JP7221478B6 - Cold heading wire rod for shortening soft heat treatment time and its manufacturing method - Google Patents

Cold heading wire rod for shortening soft heat treatment time and its manufacturing method Download PDF

Info

Publication number
JP7221478B6
JP7221478B6 JP2021506273A JP2021506273A JP7221478B6 JP 7221478 B6 JP7221478 B6 JP 7221478B6 JP 2021506273 A JP2021506273 A JP 2021506273A JP 2021506273 A JP2021506273 A JP 2021506273A JP 7221478 B6 JP7221478 B6 JP 7221478B6
Authority
JP
Japan
Prior art keywords
less
pro
wire rod
heat treatment
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021506273A
Other languages
Japanese (ja)
Other versions
JP2021533270A (en
JP7221478B2 (en
Inventor
イ,ビョン‐ガブ
イ,サン‐ユン
パク,イン‐ギュ
イ,ジェ‐スン
キム,ハン‐フィ
ヤン,ヨ‐セプ
Original Assignee
ポスコ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポスコ カンパニー リミテッド filed Critical ポスコ カンパニー リミテッド
Publication of JP2021533270A publication Critical patent/JP2021533270A/en
Publication of JP7221478B2 publication Critical patent/JP7221478B2/en
Application granted granted Critical
Publication of JP7221478B6 publication Critical patent/JP7221478B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、軟質熱処理時間短縮のための冷間圧造用線材及びその製造方法に係り、より詳しくは、圧延後の線材の微細組織を制御することで、後続する軟質化熱処理時間を短縮することができる冷間圧造用線材及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a wire rod for cold heading and a method of manufacturing the same for shortening the time for softening heat treatment. It relates to a wire rod for cold heading and a method for manufacturing the same.

線材を軟質化するために、一般的に球状化熱処理を行う。球状化熱処理は、冷間成形時の冷間加工性を向上させるためにセメンタイトを球状化し、均質な粒子分布を誘導する。また、加工ダイスの寿命を向上させるために加工される素材の硬さをできる限り柔らかくすることができる。上記2つの目的を達成するために素材の軟質化概念として利用されている。
このような球状化熱処理は、大きく2つに分類される。一つは共析温度以下で長時間加熱する方法であって、主に熱延製品の球状化処理に用いられている(sub-critical annealing)。もう一つは共析温度とオーステナイト化温度との間で加熱した後に極徐冷して球状化組織を得る方法である(inter-critical annealing)。
A spheroidizing heat treatment is generally performed to soften the wire. The spheroidizing heat treatment spheroidizes cementite to improve cold workability during cold forming and induces a homogeneous particle distribution. In addition, the hardness of the material to be processed can be made as soft as possible in order to improve the life of the working dies. In order to achieve the above two purposes, it is used as a material softening concept.
Such a spheroidizing heat treatment is roughly classified into two. One is a method of heating for a long time below the eutectoid temperature, which is mainly used for spheroidizing treatment of hot-rolled products (sub-critical annealing). The other is a method of heating between the eutectoid temperature and the austenitizing temperature followed by extremely slow cooling to obtain a spheroidized structure (inter-critical annealing).

初期組織がパーライトで構成された場合、球状化熱処理温度で球状化が進行される過程は、高い温度での拡散によってラメラ(lamellar)セメンタイトの欠陥または端部分における平らな界面との曲率差による炭素濃度勾配が発生してラメラセメンタイトが分節され、この後、界面エネルギーを減らすために球状化されることが知られている。
このような球状化軟質化処理のためには、別途の工程数、多くの費用、及び時間がかかるため、その工程時間をできる限り短縮することが好ましく、これに伴い、上述した球状化軟質化処理工程を短縮する技術開発の研究が実施されている。
When the initial structure is made of pearlite, the process of spheroidization at the spheroidizing heat treatment temperature is caused by defects in lamellar cementite due to diffusion at high temperature or carbon due to the difference in curvature with the flat interface at the end portion. It is known that a concentration gradient develops to segment lamellar cementite, which is then spheronized to reduce interfacial energy.
For such a spheroidizing softening treatment, it takes a number of separate steps, a lot of cost, and a long time, so it is preferable to shorten the process time as much as possible. Research is being conducted to develop technology to shorten the processing steps.

韓国公開特許第2018-0072965号公報Korean Patent Publication No. 2018-0072965

本発明は、圧延後の線材組織の初析フェライト分率が平衡相80%以上である最大5μm以下の結晶粒径を有する微細初析フェライトと、ベイナイト/マルテンサイト面積分率は5%以下、残りのパーライト組織を含む複合組織で制御することにより、軟質化熱処理時間を短縮することができる冷間圧造用線材及びその製造方法を提供することを目的とする。
本発明が解決しようとする技術的課題は、上記で言及した技術的課題に限定されず、言及されていないさらに他の技術的課題は、以下の記載から本発明が属する技術分野における通常の知識を有する者であれば明確に理解することができる。
The present invention provides fine pro-eutectoid ferrite having a maximum crystal grain size of 5 μm or less in which the pro-eutectoid ferrite fraction of the wire rod structure after rolling is 80% or more in the equilibrium phase, and a bainite/martensite area fraction of 5% or less, It is an object of the present invention to provide a wire rod for cold heading and a method of manufacturing the same that can shorten the softening heat treatment time by controlling with a composite structure containing the remaining pearlite structure.
The technical problems to be solved by the present invention are not limited to the technical problems mentioned above. can be clearly understood by those who have

上記目的を達成するためになされた本発明の軟質熱処理時間を短縮することができる冷間圧造用線材は、
重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなり、
その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μm以下の初析フェライト組織であり、そして
上記線材の引張強度は、下記関係式1を満たすことを特徴とする。
[関係式1]
TS(MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
A wire rod for cold heading capable of shortening the soft heat treatment time of the present invention, which has been made to achieve the above object,
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities,
The internal structure includes a pro-eutectoid ferrite structure of 20 to 90 area%, a bainite and martensite structure of 5 area% or less, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction has an average grain size of 5 The wire has a proeutectoid ferrite structure of μm or less, and the tensile strength of the wire satisfies the following relational expression 1.
[Relationship 1]
TS (MPa)≧279+864*([C]+[Si]/8+[Mn]/18)

また、本発明の軟質熱処理時間を短縮することができる冷間圧造用線材の製造方法は、
上記組成を有する鋼材を900~1050℃の範囲で加熱した後、180分以内維持する工程、
上記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、
上記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び
上記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含み、
上記冷却された線材の引張強度は、下記関係式1を満たす事を特徴とする。
[関係式1]
TS(MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
In addition, the method for producing a wire rod for cold heading that can shorten the soft heat treatment time of the present invention includes:
A step of heating the steel material having the above composition in the range of 900 to 1050 ° C. and then maintaining it within 180 minutes;
A step of controlling the austenite grain size (AGS) of the steel material in the range of 5 to 20 μm;
A step of finish hot rolling the AGS-controlled steel material into a wire rod shape at a temperature of Ae 3 or less to 730 ° C. or more with a deformation amount of 0.3 to 2.0; cooling at a cooling rate of ~20°C/s,
The tensile strength of the cooled wire rod satisfies the following relational expression 1.
[Relationship 1]
TS (MPa)≧279+864*([C]+[Si]/8+[Mn]/18)

また、上記冷却された線材は、
その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μm以下の初析フェライト組織であることが好ましい。
また、上記冷却された線材を、伸線を行わず、素材をAe1~Ae1+40℃の温度範囲で維持した後、660℃まで15~30℃/hrで冷却し、上記温度維持及び冷却時間が計10~15時間である球状化熱処理工程をさらに含むことがよい。
In addition, the cooled wire is
The internal structure includes a pro-eutectoid ferrite structure of 20 to 90 area%, a bainite and martensite structure of 5 area% or less, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction has an average grain size of 5 A pro-eutectoid ferrite structure of μm or less is preferable.
Further, the cooled wire rod is not drawn, and the material is maintained in the temperature range of Ae1 to Ae1 + 40 ° C., then cooled to 660 ° C. at 15 to 30 ° C./hr, and the temperature maintenance and cooling time are measured. It is preferable to further include a spheroidizing heat treatment step for 10 to 15 hours.

本発明によれば、上記構成の本発明は、製造された線材の微細組織の最適化によって所望の特性を有する線材を比較的短い軟質化熱処理時間でも得ることができ、これに伴い、製造費用及び時間を減らすことができる有用な効果がある。 According to the present invention having the above configuration, a wire rod having desired properties can be obtained even with a relatively short softening heat treatment time by optimizing the microstructure of the manufactured wire rod. And there is a useful effect that can reduce the time.

仕上げ熱間圧延前の鋼材のAGSを示す組織写真であって、(a)は発明例2を、(b)は比較例2を示す。Fig. 3 is a structural photograph showing AGS of a steel material before finish hot rolling, in which (a) shows Inventive Example 2 and (b) shows Comparative Example 2; 線材圧延後の冷却によって得られた線材の微細組織を示す組織であって、(a)は発明例4を、(b)は比較例4を示す。Fig. 3 shows a structure showing a fine structure of a wire rod obtained by cooling after wire rolling, (a) showing Inventive Example 4 and (b) showing Comparative Example 4. Figs.

以下、本発明を説明する。
本発明は、重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及び他の不可避不純物からなる鋼材に圧延によって初析フェライトを生成させ、結晶粒微細化を誘導し、素材の軟質熱処理中の炭素の拡散加速によって軟質線材を得る事を特徴とする熱処理短縮形線材の製造方法に関するものである。
本発明の線材組成成分及びその含有量の制限理由を説明する。ここで、%は特に定義されていない限り、重量%を意味する。
The present invention will be described below.
In the present invention, by weight %, C: 0.15 to 0.5%, Si: 0.02 to 0.4%, Mn: 0.3 to 1.2%, Al: 0.02 to 0.05 %, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities are rolled to form proeutectoid ferrite, crystals The present invention relates to a method for producing a heat-treated shortened wire rod characterized by inducing grain refinement and obtaining a soft wire rod by accelerating the diffusion of carbon during the soft heat treatment of the raw material.
The compositional components of the wire rod of the present invention and the reasons for restricting the content thereof will be explained. Here, % means weight % unless otherwise defined.

C:0.15~0.5%
上記炭素の含有量を0.15~0.5%に制限した理由は、その含有量が0.5%を超えると、ほぼすべての組織がパーライトで構成されてしまい、目的とする初析フェライトの亜結晶粒を確保し難くなり、一方、0.15%未満では初析フェライト分率の増加によって結晶粒が微細ではなくなり、QT熱処理時にマルテンサイト微細組織に変態させ難くなり、上記マルテンサイト組織においても低い炭素含有量によって十分な強度を確保し難いためである。
C: 0.15-0.5%
The reason why the content of carbon is limited to 0.15 to 0.5% is that if the content exceeds 0.5%, almost all the structure is composed of pearlite, and the desired pro-eutectoid ferrite On the other hand, if it is less than 0.15%, the crystal grains will not be fine due to an increase in the proeutectoid ferrite fraction, and it will be difficult to transform into a martensite microstructure during the QT heat treatment, and the above martensite structure. This is also because it is difficult to ensure sufficient strength due to the low carbon content.

Si:0.02~0.4%
上記シリコン(Si)の含有量を0.02~0.4%に限定する理由は、以下のとおりである。Siは代表的な置換型元素として鋼の強度確保に大きな影響を及ぼす。その含有量が0.02%未満であると、鋼の強度確保が難しくなり、一方、0.4%を超えると、線材圧延中に脱炭組織の生成を助長するため、追加的な削除費用が必要となり、鍛造時の強度が上昇して鍛造し難くなるためである。
Si: 0.02-0.4%
The reason for limiting the content of silicon (Si) to 0.02 to 0.4% is as follows. Si, as a representative substitutional element, has a great effect on ensuring the strength of steel. If its content is less than 0.02%, it becomes difficult to ensure the strength of the steel, while if it exceeds 0.4%, it promotes the formation of a decarburized structure during wire rolling, resulting in additional removal costs. This is because the strength at the time of forging increases and forging becomes difficult.

Mn:0.3~1.2%
上記マンガン(Mn)は、基地組織内に置換型固溶体を形成し、A1の温度を下げてパーライト層間の間隙を微細化する。そして、初析フェライト組織内の亜結晶粒を増加させるため、その含有量は0.3~1.2%に制限する。上記マンガンを1.2%超過して添加する場合、マンガン偏析による組織不均質によって有害な影響を及ぼすようになる。鋼の凝固時の偏析機構によって、マクロ偏析及びミクロ偏析が起こり易いが、マンガン偏析は他元素に比べて相対的に低い拡散係数により偏析帯を助長し、これによる硬化能向上は、中心部の低温組織(core martensite)を形成する主な原因となる。また、上記マンガンが0.3%未満に添加される場合、QT後のマルテンサイト組織を確保するための十分な焼入れ性が確保され難くなることがある。
Mn: 0.3-1.2%
Manganese (Mn) forms a substitutional solid solution in the matrix structure, lowers the temperature of A1, and refines the gap between the pearlite layers. In order to increase the number of subgrains in the pro-eutectoid ferrite structure, the content is limited to 0.3-1.2%. When manganese is added in excess of 1.2%, it has a detrimental effect due to structural heterogeneity due to manganese segregation. Due to the segregation mechanism during solidification of steel, macro-segregation and micro-segregation are likely to occur. It is the main cause of the formation of core martensite. Moreover, when the manganese content is less than 0.3%, it may become difficult to ensure sufficient hardenability for ensuring the martensite structure after QT.

Al:0.02~0.05%
本発明において上記アルミニウム含有量は、0.02~0.05%に限定することが好ましい。これは、その含有量が0.02%未満であると、十分な脱酸力が確保され難くなり、一方、0.05%を超えると、Alなどの硬質介在物が増加することがあり、特に連鋳時の介在物によるノズルの目詰まりが発生することがあるためである。
Al: 0.02-0.05%
In the present invention, the aluminum content is preferably limited to 0.02 to 0.05%. This is because if the content is less than 0.02%, it becomes difficult to ensure sufficient deoxidizing power, while if it exceeds 0.05%, hard inclusions such as Al 2 O increase. This is because clogging of nozzles due to inclusions during continuous casting may occur.

N:0.01%未満
本発明において窒素の含有量は、0.01%未満で管理する必要がある。これは、0.01%以上である場合、析出物として結合しない固溶窒素により素材の靭性/延性の低下が発生することがあるためである。
N: less than 0.01% In the present invention, the nitrogen content must be controlled at less than 0.01%. This is because, if the content is 0.01% or more, solute nitrogen that does not combine as precipitates may cause deterioration in the toughness/ductility of the material.

P:0.03%以下、S:0.01%未満
P及びSは不純物として、Pは結晶粒界に偏析して靭性を低下させるため、その含有量を0.03%以下に制限することが好ましい。そして、Sは低融点元素で粒界偏析して靭性を低下させ、硫化物を形成させて製品に有害な影響を及ぼすため、その含有量を0.01%未満に管理することが好ましい。
P: 0.03% or less, S: less than 0.01% P and S are impurities, and since P segregates at grain boundaries and lowers toughness, the content should be limited to 0.03% or less. is preferred. Also, S is a low-melting element that segregates at grain boundaries to reduce toughness and forms sulfides, which adversely affect the product.

また、本発明の冷間圧造用線材は、その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μm以下の初析フェライト組織である。
本発明において平衡初析フェライト分率とは、各組成の状態図においてA1直上の温度でのこの原理による初析フェライト分率を意味する。本発明では、Thermo calc.ソフトウェアを用いて計算された状態図を活用した。
In addition, the wire rod for cold heading of the present invention has an internal structure containing 20 to 90 area % of pro-eutectoid ferrite structure, 5 area % or less of bainite and martensite structure, and the remaining pearlite structure, and has equilibrium pro-eutectoid ferrite. 80% or more of the fraction is the proeutectoid ferrite structure with an average grain size of 5 μm or less.
In the present invention, the equilibrium pro-eutectoid ferrite fraction means the pro-eutectoid ferrite fraction according to the principle of leverage at a temperature just above A1 in the phase diagram of each composition. In the present invention, Thermo calc. A phase diagram calculated using software was utilized.

本発明は、このような平衡初析フェライト分率が80%以上である初析フェライト組織を有することを特徴とする。本発明鋼の初析フェライト分率は、通常の冷却中に生成及び成長する線材内の初析フェライトと比較して、Ae以下~730℃の温度で仕上げ圧延中の初析フェライトが生成及び成長し、冷却中に成長するため、通常の方法で製造された同一組成の線材内の初析フェライト分率よりも高い。 The present invention is characterized by having such a pro-eutectoid ferrite structure with an equilibrium pro-eutectoid ferrite fraction of 80% or more. The pro-eutectoid ferrite fraction of the steel of the present invention is higher than the pro-eutectoid ferrite in the wire rod that is formed and grown during normal cooling, and the pro-eutectoid ferrite during finish rolling is formed and grown at a temperature of Ae 3 or less to 730 ° C. Since it grows and grows during cooling, it is higher than the pro-eutectoid ferrite fraction in wires of the same composition produced by conventional methods.

本発明において初析フェライト平均粒径を5μm以下に制限する理由は、上記初析フェライトが仕上げ圧延中に急速に形成されることにより結晶粒が微細化されるためであり、これによって後工程の軟質化熱処理時、上記微細な結晶粒によって炭素の拡散を加速させ、通常よりも短い時間で球状化組織を得ることができる。そして、ベイナイト及びマルテンサイト組織の面積率を5%以下に制御する理由は、上記組織が存在する場合、軟質化熱処理前に伸線工程、或いはアンコイル時に素材が断線される虞があるためである。

The reason why the pro-eutectoid ferrite average grain size is limited to 5 μm or less in the present invention is that the crystal grains are refined by the rapid formation of the pro-eutectoid ferrite during finish rolling. During the softening heat treatment of 1, diffusion of carbon is accelerated by the fine crystal grains, and a spheroidized structure can be obtained in a shorter time than usual. The reason why the area ratio of the bainite and martensite structures is controlled to 5% or less is that if the above structures exist, the material may be broken during the wire drawing process or uncoiling before the softening heat treatment. .

また、本発明においては、上記冷却で製造された線材は、下記関係式1のTSパラメータを満たすことが好ましい。本発明の場合、製造された線材の結晶粒微細化による引張強度が通常の線材よりも強いため、下記関係式1のTSパラメータを満たす、さらに高い引張強度を有するようになり、これによって結晶粒微細化による軟質化熱処理時間を効果的に短縮することができる。 Further, in the present invention, it is preferable that the wire manufactured by the above cooling satisfies the TS parameters of the following relational expression 1. In the case of the present invention, the tensile strength of the manufactured wire is stronger than that of a normal wire due to the grain refinement, so that it has a higher tensile strength that satisfies the TS parameter of the following relational expression 1. It is possible to effectively shorten the softening heat treatment time by miniaturization.

線材の引張強度は、合金元素(C、Si、Mn)が増加するにつれて強度が増加するが、同一合金組成及び微細組織(F+P)を有するにも関わらず、結晶粒微細化によって線材の引張強度が高いことが本発明鋼の特徴である。これを通常材と比較して下記関係式1により区分され、下記関係式1を満たす際に同一球状化熱処理材で低い引張強度を得ることができる効果がある。
[関係式1]
TS(MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
The tensile strength of the wire increases as the alloying elements (C, Si, Mn) increase. It is a feature of the steel of the present invention that the is high. Compared with a normal material, it is classified by the following relational expression 1, and when satisfying the following relational expression 1, there is an effect that a low tensile strength can be obtained with the same spheroidized heat-treated material.
[Relationship 1]
TS (MPa)≧279+864*([C]+[Si]/8+[Mn]/18)

次に、本発明の軟質化熱処理を加速させることができる超細粒線材を製造する方法について詳細に説明する。
本発明の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法は、上記の組成成分を有する鋼材を900~1050℃の範囲で加熱した後、180分以内維持する工程、上記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、上記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び上記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含む。
Next, a detailed description will be given of a method for producing an ultra-fine grain wire capable of accelerating the softening heat treatment of the present invention.
The method for producing a wire rod for cold heading that can shorten the softening heat treatment time of the present invention includes a step of heating a steel material having the above composition in a range of 900 to 1050 ° C. and then maintaining the temperature within 180 minutes; A step of controlling the austenite grain size (AGS) of the steel material in the range of 5 to 20 μm, and the steel material in which the AGS is controlled is subjected to a wire rod with a deformation amount of 0.3 to 2.0 at a temperature of Ae 3 or less to 730 ° C. or more. A step of finish hot rolling into a shape and a step of cooling the finish hot rolled wire rod at a cooling rate of 3 to 20° C./s.

まず、本発明は、上記の組成成分を有する鋼材を900~1050℃の範囲で加熱した後、180分以内維持する。これは、上記加熱温度が1050℃を超えると、AGSが大きく成長するようになり、仕上げ圧延中にさらに多くの変形量で初析フェライトを誘導して結晶粒を微細化させる上で問題があり、900℃未満であると、粗圧延中に圧下量の増加により装備への過負荷がかかるためである。そして、維持時間が180分を超えると、上記理由からAGSが大きく成長するようになり、仕上げ圧延中にさらに多くの変形量で初析フェライトを誘導して結晶粒を微細化させる上で問題があるためである。 First, in the present invention, a steel material having the above compositional components is heated in the range of 900 to 1050° C. and maintained within 180 minutes. This is because when the heating temperature exceeds 1050° C., the AGS grows large, and there is a problem in refining the crystal grains by inducing proeutectoid ferrite with a larger amount of deformation during finish rolling. , 900° C., the equipment will be overloaded due to an increase in rolling reduction during rough rolling. When the maintenance time exceeds 180 minutes, the AGS grows greatly for the above reason, and there is a problem in inducing pro-eutectoid ferrite with a larger amount of deformation during finish rolling and refining the crystal grains. Because there is

続いて、本発明においては仕上げ熱間圧延の直前に上記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する。このようにオーステナイト結晶粒サイズ(AGS)を制御する理由は、仕上げ圧延中に0.3以上の変形量でも初析フェライトを誘導して結晶粒を微細化させるためである。もし、上記サイズが20μmを超えると、さらに多くの仕上げ圧延量が要求されて結晶粒微細化が難しくなり、粗圧延中に5μm以下のAGS素材を製作するためには、通常の製造方法よりさらに多くの変形量が必要となることから、billetサイズを増加させるか、或いはinterpass timeを減らすために素材の移送速度を増加させなければならなくなるという、工程的制約の問題がある。 Subsequently, in the present invention, the austenite grain size (AGS) of the steel material is controlled within the range of 5 to 20 μm immediately before finish hot rolling. The reason for controlling the austenite grain size (AGS) in this way is to induce pro-eutectoid ferrite and refine the grains even if the amount of deformation is 0.3 or more during finish rolling. If the size exceeds 20 μm, a larger amount of finish rolling is required, making it difficult to refine grains. Since a large amount of deformation is required, there is a problem of process constraints such that the billet size must be increased or the material transfer speed must be increased in order to reduce the interpass time.

そして、本発明においては上記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量の線材形状に仕上げ熱間圧延する。
このとき、熱間仕上げ温度範囲をAe以下~730℃以上の温度範囲で制御することが好ましい。これは、Ae温度を超えると、初析フェライトが生成されず、結晶粒微細化に不利であり、730℃未満であると、パーライトが圧延中に生成されて結晶粒微細化に不利であり、圧延温度が低くて圧延ロールへの過負荷がかかるためである。
In the present invention, the AGS-controlled steel material is finish hot rolled at a temperature of Ae 3 or less to 730° C. or more into a wire rod shape having a deformation amount of 0.3 to 2.0.
At this time, it is preferable to control the hot finishing temperature range within a temperature range of Ae 3 or less to 730° C. or more. This is because if the temperature exceeds Ae 3 , proeutectoid ferrite is not formed, which is disadvantageous for grain refinement, and if it is lower than 730 ° C, pearlite is formed during rolling, which is disadvantageous for grain refinement. This is because the rolling temperature is low and the rolling rolls are overloaded.

そして、その変形量は0.3~2.0にすることが好ましい。これは0.3以下の場合には、変形量が小さくて初析フェライトを誘導できず、結晶粒を微細化させることができなくなり、他方、2.0以上の場合には、変形量の増大によって圧延量の過負荷がかかり、所望の素材の直径を製造し難くなるためである。
続いて、本発明においては、上記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却することで上記の内部の微細組織が細粒に制御された線材を得ることができる。このとき、冷却速度を3~20℃/sの範囲に制御する理由は、熱間圧延終了後、フェライト結晶粒サイズ(FGS)が5μm以下の結晶粒成長を抑制するためである。
The deformation amount is preferably 0.3 to 2.0. When this is 0.3 or less, the deformation amount is small and proeutectoid ferrite cannot be induced, and the crystal grains cannot be refined. On the other hand, when it is 2.0 or more, the deformation amount increases. This is because the amount of rolling is overloaded by the rolling, making it difficult to manufacture the desired material diameter.
Subsequently, in the present invention, by cooling the finish hot-rolled wire at a cooling rate of 3 to 20° C./s, it is possible to obtain a wire in which the internal fine structure is controlled to fine grains. . At this time, the reason for controlling the cooling rate in the range of 3 to 20° C./s is to suppress the growth of grains having a ferrite grain size (FGS) of 5 μm or less after completion of hot rolling.

そして、本発明においては、上記素材をAe~Ae+40℃の温度で維持した後、660℃まで15~30℃/hrで冷却することが好ましい。通常の亜共析鋼線材球状化熱処理は、Ae~Ae+40℃の温度で温度維持した後、徐冷する方法で製造され、本発明においては、素材をAe~Ae+40℃の温度領域で維持した後、660℃まで15~30℃/hrで冷却し、このときに温度維持及び冷却時間を計10~15時間で熱処理を行うことが好ましい。熱処理過程を経た本発明の線材は、引張強度が通常の方法で製造された線材と比較して結晶粒微細化によるCの拡散加速によって低い引張強度を示すことができる。 In the present invention, it is preferable that the material is maintained at a temperature of Ae 1 to Ae 1 +40° C. and then cooled to 660° C. at a rate of 15 to 30° C./hr. A normal hypo-eutectoid steel wire spheroidizing heat treatment is produced by a method in which the temperature is maintained at a temperature of Ae 1 to Ae 1 + 40°C and then slowly cooled . After maintaining in the temperature range, it is preferable to cool to 660° C. at 15 to 30° C./hr, and perform heat treatment for a total of 10 to 15 hours of temperature maintenance and cooling time. The wire rod of the present invention that has undergone the heat treatment process can exhibit a lower tensile strength than a wire rod manufactured by a conventional method due to the accelerated diffusion of C due to grain refinement.

以下、実施例を挙げて本発明を詳細に説明する。
(実施例)
下記表1に示した成分組成を有するビレットを9mmとなるように線材圧延した。発明例は本発明の成分範囲及び製造条件を満たすものであり、比較例は本発明の製造条件から外れたものである。
The present invention will be described in detail below with reference to examples.
(Example)
A billet having the composition shown in Table 1 below was wire-rolled to a thickness of 9 mm. The invention examples satisfy the component ranges and production conditions of the present invention, and the comparative examples are outside the production conditions of the present invention.

Figure 0007221478000001
*表1の冷却条件は、線材の表面温度が500℃に到達するまでの冷却速度(℃/s)
Figure 0007221478000001
*The cooling conditions in Table 1 are the cooling rate (°C/s) until the surface temperature of the wire reaches 500°C.

図1は、仕上げ熱間圧延前の鋼材のAGSを示す組織写真であって、(a)は発明例2を、そして(b)は比較例2を示す。AGSは、ASTM E112法を活用して測定した。上記比較例2の場合、他の条件に比べて長時間加熱されたために仕上げ圧延前のAGSが他の条件に比べて大きいことが分かる。一方、仕上げ圧延前の小さなAGSは、仕上げ圧延時の変形量によって粒界で多くの初析フェライトを生成させることができ、これにより圧延中に初析フェライトの生成及び成長によって最終線材の結晶粒サイズを小さくすることができる。 FIG. 1 is a micrograph showing AGS of a steel material before finish hot rolling, in which (a) shows Inventive Example 2 and (b) shows Comparative Example 2. FIG. AGS was measured utilizing the ASTM E112 method. In the case of Comparative Example 2, it can be seen that the AGS before finish rolling is larger than under other conditions because the steel was heated for a longer time than under other conditions. On the other hand, a small AGS before finish rolling can generate a large amount of pro-eutectoid ferrite at grain boundaries due to the amount of deformation during finish rolling. size can be reduced.

下記表2は、上記製造条件で製作された線材の微細組織、軟質化熱処理材された軟質化材の微細組織、及び機械的物性を示している。
一方、表2において線材フェライト相分率は、試験片を切断、研磨、及びエッチングを行った後、電子顕微鏡を介して微細組織写真を得て、image j’というプログラムを介して当該相を区分して条件当たり×1000倍、5枚のSEM写真で面積を計算し、その平均値で示したものである。
Table 2 below shows the microstructure of the wire manufactured under the above manufacturing conditions, the microstructure of the softened material subjected to the softening heat treatment, and the mechanical properties.
On the other hand, in Table 2, the wire ferrite phase fraction is obtained by cutting, polishing, and etching the test piece, obtaining a microstructure photograph through an electron microscope, and classifying the phase through a program called image j'. Then, the area was calculated from five SEM photographs at a magnification of ×1000 per condition, and the average value is shown.

そして、結晶粒サイズは、試験片を切断、研磨、エッチングを行った後、電子顕微鏡を介して微細組織写真を得て、×1000倍、5枚のSEM写真でASTM E112規格で結晶粒サイズを測定した平均値である。
また、引張強度はASTM E-8規格で試験片を製作し、10mm/minの速度で引張試験された結果を示す。
In addition, the grain size was obtained by cutting, polishing, and etching the test piece, obtaining a microstructure photograph through an electron microscope, and measuring the grain size according to the ASTM E112 standard with 5 SEM photographs at a magnification of × 1000. It is the measured average value.
Also, the tensile strength shows the result of a tensile test performed at a speed of 10 mm/min by preparing a test piece according to ASTM E-8 standard.

Figure 0007221478000002
*表2のa*は、TSパラメータの関係式1{279+864*([C]+[Si]/8+[Mn]/18)}により計算された引張強度(MPa)。
Figure 0007221478000002
* a* in Table 2 is the tensile strength (MPa) calculated by the TS parameter relational expression 1 {279+864*([C]+[Si]/8+[Mn]/18)}.

比較例1の場合、仕上げ圧延中の変形量が0.1と非常に小さかったため、変形による初析フェライトを誘導することができなかった。
比較例2の場合、上述したとおり、加熱炉装入時間が207分と、他の条件に比べて長かったため、仕上げ圧延前のAGSが他の鋼に比べて大きく、圧延中に十分に初析フェライトが誘導されなかった。
In the case of Comparative Example 1, since the amount of deformation during finish rolling was as small as 0.1, pro-eutectoid ferrite due to deformation could not be induced.
In the case of Comparative Example 2, as described above, the heating furnace charging time was 207 minutes, which was longer than other conditions. No ferrite was induced.

比較例3の場合、圧延温度が842℃とAe以上の温度で仕上げ圧延されたため、初析フェライトが誘導されなかった。
比較例4の場合、線材の表面温度が500℃まで到達する冷却速度が1℃/sと低速で冷却したため初析フェライトが非常に成長した。
したがって、比較例1~4の場合、最終線材の平均初析フェライト結晶粒サイズが10μm以上となり、発明例に比べて結晶粒サイズが大きく、これが発明鋼に比べて線材強度が低下する主な原因となった。
In the case of Comparative Example 3, pro-eutectoid ferrite was not induced because the finish rolling was performed at a rolling temperature of 842° C. and a temperature of Ae 3 or higher.
In the case of Comparative Example 4, pro-eutectoid ferrite grew significantly because the cooling rate at which the surface temperature of the wire reached 500° C. was as low as 1° C./s.
Therefore, in the case of Comparative Examples 1 to 4, the average pro-eutectoid ferrite grain size of the final wire is 10 μm or more, which is larger than that of the invention examples, which is the main reason why the wire strength is lower than that of the invention steel. became.

図2は、線材圧延後の冷却で得られた線材の微細組織を示す組織であって、(a)は発明例4を、そして(b)は比較例4を示す。
一方、本実施例ではTS parameter(279+864*([C]+[Si]/8+[Mn]/18)を検討すると、本発明例の線材の引張強度は、TS parameterより大きいが、比較例の引張強度はTS parameterより小さいことが確認できる。すなわち、上記発明例の線材は、微細組織によって軟質化熱処理中に速い炭素の拡散により、線材の引張強度に対して球状化後の熱処理材が顕著に低い引張強度を示すことが確認できる。
FIG. 2 shows microstructures of wire rods obtained by cooling after wire rolling, (a) showing invention example 4 and (b) showing comparative example 4. FIG.
On the other hand, considering the TS parameter (279+864*([C]+[Si]/8+[Mn]/18) in this example, the tensile strength of the wire of the present invention example is greater than the TS parameter, but the comparative example It can be seen that the tensile strength is smaller than the TS parameter.In other words, the wire of the above invention example has a remarkable tensile strength after spheroidization due to rapid carbon diffusion during the softening heat treatment due to the fine structure. It can be confirmed that it shows a low tensile strength in

上述したとおり、本発明は、限定された実施例及び実験例によって説明したが、本発明はこれによって限定されず、本発明が属する技術分野で通常の知識を有する者により、本発明の技術思想及び特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることはもちろんである。 As described above, the present invention has been described through limited examples and experimental examples, but the present invention is not limited by these, and a person having ordinary knowledge in the technical field to which the present invention belongs may understand the technical concept of the present invention. And, of course, various modifications and variations are possible within the equivalent scope of the claims.

Claims (4)

重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなり、
その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、前記初析フェライトのうち平衡初析フェライト率が80%以上であり、前記初析フェライトは平均粒径μm以下であり、
線材の引張強度(TS(MPa))は、下記関係式1を満たすことを特徴とする軟質熱処理時間を短縮することができる冷間圧造用線材。
[関係式1]
TS(MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
(但し、関係式1において、[C]、[Si]、[Mn]は該当元素の重量%を意味する。)
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities,
The internal structure includes a pro-eutectoid ferrite structure of 20 to 90 area%, a bainite and martensite structure of 5 area% or less, and a remaining pearlite structure, and the proportion of equilibrium pro-eutectoid ferrite in the pro-eutectoid ferrite is 80%. The proeutectoid ferrite has an average particle size of 5 μm or less ,
A wire rod for cold heading capable of shortening the soft heat treatment time, wherein the tensile strength (TS (MPa)) of the wire rod satisfies the following relational expression 1.
[Relationship 1]
TS (MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
(However, in relational expression 1, [C], [Si], and [Mn] mean weight percent of the corresponding elements.)
重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなる鋼材を900~1050℃の範囲で加熱した後、180分以内維持する工程、
前記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、
前記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び
前記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含み、
前記冷却された線材の引張強度(TS(MPa))は、下記関係式1を満たすことを特徴とする軟質熱処理時間を短縮することができる冷間圧造用線材の製造方法。
[関係式1]
TS(MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
(但し、関係式1において、[C]、[Si]、[Mn]は該当元素の重量%を意味する。)
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: Within 180 minutes after heating a steel material containing 0.03% or less, S: less than 0.01%, N: less than 0.01%, and remaining Fe and other inevitable impurities in the range of 900 to 1050 ° C. process to maintain,
A step of controlling the austenite grain size (AGS) of the steel material in the range of 5 to 20 μm;
A step of finish hot rolling the AGS-controlled steel material into a wire rod shape at a temperature of Ae 3 or less to 730 ° C. or more with a deformation amount of 0.3 to 2.0; cooling at a cooling rate of ~20°C/s,
A method for producing a wire for cold heading capable of shortening the soft heat treatment time, wherein the tensile strength (TS (MPa)) of the cooled wire satisfies the following relational expression 1.
[Relationship 1]
TS (MPa)≧279+864*([C]+[Si]/8+[Mn]/18)
(However, in relational expression 1, [C], [Si], and [Mn] mean weight percent of the corresponding elements.)
前記冷却された線材は、
その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、前記初析フェライトのうち平衡初析フェライト分率が80%以上であり、前記初析フェライトは平均粒径μm以下であることを特徴とする請求項2に記載の軟質熱処理時間を短縮することができる冷間圧造用線材の製造方法。
The cooled wire is
The internal structure includes a pro-eutectoid ferrite structure of 20 to 90 area%, a bainite and martensite structure of 5 area% or less, and a remaining pearlite structure, and the equilibrium pro-eutectoid ferrite fraction of the pro-eutectoid ferrite is 80% or more. , and the proeutectoid ferrite has an average grain size of 5 μm or less.
前記冷却された線材を、伸線を行わず、素材をAe~Ae+40℃の温度領域で維持した後、660℃まで15~30℃/hrで冷却し、前記温度領域で維持及び冷却時間が計10~15時間である球状化熱処理工程をさらに含むことを特徴とする請求項2に記載の軟質熱処理時間を短縮することができる冷間圧造用線材の製造方法。
The cooled wire rod is maintained in the temperature range of Ae 1 to Ae 1 +40° C. without drawing, then cooled to 660° C. at 15 to 30° C./hr, maintained and cooled in the temperature range. 3. The method of claim 2, further comprising a spheroidizing heat treatment process for a total time of 10 to 15 hours.
JP2021506273A 2018-08-08 2019-08-02 Cold heading wire rod for shortening soft heat treatment time and its manufacturing method Active JP7221478B6 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180092289A KR102065265B1 (en) 2018-08-08 2018-08-08 Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
KR10-2018-0092289 2018-08-08
PCT/KR2019/009682 WO2020032494A1 (en) 2018-08-08 2019-08-02 Wire rod for chq capable of reducing softening treatment time, and method for manufacturing same

Publications (3)

Publication Number Publication Date
JP2021533270A JP2021533270A (en) 2021-12-02
JP7221478B2 JP7221478B2 (en) 2023-02-14
JP7221478B6 true JP7221478B6 (en) 2023-02-28

Family

ID=69158721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506273A Active JP7221478B6 (en) 2018-08-08 2019-08-02 Cold heading wire rod for shortening soft heat treatment time and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7221478B6 (en)
KR (1) KR102065265B1 (en)
CN (1) CN112567062B (en)
WO (1) WO2020032494A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119809A (en) 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of rapid spheroidizing and excellent in cold forgeability, and its manufacture
JP2005320630A (en) 2004-04-09 2005-11-17 National Institute For Materials Science High-strength steel wire or steel bar with excellent cold workability, high-strength formed article, and process for producing them
JP2006225701A (en) 2005-02-16 2006-08-31 Nippon Steel Corp Steel wire rod excellent in cold-forgeability after spheroidizing-treatment and producing method therefor
JP2010053426A (en) 2008-08-29 2010-03-11 National Institute For Materials Science Hot rolled bar steel wire rod and method for producing the same
JP2013147728A (en) 2011-12-19 2013-08-01 Kobe Steel Ltd Steel for mechanical structure for cold working, and method for manufacturing the same
JP2013227602A (en) 2012-04-24 2013-11-07 Kobe Steel Ltd Steel for machine structure for cold working and method of manufacturing the same
JP2018024909A (en) 2016-08-09 2018-02-15 株式会社神戸製鋼所 Steel for machine structural use for cold working and production method thereof
JP2021533271A (en) 2018-08-08 2021-12-02 ポスコPosco Soft heat treatment time shortening type cold heading wire and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131187A (en) * 1997-10-24 1999-05-18 Kobe Steel Ltd Rapidly graphitizable steel and its production
KR100946129B1 (en) * 2002-12-11 2010-03-10 주식회사 포스코 A spheroidizing annealing method to soften medium carbon steel rapidly
JP4340754B2 (en) 2003-12-26 2009-10-07 独立行政法人物質・材料研究機構 Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
KR100722394B1 (en) 2005-12-26 2007-05-28 주식회사 포스코 Steel having superior spheroidized annealing and method making of the same
JP5618917B2 (en) 2011-06-23 2014-11-05 株式会社神戸製鋼所 Machine structural steel for cold working, method for producing the same, and machine structural parts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119809A (en) 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of rapid spheroidizing and excellent in cold forgeability, and its manufacture
JP2005320630A (en) 2004-04-09 2005-11-17 National Institute For Materials Science High-strength steel wire or steel bar with excellent cold workability, high-strength formed article, and process for producing them
JP2006225701A (en) 2005-02-16 2006-08-31 Nippon Steel Corp Steel wire rod excellent in cold-forgeability after spheroidizing-treatment and producing method therefor
JP2010053426A (en) 2008-08-29 2010-03-11 National Institute For Materials Science Hot rolled bar steel wire rod and method for producing the same
JP2013147728A (en) 2011-12-19 2013-08-01 Kobe Steel Ltd Steel for mechanical structure for cold working, and method for manufacturing the same
JP2013227602A (en) 2012-04-24 2013-11-07 Kobe Steel Ltd Steel for machine structure for cold working and method of manufacturing the same
JP2018024909A (en) 2016-08-09 2018-02-15 株式会社神戸製鋼所 Steel for machine structural use for cold working and production method thereof
JP2021533271A (en) 2018-08-08 2021-12-02 ポスコPosco Soft heat treatment time shortening type cold heading wire and its manufacturing method

Also Published As

Publication number Publication date
WO2020032494A1 (en) 2020-02-13
CN112567062A (en) 2021-03-26
JP2021533270A (en) 2021-12-02
JP7221478B2 (en) 2023-02-14
CN112567062B (en) 2022-06-14
KR102065265B1 (en) 2020-01-10

Similar Documents

Publication Publication Date Title
JP7159445B2 (en) Soft heat treatment time shortened cold forging wire and its manufacturing method
JP2013501147A (en) High toughness non-tempered rolled steel and method for producing the same
JPWO2019107042A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
CN113195768B (en) Wire rod capable of omitting softening heat treatment and method for producing same
KR101977499B1 (en) Wire rod without spheroidizing heat treatment, and method for manufacturing thereof
KR102131530B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
KR102131523B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
WO2011037403A2 (en) High-carbon soft wire rod not requiring softening treatment and manufacturing method thereof
JP7221478B6 (en) Cold heading wire rod for shortening soft heat treatment time and its manufacturing method
KR102131529B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
KR101568494B1 (en) Medium carbon soft wire rod and method for manufaturing the same
KR102065266B1 (en) Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
JP7389909B2 (en) Bearing wire rod and its manufacturing method
JP7506158B2 (en) Wire rod with excellent spheroidizing heat treatment properties and its manufacturing method
KR20030053119A (en) A method for manufacturng spring steel without ferrite decarburization
US20240254588A1 (en) Wire rod having excellent drawability, and manufacturing method therefor
JP7530427B2 (en) Wire rod with excellent spheroidizing heat treatment properties and its manufacturing method
KR102109278B1 (en) Steel wire rod enabling omission of softening heat treatment and method of manufacturing the same
KR101289118B1 (en) Steel without spheroidizing heat treatment and method for manufacturing the same
KR101304670B1 (en) Steel without spheroidizing heat treatment and method for manufacturing the same
JP2024500146A (en) Ultra-high strength spring wire rod, steel wire and manufacturing method thereof
KR20200053972A (en) Steel wire rod for cold forging and method for manufacturing the same
JPH06184646A (en) Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221229

R150 Certificate of patent or registration of utility model

Ref document number: 7221478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150