JP7217581B2 - Method for classifying and cleaning polluted soil - Google Patents

Method for classifying and cleaning polluted soil Download PDF

Info

Publication number
JP7217581B2
JP7217581B2 JP2019065336A JP2019065336A JP7217581B2 JP 7217581 B2 JP7217581 B2 JP 7217581B2 JP 2019065336 A JP2019065336 A JP 2019065336A JP 2019065336 A JP2019065336 A JP 2019065336A JP 7217581 B2 JP7217581 B2 JP 7217581B2
Authority
JP
Japan
Prior art keywords
soil
sieve
amount
swelling
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065336A
Other languages
Japanese (ja)
Other versions
JP2020163265A (en
Inventor
正郎 小西
亮介 今井
祐也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2019065336A priority Critical patent/JP7217581B2/en
Publication of JP2020163265A publication Critical patent/JP2020163265A/en
Application granted granted Critical
Publication of JP7217581B2 publication Critical patent/JP7217581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、汚染土壌の分級洗浄処理方法に関し、例えば、中間貯蔵等された汚染土壌を再利用するための分級洗浄処理方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for classifying and washing contaminated soil, and for example, to a method for classifying and washing for reuse of contaminated soil that has been intermediately stored.

除染等で発生した除去土壌は、30年間を目途として貯蔵保管するために、破砕や分別処理等が施されている。この分別処理では、例えば、対象土壌の3wt%程度の改質材を添加することで粘性の高い土壌を砂状に改質して木の枝や葉等と分別し易くする等、分別処理の処理能力を向上させるための改質処理が施されている。この改質材には、高分子吸水性樹脂や高性能凝集剤等が微量に含まれている。 The removed soil generated by decontamination, etc. is subjected to crushing, sorting, etc. in order to store it for about 30 years. In this sorting process, for example, by adding a modifier of about 3 wt% of the target soil, the highly viscous soil is modified into a sandy state to make it easier to separate from tree branches and leaves. A modification process is applied to improve the processing capacity. This modifier contains a very small amount of a high-molecular-weight water-absorbing resin, a high-performance flocculant, and the like.

このような分別処理後の除去土壌は、最終処分に回す土壌を減容するため、線量の低い土壌を盛土材のあんこや道路路床として再利用する等、再利用のための調整が実施されている。この再利用のための処理方法としては、放射性セシウムの濃度を低減させるために、分級洗浄処理により除去土壌を粗粒分と細粒分とに分別し、放射性セシウムの吸着量が相対的に多い細粒分(一般的には、例えば、75μm未満の篩を通過した土粒子)を分離して抽出する一方、粗粒分を資材として再利用することで再利用時の公衆被ばくを抑制することが処理方法の1つとして検討されている。 In order to reduce the volume of the removed soil after such sorting and disposal, adjustments are made for reuse, such as reusing soil with low radiation doses as red bean paste for embankment materials and roadbeds. ing. As a treatment method for this reuse, in order to reduce the concentration of radioactive cesium, the removed soil is separated into coarse particles and fine particles by classification and washing, and the amount of radioactive cesium adsorbed is relatively large. To reduce public exposure during reuse by separating and extracting fine particles (generally, for example, soil particles that have passed through a sieve of less than 75 μm) and reusing coarse particles as materials. is considered as one of the treatment methods.

なお、例えば、特許文献1には、高分子吸水性樹脂を使用した紙おむつについて、使用済み紙おむつ使用材の再生処理および紙おむつに使用されているパルプ成分及び不織布・ビニールを再利用できるように回収する技術について開示されている。 In addition, for example, in Patent Document 1, regarding paper diapers using high-molecular water-absorbing resin, recycling treatment of used paper diaper materials and recovery of pulp components, non-woven fabrics, and vinyl used in paper diapers so that they can be reused. technology is disclosed.

特開2000-84533号公報JP-A-2000-84533

しかし、分別処理後の除去土壌には、含有量は多くないものの高分子吸水性樹脂が含まれているため、分級洗浄処理に際して、除去土壌中の高分子吸水性樹脂が含水膨張することにより篩を通過せずに目詰まりを起こさせるので、膨潤した高分子吸水性樹脂や、75μm未満の土粒子が篩を通過せず、再利用される土壌(以下、再生土壌という)中に多く含まれてしまう。このように、高分子吸水性樹脂が含まれているため、常に含水率が高く、水を吸って膨張する等、再生土壌の特性が低下する虞がある。 However, since the removed soil after the sorting process contains high-molecular-weight water-absorbing resin, although the content is not large, during the classification and washing process, the high-molecular-weight water-absorbing resin in the removed soil swells as it absorbs water and sieves. Since clogging occurs without passing through the sieve, the swollen polymer water-absorbing resin and soil particles of less than 75 μm do not pass through the sieve, and are contained in large amounts in the soil to be reused (hereinafter referred to as reclaimed soil). end up As described above, since the polymer water-absorbent resin is contained, the water content is always high, and there is a possibility that the properties of the reclaimed soil may deteriorate, such as swelling due to absorption of water.

また、放射性セシウムは75μm未満の土粒子に比較的多く吸着し集積する可能性が高いので、75μm未満の土粒子が篩を通過せず再生土壌中に多く含まれることにより、改質材とともに再生土壌中に放射性セシウムが残される可能性があり、再生土壌の線量が高くなる虞がある。 In addition, since there is a high possibility that radioactive cesium will be adsorbed and accumulated in soil particles of less than 75 μm in relatively large amounts, soil particles of less than 75 μm do not pass through the sieve and are contained in the reclaimed soil in large amounts, so that it can be regenerated together with the reforming material. Radioactive cesium may be left in the soil, potentially increasing the dose of reclaimed soil.

本発明は、上述の技術的背景からなされたものであって、再生土壌の特性を向上させることを目的とする。 The present invention has been made in view of the above technical background, and aims to improve the characteristics of reclaimed soil.

上記課題を解決するため、請求項1に記載の本発明の汚染土壌の分級洗浄処理方法は、高分子吸水性樹脂を含む汚染土壌の分級洗浄処理の分級洗浄方法であって、前記汚染土壌の分級洗浄処理の開始時に、前記汚染土壌に膨潤抑制剤を添加し、前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記硫酸第一鉄七水和塩の添加量は、0.5~3wt%であることを特徴とする。 In order to solve the above problems, the method for classifying and washing contaminated soil according to claim 1 of the present invention is a classifying and washing method for classifying and washing contaminated soil containing a polymer water absorbent resin, At the start of the classification and washing process, a swelling inhibitor is added to the contaminated soil, the swelling inhibitor contains ferrous sulfate heptahydrate, and the added amount of the ferrous sulfate heptahydrate is 0.5. It is characterized by being 5 to 3 wt%.

請求項2に記載の発明は、上記請求項1に記載の発明において、前記膨潤抑制剤の添加量を変えることにより、前記分級洗浄処理において篩を通過する土粒子の量および前記篩を通過せず残留する土粒子の量を制御することを特徴とする。 The invention according to claim 2 is based on the invention according to claim 1 , wherein the amount of soil particles passing through the sieve and the amount of soil particles passing through the sieve in the classification and washing process are changed by changing the addition amount of the swelling inhibitor. It is characterized by controlling the amount of residual soil particles.

本発明によれば、分級洗浄処理によって得られる再生土壌の特性を向上させることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to improve the characteristic of the reclaimed soil obtained by the classification washing process.

国等で検討が進められている除去土壌の処理の流れを示す概念図である。FIG. 2 is a conceptual diagram showing the flow of treatment of removed soil, which is being studied by the national government, etc. FIG. 中間貯蔵施設における除去土壌の処理施設の要部概念図である。FIG. 2 is a conceptual diagram of the main part of the removed soil processing facility in the interim storage facility; 受入分別施設の一例の説明図である。It is an explanatory diagram of an example of a receiving and sorting facility. 分級洗浄処理の原理を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the principle of the classification cleaning process; (a)は高分子吸水性樹脂の要部平面図、(b)は図5(a)の高分子吸水性樹脂の化学式を示す図である。FIG. 5(a) is a plan view of the main part of the water absorbent polymer, and FIG. 5(b) is a diagram showing the chemical formula of the water absorbent polymer shown in FIG. 5(a). (a)は高分子吸水性樹脂を構成するCOO基の挙動を示す図、(b)は吸水前後の高分子吸水性樹脂の要部平面図である。(a) is a diagram showing the behavior of a COO group that constitutes the polymer water-absorbing resin, and (b) is a plan view of the main part of the polymer water-absorbing resin before and after water absorption. (a)は改質剤の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、(b)は塩化カルシウムの添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、(c)は硫酸第一鉄七水和塩の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図である。(a) is a diagram showing the relationship between the addition rate of the modifier and the moisture content of the residue that does not pass through the 75 μm sieve, and (b) is the addition rate of calcium chloride and the residue that does not pass through the 75 μm sieve. (c) is a diagram showing the relationship between the addition rate of ferrous sulfate heptahydrate and the moisture content of the residue that does not pass through a 75 μm sieve. 図7(b),(c)から分かる結果をまとめて示した図である。It is the figure which showed collectively the result understood from FIG.7(b), (c). 本発明の一実施の形態に係る分級洗浄施設の一例の概略構成図である。1 is a schematic configuration diagram of an example of a classifying and washing facility according to an embodiment of the present invention; FIG. 本発明の一実施の形態に係る分級洗浄施設の他の例の概略構成図である。FIG. 4 is a schematic configuration diagram of another example of the classifying and washing facility according to one embodiment of the present invention; 本発明の一実施の形態に係る除去土壌の分級洗浄方法を示すフロー図である。1 is a flowchart showing a method for classifying and cleaning removed soil according to an embodiment of the present invention; FIG. (a),(b)はそれぞれ塩化カルシウムと硫酸第一鉄七水和塩とを膨潤抑制剤として用いた場合の75μmの篩を通過した分の土壌量(乾燥重量)を示す図である。(a) and (b) are diagrams showing the amount of soil (dry weight) that passed through a 75 μm sieve when calcium chloride and ferrous sulfate heptahydrate were used as swelling inhibitors, respectively. 図12から分かる結果をまとめて示した図である。It is the figure which showed collectively the result understood from FIG.

以下、本発明の一例としての実施の形態について、図面に基づいて詳細に説明する。なお、実施の形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。また、ここでは汚染物質を含む土壌として放射性物質を含む土壌を例示する。この場合、汚染物質を含む土壌の汚染物質濃度とは放射性物質を含む土壌の放射線濃度のことである。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment as an example of the present invention will be described in detail below with reference to the drawings. In the drawings for describing the embodiments, in principle, the same components are denoted by the same reference numerals, and repeated description thereof will be omitted. Moreover, soil containing radioactive substances is exemplified here as the soil containing contaminants. In this case, the concentration of contaminants in soil containing contaminants means the radiation concentration of soil containing radioactive substances.

(第1の実施の形態) (First embodiment)

図1は国等で検討が進められている除去土壌の処理の流れを示す概念図である。 FIG. 1 is a conceptual diagram showing the flow of treatment of removed soil, which is being studied by the government.

この処理の流れによれば除去土壌等は、放射線セシウム(Cs)濃度(汚染物質濃度、放射線濃度)に応じて土壌S1~S4に区分され、中間貯蔵施設Fiに一時保管される。この間、減容処理等を行い、浄化物は再生資材として再利用する。また、減容処理等により生じた濃縮物は最終処分場で処分する。なお、土壌S1はCs濃度が8000Bq/kg以下、土壌S2はCs濃度が8000~20000Bq/kg以下、土壌S3はCs濃度が200000~80000Bq/kg以下、土壌S4はCs濃度が80000Bq/kg以上である。 According to this processing flow, the removed soil and the like are classified into soils S1 to S4 according to the radioactive cesium (Cs) concentration (contaminant concentration, radiation concentration) and temporarily stored in the interim storage facility Fi. During this time, volume reduction treatment is performed, and the purified material is reused as a recycled material. In addition, the concentrate generated by volume reduction treatment, etc. will be disposed of at the final disposal site. The soil S1 has a Cs concentration of 8000 Bq/kg or less, the soil S2 has a Cs concentration of 8000 to 20000 Bq/kg or less, the soil S3 has a Cs concentration of 200000 to 80000 Bq/kg or less, and the soil S4 has a Cs concentration of 80000 Bq/kg or more. be.

この計画によれば、土壌S1~S4は、中間貯蔵施設Fiの受入分別施設Fsに運ばれ、分別処理が施され土壌中の異物が除去される。この分別処理においては、上記したように、高分子吸水性樹脂等を含む改質材が土壌中に添加される。分別処理後の土壌S1,S2の一部は、適宜放射能の減衰処理等が施された後、再生土壌として回収される。また、分別処理後の土壌S3は、分級洗浄施設Fcにおいて分級洗浄処理が施される。この分級洗浄処理において、例えば、75μm以上の土粒子の一群として残留したものは再生土壌として回収される。一方、上記分級洗浄処理において、例えば、75μm未満の土粒子の一群として抽出された濃縮物は、熱処理施設Ftにおいて熱処理等が施されて、スラグや焼成物になるものと、熱処理後に洗浄処理施設Fwにおいて洗浄処理等が施されて最終処分場で最終処分されるものとに分かれる。 According to this plan, the soils S1 to S4 are transported to the receiving and sorting facility Fs of the interim storage facility Fi, where they are subjected to sorting treatment and foreign matter in the soil is removed. In this sorting treatment, as described above, a modifier containing a polymer water-absorbing resin or the like is added to the soil. Some of the soils S1 and S2 after the sorting treatment are appropriately subjected to radioactivity attenuation treatment, etc., and then collected as reclaimed soil. Further, the soil S3 after the sorting treatment is subjected to the sorting and washing treatment in the sorting and washing facility Fc. In this classifying and washing treatment, for example, a group of soil particles of 75 μm or more that remain as a group is collected as reclaimed soil. On the other hand, in the above-described classification and cleaning process, for example, the concentrate extracted as a group of soil particles of less than 75 μm is subjected to heat treatment in the heat treatment facility Ft to become slag or baked products, and after the heat treatment, the cleaning treatment facility In Fw, it is divided into those subjected to cleaning treatment and the like and finally disposed of at the final disposal site.

図2は中間貯蔵施設における除去土壌の処理施設の要部概念図である。 FIG. 2 is a conceptual diagram of the main part of the removed soil processing facility in the interim storage facility.

中間貯蔵施設には、受入分別施設Fsと、分級洗浄施設Fcとが設置されている。受入分別施設Fsでは、受け入れた除去土壌に対して分別処理を施すことにより、可燃物等のような異物を除去する。分級洗浄施設Fcでは、分別処理が施された除去土壌に対して分級洗浄処理を施すことにより、例えば、粒径が約2mm以上の礫等と、粒径が約2~0.075mmの砂等と、粒径が約0.075mm以下のシルト・粘土等とに分類する。 The interim storage facility has a receiving and sorting facility Fs and a sorting and washing facility Fc. At the receiving and sorting facility Fs, the received removed soil is sorted to remove foreign substances such as combustibles. In the classification and washing facility Fc, the removed soil that has been subjected to classification and washing is subjected to classification and washing, for example, gravel with a particle size of about 2 mm or more and sand with a particle size of about 2 to 0.075 mm. and silt/clay with a particle size of about 0.075 mm or less.

図3は受入分別施設の一例の説明図である。 FIG. 3 is an explanatory diagram of an example of a receiving and sorting facility.

受入分別施設Fsには、除去土壌の移動方向に沿って順に、荷下ろし設備Fu、破袋設備Fbおよび分別設備Fssが設置されている。除去土壌は、フレキシブルコンテナバック等のような包材CBに収容された状態でトラックTR等に載せられて荷下ろし設備Fuに運ばれる。 In the receiving and sorting facility Fs, an unloading facility Fu, a bag-breaking facility Fb and a sorting facility Fss are installed in order along the moving direction of the removed soil. The removed soil is placed in a packaging material CB such as a flexible container bag and placed on a truck TR or the like and transported to the unloading facility Fu.

荷下ろし設備Fuは、トラックTR等で運ばれた包材CBを受け入れ、クレーンCR等によりベルトコンベアBC1に移載する設備である。この段階では除去土壌が包材CBに収容されており外部に飛散し難いので、荷下ろし設備Fuは屋根等を有する簡単な建物内に設置されている。 The unloading facility Fu is a facility for receiving the packaging material CB carried by the truck TR or the like and transferring it to the belt conveyor BC1 by the crane CR or the like. At this stage, the removed soil is contained in the packaging material CB and is unlikely to scatter outside, so the unloading facility Fu is installed in a simple building with a roof or the like.

破袋設備Fbは、ベルトコンベアBC1で運ばれた包材CBを破袋機BMで破る設備である。破袋設備Fbやその後段の分別設備Fssは、除去土壌に因る粉塵が周囲に広がらないように屋根および周壁等を有する建屋内に設置されている。 The bag-breaking equipment Fb is equipment for breaking the packaging material CB conveyed by the belt conveyor BC1 with the bag-breaking machine BM. The bag-breaking facility Fb and the subsequent sorting facility Fss are installed in a building having a roof and peripheral walls, etc., so that dust caused by the removed soil does not spread around.

分別設備Fssは、破袋処理後の除去土壌から可燃物等のような異物を除去して分別する設備であり、例えば、直列に並んだ2台の篩機SV1,SV2と、各部を繋ぐ3台のベルトコンベアBC2~BC4とを有している。すなわち、破袋機BMから排出された除去土壌等は、ベルトコンベアBC2を通じて前段の篩機SV1に収容される。この篩機SV1で包材残渣等のような異物FM1が除去された除去土壌は、ベルトコンベアBC3を通じて後段の篩機SV2に収容される。この篩機SV2で木の枝、葉または根等のような異物FM2が除去された除去土壌は、分別後の除去土壌としてベルトコンベアBC4を通じて後段に送られる。 The sorting facility Fss is a facility for removing foreign substances such as combustibles from the removed soil after bag breaking treatment and sorting it. It has platform belt conveyors BC2 to BC4. That is, the removed soil and the like discharged from the bag breaker BM are received by the sieving machine SV1 in the preceding stage through the belt conveyor BC2. The removed soil from which foreign matter FM1 such as packaging material residue has been removed by the sieving machine SV1 is received in the subsequent sieving machine SV2 through the belt conveyor BC3. The removed soil from which foreign substances FM2 such as tree branches, leaves, roots, etc. have been removed by the sieve SV2 is sent to the subsequent stage through the belt conveyor BC4 as separated removed soil.

ところで、この分別設備Fssでは、上記したように篩機SV2前段のベルトコンベアBC3上において除去土壌に対象土壌の3wt%程度の改質材を添加、混合することにより、粘性の高い除去土壌を砂状に改質して木の枝、葉または根等を分別し易くし、例えば、粒径が20mm以下の除去土壌を効率的に回収するようにしている。 By the way, in this sorting facility Fss, as described above, on the belt conveyor BC3 in front of the sieve SV2, a modifier of about 3% by weight of the target soil is added to the removed soil and mixed to convert the highly viscous removed soil into sand. The soil is modified into a shape to make it easier to separate tree branches, leaves, roots, etc., and for example, the removed soil with a particle size of 20 mm or less is efficiently collected.

改質材としては、例えば、シリカ系、石膏系またはゼオライト系材料を母材として高分子吸水性樹脂や高性能凝集剤等を微量に添加した組成のものが多く使用されている。このため、上記した分別後の除去土壌中には、改質材中に配合された高分子吸水性樹脂等が微量に含まれている。 Modifiers are often composed of, for example, silica, gypsum, or zeolite-based materials as base materials, and small amounts of high-molecular-weight water-absorbing resins, high-performance flocculants, and the like added thereto. For this reason, the removed soil after the separation described above contains a very small amount of the polymer water-absorbent resin and the like blended in the modifier.

しかし、除去土壌中に高分子吸水性樹脂が含まれていると、分別処理後の分級洗浄処理に際して、除去土壌中の高分子吸水性樹脂が吸水膨張することにより篩を通過せずに目詰まりを起こさせるので、膨潤した高分子吸水性樹脂や、75μm未満の土粒子が篩を通過せず、再生土壌中に多く含まれてしまう。このように、高分子吸水性樹脂が含まれているため、常に含水率が高く、水を吸って膨張する等、再生土壌の特性が低下する虞がある。また、放射性セシウムは75μm未満の土粒子に比較的多く吸着し集積する可能性が高いので、75μm未満の土粒子が篩を通過せず再生土壌中に多く含まれることにより、改質材とともに再生土壌中に放射性セシウムが残される可能性があり、再生土壌の線量が高くなる虞がある。したがって、再生土壌の特性(粒度特性、含水率、含有Cs量による放射線濃度)が低下してしまう虞がある。 However, if the removed soil contains a polymer water-absorbent resin, the polymer water-absorbent resin in the removed soil will not pass through the sieve and cause clogging during the classification and washing process after the sorting process due to water absorption and swelling of the polymer water-absorbent resin. As a result, the swollen high-molecular-weight water-absorbing resin and soil particles of less than 75 μm do not pass through the sieve and are included in the reclaimed soil in large amounts. As described above, since the polymer water-absorbent resin is contained, the water content is always high, and there is a possibility that the properties of the reclaimed soil may deteriorate, such as swelling due to absorption of water. In addition, since there is a high possibility that radioactive cesium will be adsorbed and accumulated in soil particles of less than 75 μm in relatively large amounts, soil particles of less than 75 μm do not pass through the sieve and are contained in the reclaimed soil in large amounts, so that it can be regenerated together with the reforming material. Radioactive cesium may be left in the soil, potentially increasing the dose of reclaimed soil. Therefore, there is a possibility that the characteristics of the reclaimed soil (particle size characteristics, moisture content, and radiation concentration depending on the amount of Cs contained) may be degraded.

そこで、本実施の形態においては、分別後の除去土壌の分級洗浄処理の開始時に、高分子吸水性樹脂の含水膨潤特性を抑制(制御)する添加材として膨潤抑制剤を除去土壌中に添加する。これにより、除去土壌中の高分子吸水性樹脂の膨潤を抑制または防止することができるので、膨張した高分子吸水性樹脂に因る篩の目詰まりを低減または解消することができる。このため、残留した除去土壌に含まれる高分子吸水性樹脂の量を低減できるので、残留した除去土壌(すなわち、再生土壌)の特性(粒度特性、含水率、含有Cs量による放射線濃度)を向上させることができる。 Therefore, in the present embodiment, a swelling inhibitor is added to the removed soil as an additive for suppressing (controlling) the hydrous swelling property of the polymer water-absorbent resin at the start of the classification and washing treatment of the removed soil after sorting. . As a result, it is possible to suppress or prevent the swelling of the polymer water-absorbing resin in the removed soil, so that clogging of the sieve due to the swollen polymer water-absorbing resin can be reduced or eliminated. Therefore, the amount of polymer water-absorbing resin contained in the remaining removed soil can be reduced, so the characteristics of the remaining removed soil (that is, the reclaimed soil) (particle size characteristics, moisture content, radiation concentration depending on the amount of Cs contained) are improved. can be made

また、除去土壌に添加する膨潤抑制剤の量を調整することにより、除去土壌に含まれる高分子吸水性樹脂の膨潤に因る篩の目詰まりの状態を調節することができるので、75μmの篩を通過する土粒子の一群(除去土壌)の量および75μmの篩を通過せず残留する土粒子の一群(除去土壌)の量を制御することができる。 In addition, by adjusting the amount of the swelling inhibitor added to the removed soil, it is possible to adjust the state of clogging of the sieve due to swelling of the polymer water absorbent resin contained in the removed soil. It is possible to control the amount of soil particles that pass through the sieve (removed soil) and the amount of soil particles that do not pass through the 75 μm sieve and remain (removed soil).

まず、分級洗浄処理について図4を用いて説明する。図4は分級洗浄処理の原理を説明するための説明図である。なお、図4では図面を見易くするため、細粒分Pfおよび汚染物質Ph等にそれぞれ異なるハッチングを付した。汚染物質Ph等は、例えば、ヒ素等のような重金属元素や放射性物質のことである。 First, the classification cleaning process will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining the principle of the classification cleaning process. In addition, in FIG. 4, in order to make the drawing easier to see, the fine particles Pf and the contaminants Ph, etc. are hatched differently. Contaminants Ph and the like are, for example, heavy metal elements such as arsenic and radioactive substances.

図4の左は、粗粒分Pcと細粒分Pfと汚染物質Ph等とが混合している除去土壌Scを示している。分級洗浄処理は、除去土壌Scに対して機械を用いて洗浄処理および研磨処理を施すとともに、粒径を分級することにより、汚染物質Ph等が吸着している粒径区分を分離し、または、汚染物質Ph等を洗浄液中に溶解させて、汚染物質Ph等を除去土壌Scから抽出する処理方法である。この分級洗浄処理により、図4右上の浄化済等土壌Spを得ることができるとともに、図4右下の脱水ケーキSd(汚染の濃縮)を抽出することができる。なお、浄化済等土壌Spは、定められた放射線量以下の土壌である。 The left side of FIG. 4 shows the removed soil Sc in which coarse particles Pc, fine particles Pf, contaminants Ph, etc. are mixed. In the classification and cleaning process, the removed soil Sc is washed and polished using a machine, and the particle size is classified to separate particle size categories in which contaminants Ph and the like are adsorbed, or In this treatment method, the pollutants Ph and the like are dissolved in the cleaning liquid and the pollutants Ph and the like are extracted from the removed soil Sc. Through this classification and washing process, the purified iso-soil Sp on the upper right of FIG. 4 can be obtained, and the dehydrated cake Sd (concentration of contamination) on the lower right of FIG. 4 can be extracted. In addition, the purified soil Sp is soil having a radiation dose equal to or less than a specified level.

次に、上記した高分子吸水性樹脂の膨潤の原理と、その膨潤を抑制する膨潤抑制剤について図5および図6を用いて説明する。図5(a)は高分子吸水性樹脂の要部平面図、図5(b)は図5(a)の高分子吸水性樹脂の化学式を示す図、図6(a)は高分子吸水性樹脂を構成するCOO基の挙動を示す図、図6(b)は吸水前後の高分子吸水性樹脂の要部平面図である。なお、図6(b)の矢印の左が吸水前を示し、矢印の右が吸水後を示している。 Next, the principle of swelling of the above-described polymer water-absorbing resin and the swelling suppressing agent for suppressing the swelling will be described with reference to FIGS. 5 and 6. FIG. FIG. 5(a) is a plan view of the main part of the polymer water-absorbent resin, FIG. 5(b) is a diagram showing the chemical formula of the polymer water-absorbent resin in FIG. 5(a), and FIG. 6(a) is the polymer water-absorbent FIG. 6(b) is a diagram showing the behavior of COO groups that constitute the resin, and FIG. In addition, the left side of the arrow in FIG. 6B indicates the state before water absorption, and the right side of the arrow indicates the state after water absorption.

図5(a)に示すように、高分子吸水性樹脂は網目状の構造になっている。この高分子吸水性樹脂が水に接すると、図5(b)に示すように、高分子吸水性樹脂を構成するCOO基に配位されたNaイオンが水分中に溶け出してCOO基がマイナス基となる。すると、図6(a)に示すように、互いに隣り合うCOO基同士が反発し合うことで網目が膨らみ、図6(b)に示すように、網の中に水分を取り込む。これが膨潤の原理とされている。 As shown in FIG. 5(a), the polymer water absorbent resin has a network structure. When this polymer water-absorbing resin comes into contact with water, as shown in FIG. base. Then, as shown in FIG. 6(a), the COO groups adjacent to each other repel each other to swell the mesh, and as shown in FIG. 6(b), the mesh takes in moisture. This is the principle of swelling.

そこで、NaイオンよりもCOO基への吸着力の高い多価陽イオンが多く存在する環境を醸成されると、COO基に再び多価陽イオンが配位され、取り込んだ水分を吐き出す挙動が生じ膨潤性能が抑制される。このため、イオン化傾向が高くCOO基との親和性がより高い多価陽イオン試薬を膨潤抑制剤として使用することで吸水膨潤した高分子吸水性樹脂から脱水させることができる。 Therefore, when an environment is created in which more polyvalent cations, which have a higher adsorptive power to COO groups than Na ions, are present, polyvalent cations are coordinated again to COO groups, causing behavior to expel the taken-in moisture. Swelling performance is suppressed. Therefore, by using a polyvalent cation reagent having a high ionization tendency and a higher affinity with COO groups as a swelling inhibitor, it is possible to dehydrate the polymer water-absorbent resin that has been swollen by absorbing water.

このような膨潤抑制剤の具体例としては、例えば、塩化カルシウムを用いることができる。塩化カルシウムの場合、安価に調達することができる。ただし、塩化カルシウムを用いた場合、脱水処理して回収された75μm未満の土粒子の一群(除去土壌)の最終処分場等への処分の際に、塩化物を含む廃棄物として受け入れが制限される場合がある。その場合は、塩化物イオンを含まない膨潤抑制剤として、例えば、硫酸第一鉄七水和塩を用いることができる。なお、膨潤抑制剤の例としては、上記膨潤抑制の原理を示す材料であれば良く、塩化カルシウムや硫酸第一鉄七水和塩に限定されるものではなく種々変更可能である。 As a specific example of such a swelling inhibitor, for example, calcium chloride can be used. Calcium chloride can be procured inexpensively. However, when calcium chloride is used, when a group of soil particles of less than 75 μm (removed soil) collected by dehydration treatment is disposed of at a final disposal site, etc., acceptance is restricted as waste containing chlorides. may occur. In that case, ferrous sulfate heptahydrate, for example, can be used as a swelling inhibitor that does not contain chloride ions. Examples of the swelling inhibitor are not limited to calcium chloride and ferrous sulfate heptahydrate, but may be variously modified as long as they exhibit the principle of swelling inhibition described above.

次に、除去土壌のうち分級洗浄処理により75μmの篩を通過せず残留した残留分の含水率について図7および図8を参照して説明する。図7(a)は改質剤の添加率と75μmの篩を通過せず残留した残留分の含水率との関係を示す図、図7(b)は塩化カルシウムの添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、図7(c)は硫酸第一鉄七水和塩の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、図8は図7(b),(c)から分かる結果をまとめて示した図である。 Next, the moisture content of the residual portion of the removed soil that did not pass through the 75 μm sieve after the classification and washing process and remains is described with reference to FIGS. 7 and 8. FIG. FIG. 7(a) is a diagram showing the relationship between the addition rate of the modifier and the moisture content of the residue that did not pass through the 75 μm sieve, and FIG. 7(b) is the addition rate of calcium chloride and the 75 μm sieve. A diagram showing the relationship between the moisture content of the residue that does not pass through and the moisture content of the residue that remains without passing through the 75 μm sieve. FIG. FIG. 8 is a diagram summarizing the results obtained from FIGS. 7(b) and 7(c).

分級洗浄処理によって75μmの篩を通過せず残留した残留分の量は、改質材中に含まれる高分子吸水性樹脂の含水膨潤性に依存する。すなわち、膨潤抑制剤を用いることなく分級洗浄処理した除去土壌については高分子吸水性樹脂が膨潤して含水率が高くなる結果、75μmの篩を通過せず残留した残留分が土粒子単味よりも多くなる。実際、図7(a)に示すように、除去土壌に添加した改質材の添加率が増えるとともに、75μmの篩を通過せず残る残留分の含水率が増大し、残留分中に水分が残存する状態が生じている。例えば、2mmの篩を通過した除去土壌に改質材を3wt%添加し、膨潤抑制剤を添加しなかった場合、75μmの篩を通過せず残る残留分の含水率は54%に達している。 The amount of the residue that did not pass through the 75 μm sieve after the classification and washing treatment and remained depends on the water-swelling property of the polymer water-absorbing resin contained in the modifier. That is, in the removed soil that has been classified and washed without using a swelling inhibitor, the high-molecular-weight water-absorbing resin swells and the water content increases, and as a result, the remaining residue that does not pass through the 75 μm sieve is less than the soil particles alone. will also increase. In fact, as shown in FIG. 7(a), as the addition rate of the modifier added to the removed soil increases, the water content of the residue that does not pass through the 75 μm sieve and remains increases, and water content in the residue increases. A residual condition has arisen. For example, when 3 wt% of the modifier is added to the removed soil that has passed through a 2 mm sieve and no swelling inhibitor is added, the residual moisture content that does not pass through the 75 μm sieve reaches 54%. .

これに対して、発明者の検討によれば、分級洗浄処理の開始時に除去土壌中に膨潤抑制剤を添加した場合、図7(b),(c)に示すように、75μmの篩を通過せず残る残留分の含水率を下げることができた。 On the other hand, according to the inventor's study, when a swelling inhibitor is added to the removed soil at the start of the classification and washing process, as shown in FIGS. It was possible to lower the moisture content of the remaining residue.

すなわち、図7(b)および図8に示すように、膨潤抑制剤として塩化カルシウムを用いた場合、75μmの篩を通過せず残る残留分の膨潤性を抑制(含水率を制御)するのに好ましい膨潤抑制剤の添加量は、例えば、0.25以上、5wt%以下であり、特に、1.0wt%の膨潤抑制剤の添加で含水率を23ポイント低減でき、膨潤抑制剤を用いない場合(含水率が54%)に対して含水率を31%に低減することができた。 That is, as shown in FIGS. 7(b) and 8, when calcium chloride is used as a swelling inhibitor, the swelling property of the residue remaining after not passing through a 75 μm sieve is suppressed (controlling the water content). A preferable addition amount of the swelling inhibitor is, for example, 0.25 or more and 5 wt% or less. (Water content is 54%), the water content was able to be reduced to 31%.

また、図7(c)および図8に示すように、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合、75μmの篩を通過せず残る残留分の膨潤性を抑制(含水率を制御)するのに好ましい膨潤抑制剤の添加量は、例えば、0.1以上、5wt%以下であり、特に、1.5wt%または3wt%の膨潤抑制剤の添加で含水率を25ポイント低減でき、膨潤抑制剤を用いない場合(含水率が54%)に対して含水率を29%に低減することができた。 In addition, as shown in FIGS. 7(c) and 8, when ferrous sulfate heptahydrate is used as the swelling inhibitor, the swelling of the residue that does not pass through the 75 μm sieve is suppressed (moisture content The amount of the swelling inhibitor preferably added to control) is, for example, 0.1 or more and 5 wt% or less, and in particular, the addition of 1.5 wt% or 3 wt% of the swelling inhibitor reduces the water content by 25 points. It was possible to reduce the water content to 29% compared to the case where no swelling inhibitor was used (the water content was 54%).

このように膨潤抑制剤を用いることにより、分級洗浄処理後の除去土壌(再生土壌)の特性を向上させることができる。例えば、この75μmの篩を通過せず残る残留分を盛り土等として再利用する場合、膨潤性を抑制することができるので、水切りを容易にすることができ、締固め作業の効率やトラフィカビリティ等を向上させることができる。 By using the swelling inhibitor in this manner, the properties of the removed soil (regenerated soil) after the classification and washing treatment can be improved. For example, when the residue that does not pass through this 75 μm sieve is reused as embankment, etc., swelling can be suppressed, so drainage can be facilitated, efficiency of compaction work, trafficability, etc. can be improved.

次に、本実施の形態の分級洗浄施設の一例を図9および図10を参照して説明する。図9および図10は本実施の形態に係る分級洗浄施設の一例の概略構成図である。なお、図9および図10において、実線の矢印は汚染物質等の流れを示し、破線の矢印は排水の流れを示し、一点鎖線の矢印は除去土壌の流れを示している。また、図9の点線の矢印は洗浄水の流れを示している。 Next, an example of the classifying and washing facility of this embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 and 10 are schematic configuration diagrams of an example of a classifying and washing facility according to this embodiment. 9 and 10, solid line arrows indicate the flow of contaminants and the like, broken line arrows indicate the flow of waste water, and dashed line arrows indicate the flow of removed soil. Further, dotted arrows in FIG. 9 indicate the flow of washing water.

図9に示すように、分級洗浄施設Fcは、洗浄処理装置WMと、分級処理装置CMと、分離処理装置DMと、脱水処理装置DHMと、排水処理装置DWMとを有している。 As shown in FIG. 9, the classification and washing facility Fc has a washing treatment device WM, a classification treatment device CM, a separation treatment device DM, a dehydration treatment device DHM, and a waste water treatment device DWM.

洗浄処理装置WMは、例えば、ドラムウォッシャで構成されている。この洗浄処理装置WMは、ドラムD内に散水しながらドラムDを回転させることでドラムD内に収容された除去土壌Scに対して洗浄処理および研磨処理を施す装置である。本実施の形態では、例えば、洗浄処理装置WMのドラムD内に上記した膨潤抑制剤が投入される。 The cleaning equipment WM is composed of, for example, a drum washer. This washing treatment apparatus WM is an apparatus for washing and polishing the removed soil Sc accommodated in the drum D by rotating the drum D while sprinkling water inside it. In the present embodiment, for example, the above-described swelling inhibitor is put into the drum D of the cleaning apparatus WM.

分級処理装置CMは、分級処理を行う装置であり、例えば、図示しない振動篩機とサイクロンとを一体で備えている。洗浄処理装置WMから送られた泥水は、分級処理装置CMのサイクロンで遠心分離される。この分離された重い土壌部分が分級処理装置CMの振動篩機にかけられ水切りされる。すなわち、振動篩機の網に落ちた土砂は、網の上を横方向に移動しながら水切れが行われ、やがて網の端からこぼれ落ちる。また、振動篩機で水切りされた水が、洗浄処理装置WMから次々に送られる泥水に混合されて再びサイクロンに供給されるようになっている。ここでは、例えば、75μm未満の土粒子の一群を抽出して後段に送る一方、75μm以上の土粒子の一群を浄化済等土壌Spとして得る。上記ドラムウォッシャや振動篩機に代えて、例えば、トロンメルやハイメッシュセパレータを用いても良い。また、分級洗浄性能を向上させるため分級処理装置CMとして、例えば、泡浮遊式分離装置や重力式分離装置を用いても良い。 The classifying device CM is a device that performs a classifying process, and includes, for example, a vibrating sieve machine and a cyclone (not shown) integrally. The muddy water sent from the cleaning equipment WM is centrifuged by the cyclone of the classification equipment CM. This separated heavy soil portion is applied to a vibrating sieve of the classifier CM and drained. That is, the sediment that has fallen on the net of the vibrating sieve is drained while moving laterally on the net, and eventually spills over the edge of the net. Also, the water drained by the vibrating sieve is mixed with the muddy water successively sent from the cleaning equipment WM and supplied to the cyclone again. Here, for example, a group of soil particles of less than 75 μm is extracted and sent to the subsequent stage, while a group of soil particles of 75 μm or more is obtained as the purified, etc. soil Sp. For example, a trommel or a high-mesh separator may be used instead of the drum washer or vibrating sieve. Further, in order to improve the classification and washing performance, for example, a bubble floating separator or a gravity separator may be used as the classifier CM.

分離処理装置DMは、例えば、シックナーで構成されている。分離処理装置DMは、分級処理装置CMから送られた泥水中の個体粒子を泥漿として分離する装置である。個体粒子は分離処理装置DMの処理槽Tの底に沈殿し、上澄み液は処理槽T内に貯えられるようになっている。 The separation processing device DM is composed of a thickener, for example. The separation treatment device DM is a device that separates the solid particles in the muddy water sent from the classification treatment device CM as slurry. The solid particles settle on the bottom of the treatment tank T of the separation treatment device DM, and the supernatant liquid is stored in the treatment tank T. As shown in FIG.

脱水処理装置DHMは、例えば、フィルタプレスで構成されている。脱水処理装置DHMでは、泥状の微粒分を袋状のフィルタに充填した状態で高圧を加えることで脱水し、脱水ケーキSdとして取り出すようになっている。フィルタプレスに代えて、例えば、ベルトプレスを用いても良い。 The dehydration apparatus DHM is composed of, for example, a filter press. In the dehydration treatment apparatus DHM, a bag-like filter is filled with muddy fine particles, and high pressure is applied to dehydrate the fine particles, and the dewatered cake Sd is taken out. A belt press, for example, may be used instead of the filter press.

排水処理装置DWMは、脱水処理装置DHMから送られた排水(汚染物質を含む)を浄化する装置である。排水処理装置DWMで浄化された浄化水は、再び洗浄処理装置WMや分級処理装置CMに送られる。 The waste water treatment device DWM is a device for purifying waste water (including contaminants) sent from the dehydration treatment device DHM. The purified water purified by the wastewater treatment equipment DWM is sent again to the washing treatment equipment WM and the classification treatment equipment CM.

図10に示す分級洗浄施設Fcの構成は図9とほぼ同じである。こでは、排水の流れが若干異なっている。すなわち、分離処理装置DMで得られた洗浄水を洗浄処理装置WMや分級処理装置CMに供給するとともに、脱水処理装置DHMで得られた排水(汚染物質を含む)を分離処理装置DMに供給するようになっている。 The configuration of the classifying and washing facility Fc shown in FIG. 10 is substantially the same as that shown in FIG. Here, the drainage flow is slightly different. That is, the washing water obtained in the separation treatment equipment DM is supplied to the washing treatment equipment WM and the classification treatment equipment CM, and the waste water (including contaminants) obtained in the dehydration treatment equipment DHM is supplied to the separation treatment equipment DM. It's like

次に、本実施の形態の除去土壌の分級洗浄方法の一例について図9を参照しながら図11のフロー図に沿って説明する。図11は本実施の形態の除去土壌の分級洗浄方法を示すフロー図である。 Next, an example of the method for classifying and cleaning the removed soil according to the present embodiment will be described along the flowchart of FIG. 11 with reference to FIG. FIG. 11 is a flowchart showing a method for classifying and washing removed soil according to this embodiment.

まず、除去土壌Sc、水および膨潤抑制剤を洗浄処理装置WMのドラムD内に投入した後、ドラムDを回転させることで混合攪拌し、ドラムD内の除去土壌Scを洗浄および研磨する(図11の工程100)。 First, the removed soil Sc, water, and a swelling inhibitor are put into the drum D of the washing treatment apparatus WM, and then the drum D is rotated to mix and stir, and the removed soil Sc in the drum D is washed and polished (Fig. 11 step 100).

続いて、洗浄処理後の除去土壌(泥水)を分級処理装置CMに送り、分級処理を施すことにより、75μm未満の土粒子(細粒分Pf(図4参照))の一群を抽出する一方、75μm以上の土粒子(粗粒分Pc(図4参照))の一群を残留分として取り出す(図11の工程101)。この残留分は浄化確認調査により基準適合が確認された後、浄化済等土壌Sp(再生土壌)となる(図11の工程102)。 Subsequently, the removed soil (mud water) after the washing treatment is sent to the classifier CM, and a group of soil particles (fine particle fraction Pf (see FIG. 4)) of less than 75 μm is extracted by classifying. A group of soil particles (coarse particle fraction Pc (see FIG. 4)) of 75 μm or more is taken out as a residue (step 101 in FIG. 11). After the conformity to the standard is confirmed by the purification confirmation investigation, this residual portion becomes purified soil Sp (regenerated soil) (step 102 in FIG. 11).

その後、分級処理装置CMを通過し、汚染が濃縮された細粒分Pf(図4参照)は分離処理装置DMにおいて凝集沈殿を経て脱水処理装置DHMにおいて脱水処理が施され(図11の工程103)、脱水ケーキSdとして排出される。この脱水ケーキSdは、汚染が濃縮していることから汚染土壌として取り扱われ、再処理汚染土壌処理施設等へ搬出される(図11の工程104)。 After that, the fine particles Pf (see FIG. 4) that have passed through the classifier CM and have concentrated contamination are coagulated and sedimented in the separation treatment equipment DM, and then subjected to dehydration treatment in the dehydration treatment equipment DHM (step 103 in FIG. 11). ) and discharged as dehydrated cake Sd. This dehydrated cake Sd is treated as contaminated soil because the contamination is concentrated, and is transported to a reprocessing contaminated soil treatment facility or the like (step 104 in FIG. 11).

このように本実施の形態においては、上記したように除去土壌の分級洗浄処理の開始時に除去土壌中に膨潤抑制剤を添加したことにより、除去土壌に含まれる高分子吸水性樹脂の膨潤を抑制または防止することができるので、膨張した高分子吸水性樹脂に因る篩の目詰まりを低減または解消することができる。 As described above, in the present embodiment, by adding the swelling inhibitor to the removed soil at the start of the classification and washing treatment of the removed soil as described above, swelling of the polymer water absorbent resin contained in the removed soil is suppressed. Or it can be prevented, so clogging of the sieve due to the swollen high-molecular-weight water-absorbing resin can be reduced or eliminated.

このため、浄化済等土壌Sp中に残留する改質材(高分子吸水性樹脂)の量を低減できるので、浄化済等土壌Sp(再生土壌)の特性(例えば、粒度特性および含水率)を向上させることができる。 Therefore, since the amount of the modifier (polymer water absorbent resin) remaining in the purified soil Sp can be reduced, the characteristics (for example, particle size characteristics and moisture content) of the purified soil Sp (regenerated soil) can be improved. can be improved.

また、分級洗浄処理時に篩の目詰まりが低減または解消されることにより、分級洗浄処理によって75μm未満の土粒子をより多く通過させることができるので、浄化済等土壌Sp(再生土壌)中に含まれる75μm未満の土粒子の量を低減できる。すなわち、75μm未満の土粒子に比較的多く吸着し集積する可能性の高いCsの量を低減できるので、浄化済等土壌Spの線量を低くすることができる。このため、浄化済等土壌Spの特性を向上(例えば、含有Cs量による放射線濃度を低下)させることができる。 In addition, since the clogging of the sieve is reduced or eliminated during the classification and washing process, more soil particles of less than 75 μm can be passed through the classification and washing process, so it is included in the purified soil Sp (regenerated soil). It can reduce the amount of soil particles smaller than 75 μm that are absorbed. That is, since the amount of Cs, which is likely to be adsorbed and accumulated in soil particles of less than 75 μm in a relatively large amount, can be reduced, the dose of purified soil Sp can be reduced. Therefore, the properties of the purified soil Sp can be improved (for example, the radiation concentration due to the amount of Cs contained can be reduced).

(第2の実施の形態) (Second embodiment)

一般的に、75μmの篩を通過する土粒子にCsが多く吸着されていることが知られているが、上記実施の形態によれば、分級洗浄処理の過程において膨潤抑制剤の添加量を調整すると、除去土壌に含まれる高分子吸水性樹脂の膨潤に因る篩の目詰まりの状態を調節することができるので、75μmの篩を通過する土壌の量を制御することができる。すなわち、膨潤抑制剤の添加量を調整することで、75μmの篩を通過せず残る残留分の土壌(再生土壌)に含まれるCsの多寡を調整することができる。 Generally, it is known that a large amount of Cs is adsorbed on soil particles that pass through a 75 μm sieve. As a result, it is possible to control the clogging of the sieve due to the swelling of the polymer water-absorbing resin contained in the removed soil, so that the amount of soil that passes through the 75 μm sieve can be controlled. That is, by adjusting the addition amount of the swelling inhibitor, it is possible to adjust the amount of Cs contained in the residual soil (regenerated soil) that does not pass through the 75 μm sieve.

ここで、図12(a),(b)はそれぞれ塩化カルシウムと硫酸第一鉄七水和塩とを膨潤抑制剤として用いた場合の75μmの篩を通過した分の土壌量(乾燥重量)を示している。また、図13は図12から分かる結果をまとめて示した図である。 Here, FIGS. 12A and 12B show the amount of soil (dry weight) that passed through a 75 μm sieve when calcium chloride and ferrous sulfate heptahydrate were used as swelling inhibitors. showing. FIG. 13 is a diagram summarizing the results obtained from FIG.

図12(a)および図13に示すように、膨潤抑制剤として塩化カルシウムを用いた場合において、膨潤抑制剤の添加量が、例えば、0.25以上、1wt%未満では、75μmの篩を通過する土壌量が相対的に少なくなり、特に、膨潤抑制剤の添加量が0.75wt%で、75μmの篩を通過する土壌量が最小(56%減)となる。この場合は、75μmの篩を通過せず残る残留分が多くなるので、再生土壌におけるCs量の低減効果が抑制される。 As shown in FIGS. 12( a ) and 13 , when calcium chloride is used as the swelling inhibitor, when the amount of the swelling inhibitor added is, for example, 0.25 or more and less than 1 wt %, it passes through a 75 μm sieve. The amount of soil that passes through a 75 μm sieve is the smallest (56% reduction), especially at an additive amount of 0.75 wt % of the swelling inhibitor. In this case, the amount of residue that does not pass through the 75 μm sieve is large, so the effect of reducing the amount of Cs in the reclaimed soil is suppressed.

また、膨潤抑制剤として塩化カルシウムを用いた場合において、膨潤抑制剤の添加量が、例えば、1以上、5wt%未満では、75μmの篩を通過する土壌量が相対的に多くなり、特に、膨潤抑制剤の添加量が3wt%で、75μmの篩を通過する土壌量が最大(24%増)となる。この場合は、75μmの篩を通過せず残る残留分が少なくなるので、再生土壌におけるCs量の低減効果が促進される。 Further, when calcium chloride is used as the swelling inhibitor, if the amount of the swelling inhibitor added is, for example, 1 or more and less than 5 wt %, the amount of soil that passes through a 75 μm sieve is relatively large, and in particular, swelling At 3 wt% inhibitor loading, the amount of soil that passes through a 75 μm sieve is maximized (24% increase). In this case, the residue that does not pass through the 75 μm sieve is reduced, so the effect of reducing the amount of Cs in the reclaimed soil is promoted.

一方、図12(b)および図13に示すように、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合において、膨潤抑制剤の添加量が、例えば、0.1以上、0.5wt%未満では、75μmの篩を通過する土壌量が相対的に少なくなり、特に、膨潤抑制剤の添加量が0.1wt%で、75μmの篩を通過する土壌量が最小(38%減)となる。この場合は、75μmの篩を通過せず残る残留分が多くなるので、再生土壌におけるCs量の低減効果が抑制される。 On the other hand, as shown in FIGS. 12(b) and 13, when ferrous sulfate heptahydrate is used as the swelling inhibitor, the addition amount of the swelling inhibitor is, for example, 0.1 or more and 0.1 or more. At less than 5 wt%, the amount of soil that passes through a 75 μm sieve is relatively small, especially when the amount of swelling inhibitor added is 0.1 wt%, the amount of soil that passes through a 75 μm sieve is minimal (38% reduction). becomes. In this case, the amount of residue that does not pass through the 75 μm sieve is large, so the effect of reducing the amount of Cs in the reclaimed soil is suppressed.

また、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合において、膨潤抑制剤の添加量が、例えば、1.5以上、3wt%以下では、75μmの篩を通過する土壌量が相対的に多くなり、特に、膨潤抑制剤の添加量が1.5wt%で、75μmの篩を通過する土壌量が最大(108%増)となる。この場合は、75μmの篩を通過せず残る残留分が少なくなるので、再生土壌におけるCs量の低減効果が促進される。 Further, when ferrous sulfate heptahydrate is used as the swelling inhibitor, when the amount of the swelling inhibitor added is, for example, 1.5 or more and 3 wt% or less, the amount of soil passing through a 75 μm sieve is relatively In particular, when the added amount of the swelling inhibitor is 1.5 wt %, the amount of soil that passes through a 75 μm sieve becomes maximum (108% increase). In this case, the residue that does not pass through the 75 μm sieve is reduced, so the effect of reducing the amount of Cs in the reclaimed soil is promoted.

このように、膨潤抑制剤の未添加(添加材量=0wt%)の土壌に比して、75μmの篩を通過する土壌量が少なくなる、または、多くなるときの膨潤抑制剤の添加量を判別することができるが、その膨潤抑制剤の添加量は、再生土壌中のCs量を抑制または促進させる境界値となることが理解できる。 In this way, when the amount of soil passing through a 75 μm sieve decreases or increases compared to the soil to which the swelling inhibitor is not added (the amount of added material = 0 wt%), the amount of the swelling inhibitor added is However, it can be understood that the addition amount of the swelling inhibitor is a boundary value for suppressing or promoting the amount of Cs in the reclaimed soil.

このことと、Cs含有土壌の再利用の前提が8000Bq/kgを超えないものとされていることから、本実施の形態においては、8000Bq/kg以下の土壌と、それを超える土壌とで膨潤抑制剤の添加量を変えるようにする。これにより、合理的な浄化処理を実施することが可能になる。以下、それぞれの場合について適用例を説明する。 Because of this and the premise of reusing Cs-containing soil is not to exceed 8000 Bq / kg, in the present embodiment, swelling is suppressed in soil of 8000 Bq / kg or less and in soil exceeding it. Vary the amount of agent added. This makes it possible to carry out a rational purification process. Application examples for each case will be described below.

まず、分級洗浄処理対象が比較的Cs濃度の高い土壌(図1の土壌S2,S3等)の場合において用いる膨潤抑制剤の添加方法を説明する。 First, a method of adding a swelling inhibitor used when soil having a relatively high Cs concentration (soils S2, S3, etc. in FIG. 1) is to be subjected to the classification and washing process will be described.

この場合は、膨潤抑制剤として塩化カルシウムを用いる場合、その添加量を、例えば、1以上、5wt%以下の範囲とする。また、膨潤抑制剤として硫酸第一鉄七水和塩を用いる場合、その添加量を、例えば、0.5以上、3wt%以下の範囲とする。これにより、分級洗浄処理時に篩を通過する75μm未満の土粒子を多くすることができるので、再生土壌(75μmの篩を通過せず残る残留分)のCs濃度を低減することができる。 In this case, when calcium chloride is used as the swelling inhibitor, the amount added is, for example, in the range of 1 to 5 wt %. Moreover, when using ferrous sulfate heptahydrate as a swelling inhibitor, the addition amount is made into the range of 0.5 or more and 3 wt% or less, for example. As a result, it is possible to increase the number of soil particles of less than 75 μm that pass through the sieve during the classification and washing process, so that the Cs concentration in the reclaimed soil (residue that does not pass through the 75 μm sieve) can be reduced.

次に、分級洗浄処理対象が比較的Cs濃度の低い土壌(図1の土壌S1等)の場合において用いる膨潤抑制剤の添加方法を説明する。 Next, a method of adding a swelling inhibitor used when soil having a relatively low Cs concentration (soil S1 in FIG. 1, etc.) is to be subjected to the classification and washing process will be described.

この場合は、膨潤抑制剤として塩化カルシウムを用いる場合、その添加量を、例えば、0.25以上、1wt%未満の範囲とする。また、膨潤抑制剤として硫酸第一鉄七水和塩を用いる場合、その添加量を、例えば、0.1以上、0.5wt%未満の範囲とする。これにより、分級洗浄処理時に篩を通過する75μm未満の土粒子を少なくすることができるので、再生土壌(75μmの篩を通過せず残る残留分)を増加させることができる。 In this case, when calcium chloride is used as the swelling inhibitor, the amount added is, for example, in the range of 0.25 or more and less than 1 wt %. Moreover, when using ferrous sulfate heptahydrate as a swelling inhibitor, the addition amount is made into the range of 0.1 or more and less than 0.5 wt%, for example. As a result, it is possible to reduce the amount of soil particles of less than 75 μm that pass through the sieve during the classification and washing process, so that the amount of reclaimed soil (remaining residue that does not pass through the 75 μm sieve) can be increased.

(第3の実施の形態) (Third Embodiment)

上記第1の実施の形態においては、土壌S3(図1参照)を対象の除去土壌とした場合について説明した。ここで、土壌S1,S2については洗浄処理が施されないものの中間貯蔵施設Fi(図1参照)に運び込まれて改質材を添加して異物除去処理が施された後に中間貯蔵施設Fiにて保管されつつある。また、この土壌は30年以内に掘り出されて再利用か最終処分場に搬出されることが法律で決められている。そして、土壌S1,S2についても貯蔵保管中の水分の影響や掘り出し後の水分との接触により膨潤性が顕在化することが想定される。 In the first embodiment, the case where the soil S3 (see FIG. 1) is the target removed soil has been described. Here, although the soils S1 and S2 are not subjected to washing treatment, they are carried to the intermediate storage facility Fi (see FIG. 1) and stored in the intermediate storage facility Fi after being subjected to foreign matter removal treatment by adding a modifier. being done. Also, the law stipulates that this soil must be excavated and reused or transported to a final disposal site within 30 years. Also, it is assumed that the soil S1 and S2 will also become swellable due to the influence of moisture during storage and contact with moisture after excavation.

そこで、本実施の形態においては、分級洗浄処理が施されない土壌S1,S2においても土壌S1,S2を掘り出した後に膨潤抑制剤を添加し攪拌する。これにより、土壌S1,S2での膨潤を抑制できる。また、土壌S1,S2の特性(例えば、粒度特性および含水率)を向上させることができる。 Therefore, in the present embodiment, even in the soils S1 and S2 that are not subjected to the classification and washing treatment, the swelling inhibitor is added and stirred after the soils S1 and S2 are excavated. Thereby, swelling in soil S1 and S2 can be controlled. Also, the properties of the soils S1 and S2 (for example, particle size properties and moisture content) can be improved.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって、開示された技術に限定されるものではない。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載に従って解釈されるべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲の要旨を逸脱しない限りにおけるすべての変更が含まれる。 Although the invention made by the present inventor has been specifically described based on the embodiments, the embodiments disclosed in this specification are illustrative in all respects and are limited to the disclosed technology. isn't it. That is, the technical scope of the present invention should not be construed in a restrictive manner based on the description of the above embodiments, but should be construed according to the description of the scope of claims. All modifications are included as long as they do not deviate from the description technology and equivalent technology and the gist of the claims.

以上の説明では、本発明の汚染土壌の分級洗浄処理方法を除去土壌の分級洗浄処理方法に適用した場合について説明したが、例えば、脱水汚泥等のような産業廃棄物処理においても高分子吸水性樹脂を含む処理剤が使用されている場合もあるので、その場合の膨潤抑制対策として適用することができる。 In the above description, the method for classifying and washing contaminated soil of the present invention is applied to the method for classifying and washing removed soil. Since a treatment agent containing a resin is sometimes used, it can be applied as a measure for suppressing swelling in that case.

Fi 中間貯蔵施設
Fs 受入分別施設
Fc 分級洗浄施設
BM 破袋機
SV1,SV2 篩機
BC1~BC4 ベルトコンベア
WM 洗浄処理装置
CM 分級処理装置
DM 分離処理装置
DHM 脱水処理装置
DWM 排水処理装置
S1~S4 土壌
Sc 除去土壌
Sp 浄化済等土壌
Sd 脱水ケーキ
Pf 細粒分
Pc 粗粒分
Ph 汚染物質
Fi Intermediate storage facility Fs Receiving separation facility Fc Classification and washing facility BM Bag breaker SV1, SV2 Sieve machine BC1-BC4 Belt conveyor WM Washing device CM Classification device DM Separation device DHM Dehydration device DWM Wastewater treatment device S1-S4 Soil Sc Removed soil Sp Purified soil Sd Dehydrated cake Pf Fine particle fraction Pc Coarse particle fraction Ph Contaminant

Claims (2)

高分子吸水性樹脂を含む汚染土壌の分級洗浄処理の分級洗浄方法であって、
前記汚染土壌の分級洗浄処理の開始時に、前記汚染土壌に膨潤抑制剤を添加し、
前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記硫酸第一鉄七水和塩の添加量は、0.5~3wt%であることを特徴とする汚染土壌の分級洗浄方法。
A classifying and cleaning method for classifying and cleaning contaminated soil containing a polymer water-absorbing resin,
adding a swelling inhibitor to the contaminated soil at the start of the classifying and washing treatment of the contaminated soil,
A method for classifying and cleaning contaminated soil, wherein the swelling inhibitor contains ferrous sulfate heptahydrate, and the amount of the ferrous sulfate heptahydrate added is 0.5 to 3 wt % .
前記膨潤抑制剤の添加量を変えることにより、前記分級洗浄処理において篩を通過する土粒子の量および前記篩を通過せず残留する土粒子の量を制御することを特徴とする請求項1記載の汚染土壌の分級洗浄方法。 2. The amount of soil particles that pass through the sieve and the amount of residual soil particles that do not pass through the sieve in the classifying and washing process are controlled by changing the amount of the swelling inhibitor added. A method for classifying and cleaning contaminated soil.
JP2019065336A 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil Active JP7217581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065336A JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065336A JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Publications (2)

Publication Number Publication Date
JP2020163265A JP2020163265A (en) 2020-10-08
JP7217581B2 true JP7217581B2 (en) 2023-02-03

Family

ID=72715512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065336A Active JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Country Status (1)

Country Link
JP (1) JP7217581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112718832B (en) * 2020-12-17 2022-07-29 中赣核生态修复工程(江西)有限公司 Self-dispersion remediation method for heavy metal contaminated soil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328321A (en) 2005-05-30 2006-12-07 Nippon Shokubai Co Ltd Method for granulating water-containing soil and agent for treating water-containing soil
JP2013092428A (en) 2011-10-25 2013-05-16 Shimizu Corp Cleaning processing method for radioactive material contaminated soil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103989A (en) * 2017-12-14 2019-06-27 清水建設株式会社 Cleaning classification processing method of contaminated soil
JP2019021336A (en) * 2018-10-03 2019-02-07 パイオニア株式会社 Server device, terminal device, information presentation system, information presentation method, information presentation program, and recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328321A (en) 2005-05-30 2006-12-07 Nippon Shokubai Co Ltd Method for granulating water-containing soil and agent for treating water-containing soil
JP2013092428A (en) 2011-10-25 2013-05-16 Shimizu Corp Cleaning processing method for radioactive material contaminated soil

Also Published As

Publication number Publication date
JP2020163265A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN102745872B (en) Treatment method and device for riverway and lake heavy metal pollution bottom sludge
CN103002998B (en) The purification method of soil
JP2009202089A (en) Reclamation treatment method and reclamation treatment system of earth and sand-waste mixture
JP2013164379A (en) Processor for radiation-contaminated soil
KR20220122819A (en) Method and System for Decontamination of Contaminated Soil
JP2019103989A (en) Cleaning classification processing method of contaminated soil
KR102504769B1 (en) Method for purification of radioactive contaminated soil
CN212174755U (en) Leaching complete equipment for rapidly treating sandy polluted bottom mud
CN104275341B (en) Treatment method for heavy metal polluted sediment
JP7217581B2 (en) Method for classifying and cleaning polluted soil
US6102053A (en) Process for separating radioactive and hazardous metal contaminants from soils
EA017033B1 (en) Belt filter apparatus
JP2006255515A (en) Method for decontaminating soil contaminated with heavy metal
JP2013108758A (en) Method for decontaminating radiation-contaminated soil
JP4697719B2 (en) Method for purifying contaminated soil and separation apparatus used therefor
JP6853915B1 (en) Contaminated soil cleaning system and cleaning method
CN107262519B (en) Radioactive contaminated soil purification system
JP3968752B2 (en) Purification method for heavy metal contaminated soil
US6926465B1 (en) Remediation system
CN206654818U (en) A kind of sandstone aggregate processing waste water processing system
KR101129876B1 (en) Complex method for remediation of soil being contaminated by highly concentrated heavy metal
JP2005262076A (en) Method for cleaning soil contaminated with oil
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
CN113683274A (en) System and method for ex-situ treatment of sludge in urban pipe gallery
RU2275974C2 (en) Method of removing radionuclides and heavy metals from soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7217581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150