の閾値比未満(例えば、95%未満またはその他の割合)である場合、ハウジングの1つ以上のセクションが障害物によって妨げられていないことを判定し得る。第2の閾値比は、第1の閾値比と同じ値を有する場合もあり、または異なる値を有する場合もある。
したがって、第2の例では、方法500は、閾値距離よりも大きい距離から反射される複数の戻り光パルスの第2のサブセットをフィードバックリターンとして識別することと、第2の閾値比未満の送信された複数の光パルスの数に対するワールドリターンの数の比に基づいて、ハウジングの1つ以上のセクションが障害物によって妨げられていないことを判定することと、を含み得る。
したがって、第1および第2の例では、システムは、FOVのすべてまたは大部分がLIDARデバイスによってスキャンされるのを妨げる比較的大きな障害物(例えば、ハウジングを覆う毛布または他のオブジェクトなど)を検出することができる。ただし、シナリオによっては、比較的小さな障害物が、LIDARデバイスがハウジングの特定のセクション(例えば、特定のセクションに配置された汚れ、鳥の糞、オイルなど)を通してFOVの一部分をスキャンするのを妨げる場合がある。
第3の例では、方法500のシステムは、ハウジングのそれぞれの複数のセクションからLIDARデバイスによって受信されたフィードバックリターンのそれぞれのサブセットの光強度を監視するように構成される。次に、システムは、ハウジングの特定のセクションから受信した第1のフィードバックリターンの第1の光強度を、ハウジングの1つ以上のセクションから受信した第2のフィードバックリターンの第2の光強度と比較することによって、1つ以上のセクションが障害物によって妨げられていないことを判定し得る。例えば、第1のフィードバックリターンが第2のフィードバックリターンよりも多くの明るい光パルスを含む場合、システムは、特定のセクションのみが障害物によって妨げられていると判定することができる。
したがって、いくつかの例では、方法500は、LIDARデバイスと障害物との間に介在するハウジングの特定のセクションを識別することを含み得る。さらに、いくつかの例では、方法500は、ハウジングの特定のセクションからLIDARデバイスによって受信された第1の戻り光パルスの第1の光強度を判定することと、ハウジングの1つ以上のセクションからLIDARデバイスによって受信された他の戻り光パルスの第2の光強度を判定することと、第1の光強度および第2の光強度に基づいて、ハウジングの特定のセクションを識別することと、を含み得る。
いくつかの例では、方法500は、特定のセクションを介してスキャンされたオブジェクトの所定の特性に基づいて、ハウジングの特定のセクションが妨げられているかどうかを判定することを含む。第1の例では、シーン内の特定のオブジェクトまでの特定の範囲を、(例えば、別のセンサを使用してスキャンするなど)事前に判定することができる。この例では、ハウジングの特定のセクションからの戻り光パルスに基づいて計算された範囲値を特定の範囲と比較して、その特定のセクションが妨げられているかどうかを判定できる。第2の例では、特定のオブジェクトの特定の光強度(例えば、輝度)を、(例えば、別のLIDARを使用して、またはハウジングの異なるセクションを介してスキャンするなど)事前に判定することができる。この例では、特定の光強度を、ハウジングの特定のセクションを通して受信された戻り光パルスの光強度測定と比較して、特定のセクションが妨げられているかどうかを判定することができる。他の例も可能である。
いくつかの例では、方法500は、ハウジングの特定のセクションの識別に基づいて洗浄装置を動作させることを含む。例えば、図3を再び参照すると、システム300は、洗浄装置360(例えば、水スプレー、エアポンプ、ワイパーなど)の1つを動作させて、ハウジングの識別された特定のセクションの洗浄を試みることができる。
いくつかの例では、方法500は、複数のスキャンに基づいて障害物のタイプを判定することと、障害物のタイプの判定に基づいて、洗浄装置をさらに動作させることと、を含む。
第1の例では、方法500のシステムは、障害物がFOVのすべてまたは大部分を妨げるように、障害物がハウジング上またはその近くに配設されたオブジェクトに対応することを判定することができる。この例では、システムは、洗浄装置を動作させても障害物を除去できない可能性があると判定する場合がある。一実施形態では、システムは、LIDARデバイスが妨害されていることを、(例えば、車両200の周辺機器208などを介して)ユーザ(例えば、車両100、200などのユーザ)に警告することができる。別の実装形態では、システム(例えば、車両200)は、例えば、判定に応答して自律ナビゲーションモードを終了することができる。
第2の例では、システムは、特定のセクションに関連付けられたフィードバックリターンが(例えば、輝度閾値より大きい光強度を有する)明るい光パルスを含み、特定のセクションに関連付けられているワールドリターンの数が閾値未満である場合、障害物が鳥の糞またはハウジングの特定のセクション上に配設された他の固体のオブジェクトに対応することを判定し得る。この例では、システムは次に、特定のセクションからの障害物の除去を試みるために、1つ以上の洗浄装置(例えば、水スプレーおよびワイパー)を動作させることができる。
第3の例では、システムは、特定のセクションに関連付けられたフィードバックリターンが明るい光パルスを含み、ワールドリターンに関連付けられたフィードバックが薄暗い(例えば、ハウジングの他のセクションに関連付けられた他のワールドリターンよりも低い光強度)場合、障害物がハウジングの特定のセクション上に配設された泥または他の固体および液体オブジェクトの混合物に対応すると判定することができる。この例では、システムは、その特定のタイプの障害物の除去を試みるために、適切な洗浄装置(例えば、ワイパー、エアポンプなど)を動作させることができる。他の例も可能である。
いくつかの例では、方法500は、少なくともLIDARデバイスからのデータに基づいて、環境内で車両をナビゲートするためのナビゲーション命令を生成することと、障害物の検出に応じてナビゲーション指示を調整することと、を含み得る。例えば、図2を再び参照すると、制御システム206は、LIDAR232からのデータを使用して、車両200のナビゲーション命令を(例えば、ナビゲーションシステム248を介して)生成することができる。したがって、車両200が、LIDAR232が障害物によって少なくとも部分的に妨げられていると判定した場合、車両200は、ナビゲーション命令を調整することができる(例えば、車両を停止する、車両の自律モードを終了する、センサシステム204などからの他のセンサデータを使用して車両をナビゲートすることを試みるなど)。
いくつかの例では、方法500は、複数のスキャンの第1のスキャン中にハウジングの第1のセクションを通して、および複数のスキャンの第2のスキャン中にハウジングの第2のセクションを通して、LIDARデバイスによってスキャンされたオブジェクトを識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、を含む。これらの例では、ブロック508での障害物の検出は、比較に基づき得る。一例として、LIDARデバイスは、LIDARデバイスがブロック502で複数のスキャンを取得している間に、環境内を移動する車両に搭載することができる。したがって、この例では、車両が環境内の第1の位置または向きにあるときは、環境内の特定のオブジェクトを第1のセクションを介して、車両が環境内の第2の位置または方向にあるときは、第2のセクションを介して、スキャンすることができる。したがって、この例では、方法500のシステムは、第1のスキャンの第1の部分を第2のスキャンの第2の部分と比較して(例えば、第1の部分および第2の部分におけるそれぞれの戻り光パルスの光強度を比較するなど)、第1のセクションまたは第2のセクションが、障害物によって少なくとも部分的に妨げられている特定のセクションに対応するかどうかを判定することができる。
いくつかの例では、方法500は、複数のスキャンの第1のスキャン中にハウジングの第1のセクションを通して、および複数のスキャンの第2のスキャン中にハウジングの第2のセクションを通して、LIDARデバイスによってスキャンされた環境の領域を識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、を含む。これらの例では、ブロック508での障害物の検出は、比較に基づき得る。上記の識別されたオブジェクトの例の変形例として、システムは、特定のオブジェクトに関連付けられた部分の代わりに、環境内の特定の領域に関連付けられた2つのスキャンの部分を比較することができる。
いくつかの例では、LIDARデバイスがシステムに搭載され、第2のLIDARデバイスが同じシステムに搭載される。これらの例では、方法500はまた、複数のスキャンの第1のスキャン中にLIDARデバイスによってスキャンされ、第2のLIDARデバイスによる環境の第2のスキャン中に第2のLIDARデバイスによってスキャンされるオブジェクトを識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、を含み得る。これらの例では、ブロック508での障害物の検出は、比較に基づき得る。例えば、図1Dを再び参照すると、LIDAR120によってスキャンされたFOV(輪郭160と162の間)は、LIDAR130によってスキャンされたFOV(輪郭166)と部分的に重なる可能性がある。この例では、識別されたオブジェクトは、2つのFOVのオーバーラップ領域内に置かれ得る。したがって、車両100は、LIDAR120を包含するハウジング126上に配設された障害物を検出するための基礎としてオブジェクトが置かれている2つのLIDARによる2つのスキャンの部分を比較することができる。
いくつかの例では、LIDARデバイスがシステムに搭載され、第2のLIDARデバイスが同じシステムに搭載される。これらの例では、方法500はまた、複数のスキャンの第1のスキャン中にLIDARデバイスによってスキャンされ、第2のLIDARデバイスによる環境の第2のスキャン中に第2のLIDARデバイスによってスキャンされる環境の領域を識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、を含み得る。これらの例では、ブロック508での障害物の検出は、比較に基づき得る。上記の識別されたオブジェクトの例の変形例として、システムは、特定のオブジェクトに関連付けられた部分の代わりに、環境内の特定の領域に関連付けられた2つのスキャンの部分を比較することができる。
図6は、例示的な実施形態による方法600のフローチャートである。図6に示される方法600は、例えば、車両100、200、システム300、LIDARデバイス400、および/または方法500のいずれかで使用され得る方法の実施形態を提示する。方法600は、ブロック602~604のうちの1つ以上によって例解されるように、1つ以上の動作、機能、またはアクションを含み得る。ブロックは連続した順序で例示されているが、これらのブロックは、場合によっては、並行して、および/または本明細書で記載されたものとは異なる順序で実行され得る。また、様々なブロックは、より少ないブロックに組み合わされ、さらなるブロックに分割され、および/または所望の実装に基づいて除去されることができる。
ブロック602において、方法600は、ハウジングを通してFOVをスキャンするように構成されたLIDARデバイスからのFOVの複数のスキャンを示すデータを受信することを含む。例えば、図2を再び参照すると、コンピュータシステム210は、方法500のブロック502での議論に沿って収集される複数のスキャンを示すLIDAR232からのデータを受信することができる。ブロック604において、方法600は、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することを含む。例えば、ブロック604は、方法500のブロック508に類似していてもよい。
IV.結論
本明細書において説明される配置は、例示のみを目的としていることを理解されたい。このようなことから、当業者であれば、他の配列および他の要素(例えば、機械、インターフェース、機能、順序、および機能のグループ化など)を代わりに使用することができ、いくつかの要素は、所望の結果に応じて完全に省略され得ることを理解するであろう。さらに、説明される要素の多くは、個別の構成要素または分散した構成要素として実装することができ、または他の構成要素とともに、任意の適切な組み合わせおよび場所で実装することができるか、または独立した構造として説明される他の構造要素を組み合わせることができる。様々な態様および実施形態が本明細書において開示されているが、当業者には、他の態様および実施形態が明らかとなるであろう。本明細書において開示される様々な態様および実施形態は、例示を目的とするものであり、限定することを意図するものではなく、真の範囲が、そのような特許請求の範囲が権利を有する同等物の全範囲とともに、以下の特許請求の範囲によって示される。本明細書において使用される用語が、特定の実施形態を記載するためのものに過ぎず、限定することを意図するものではないことも理解されたい。
本明細書は、条項1~45の形式で表される次の主題を含む。1.方法であって、光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得することであって、LIDARデバイスが、ハウジングの内側に配設され、複数のスキャンの各スキャンを取得することが、ハウジングの複数のセクションを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することと、LIDARデバイスに向かって反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、を含む、取得することと、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することと、を含む、方法。2.複数のスキャンに基づいて、障害物がLIDARデバイスに結合されているかどうかを判定することをさらに含む、条項1に記載の方法。3.障害物がLIDARデバイスに結合されているかどうかを判定することが、障害物がハウジングに物理的に取り付けられているかどうかを判定することを含む、条項2に記載の方法。4.LIDARデバイスが環境内を移動するように構成されたシステムに装着され、障害物がLIDARデバイスに結合されているかどうかを判定することが、障害物がシステムに物理的に取り付けられているかどうかを判定することを含む、条項2または3に記載の方法。5.障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することと、障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することと、をさらに含む、条項1~4のいずれか一項に記載の方法。6.各スキャンのフィードバックリターンとして、複数の戻り光パルスの第1のサブセットを、少なくとも第1のサブセットがLIDARデバイスまでの閾値距離未満の場所からLIDARデバイスに反射して戻されたことに基づいて、選択することをさらに含み、障害物を検出することが、フィードバックリターンの、LIDARデバイスによって示される少なくとも光強度測定値に基づく、条項1~5のいずれか一項に記載の方法。7.閾値距離が、送信された複数の光パルスのパルス長に基づく、条項6に記載の方法。8.閾値距離が3メートル未満である、条項6または7に記載の方法。9.障害物を検出することが、輝度閾値よりも大きいそれぞれの光強度を有する明るい光パルスに基づいて、フィードバックリターン内の明るい光パルスを識別することを含む、条項6~8のいずれか一項に記載の方法。10.複数のスキャンのスキャンごとに、スキャンのフィードバックリターンの光強度に基づいて輝度閾値を調整することをさらに含む、条項9に記載の方法。11.障害物の検出が判定されたカウントに基づく、明るい光パルスのカウントを判定することをさらに含む、条項9または10に記載の方法。12.各スキャンのワールドリターンとして、複数の戻り光パルスの第2のサブセットを、少なくとも第2のサブセットがLIDARデバイスまでの閾値距離よりも大きい場所からLIDARデバイスに反射して戻されたことに基づいて、選択することをさらに含み、障害物を検出することが、ワールドリターンに基づく、条項6~11のいずれか一項に記載の方法。13.フィードバックリターンおよびワールドリターンに基づいて、障害物のタイプを判定することをさらに含む、条項12の方法。14.複数の光パルスを送信することが、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することを含み、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することが、LIDARデバイスが複数の光パルスを放出している間に、LIDARデバイスを軸の周りで回転させることを含む、条項1~13に記載の方法。15.LIDARデバイスを軸の周りで回転させることが、LIDARデバイスの1つ以上の光エミッタに、ハウジングに対して移動することを行わせ、送信された複数の光パルスが1つ以上の光エミッタによって放出される、条項14に記載の方法。16.軸の周りでLIDARデバイスを回転させることが、ハウジングに対してLIDARデバイスを回転させることを含む、条項14または15に記載の方法。17.複数の光パルスを送信することが、LIDARデバイスの第1の光エミッタに、第1の発散光ビームを放出させ、かつLIDARデバイスの第2の光エミッタに、第2の発散光を放出させることと、第1の発散光ビームをハウジングの第1のセクションを通して、かつ第2の発散光ビームをハウジングの第2のセクションを通して送信することと、を含む、条項1~16のいずれか一項に記載の方法。18.ハウジングの第1のセクションが、ハウジングの第2のセクションと少なくとも部分的に重なっている、条項17に記載の方法。19.少なくともLIDARデバイスからのデータに基づいて、環境内で車両をナビゲートするためのナビゲーション命令を生成することであって、LIDARデバイスが車両に装着されている、ナビゲーションすることと、障害物の検出に応じて、ナビゲーション命令を調整することと、をさらに含む、条項1~18のいずれかに記載の方法。20.光検出測距(LIDAR)デバイスであって、LIDARデバイスに条項1~19のいずれか一項に記載の方法を実行することを行わせるように構成されたコントローラを備える、LIDARデバイス。21.LIDARデバイスに条項1~19のいずれか一項に記載の方法を実行させるように構成されたコントローラを備える、システム。22.システムが車両を備える、条項21に記載のシステム。23.方法であって、光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得することであって、LIDARデバイスが、ハウジングの内側に配設され、複数のスキャンの各スキャンを取得することが、ハウジングの複数のセクションを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信することと、LIDARデバイスに向かって反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、を含む、取得することと、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することと、障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することと、LIDARデバイスと障害物との間に介在するハウジングの特定のセクションを識別することと、を含む、方法。24.複数のスキャンに基づいて、障害物がLIDARデバイスに結合されているかどうかを判定することをさらに含む、条項23に記載の方法。25.ハウジングの特定のセクションの識別に基づいて洗浄装置を動作させることをさらに含む、条項23または24に記載の方法。26.複数のスキャンに基づいて障害物のタイプを判定することであって、洗浄装置を動作させることが、障害物のタイプの判定にさらに基づく、条項25に記載の方法。27.ハウジングの特定のセクションからLIDARデバイスによって受信された第1の戻り光パルスの第1の光強度を判定することと、ハウジングの1つ以上のセクションからLIDARデバイスによって受信された他の戻り光パルスの第2の光強度を判定することと、第1の光強度および第2の光強度に基づいて、ハウジングの特定のセクションを識別することと、をさらに含む、条項23~26のいずれか一項に記載の方法。28.複数のスキャンの第1のスキャン中にハウジングの第1のセクションを通して、および複数のスキャンの第2のスキャン中にハウジングの第2のセクションを通して、LIDARデバイスによってスキャンされたオブジェクトを識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、をさらに含む、条項23~27のいずれか一項に記載の方法。29.複数のスキャンの第1のスキャン中にハウジングの第1のセクションを通して、および複数のスキャンの第2のスキャン中にハウジングの第2のセクションを通して、LIDARデバイスによってスキャンされた環境の領域を識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、をさらに含む、条項23~28のいずれか一項に記載の方法。30.LIDARデバイスがシステムに搭載され、第2のLIDARデバイスシステムに搭載され、複数のスキャンの第1のスキャン中にLIDARデバイスによってスキャンされ、第2のLIDARデバイスによる環境の第2のスキャン中に第2のLIDARデバイスによってスキャンされるオブジェクトを識別することと、識別されたオブジェクトに関連付けられた第1のスキャンの第1の部分を、識別されたオブジェクトに関連付けられた第2のスキャンの第2の部分と比較することと、をさらに含む、条項23~29のいずれか一項に記載の方法。31.LIDARデバイスがシステムに搭載され、第2のLIDARデバイスがシステムに搭載され、複数のスキャンの第1のスキャン中にLIDARデバイスによってスキャンされ、第2のLIDARデバイスによる環境の第2のスキャン中に第2のLIDARデバイスによってスキャンされた環境の領域を識別することと、識別された領域に関連付けられた第1のスキャンの第1の部分を、識別された領域に関連付けられた第2のスキャンの第2の部分と比較することであって、障害物を検出することが、比較にさらに基づく、比較することと、をさらに含む、条項23~30のいずれか一項に記載の方法。32.複数のスキャンを取得することが、連続するスキャン期間中に、FOVの完全なスキャンのシーケンスを取得することと、完全なスキャンのシーケンスから複数のスキャンを選択することと、を含む、条項23~31のいずれか一項に記載の方法。33.完全なスキャンのシーケンスの第1のスキャン中のLIDARデバイスの環境におけるLIDARデバイスの第1の場所、および完全なスキャンのシーケンスの第2のスキャン中のLIDARデバイスの第2の場所を判定することをさらに含み、複数のスキャンを選択することが、第1の場所と第2の場所との比較に基づいて、第1のスキャンおよび第2のスキャンを選択することを含む、条項32に記載の方法。34.LIDARデバイスが、システムの環境内を移動するように構成されたシステムに装着され、方法が、完全なスキャンのシーケンスの第1のスキャン中の環境に対するシステムの第1の向き、および完全なスキャンのシーケンスの第2のスキャン中のシステムの第2の向きを判定することをさらに含み、複数のスキャンを選択することが、第1の向きと第2の向きとの比較に基づいて、第1のスキャンおよび第2のスキャンを選択することを含む、に含む、条項32または33に記載の方法。35.各スキャンのフィードバックリターンとして、複数の戻り光パルスの第23のサブセットを、少なくとも第1のサブセットがLIDARデバイスまでの閾値距離未満の場所からLIDARデバイスに反射して戻されたことに基づいて、選択することをさらに含み、障害物を検出することが、フィードバックリターンの、LIDARデバイスによって示される少なくとも光強度測定値に基づく、条項23~34のいずれか一項に記載の方法。36.複数の光パルスを送信することが、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することを含み、LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することが、LIDARデバイスが複数の光パルスを放出している間に、LIDARデバイスを軸の周りで回転させることを含む、条項23~35のいずれか一項に記載の方法。3
7.LIDARデバイスを軸の周りで回転させることが、LIDARデバイスの1つ以上の光エミッタに、ハウジングに対して移動することを行わせ、送信された複数の光パルスが1つ以上の光エミッタによって放出される、条項36に記載の方法。38.LIDARデバイスからハウジングに向かって異なる方向に複数の光パルスを放出することが、LIDARデバイス内の光エミッタに、1つ以上の光学素子を含むLIDARデバイス内のビームステアリング装置に向けて一連の光パルスを放出させることと、1つ以上の光学素子を介して、一連の光パルスの各光パルスを、ハウジングに向かって異なるそれぞれの方向に操縦することと、を含む、条項23~37のいずれか一項に記載の方法。39.複数の光パルスを送信することが、LIDARデバイスの第23の光エミッタに、第1の発散光ビームを放出させ、かつLIDARデバイスの第2の光エミッタに、第2の発散光を放出させることと、第1の発散光ビームをハウジングの第1のセクションを通して、かつ第2の発散光ビームをハウジングの第2のセクションを通して送信することと、を含む、条項23~38のいずれかに記載の方法。40.光検出測距(LIDAR)デバイスであって、ハウジングと、コントローラであって、LIDARデバイスに、LIDARデバイスの視野(FOV)の複数のスキャンを取得することであって、LIDARデバイスが、複数のスキャンのスキャンごとに、ハウジングを通して、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信し、送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出する、取得することと、複数のスキャンに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することと、障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することと、LIDARデバイスと障害物との間に介在するハウジングの特定のセクションを識別することと、を含む動作を実行することを行わせるように構成された、コントローラと、を備える、LIDARデバイス。41.ハウジングがドーム型の光フィルタを含む、条項40に記載のLIDARデバイス。42.システムであって、ハウジングと、ハウジングの内側に配設された光検出測距(LIDAR)デバイスであって、LIDARデバイスが、ハウジングを通して視野(FOV)をスキャンするように構成され、LIDARデバイスが、FOVのスキャンごとに、LIDARデバイスからハウジングに向かって異なる方向に放出された複数の光パルスを送信するように構成され、LIDARデバイスが、FOVのスキャンごとに、LIDARデバイスに反射して戻る送信された複数の光パルスの反射部分を含む複数の戻り光パルスを受信するように構成される、LIDARデバイスと、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されたときに、システムに、LIDARデバイスから、FOVの複数のスキャンを示すデータを受信することと、受信されたデータに基づいて、LIDARデバイスがハウジングを通してFOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することと、障害物が、LIDARデバイスがハウジングの1つ以上のセクションを通してFOVをスキャンすることを妨げないことを判定することと、LIDARデバイスと障害物との間に介在するハウジングの特定のセクションを識別することと、を含む動作を実行させる命令を格納するデータストレージと、を備える、システム。43.光検出測距(LIDAR)デバイスであって、LIDARデバイスに第23~39項のいずれか一項に記載の方法を実行させるように構成されたコントローラを備える、LIDARデバイス。44.LIDARデバイスに第23項~第39項のいずれか一項に記載の方法を実行させるように構成されたコントローラを備える、システム。45.システムが車両を備える、条項44に記載のシステム。

Claims (19)

  1. 方法であって、
    光検出測距(LIDAR)デバイスの視野(FOV)の複数のスキャンを取得することであって、前記LIDARデバイスが、ハウジングの内側に配設され、前記複数のスキャンの各スキャンを取得することが、
    前記ハウジングの複数のセクションを通して、前記LIDARデバイスから前記ハウジングに向かって異なる方向に放出された複数の光パルスを送信することと、
    前記LIDARデバイスに向かって反射して戻る前記送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、を含む、取得することと、
    前記複数のスキャンの第1のスキャン中に前記ハウジングの第1のセクションを通して、および前記複数のスキャンの第2のスキャン中に前記ハウジングの第2のセクションを通して、前記LIDARデバイスによってスキャンされたオブジェクトを識別することと、
    前記識別されたオブジェクトに関連付けられた前記第1のスキャンの第1の部分を、前記識別されたオブジェクトに関連付けられた前記第2のスキャンの第2の部分と比較することと、
    前記複数のスキャンに基づいて、前記LIDARデバイスが前記ハウジングを通して前記FOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することであって、前記障害物を検出することが、前記比較に基づく、ことと、
    前記障害物が、前記LIDARデバイスが前記ハウジングの1つ以上のセクションを通して前記FOVをスキャンすることを妨げないことを判定することと、
    前記LIDARデバイスと前記障害物との間に介在する前記ハウジングの特定のセクションを識別することと、を含む、方法。
  2. 前記複数のスキャンに基づいて、前記障害物が前記LIDARデバイスに結合されているかどうかを判定することをさらに含む、請求項1に記載の方法。
  3. 前記ハウジングの前記特定のセクションの前記識別に基づいて、洗浄装置を動作させることをさらに含む、請求項1に記載の方法。
  4. 前記複数のスキャンに基づいて前記障害物のタイプを判定することであって、前記洗浄装置を動作させることが、前記障害物の前記タイプの前記判定にさらに基づく、判定することをさらに含む、請求項3に記載の方法。
  5. 前記ハウジングの前記複数のセクションの第1のセクションから前記LIDARデバイスによって受信された第1の戻り光パルスの第1の光強度を判定することと、
    前記ハウジングの前記複数のセクションの第2のセクションから前記LIDARデバイスによって受信された他の戻り光パルスの第2の光強度を判定することと、をさらに含み、
    前記ハウジングの前記特定のセクションを識別することが、前記第1の光強度および前記第2の光強度に基づく、請求項1に記載の方法。
  6. 前記複数のスキャンの第1のスキャン中に前記ハウジングの第1のセクションを通して、および前記複数のスキャンの第2のスキャン中に前記ハウジングの第2のセクションを通して、前記LIDARデバイスによってスキャンされた環境の領域を識別することと、
    前記識別された領域に関連付けられた前記第1のスキャンの第1の部分を、前記識別された領域に関連付けられた前記第2のスキャンの第2の部分と比較することであって、前記障害物を検出することが、前記比較に基づく、比較することと、をさらに含む、請求項1に記載の方法。
  7. 前記LIDARデバイスがシステムに装着され、第2のLIDARデバイスが前記システムに装着され、前記方法が、
    前記複数のスキャンの第1のスキャン中に前記LIDARデバイスによってスキャンされ、前記第2のLIDARデバイスによる環境の第2のスキャン中に前記第2のLIDARデバイスによってスキャンされたオブジェクトを識別することと、
    前記識別されたオブジェクトに関連付けられた前記第1のスキャンの第1の部分を、前記識別されたオブジェクトに関連付けられた前記第2のスキャンの第2の部分と比較することであって、前記障害物を検出することが、前記比較にさらに基づく、比較することと、をさらに含む、請求項1に記載の方法。
  8. 前記LIDARデバイスがシステムに装着され、第2のLIDARデバイスが前記システムに装着され、前記方法が、
    前記複数のスキャンの第1のスキャン中に前記LIDARデバイスによってスキャンされ、前記第2のLIDARデバイスによる環境の第2のスキャン中に前記第2のLIDARデバイスによってスキャンされた前記環境の領域を識別することと、
    前記識別された領域に関連付けられた前記第1のスキャンの第1の部分を、前記識別された領域に関連付けられた前記第2のスキャンの第2の部分と比較することであって、前記障害物を検出することが、前記比較にさらに基づく、比較することと、をさらに含む、請求項1に記載の方法。
  9. 前記複数のスキャンを取得することが、
    連続するスキャン期間中に、前記FOVの完全なスキャンのシーケンスを取得することと、
    前記完全なスキャンのシーケンスから前記複数のスキャンを選択することと、を含む、請求項1に記載の方法。
  10. 前記完全なスキャンのシーケンスの第1のスキャン中の前記LIDARデバイスの環境における前記LIDARデバイスの第1の場所、および前記完全なスキャンのシーケンスの第2のスキャン中の前記LIDARデバイスの第2の場所を判定することをさらに含み、
    前記複数のスキャンを選択することが、前記第1の場所と前記第2の場所との比較に基づいて、前記第1のスキャンおよび前記第2のスキャンを選択することを含む、請求項に記載の方法。
  11. 前記LIDARデバイスが、システムの環境内を移動するように構成されたシステムに装着され、前記方法が、
    前記完全なスキャンのシーケンスの第1のスキャン中の前記環境に対する前記システムの第1の向き、および前記完全なスキャンのシーケンスの第2のスキャン中の前記システムの第2の向きを判定することをさらに含み、
    前記複数のスキャンを選択することが、前記第1の向きと前記第2の向きとの比較に基づいて、前記第1のスキャンおよび前記第2のスキャンを選択することを含む、請求項に記載の方法。
  12. 各スキャンのフィードバックリターンとして、前記複数の戻り光パルスの第1のサブセットを、少なくとも前記第1のサブセットが前記LIDARデバイスまでの閾値距離未満の場所から前記LIDARデバイスに反射して戻されたことに基づいて、選択することをさらに含み、
    前記障害物を検出することが、前記フィードバックリターンの、前記LIDARデバイスによって示される少なくとも光強度測定値に基づく、請求項1に記載の方法。
  13. 前記複数の光パルスを送信することが、前記LIDARデバイスから前記ハウジングに向かって異なる方向に前記複数の光パルスを放出することを含み、前記LIDARデバイスから前記ハウジングに向かって異なる方向に前記複数の光パルスを放出することが、前記LIDARデバイスが前記複数の光パルスを放出している間に、前記LIDARデバイスを軸の周りで回転させることを含む、請求項1に記載の方法。
  14. 前記LIDARデバイスを前記軸の周りで回転させることが、前記LIDARデバイスの1つ以上の光エミッタに、前記ハウジングに対して移動することを行わせ、前記送信された複数の光パルスが前記1つ以上の光エミッタによって放出される、請求項13に記載の方法。
  15. 前記LIDARデバイスから前記ハウジングに向かって異なる方向に前記複数の光パルスを放出することが、
    前記LIDARデバイス内の光エミッタに、1つ以上の光学素子を含む前記LIDARデバイス内のビームステアリング装置に向けて一連の光パルスを放出させることと、
    前記1つ以上の光学素子を介して、前記一連の光パルスの各光パルスを、前記ハウジングに向かって異なるそれぞれの方向に操縦することと、を含む、請求項1に記載の方法。
  16. 前記複数の光パルスを送信することが、
    前記LIDARデバイスの第1の光エミッタに、第1の発散光ビームを放出させ、かつ前記LIDARデバイスの第2の光エミッタに、第2の発散光ビームを放出させることと、
    前記第1の発散光ビームを前記ハウジングの第1のセクションを通して、かつ前記第2の発散光ビームを前記ハウジングの第2のセクションを通して送信することと、を含む、請求項1に記載の方法。
  17. 光検出測距(LIDAR)デバイスであって、
    ハウジングと、
    コントローラであって、前記LIDARデバイスに、
    前記LIDARデバイスの視野(FOV)の複数のスキャンを取得することと、
    前記複数のスキャンのスキャンごとに、
    前記ハウジングを通して、前記LIDARデバイスから前記ハウジングに向かって異なる方向に放出された複数の光パルスを送信し、
    前記送信された複数の光パルスの反射部分を含む複数の戻り光パルスを検出することと、
    前記複数のスキャンの第1のスキャン中に前記ハウジングの第1のセクションを通して、および前記複数のスキャンの第2のスキャン中に前記ハウジングの第2のセクションを通して、前記LIDARデバイスによってスキャンされたオブジェクトを識別することと、
    前記識別されたオブジェクトに関連付けられた前記第1のスキャンの第1の部分を、前記識別されたオブジェクトに関連付けられた前記第2のスキャンの第2の部分と比較することと、
    前記複数のスキャンに基づいて、前記LIDARデバイスが前記ハウジングを通して前記FOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することであって、前記障害物を検出することが、前記比較に基づく、ことと、
    前記障害物が、前記LIDARデバイスが前記ハウジングの1つ以上のセクションを通して前記FOVをスキャンすることを妨げないことを判定することと、
    前記LIDARデバイスと前記障害物との間に介在する前記ハウジングの特定のセクションを識別することと、を含む動作を実行させるように構成された、コントローラと、を備える、LIDARデバイス。
  18. 前記ハウジングが、ドーム型の光フィルタを備える、請求項17に記載のLIDARデバイス。
  19. システムであって、
    ハウジングと、
    前記ハウジングの内側に配設された光検出測距(LIDAR)デバイスであって、前記LIDARデバイスが、前記ハウジングを通して視野(FOV)をスキャンするように構成され、
    前記LIDARデバイスが、前記FOVのスキャンごとに、前記LIDARデバイスから前記ハウジングに向かって異なる方向に放出された複数の光パルスを送信するように構成され、
    前記LIDARデバイスが、前記FOVのスキャンごとに、前記LIDARデバイスに反射して戻る前記送信された複数の光パルスの反射部分を含む複数の戻り光パルスを受信するように構成されている、LIDARデバイスと、
    1つ以上のプロセッサと、
    前記1つ以上のプロセッサによって実行されたときに、前記システムに、
    前記LIDARデバイスから、前記FOVの複数のスキャンを示すデータを受信することと、
    前記複数のスキャンの第1のスキャン中に前記ハウジングの第1のセクションを通して、および前記複数のスキャンの第2のスキャン中に前記ハウジングの第2のセクションを通して、前記LIDARデバイスによってスキャンされたオブジェクトを識別することと、
    前記識別されたオブジェクトに関連付けられた前記第1のスキャンの第1の部分を、前記識別されたオブジェクトに関連付けられた前記第2のスキャンの第2の部分と比較することと、
    前記受信されたデータに基づいて、前記LIDARデバイスが前記ハウジングを通して前記FOVをスキャンすることを少なくとも部分的に妨げる障害物を検出することであって、前記障害物を検出することが、前記比較に基づく、ことと、
    前記障害物が、前記LIDARデバイスが前記ハウジングの1つ以上のセクションを通して前記FOVをスキャンすることを妨げないことを判定することと、
    前記LIDARデバイスと前記障害物との間に介在する前記ハウジングの特定のセクションを識別することと、を含む動作を実行させる命令を格納するデータストレージと、を備える、システム。
JP2021551603A 2019-03-14 2020-03-13 センサハウジングの障害物を検出するための方法およびシステム Active JP7227391B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962818707P 2019-03-14 2019-03-14
US62/818,707 2019-03-14
PCT/US2020/022804 WO2020186236A1 (en) 2019-03-14 2020-03-13 Methods and systems for detecting obstructions on a sensor housing

Publications (2)

Publication Number Publication Date
JP2022524316A JP2022524316A (ja) 2022-05-02
JP7227391B2 true JP7227391B2 (ja) 2023-02-21

Family

ID=72426782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551603A Active JP7227391B2 (ja) 2019-03-14 2020-03-13 センサハウジングの障害物を検出するための方法およびシステム

Country Status (6)

Country Link
US (1) US11933920B2 (ja)
EP (1) EP3914932A4 (ja)
JP (1) JP7227391B2 (ja)
CN (1) CN113574411A (ja)
IL (1) IL286338A (ja)
WO (1) WO2020186236A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US20230152431A1 (en) * 2021-11-17 2023-05-18 Waymo Llc Methods for Detecting LIDAR Aperture Fouling
WO2023183425A1 (en) * 2022-03-25 2023-09-28 Innovusion, Inc. Methods and systems of window blockage detection for lidar
WO2023248798A1 (ja) * 2022-06-23 2023-12-28 パナソニックIpマネジメント株式会社 レーザレーダ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010094A (ja) 2003-06-20 2005-01-13 Denso Corp 車両用物体認識装置
JP2011013135A (ja) 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The 光測距装置
WO2016208373A1 (ja) 2015-06-24 2016-12-29 コニカミノルタ株式会社 対物センサ、対物センサの汚れ判定方法および物体検出装置
JP2018072288A (ja) 2016-11-04 2018-05-10 シャープ株式会社 走行体の物体検知装置及び物体検知方法
JP2018517889A (ja) 2015-03-25 2018-07-05 ウェイモ エルエルシー 複数の光検出及び測距装置(lidar)付きの車両
US20180217242A1 (en) 2017-01-27 2018-08-02 Waymo Llc Lidar sensor window configuration for improved data integrity
US20180284268A1 (en) 2017-03-29 2018-10-04 Luminar Technologies, Inc. Ultrasonic vibrations on a window in a lidar system
JP2019502974A (ja) 2015-10-21 2019-01-31 ウェイモ エルエルシー センサー遮蔽を取り除くための方法およびシステム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146838B2 (ja) * 1994-04-13 2001-03-19 日産自動車株式会社 測距センサーヘッド
JP4158725B2 (ja) * 2004-03-09 2008-10-01 株式会社デンソー 距離検出装置
JP4305231B2 (ja) * 2004-03-16 2009-07-29 株式会社デンソー 距離検出装置
DE102010022159A1 (de) 2010-05-20 2011-11-24 Leuze Electronic Gmbh + Co. Kg Optischer Sensor
US8836922B1 (en) 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
US9880263B2 (en) * 2015-04-06 2018-01-30 Waymo Llc Long range steerable LIDAR system
JP2017067559A (ja) * 2015-09-29 2017-04-06 シャープ株式会社 距離測定装置
CA3017811C (en) * 2016-03-21 2021-04-27 Velodyne Lidar, Inc. Lidar based 3-d imaging with varying pulse repetition
JP2017181105A (ja) * 2016-03-28 2017-10-05 株式会社デンソーウェーブ レーザレーダ装置
WO2018055513A2 (en) * 2016-09-20 2018-03-29 Innoviz Technologies Ltd. Methods circuits devices assemblies systems and functionally associated machine executable code for light detection and ranging based scanning
KR102547651B1 (ko) * 2016-09-20 2023-06-26 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법
US10699305B2 (en) 2016-11-21 2020-06-30 Nio Usa, Inc. Smart refill assistant for electric vehicles
WO2018187089A1 (en) 2017-04-07 2018-10-11 Uber Technologies, Inc. Autonomous vehicle sensor cleaning system
US10189429B2 (en) 2017-06-26 2019-01-29 Ford Global Technologies, Llc Vehicle sensor cleaning based on a vehicle occupancy status
US10754033B2 (en) * 2017-06-30 2020-08-25 Waymo Llc Light detection and ranging (LIDAR) device range aliasing resilience by multiple hypotheses
US10173646B1 (en) * 2017-07-07 2019-01-08 Uber Technologies, Inc. Sequential sensor cleaning system for autonomous vehicle
US11500068B2 (en) * 2018-01-09 2022-11-15 Lg Electronics Inc. Lidar apparatus for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010094A (ja) 2003-06-20 2005-01-13 Denso Corp 車両用物体認識装置
JP2011013135A (ja) 2009-07-03 2011-01-20 Nippon Signal Co Ltd:The 光測距装置
JP2018517889A (ja) 2015-03-25 2018-07-05 ウェイモ エルエルシー 複数の光検出及び測距装置(lidar)付きの車両
WO2016208373A1 (ja) 2015-06-24 2016-12-29 コニカミノルタ株式会社 対物センサ、対物センサの汚れ判定方法および物体検出装置
JP2019502974A (ja) 2015-10-21 2019-01-31 ウェイモ エルエルシー センサー遮蔽を取り除くための方法およびシステム
JP2018072288A (ja) 2016-11-04 2018-05-10 シャープ株式会社 走行体の物体検知装置及び物体検知方法
US20180217242A1 (en) 2017-01-27 2018-08-02 Waymo Llc Lidar sensor window configuration for improved data integrity
US20180284268A1 (en) 2017-03-29 2018-10-04 Luminar Technologies, Inc. Ultrasonic vibrations on a window in a lidar system

Also Published As

Publication number Publication date
EP3914932A1 (en) 2021-12-01
JP2022524316A (ja) 2022-05-02
CN113574411A (zh) 2021-10-29
US20220179057A1 (en) 2022-06-09
WO2020186236A1 (en) 2020-09-17
IL286338A (en) 2021-10-31
EP3914932A4 (en) 2022-11-16
US11933920B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7104767B2 (ja) 複数の受信機を有する光検出測距(lidar)装置
JP7204709B2 (ja) 複数の光検出及び測距装置(lidar)付きの車両
CN111164453B (zh) 包括共同对准的旋转传感器的设备、其方法以及车辆
CN108292135B (zh) 用于清除传感器遮挡的方法和系统
JP7227391B2 (ja) センサハウジングの障害物を検出するための方法およびシステム
KR20190086041A (ko) 회전 광 검출 및 거리 측정(lidar) 디바이스를 위한 전력 변조
US10976420B2 (en) Methods and systems for detecting sensor occlusions
KR20200026315A (ko) Lidar(light detection and ranging) 시스템에서의 범위 에일리어싱 검출 및 완화를 위한 연장된 검출 주기들의 사용
JP7407886B2 (ja) 劣化したlidar範囲測定精度を検出するための方法およびシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7227391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150