JP7218733B2 - Oxygen concentration evaluation method for silicon samples - Google Patents

Oxygen concentration evaluation method for silicon samples Download PDF

Info

Publication number
JP7218733B2
JP7218733B2 JP2020011328A JP2020011328A JP7218733B2 JP 7218733 B2 JP7218733 B2 JP 7218733B2 JP 2020011328 A JP2020011328 A JP 2020011328A JP 2020011328 A JP2020011328 A JP 2020011328A JP 7218733 B2 JP7218733 B2 JP 7218733B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
level
silicon sample
oxygen
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011328A
Other languages
Japanese (ja)
Other versions
JP2021118283A (en
Inventor
康太 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2020011328A priority Critical patent/JP7218733B2/en
Publication of JP2021118283A publication Critical patent/JP2021118283A/en
Application granted granted Critical
Publication of JP7218733B2 publication Critical patent/JP7218733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、シリコン試料の酸素濃度評価方法に関する。 The present invention relates to a method for evaluating the oxygen concentration of a silicon sample.

パワーデバイス、CIS(CMOSイメージセンサー)用基板として用いられるシリコンウェーハでは、高ライフタイム化の要求があり、ライフタイム低下を避けるために低酸素化が求められている。例えば、パワーデバイスではチョクラルスキー(CZ)法より低酸素化が可能なフローティングゾーン(FZ)法により製造されたFZシリコンウェーハがよく用いられている。また、CIS用基板ではCZ法により育成されたCZシリコンウェーハ上に、低酸素であるエピタキシャル層を堆積させたエピタキシャルウェーハがよく用いられている。このような低酸素ウェーハの酸素濃度を正確に測定することは非常に重要である。 Silicon wafers used as substrates for power devices and CIS (CMOS image sensors) are required to have a long lifetime, and low oxygen content is required to avoid shortening the lifetime. For example, in power devices, FZ silicon wafers manufactured by the floating zone (FZ) method, which is capable of lowering oxygen than the Czochralski (CZ) method, are often used. Further, as a CIS substrate, an epitaxial wafer is often used, which is obtained by depositing a low-oxygen epitaxial layer on a CZ silicon wafer grown by the CZ method. Accurately measuring the oxygen concentration of such low-oxygen wafers is very important.

従来の酸素濃度測定方法として、FT-IR法(フーリエ変換赤外分光法)とSIMS法(二次イオン質量分析法)があるが、これらの方法は酸素濃度が一定の値を下回ると検出感度が悪くなる。その検出下限値は、FT-IR法では0.07(ppma-JEITA)、SIMS法では0.02(ppma)である。 Conventional oxygen concentration measurement methods include the FT-IR method (Fourier transform infrared spectroscopy) and the SIMS method (secondary ion mass spectrometry). gets worse. The detection lower limit is 0.07 (ppma-JEITA) for the FT-IR method and 0.02 (ppma) for the SIMS method.

ここで、シリコンウェーハ中の不純物濃度を高感度に測定する方法として、DLTS法(過渡容量分光法)がある。例えば、特許文献1にはシリコンウェーハに電子線照射で形成した伝導帯の下端の準位をEcとして、Ec-0.42eVの準位密度をDLTS法にて検出し、この準位密度を指標とした炭素濃度測定方法が開示されている。 Here, as a method for measuring the impurity concentration in a silicon wafer with high sensitivity, there is a DLTS method (transient capacitance spectroscopy). For example, in Patent Document 1, Ec is the level at the lower end of the conduction band formed on a silicon wafer by electron beam irradiation, and the level density of Ec-0.42 eV is detected by the DLTS method, and this level density is used as an index. A carbon concentration measuring method is disclosed.

特開2018-139242号公報JP 2018-139242 A

P.Pellegrino et al, Physical Review B, Vol 64, 195211P. Pellegrino et al, Physical Review B, Vol 64, 195211

前述したように、シリコンウェーハ中の酸素濃度測定方法としてFT-IR法とSIMS法があるが、測定するシリコン試料中の酸素濃度が、FT-IR法で0.07(ppma-JEITA)、SIMS法で0.02(ppma)が限界であり、低酸素濃度で検出感度が悪くなる。そのため、FT-IR法、SIMS法における下限値以下の酸素濃度を感度よく評価する方法が検討されてきた。また、特許文献1には電子線照射で形成された不純物準位をDLTS法にて検出し、この準位密度を指標とした炭素濃度測定方法は開示されているが、酸素濃度測定方法は開示されていない。 As described above, there are FT-IR method and SIMS method for measuring oxygen concentration in silicon wafers. The limit is 0.02 (ppma) in the method, and the detection sensitivity deteriorates at low oxygen concentrations. Therefore, methods for sensitively evaluating the oxygen concentration below the lower limit in the FT-IR method and SIMS method have been investigated. Further, Patent Document 1 discloses a carbon concentration measuring method in which an impurity level formed by electron beam irradiation is detected by the DLTS method and the level density is used as an index, but an oxygen concentration measuring method is disclosed. It has not been.

本発明は、上記問題を解決するためになされたものであり、シリコンウェーハ中の酸素濃度が低酸素濃度である0.5ppma以下、特にはFT-IR法やSIMS法における検出下限値以下である場合に酸素濃度を高感度で評価する方法を提供することを目的とする。 The present invention has been made to solve the above problems, and the oxygen concentration in the silicon wafer is 0.5 ppma or less, which is a low oxygen concentration, particularly below the lower limit of detection in the FT-IR method or SIMS method. An object of the present invention is to provide a method for evaluating oxygen concentration with high sensitivity.

本発明は、上記目的を達成するためになされたものであり、酸素濃度が0.5ppma以下のシリコン試料中の酸素濃度を評価する方法であって、前記シリコン試料に電子線又は酸素以外のイオンビームを照射して前記シリコン試料中に空孔を含んだ欠陥を形成し、前記空孔を含んだ欠陥の準位密度をDLTS法にて測定し、前記空孔を含んだ欠陥の準位密度に基づいて前記シリコン試料中の酸素濃度を評価するシリコン試料の酸素濃度評価方法を提供する。 The present invention has been made to achieve the above objects, and is a method for evaluating the oxygen concentration in a silicon sample having an oxygen concentration of 0.5 ppma or less, wherein the silicon sample is irradiated with electron beams or ions other than oxygen. Defects containing vacancies are formed in the silicon sample by irradiating a beam, the level density of the defects containing the vacancies is measured by the DLTS method, and the level density of the defects containing the vacancies is measured. A silicon sample oxygen concentration evaluation method for evaluating the oxygen concentration in the silicon sample is provided based on.

このようなシリコン試料の酸素濃度評価方法によれば、シリコンウェーハ中の酸素濃度が0.5ppma以下、特には0.02ppma以下である場合に酸素濃度を高感度で評価する方法を提供することができる。 According to such a method for evaluating the oxygen concentration of a silicon sample, it is possible to provide a method for evaluating the oxygen concentration with high sensitivity when the oxygen concentration in the silicon wafer is 0.5 ppma or less, particularly 0.02 ppma or less. can.

このとき、酸素濃度が既知のシリコン試料を予め用意し、前記酸素濃度が既知のシリコン試料に電子線又は酸素以外のイオンビームを照射して前記酸素濃度が既知のシリコン試料中に空孔を含んだ欠陥を形成し、前記空孔を含んだ欠陥の準位密度をDLTS法にて測定し、測定した前記準位密度と前記酸素濃度が既知のシリコン試料の前記酸素濃度との検量線を作成し、前記検量線に基づいてシリコン試料中の酸素濃度を評価することが好ましい。 At this time, a silicon sample with a known oxygen concentration is prepared in advance, and the silicon sample with the known oxygen concentration is irradiated with an electron beam or an ion beam other than oxygen so that the silicon sample with the known oxygen concentration contains vacancies. A defect is formed, the level density of the defect containing the vacancy is measured by the DLTS method, and a calibration curve is created between the measured level density and the oxygen concentration of a silicon sample whose oxygen concentration is known. and the oxygen concentration in the silicon sample is preferably evaluated based on the calibration curve.

このように検量線を作成することで、シリコン試料中の酸素の絶対濃度を算出することができる。 By creating the calibration curve in this way, the absolute concentration of oxygen in the silicon sample can be calculated.

このとき、前記酸素濃度が既知のシリコン試料の酸素濃度は、SIMS法もしくはFT-IR法で求めた酸素濃度であることが好ましい。 At this time, the oxygen concentration of the silicon sample whose oxygen concentration is known is preferably the oxygen concentration obtained by the SIMS method or the FT-IR method.

このように、SIMS法もしくはFT-IR法は、シリコン試料の酸素濃度が検出下限値以上であれば精度よく酸素濃度を測定することができるため、検量線を作成するのに適している。 As described above, the SIMS method or the FT-IR method can accurately measure the oxygen concentration of the silicon sample if the oxygen concentration is equal to or higher than the lower limit of detection, and is therefore suitable for creating a calibration curve.

このとき、前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、Ec-0.17eVの密度であることが好ましい。 At this time, the level density of the defects including the vacancies is preferably Ec-0.17 eV, where Ec is the lower end level of the conduction band.

このような準位を指標とすることで、シリコン試料中の酸素濃度をより精度よく評価することができる。 By using such a level as an index, the oxygen concentration in the silicon sample can be evaluated with higher accuracy.

このとき、前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、Ec-0.42eVの密度であることが好ましい。 At this time, the level density of defects including vacancies is preferably Ec-0.42 eV, where Ec is the lower end level of the conduction band.

このような準位を指標とすることで、酸素濃度が特に低いシリコン試料中の酸素濃度をより精度よく評価することができる。 By using such a level as an index, it is possible to more accurately evaluate the oxygen concentration in a silicon sample having a particularly low oxygen concentration.

このとき、前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、DLTS法にてEc-0.17eVの準位密度の深さ分布を測定し、前記Ec-0.17eVの準位密度の深さ分布からシリコン試料の酸素濃度の深さ分布を評価することが好ましい。 At this time, the level density of the defects including the vacancies is obtained by measuring the depth distribution of the level density of Ec-0.17 eV by the DLTS method, where Ec is the level at the lower end of the conduction band. It is preferable to evaluate the oxygen concentration depth distribution of the silicon sample from the level density depth distribution of −0.17 eV.

このようにすれば、シリコン試料の表層数μmの酸素濃度の深さ分布を取得することができる。 By doing so, it is possible to acquire the depth distribution of the oxygen concentration of several micrometers in the surface layer of the silicon sample.

このとき、酸素濃度が既知のシリコン試料の準位密度を測定し、測定した前記準位密度と前記酸素濃度が既知のシリコン試料の前記酸素濃度との検量線を作成し、前記検量線に基づいて前記酸素濃度の深さ分布を評価することが好ましい。 At this time, the level density of a silicon sample with a known oxygen concentration is measured, a calibration curve is created between the measured level density and the oxygen concentration of the silicon sample with a known oxygen concentration, and based on the calibration curve It is preferable to evaluate the depth distribution of the oxygen concentration using

このように検量線を作成することで、シリコン試料の表層数μmの酸素濃度の深さ分布を算出することができる。 By creating a calibration curve in this way, it is possible to calculate the depth distribution of the oxygen concentration in the surface layer of several micrometers of the silicon sample.

以上のように、本発明のシリコン試料の酸素濃度評価方法によれば、0.5ppma以下、特にはFT-IR法やSIMS法における検出下限値以下の低い酸素濃度を高感度に評価することができる。そのため、シリコン試料のバルクだけでなく、表層の酸素濃度も評価することができる。また、検量線を作成することで、シリコン試料中の酸素の絶対濃度を算出することができる。 As described above, according to the method for evaluating the oxygen concentration of a silicon sample of the present invention, it is possible to evaluate with high sensitivity an oxygen concentration as low as 0.5 ppma or less, particularly as low as the lower limit of detection in the FT-IR method or the SIMS method. can. Therefore, not only the bulk of the silicon sample but also the surface oxygen concentration can be evaluated. Also, by creating a calibration curve, the absolute concentration of oxygen in the silicon sample can be calculated.

本発明のシリコン試料の酸素濃度評価方法の一例を示した図である。It is the figure which showed an example of the oxygen concentration evaluation method of the silicon sample of this invention. 酸素濃度が13.5ppmaと0.042ppmaのシリコン試料にそれぞれ電子線を照射した後のDLTSスペクトルを示した図である。FIG. 4 is a diagram showing DLTS spectra after irradiating electron beams to silicon samples having oxygen concentrations of 13.5 ppma and 0.042 ppma, respectively. SIMS法により測定した酸素濃度と本発明のEc-0.17eV、Ec-0.42eVの準位密度との関係を示した図である。FIG. 4 is a diagram showing the relationship between the oxygen concentration measured by the SIMS method and the Ec-0.17 eV and Ec-0.42 eV level densities of the present invention. SIMS法により測定した酸素濃度の深さ分布と、本発明のEc-0.17eVの準位密度の深さ分布を検量線を用いて換算した酸素濃度の深さ分布とを示した図である。FIG. 4 is a diagram showing a depth distribution of oxygen concentration measured by the SIMS method and a depth distribution of oxygen concentration obtained by converting the depth distribution of the Ec-0.17 eV level density of the present invention using a calibration curve; . 実施例2のEc-0.17eVの準位密度の深さ分布から算出した酸素濃度の深さ分布と、比較例3のSIMS法により測定した酸素濃度の深さ分布とを示した図である。3 is a diagram showing the depth distribution of oxygen concentration calculated from the depth distribution of the level density of Ec-0.17 eV in Example 2 and the depth distribution of oxygen concentration measured by the SIMS method in Comparative Example 3. FIG. .

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail below, but the present invention is not limited to these.

上述のように、0.5ppma以下、特にはFT-IR法やSIMS法における検出下限値以下の低い酸素濃度を高感度に評価することができる方法が求められていた。 As described above, there has been a demand for a method capable of highly sensitively evaluating low oxygen concentrations of 0.5 ppma or less, particularly below the lower limit of detection in the FT-IR method or SIMS method.

本発明者は、電子線などの粒子線で形成される不純物準位が、シリコン試料中に存在する不純物(例えば酸素や炭素)に強く依存することに着想を得た。すなわち、シリコン試料中の酸素濃度に依存して密度が変化する不純物準位が存在すると考え、粒子線で形成される不純物準位密度と酸素濃度との関係を鋭意検討した。 The present inventor has come up with the idea that the impurity level formed by a particle beam such as an electron beam strongly depends on impurities (for example, oxygen and carbon) existing in a silicon sample. That is, considering that there is an impurity level whose density changes depending on the oxygen concentration in the silicon sample, the authors have earnestly investigated the relationship between the impurity level density formed by the particle beam and the oxygen concentration.

その結果、本発明者は、DLTS法を用いて測定されるシリコンのバンドギャップ内の不純物準位の中で、酸素濃度が高いほど準位密度が高くなる空孔を含んだ不純物準位と、酸素濃度が高いほど準位密度が低くなる空孔を含んだ不純物準位が存在することを見出した。 As a result, the present inventors found that among the impurity levels in the bandgap of silicon measured using the DLTS method, an impurity level containing vacancies whose level density increases as the oxygen concentration increases, and We found that there are impurity levels containing vacancies whose level density decreases as the oxygen concentration increases.

本発明者は、以上を踏まえて上記課題について鋭意検討を重ねた結果、酸素濃度が0.5ppma以下のシリコン試料中の酸素濃度を評価する方法であって、前記シリコン試料に電子線又は酸素以外のイオンビームを照射して前記シリコン試料中に空孔を含んだ欠陥を形成し、前記空孔を含んだ欠陥の準位密度をDLTS法にて測定し、前記空孔を含んだ欠陥の準位密度に基づいて前記シリコン試料中の酸素濃度を評価するシリコン試料の酸素濃度評価方法により、シリコンウェーハ中の酸素濃度が0.5ppma以下、特にはFT-IR法やSIMS法における検出下限値以下である場合に酸素濃度を高感度で評価する方法を提供することができることを見出し、本発明を完成した。 Based on the above, the present inventors have extensively studied the above problems, and as a result, have found a method for evaluating the oxygen concentration in a silicon sample having an oxygen concentration of 0.5 ppma or less, wherein the silicon sample is irradiated with an electron beam or other than oxygen. to form defects containing vacancies in the silicon sample, measuring the level density of the defects containing the vacancies by the DLTS method, and measuring the level density of the defects containing the vacancies According to the silicon sample oxygen concentration evaluation method for evaluating the oxygen concentration in the silicon sample based on the potential density, the oxygen concentration in the silicon wafer is 0.5 ppma or less, especially the detection limit value or less in the FT-IR method or SIMS method. The inventors have found that a method for evaluating the oxygen concentration with high sensitivity can be provided in the case of , and completed the present invention.

以下、図面を参照して説明する。 Description will be made below with reference to the drawings.

図1は本発明のシリコン試料の酸素濃度評価方法の一例を示した図である。 FIG. 1 is a diagram showing an example of the oxygen concentration evaluation method of a silicon sample according to the present invention.

図1のS1のように、酸素濃度を評価したいシリコン試料を用意する。例えば、シリコン単結晶インゴットから切り出されたシリコン試料であれば、形状に制限はなく、大きさが数cmのシリコンチップでも構わない。具体的にはポリッシュドウェーハやエピタキシャルウェーハ、アニールウェーハ等が挙げられる。 As in S1 of FIG. 1, a silicon sample whose oxygen concentration is to be evaluated is prepared. For example, as long as it is a silicon sample cut out from a silicon single crystal ingot, the shape is not limited, and a silicon chip with a size of several centimeters may be used. Specific examples include polished wafers, epitaxial wafers, and annealed wafers.

次に、S2のように、酸素濃度を評価したいシリコン試料に電子線又は酸素以外のイオンビームを照射する。これにより、シリコン試料中に酸素と相関がある空孔を含んだ欠陥を形成することができる。電子線照射量は、例えば、5.0×1013~5.0×1015(electrons/cm)の範囲、イオンビームのドーズ量は、例えば、1.0×1011~1.0×1013(atoms/cm)の範囲とすることができる。電子線照射量、イオンビームドーズ量ともにこの範囲内にすることで、照射量、ドーズ量が少な過ぎて目的の不純物準位が形成されない等の問題をより有効に防ぐことができる。また、照射量、ドーズ量が多過ぎてシリコン格子が乱れ、結晶性が低下し、目的の不純物準位が検出できなくなることをより有効に防ぐことができる。尚、酸素のイオンビームでは、照射される酸素イオンが不純物準位の形成に影響を与えてしまい、評価するシリコン試料中の酸素濃度に影響が生じるため、酸素以外のイオンビームを用いる必要がある。 Next, as in S2, the silicon sample whose oxygen concentration is to be evaluated is irradiated with an electron beam or an ion beam other than oxygen. Thereby, defects including vacancies correlated with oxygen can be formed in the silicon sample. The electron beam irradiation dose is, for example, in the range of 5.0×10 13 to 5.0×10 15 (electrons/cm 2 ), and the ion beam dose is, for example, 1.0×10 11 to 1.0×. It can be in the range of 10 13 (atoms/cm 2 ). By setting both the electron beam dose and the ion beam dose within this range, it is possible to more effectively prevent problems such as failure to form the desired impurity levels due to too small dose and dose. In addition, it is possible to more effectively prevent the silicon lattice from being disturbed, the crystallinity being lowered, and the target impurity level not being detected due to excessive irradiation or dose. In the case of an oxygen ion beam, the irradiated oxygen ions affect the formation of the impurity level, which affects the oxygen concentration in the silicon sample to be evaluated. Therefore, it is necessary to use an ion beam other than oxygen. .

次にS3のように、DLTS法を用いて空孔を含んだ欠陥の準位密度を測定する。ここで、本発明を見出した経緯について説明する。特に、電子線もしくはイオンビームの照射により形成された、空孔を含んだ欠陥の準位密度の測定方法とこれを測定する理由について、以下に詳述する。 Next, as in S3, the level density of defects including vacancies is measured using the DLTS method. Here, the details of how the present invention was discovered will be described. In particular, a method for measuring the level density of defects containing vacancies formed by irradiation with an electron beam or an ion beam and the reason for the measurement will be described in detail below.

まず、本発明で用いたDLTS法について説明する。DLTS法は、通常、ショットキー接合を形成する金属電極をウェーハ表面に形成し、裏面にはオーミック接合を持つ金属電極を形成する。2つの電極間に逆バイアスを印加し、生じた空乏層内の静電容量変化の温度依存性を取得すると、不純物が形成するエネルギー準位に応じた温度で静電容量変化がピークを形成する。そのピーク位置の静電容量変化から不純物準位密度を算出できる。 First, the DLTS method used in the present invention will be described. In the DLTS method, a metal electrode forming a Schottky junction is normally formed on the front surface of the wafer, and a metal electrode having an ohmic junction is formed on the back surface of the wafer. When a reverse bias is applied between the two electrodes and the temperature dependence of the capacitance change in the resulting depletion layer is obtained, the capacitance change peaks at a temperature corresponding to the energy level formed by the impurities. . The impurity level density can be calculated from the capacitance change at the peak position.

続いて、電子線もしくはイオンビームの照射により形成される、空孔を含んだ不純物準位について説明する。シリコン試料にイオン注入や電子線照射処理を行うと、格子位置のシリコンが弾き出され、空孔と格子間シリコンが生成する。その中でも特に空孔を含んだ不純物準位が形成されることが知られている。例えば、非特許文献1では、Ec-0.17eVと空孔酸素複合体の不純物準位、Ec-0.42eVと空孔空孔複合体か空孔リン複合体、もしくはこの両者の準位が混在している不純物準位、Ec-0.32eVと空孔酸素水素複合体の不純物準位等、特定の準位と不純物や空孔に関する報告例がある。 Next, impurity levels containing vacancies formed by electron beam or ion beam irradiation will be described. When a silicon sample is subjected to ion implantation or electron beam irradiation, silicon at lattice positions is ejected, and vacancies and interstitial silicon are generated. Among them, it is known that an impurity level containing vacancies is formed. For example, in Non-Patent Document 1, Ec-0.17 eV and the impurity level of the vacancy oxygen complex, Ec-0.42 eV and the vacancy vacancy complex or the vacancy phosphorus complex, or the level of both There are reports on specific levels, impurities, and vacancies, such as mixed impurity levels, Ec-0.32 eV and impurity levels of vacancy oxygen-hydrogen complexes.

一例として、図2は、酸素濃度が13.5ppmaのシリコン試料と、0.042ppmaのシリコン試料に電子線を照射した後のDLTSスペクトルを示した図である。酸素濃度はSIMS法で測定し、電子線は加速電圧2(MV)、照射量2.5×1014(electrons/cm)で照射処理した。 As an example, FIG. 2 is a diagram showing DLTS spectra after irradiating a silicon sample with an oxygen concentration of 13.5 ppma and a silicon sample with an oxygen concentration of 0.042 ppma with an electron beam. The oxygen concentration was measured by the SIMS method, and electron beam irradiation was performed at an acceleration voltage of 2 (MV) and a dose of 2.5×10 14 (electrons/cm 2 ).

Ec-0.17eVの準位密度は、酸素濃度13.5ppmaの試料の方が高く、逆にEc-0.42eVの準位密度は酸素濃度0.042ppmaの方が高いことが分かる。Ec-0.17eVの準位は空孔酸素複合体に関連する準位であり、酸素が関与した不純物準位である。したがって、酸素濃度が高い13.5ppmaの試料の方がEc-0.17eVの準位は形成されやすく、その結果Ec-0.17eVの準位密度が高くなっている。 It can be seen that the Ec-0.17 eV level density is higher in the sample with the oxygen concentration of 13.5 ppma, and conversely, the Ec-0.42 eV level density is higher in the oxygen concentration of 0.042 ppma. The Ec-0.17 eV level is related to the vacancy-oxygen complex and is an impurity level related to oxygen. Therefore, the Ec-0.17 eV level is formed more easily in the 13.5 ppma sample with a higher oxygen concentration, resulting in a higher Ec-0.17 eV level density.

Ec-0.42eVの準位は、空孔空孔複合体か空孔リン複合体、もしくはこの両者の準位が混在している準位であると言われており、酸素が関与しない不純物準位である。酸素濃度が低いと、Ec-0.17eVの準位が形成されにくくなり、その結果、酸素が関与しないEc-0.42eVの準位が形成されやすくなる。以上の理由により、酸素濃度が低い0.042ppmaの試料の方が、Ec-0.42eVの準位密度が高くなっている。 The level of Ec-0.42 eV is said to be a level of a vacancy-vacancy complex, a vacancy-phosphorus complex, or a mixture of both levels. rank. When the oxygen concentration is low, the Ec-0.17 eV level is less likely to be formed, and as a result, the Ec-0.42 eV level, which is not related to oxygen, is more likely to be formed. For the above reasons, the sample with a low oxygen concentration of 0.042 ppma has a higher Ec-0.42 eV level density.

このように、電子線照射で発生する空孔を含んだ欠陥の不純物準位は、シリコン試料中の酸素濃度を反映する。したがって、S4のように、測定した不純物準位を指標とすることでシリコン試料中の酸素濃度を評価できる。ただし、照射量が多いほど電子線照射で発生する不純物準位密度は高くなるため、酸素濃度を評価する際には、同一の照射量でこれら不純物準位密度を評価する必要がある。 Thus, the impurity level of defects including vacancies generated by electron beam irradiation reflects the oxygen concentration in the silicon sample. Therefore, as in S4, the oxygen concentration in the silicon sample can be evaluated by using the measured impurity level as an index. However, the higher the irradiation dose, the higher the impurity level density generated by electron beam irradiation. Therefore, when evaluating the oxygen concentration, it is necessary to evaluate these impurity level densities at the same irradiation dose.

尚、図2にはその他の不純物準位としてEc-0.32eVの準位も検出されている。Ec-0.32eVは空孔酸素水素複合体に関する不純物準位であり、酸素が関与した不純物準位ではあるため指標とすることはできるが、Ec-0.17eVやEc-0.42eVの準位と比較すると準位密度が低い。さらに、発明者が複数のシリコン試料で調査したところ、どの水準でもEc-0.17eVの準位の方がEc-0.32eVの準位よりピークが鋭く、準位密度が高かった。そのため、酸素が関与した不純物準位の指標には、Ec-0.17eVの準位を用いるのが好ましい。 In FIG. 2, an Ec-0.32 eV level is also detected as another impurity level. Ec-0.32 eV is an impurity level related to a vacancy oxygen-hydrogen complex, and since it is an impurity level in which oxygen is involved, it can be used as an index. The level density is low compared to the level density. Furthermore, when the inventor investigated a plurality of silicon samples, the Ec-0.17 eV level had a sharper peak and a higher level density than the Ec-0.32 eV level at any level. Therefore, it is preferable to use the level of Ec-0.17 eV as an index of the impurity level related to oxygen.

続いて、本発明で評価可能な酸素濃度の範囲を説明する。図3は、SIMS法により測定した酸素濃度と本発明に係るEc-0.17eV、Ec-0.42eVの準位密度との関係を示した図である。Ec-0.17eV、Ec-0.42eVの準位密度について、加速電圧2(MV)、照射量2.5×1014(electrons/cm)で電子線照射処理した後の酸素濃度が異なるシリコン試料をDLTS法により測定を行った。SIMS法で測定した酸素濃度が0.024ppmaから0.36ppmaの範囲では、酸素濃度が高いほど、Ec-0.17eVの準位密度は高くなり、逆にEc-0.42eVの準位密度は低くなる傾向を示した。対して、SIMS法で測定した酸素濃度が0.6ppma以上の範囲では、Ec-0.17eV、Ec-0.42eVのどちらの準位密度も酸素濃度に依存せず、ほぼ一定の準位密度であった。これは、SIMS法で測定した酸素濃度が0.6ppma以上の範囲では、試料中の酸素が過剰過ぎて、電子線により発生した空孔の大半がEc-0.17eVの準位の形成に消費され、DLTS法による測定ではEc-0.17eVの準位密度を有意差として検出できないことがその理由であると考えられる。以上より、本発明の酸素濃度の測定範囲は、0.5ppma以下とする必要があることが分かる。一方、SIMS法で限界だった0.02ppma以下であっても、本発明の検量線を外挿することでより低酸素のものでも測定可能であることが分かる。 Next, the range of oxygen concentration that can be evaluated in the present invention will be explained. FIG. 3 is a diagram showing the relationship between the oxygen concentration measured by the SIMS method and the Ec-0.17 eV and Ec-0.42 eV level densities according to the present invention. For the level densities of Ec-0.17 eV and Ec-0.42 eV, the oxygen concentrations after electron beam irradiation treatment at an acceleration voltage of 2 (MV) and a dose of 2.5×10 14 (electrons/cm 2 ) are different. A silicon sample was measured by the DLTS method. In the oxygen concentration range of 0.024 ppma to 0.36 ppma measured by the SIMS method, the higher the oxygen concentration, the higher the Ec-0.17 eV level density, and conversely, the Ec-0.42 eV level density is showed a tendency to decrease. On the other hand, in the range where the oxygen concentration measured by the SIMS method is 0.6 ppma or more, the level density of both Ec-0.17 eV and Ec-0.42 eV does not depend on the oxygen concentration, and the level density is almost constant Met. This is because when the oxygen concentration measured by the SIMS method is in the range of 0.6 ppma or more, the oxygen in the sample is excessive, and most of the vacancies generated by the electron beam are consumed to form the Ec-0.17 eV level. It is considered that the reason for this is that the level density of Ec-0.17 eV cannot be detected as a significant difference in the measurement by the DLTS method. From the above, it can be seen that the oxygen concentration measurement range of the present invention must be 0.5 ppma or less. On the other hand, even at 0.02 ppma or less, which was the limit of the SIMS method, it is possible to measure even lower oxygen levels by extrapolating the calibration curve of the present invention.

次にS4工程での不純物準位を指標とした酸素濃度評価方法を説明する。Ec-0.17eVの準位を指標とする場合は、準位密度が低いほど低酸素濃度と判断できる。また、Ec-0.42eVの準位を指標とする場合は、準位密度が高いほど、低酸素濃度と判断できる。したがって、後述する検量線を用いなくとも、複数水準のサンプル間の酸素濃度の大小関係は評価することができる。 Next, the oxygen concentration evaluation method using the impurity level in the step S4 as an index will be described. When the level of Ec-0.17 eV is used as an index, the lower the level density, the lower the oxygen concentration can be determined. Further, when the level of Ec-0.42 eV is used as an index, the higher the level density, the lower the oxygen concentration can be determined. Therefore, even without using a calibration curve, which will be described later, it is possible to evaluate the magnitude relationship in oxygen concentration between samples at a plurality of levels.

以上のように本発明によれば、シリコンウェーハ中の酸素濃度が0.5ppma以下の低酸素である場合に酸素濃度を高感度で評価することができる。 As described above, according to the present invention, the oxygen concentration can be evaluated with high sensitivity when the oxygen concentration in the silicon wafer is as low as 0.5 ppma or less.

DLTS法で検出される不純物準位密度と、従来法のSIMS法やFT-IR法の酸素濃度と比較することはできないが、検量線を作成することで、絶対濃度を算出することができる。検量線を作成するために、酸素濃度が既知のシリコン試料を予め用意する。この酸素濃度が既知のシリコン試料の酸素濃度は、SIMS法やFT-IR法にて測定されることが好ましい。この酸素濃度が既知のシリコン試料の酸素濃度と、酸素濃度が0.5ppma以下の範囲でEc-0.17eVやEc-0.42eVの準位密度から検量線を作成する。この検量線を用いることで、DLTS法にて測定した準位密度をSIMS法やFT-IR法で得られる酸素濃度に換算することができる。 Impurity level densities detected by the DLTS method cannot be compared with the oxygen concentrations of conventional SIMS and FT-IR methods, but absolute concentrations can be calculated by preparing a calibration curve. A silicon sample having a known oxygen concentration is prepared in advance in order to create a calibration curve. The oxygen concentration of a silicon sample with a known oxygen concentration is preferably measured by the SIMS method or the FT-IR method. A calibration curve is created from the oxygen concentration of the silicon sample whose oxygen concentration is known and the level densities of Ec-0.17 eV and Ec-0.42 eV in the oxygen concentration range of 0.5 ppma or less. By using this calibration curve, the level density measured by the DLTS method can be converted into the oxygen concentration obtained by the SIMS method or the FT-IR method.

図3には、Ec-0.17eVおよびEc-0.42eVの準位密度とSIMS法で得られた0.5ppma以下の酸素濃度との検量線を示している。どちらの準位も相関係数Rが高いことが分かる。Ec-0.17eVの準位の方がEc-0.42eVの準位よりRの値が高く、Ec-0.17eVは酸素が関与する不純物準位であることから、本発明の酸素濃度評価に用いる空孔を含んだ欠陥の準位密度の第1の指標としては、Ec-0.17eVの準位であることが最も望ましい。Ec-0.17eVの準位が検出されなかった場合などは、第2の指標としてEc-0.42eVの準位を用いることもできる。 FIG. 3 shows a calibration curve between the level densities of Ec-0.17 eV and Ec-0.42 eV and the oxygen concentration of 0.5 ppma or less obtained by the SIMS method. It can be seen that both levels have a high correlation coefficient R2 . The level of Ec-0.17 eV has a higher value of R 2 than the level of Ec-0.42 eV, and since Ec-0.17 eV is an impurity level related to oxygen, the oxygen concentration of the present invention As the first index of the level density of defects including vacancies used for evaluation, the level of Ec-0.17 eV is most desirable. When the Ec-0.17 eV level is not detected, the Ec-0.42 eV level can be used as the second index.

Ec-0.17eVは空孔酸素複合体の準位であることから、0.5ppma以下の範囲であれば、酸素濃度が高いほど準位密度が高くなり、酸素濃度と正の相関が認められる。したがって、この準位を指標とすることで酸素濃度を評価できる。尚、伝導帯の下端の準位をEcとする。 Since Ec-0.17 eV is the level of the vacancy oxygen complex, in the range of 0.5 ppma or less, the higher the oxygen concentration, the higher the level density, and a positive correlation with the oxygen concentration is observed. . Therefore, by using this level as an index, the oxygen concentration can be evaluated. Note that the level at the bottom of the conduction band is Ec.

Ec-0.42eVは空孔空孔複合体か空孔リン複合体、もしくはこの両者が混在した準位であると言われており、酸素が関与した不純物準位ではない。しかし、酸素濃度が低いほどこの準位密度が高くなるため、指標として用いることができる。これは、酸素濃度が低いほど、上述した酸素が関与したEc-0.17eVの準位が形成されにくく、逆に酸素が関与しないEc-0.42eVの準位が形成されやすいためである。 Ec-0.42 eV is said to be a level of a vacancy-pore complex, a vacancy-phosphorus complex, or a mixture of both, and is not an impurity level related to oxygen. However, since this level density increases as the oxygen concentration decreases, it can be used as an indicator. This is because the lower the oxygen concentration, the less likely the above-described Ec-0.17 eV level involving oxygen is formed, and the more likely the Ec-0.42 eV level not involving oxygen is formed.

ところで、DLTS法の測定深さは空乏層幅に依存し、逆方向電圧により制御することができる。上述した通常のDLTS法では、逆方向電圧を固定し、温度掃引で静電容量を測定することで様々な不純物準位を測定できる。一方、準位(即ち測定温度)を固定し、逆方向電圧を変えながら測定することで、空乏層内の準位密度の深さ分布を取得することもできる。したがって、前記Ec-0.17eVの準位密度の深さ分布を取得し、指標とすることでシリコン試料中の酸素濃度の深さ分布を評価することもできる。 By the way, the depth measured by the DLTS method depends on the width of the depletion layer and can be controlled by the reverse voltage. In the normal DLTS method described above, various impurity levels can be measured by fixing the reverse voltage and measuring the capacitance by sweeping the temperature. On the other hand, it is also possible to obtain the depth distribution of the level density in the depletion layer by fixing the level (that is, measurement temperature) and changing the reverse voltage. Therefore, by obtaining the depth distribution of the level density of Ec-0.17 eV and using it as an index, it is possible to evaluate the depth distribution of the oxygen concentration in the silicon sample.

さらに、検量線を用いることで、DLTS法にて測定したEc-0.17eVの準位密度の深さ分布と従来法のFT-IR法やSIMS法の酸素濃度の深さ分布とを比較でき、シリコン試料中の酸素の絶対濃度の深さ分布を算出できる。図4にはエピタキシャルウェーハをSIMS法により測定した酸素濃度の深さ分布と、本発明に係るEc-0.17eVの準位密度の深さ分布を検量線を用いて換算した酸素濃度の深さ分布とを示している。Ec-0.17eVの準位密度の深さ分布から換算した酸素濃度の深さ分布と、SIMS法で得られた酸素濃度の深さ分布とがほぼ一致していることが分かる。このように、DLTS法では表層数μmの酸素濃度の深さ分布を取得することもできる。 Furthermore, by using the calibration curve, the depth distribution of the Ec-0.17 eV level density measured by the DLTS method can be compared with the depth distribution of the oxygen concentration by the conventional FT-IR method and SIMS method. , the depth distribution of the absolute concentration of oxygen in the silicon sample can be calculated. FIG. 4 shows the oxygen concentration depth distribution measured by the SIMS method for the epitaxial wafer, and the oxygen concentration depth obtained by converting the Ec-0.17 eV level density depth distribution according to the present invention using a calibration curve. distribution and shows. It can be seen that the depth distribution of the oxygen concentration converted from the depth distribution of the level density of Ec-0.17 eV substantially matches the depth distribution of the oxygen concentration obtained by the SIMS method. In this way, the DLTS method can also acquire the depth distribution of the oxygen concentration in the surface layer of several micrometers.

尚、Ec-0.42eVは酸素を含まない不純物に関する準位であるため、深さ分布測定には適用することができない。 Incidentally, since Ec-0.42 eV is a level related to impurities that do not contain oxygen, it cannot be applied to depth profile measurement.

以上のように、電子線もしくは酸素以外のイオンビームを照射して発生させた空孔を含んだ欠陥の準位密度をEc-0.17eV及びEc-0.42eVの準位密度として指標とすることで、シリコン試料中の酸素濃度を高感度に測定することができる。 As described above, the level densities of defects containing vacancies generated by irradiating an electron beam or an ion beam other than oxygen are used as indicators of the level densities of Ec-0.17 eV and Ec-0.42 eV. Thus, the oxygen concentration in the silicon sample can be measured with high sensitivity.

以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but these are not intended to limit the present invention.

(比較例1)
CZ法もしくはFZ法で引き上げた、酸素濃度がそれぞれ異なるn型のシリコン試料を4水準用意した。試料1~3がFZ法、試料4がCZ法により育成されたシリコンウェーハである。用意したシリコン試料の酸素濃度をSIMS法にて測定した。その結果を表1に示す。
(Comparative example 1)
Four levels of n-type silicon samples with different oxygen concentrations, which were pulled by the CZ method or the FZ method, were prepared. Samples 1 to 3 are silicon wafers grown by the FZ method, and sample 4 is a silicon wafer grown by the CZ method. The oxygen concentration of the prepared silicon sample was measured by the SIMS method. Table 1 shows the results.

Figure 0007218733000001
Figure 0007218733000001

表1に示すように、酸素濃度は(低)試料1<試料2<試料3<試料4(高)となった。比較例1の酸素濃度は、試料1はSIMS法の検出下限値0.02ppma以下であったため検出できず、試料2が0.025ppma、試料3が0.21ppma、試料4が3.2ppmaであった。次に、上記試料1~4を用いて本発明の評価方法について検証を行った(実施例1、比較例2)。 As shown in Table 1, the oxygen concentration was (low) sample 1<sample 2<sample 3<sample 4 (high). The oxygen concentration in Comparative Example 1 could not be detected because Sample 1 was below the detection limit of 0.02 ppma of the SIMS method, Sample 2 was 0.025 ppma, Sample 3 was 0.21 ppma, and Sample 4 was 3.2 ppma. rice field. Next, the evaluation method of the present invention was verified using the samples 1 to 4 (Example 1, Comparative Example 2).

(実施例1)
実施例1として比較例1の試料1から3と同水準のシリコン試料を用意した。次に、加速電圧2(MV)、照射量2.5×1014(electrons/cm)で電子線照射処理した後、フッ酸にてシリコン試料表面の酸化膜を除去した。試料の表面にはショットキー電極として金を蒸着し、裏面にはオーミック電極としてガリウムを刷り込んだ。そして、DLTS法にて試料のEc-0.17eVとEc-0.42eVの準位密度を評価した。また、予め作成しておいた図3の検量線を用いて、準位密度を酸素濃度に換算した。その結果を表2に示す。
(Example 1)
As Example 1, silicon samples of the same level as Samples 1 to 3 of Comparative Example 1 were prepared. Next, after electron beam irradiation treatment was performed at an acceleration voltage of 2 (MV) and an irradiation dose of 2.5×10 14 (electrons/cm 2 ), the oxide film on the surface of the silicon sample was removed with hydrofluoric acid. Gold was vapor-deposited on the surface of the sample as a Schottky electrode, and gallium was imprinted on the back surface as an ohmic electrode. Then, the level densities of Ec-0.17 eV and Ec-0.42 eV of the sample were evaluated by the DLTS method. In addition, the level density was converted to the oxygen concentration using the calibration curve of FIG. 3 prepared in advance. Table 2 shows the results.

Figure 0007218733000002
Figure 0007218733000002

表2に示すように、酸素濃度は(低)試料1<試料2<試料3(高)となった。Ec-0.17eVとEc-0.42eVのどちらの準位密度から換算した酸素濃度も同等の酸素濃度であった。ただ、上述したように第1の指標としてより好ましいのはEc-0.17eVの準位であることから、実施例1の酸素濃度はEc-0.17eVの準位密度から算出したものを採用する。この場合、実施例1の酸素濃度は、それぞれの試料の準位密度から、試料1が0.011ppma、試料2が0.024ppma、試料3が0.23ppmaとなる。 As shown in Table 2, the oxygen concentration was (low) sample 1<sample 2<sample 3 (high). The oxygen concentrations converted from both Ec-0.17 eV and Ec-0.42 eV level densities were equivalent. However, since the level of Ec-0.17 eV is more preferable as the first index as described above, the oxygen concentration in Example 1 was calculated from the level density of Ec-0.17 eV. do. In this case, the oxygen concentration of Example 1 is 0.011 ppma for sample 1, 0.024 ppma for sample 2, and 0.23 ppma for sample 3 from the level density of each sample.

試料2、3では、実施例1と比較例1の酸素濃度が同等であることから本発明の妥当性が示された。 In Samples 2 and 3, the oxygen concentrations of Example 1 and Comparative Example 1 were equivalent, so the validity of the present invention was shown.

実施例1より、本発明では試料1の酸素濃度は0.011ppmaと求まっていることから、従来法のSIMS法では検出できない微量の酸素を本発明に係る手法を用いることで評価可能であることが分かる。 From Example 1, the oxygen concentration of sample 1 was found to be 0.011 ppma in the present invention, so it is possible to evaluate a trace amount of oxygen that cannot be detected by the conventional SIMS method by using the method according to the present invention. I understand.

(比較例2)
続いて、比較例2として比較例1の試料4と同水準のシリコン試料を用意し、シリコン試料の処理を実施例1と同様に行った。そして、DLTS法にて試料のEc-0.17eVとEc-0.42eVの準位密度を評価した。また、予め作成しておいた図3の検量線を用いて、準位密度を酸素濃度に換算した。その結果を表2に示す。
(Comparative example 2)
Subsequently, as Comparative Example 2, a silicon sample of the same level as Sample 4 of Comparative Example 1 was prepared, and the silicon sample was treated in the same manner as in Example 1. Then, the level densities of Ec-0.17 eV and Ec-0.42 eV of the sample were evaluated by the DLTS method. In addition, the level density was converted to the oxygen concentration using the calibration curve of FIG. 3 prepared in advance. Table 2 shows the results.

比較例2の試料4の酸素濃度を見ると、比較例1と比較例2で大きな乖離が見られた。
SIMS法にて測定した酸素濃度が3.2ppmaであることから、試料4の酸素濃度が本発明の適用範囲外であるためこのような結果が得られた。
Looking at the oxygen concentration of Sample 4 of Comparative Example 2, a large divergence was observed between Comparative Examples 1 and 2.
Since the oxygen concentration measured by the SIMS method was 3.2 ppma, the oxygen concentration of sample 4 was outside the applicable range of the present invention, so such a result was obtained.

(実施例2)
Ec-0.17eVの酸素濃度分布を検証するため、試料としてシリコンエピタキシャルウェーハを用意し、実施例1と同様の電子線照射処理を施した。DLTS法にてEc-0.17eVの準位密度の深さ分布を測定し、実施例1と同じ図3の検量線で酸素濃度の深さ分布へ換算した。その結果を図5に示す。図5によると、試料の表面側で酸素濃度が低くなる分布が得られたことが分かる。これは、試料がエピタキシャル成長する時の酸素の外方拡散挙動を反映しているためと考えられる。
(Example 2)
In order to verify the oxygen concentration distribution of Ec-0.17 eV, a silicon epitaxial wafer was prepared as a sample and subjected to the same electron beam irradiation treatment as in Example 1. The depth distribution of the level density of Ec-0.17 eV was measured by the DLTS method, and converted into the depth distribution of the oxygen concentration using the calibration curve of FIG. The results are shown in FIG. As can be seen from FIG. 5, a distribution was obtained in which the oxygen concentration was lower on the surface side of the sample. It is considered that this reflects the out-diffusion behavior of oxygen during epitaxial growth of the sample.

(比較例3)
続いて、実施例2の結果を検証するため、実施例2と同じ水準のエピタキシャルウェーハを試料としてSIMS法で評価した。その結果を図5に示す。図5によると、試料のバルク側で酸素濃度が高く、表面側で低い傾向があることが分かる。特に表面から5μmまでの領域はSIMS法の検出下限値以下の酸素濃度であり、酸素濃度を正確に測定することができなかった。
(Comparative Example 3)
Subsequently, in order to verify the results of Example 2, an epitaxial wafer of the same level as in Example 2 was used as a sample and evaluated by the SIMS method. The results are shown in FIG. According to FIG. 5, it can be seen that the oxygen concentration tends to be high on the bulk side of the sample and low on the surface side. In particular, the oxygen concentration in the region from the surface to 5 μm was below the detection limit of the SIMS method, and the oxygen concentration could not be measured accurately.

ここで、両者を比較すると、酸素濃度に乖離があるようにも見えるが、これはSIMS法の装置由来のバックグラウンドが上乗せされているからである。表面から5μmまでは、このバックグラウンドが支配的で、酸素濃度は0.02ppmaでほぼ一定値となっている。そこでこの影響を除外するため、バックグラウンド分の0.02ppmaを元のプロファイルから引いたところ、特に表面から4~5μmの領域で、実施例2の酸素濃度の深さ分布と類似していた。 Here, when comparing the two, it seems that there is a divergence in the oxygen concentration, but this is because the background derived from the SIMS method apparatus is added. This background is dominant up to 5 μm from the surface, and the oxygen concentration is almost constant at 0.02 ppma. In order to eliminate this effect, a background component of 0.02 ppma was subtracted from the original profile.

SIMS法では、表面から2~4μmの領域において酸素濃度は検出下限値以下であるため、酸素濃度の深さ分布を正確に測定できていないが、本発明では、表面から2~4μmの領域で酸素濃度が減少する挙動を捉えることができている。このように、DLTS法では表層数μmの準位密度の深さ分布を測定できるので、検量線を用いることで表層数μmの酸素濃度の深さ分布を取得することもできることが分かる。 In the SIMS method, the oxygen concentration is below the detection limit in the region 2 to 4 μm from the surface, so the depth distribution of oxygen concentration cannot be accurately measured. The behavior that the oxygen concentration decreases can be captured. As described above, since the DLTS method can measure the depth distribution of the level density in the surface layer of several μm, it is possible to obtain the oxygen concentration depth distribution in the surface layer of several μm by using the calibration curve.

以上より、本発明の酸素濃度評価方法によれば、従来法のSIMS法では検出できない微量の酸素濃度を評価できることが示された。 As described above, according to the oxygen concentration evaluation method of the present invention, it was shown that a very small amount of oxygen concentration, which cannot be detected by the conventional SIMS method, can be evaluated.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 It should be noted that the present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Claims (7)

酸素濃度が0.5ppma以下のシリコン試料中の酸素濃度を評価する方法であって、
前記シリコン試料に電子線又は酸素以外のイオンビームを照射して前記シリコン試料中に空孔を含んだ欠陥を形成し、前記空孔を含んだ欠陥の準位密度をDLTS法にて測定し、前記空孔を含んだ欠陥の準位密度に基づいて前記シリコン試料中の酸素濃度を評価することを特徴とするシリコン試料の酸素濃度評価方法。
A method for evaluating the oxygen concentration in a silicon sample having an oxygen concentration of 0.5 ppma or less,
irradiating the silicon sample with an electron beam or an ion beam other than oxygen to form defects containing vacancies in the silicon sample, and measuring the level density of the defects containing the vacancies by a DLTS method; A method for evaluating oxygen concentration in a silicon sample, wherein the oxygen concentration in the silicon sample is evaluated based on the level density of defects including the vacancies.
酸素濃度が既知のシリコン試料を予め用意し、前記酸素濃度が既知のシリコン試料に電子線又は酸素以外のイオンビームを照射して前記酸素濃度が既知のシリコン試料中に空孔を含んだ欠陥を形成し、前記空孔を含んだ欠陥の準位密度をDLTS法にて測定し、測定した前記準位密度と前記酸素濃度が既知のシリコン試料の前記酸素濃度との検量線を作成し、前記検量線に基づいてシリコン試料中の酸素濃度を評価することを特徴とする請求項1に記載のシリコン試料の酸素濃度評価方法。 A silicon sample with a known oxygen concentration is prepared in advance, and the silicon sample with the known oxygen concentration is irradiated with an electron beam or an ion beam other than oxygen to remove defects including vacancies in the silicon sample with the known oxygen concentration. Formed, the level density of defects containing the vacancies is measured by the DLTS method, a calibration curve is created between the measured level density and the oxygen concentration of a silicon sample with a known oxygen concentration, and the 2. The method for evaluating oxygen concentration in a silicon sample according to claim 1, wherein the oxygen concentration in the silicon sample is evaluated based on a calibration curve. 前記酸素濃度が既知のシリコン試料の酸素濃度は、SIMS法もしくはFT-IR法で求めた酸素濃度であることを特徴とする請求項2に記載のシリコン試料の酸素濃度評価方法。 3. The method for evaluating oxygen concentration of a silicon sample according to claim 2, wherein the oxygen concentration of the silicon sample whose oxygen concentration is known is obtained by SIMS method or FT-IR method. 前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、Ec-0.17eVの密度であることを特徴とする請求項1から請求項3のいずれか一項に記載のシリコン試料の酸素濃度評価方法。 4. The level density of the defects including the vacancies is Ec-0.17 eV, where Ec is the level at the bottom of the conduction band. The method for evaluating the oxygen concentration of a silicon sample according to 1. 前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、Ec-0.42eVの密度であることを特徴とする請求項1から請求項3のいずれか一項に記載のシリコン試料の酸素濃度評価方法。 4. The level density of the defects including the vacancies is a density of Ec-0.42 eV, where Ec is the lower end level of the conduction band. The method for evaluating the oxygen concentration of a silicon sample according to 1. 前記空孔を含んだ欠陥の準位密度は、伝導帯の下端の準位をEcとして、DLTS法にてEc-0.17eVの準位密度の深さ分布を測定し、前記Ec-0.17eVの準位密度の深さ分布からシリコン試料の酸素濃度の深さ分布を評価することを特徴とする請求項1から請求項4のいずれか一項に記載のシリコン試料の酸素濃度評価方法。 The level density of the defects including the vacancies is obtained by measuring the depth distribution of the level density of Ec-0.17 eV by the DLTS method, where Ec is the level at the lower end of the conduction band. 5. The method for evaluating oxygen concentration of a silicon sample according to claim 1, wherein the depth distribution of oxygen concentration of the silicon sample is evaluated from the depth distribution of the level density of 17 eV. 酸素濃度が既知のシリコン試料の準位密度を測定し、測定した前記準位密度と前記酸素濃度が既知のシリコン試料の前記酸素濃度との検量線を作成し、前記検量線に基づいて前記酸素濃度の深さ分布を評価することを特徴とする請求項6に記載のシリコン試料の酸素濃度評価方法。 measuring the level density of a silicon sample with a known oxygen concentration; creating a calibration curve between the measured level density and the oxygen concentration of the silicon sample with the known oxygen concentration; 7. The method for evaluating the oxygen concentration of a silicon sample according to claim 6, wherein a depth distribution of the concentration is evaluated.
JP2020011328A 2020-01-28 2020-01-28 Oxygen concentration evaluation method for silicon samples Active JP7218733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011328A JP7218733B2 (en) 2020-01-28 2020-01-28 Oxygen concentration evaluation method for silicon samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011328A JP7218733B2 (en) 2020-01-28 2020-01-28 Oxygen concentration evaluation method for silicon samples

Publications (2)

Publication Number Publication Date
JP2021118283A JP2021118283A (en) 2021-08-10
JP7218733B2 true JP7218733B2 (en) 2023-02-07

Family

ID=77175212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011328A Active JP7218733B2 (en) 2020-01-28 2020-01-28 Oxygen concentration evaluation method for silicon samples

Country Status (1)

Country Link
JP (1) JP7218733B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139242A (en) 2017-02-24 2018-09-06 株式会社Sumco Carbon concentration evaluation method of silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafer, manufacturing method of silicon single crystal ingot, silicon crystal ingot, and silicon wafer
JP2019137566A (en) 2018-02-07 2019-08-22 信越半導体株式会社 Method for measuring carbon concentration in silicon crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344443A (en) * 1991-05-21 1992-12-01 Hitachi Ltd Measurement of carbon and oxygen density in silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139242A (en) 2017-02-24 2018-09-06 株式会社Sumco Carbon concentration evaluation method of silicon sample, evaluation method of silicon wafer manufacturing process, manufacturing method of silicon wafer, manufacturing method of silicon single crystal ingot, silicon crystal ingot, and silicon wafer
JP2019137566A (en) 2018-02-07 2019-08-22 信越半導体株式会社 Method for measuring carbon concentration in silicon crystal

Also Published As

Publication number Publication date
JP2021118283A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR102029647B1 (en) Defect density evaluation method for silicon single-crystal substrate
JP6048381B2 (en) Method for evaluating carbon concentration in silicon single crystal and method for manufacturing semiconductor device
US10330599B2 (en) Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method
CN107615470B (en) Method for manufacturing silicon epitaxial wafer and method for evaluating silicon epitaxial wafer
JP6838713B2 (en) Method for measuring carbon concentration in silicon crystals
Tuomisto et al. Nitrogen and vacancy clusters in ZnO
JP2018182211A (en) Measuring method for epitaxial layer thickness of epitaxial silicon wafer, and manufacturing method of epitaxial silicon wafer
JP7218733B2 (en) Oxygen concentration evaluation method for silicon samples
Schut et al. Positron beam defect profiling of silicon epitaxial layers
EP3671817B1 (en) Carbon concentration measurement method
JP6904313B2 (en) Method for evaluating carbon concentration in silicon single crystal
JP6689494B2 (en) Method for detecting carbon in silicon
JP2013084840A (en) Metal contamination evaluation method and epitaxial wafer manufacturing method
JP7310727B2 (en) Oxygen concentration measurement method in silicon sample
JP6817545B2 (en) Carbon measurement method in silicon
JP2018095526A (en) Carbon concentration measuring method for silicon crystal
Kyutt et al. X-ray diffraction study of defect distribution in Czochralski grown silicon highly doped by As
JP7250216B2 (en) Method for measuring carbon concentration in silicon substrate
JP2018152434A (en) Method for measuring nitrogen concentration of silicon crystal
JP2020098104A (en) Method for measuring impurity concentration in silicon substrate
JP5737202B2 (en) Semiconductor device and method for forming the same
JP2010103144A (en) N-type silicon epitaxial wafer, and evaluating method and manufacturing method therefor
JP6766786B2 (en) Carbon concentration evaluation method in silicon single crystal substrate and manufacturing method of semiconductor device
JP2020092169A (en) Method of evaluating nitrogen concentration in silicon single crystal substrate
WO2019176419A1 (en) Carbon concentration evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R150 Certificate of patent or registration of utility model

Ref document number: 7218733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150