JP2020163265A - Classification cleaning treatment method of contaminated soil - Google Patents

Classification cleaning treatment method of contaminated soil Download PDF

Info

Publication number
JP2020163265A
JP2020163265A JP2019065336A JP2019065336A JP2020163265A JP 2020163265 A JP2020163265 A JP 2020163265A JP 2019065336 A JP2019065336 A JP 2019065336A JP 2019065336 A JP2019065336 A JP 2019065336A JP 2020163265 A JP2020163265 A JP 2020163265A
Authority
JP
Japan
Prior art keywords
soil
amount
added
classification
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065336A
Other languages
Japanese (ja)
Other versions
JP7217581B2 (en
Inventor
小西 正郎
Masaro Konishi
正郎 小西
亮介 今井
Ryosuke Imai
亮介 今井
祐也 清水
Yuya Shimizu
祐也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2019065336A priority Critical patent/JP7217581B2/en
Publication of JP2020163265A publication Critical patent/JP2020163265A/en
Application granted granted Critical
Publication of JP7217581B2 publication Critical patent/JP7217581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To improve characteristics of recycled soil obtained by a classification cleaning treatment.SOLUTION: At the time of start of a classification cleaning treatment of removal soil to which a modifier containing a polymer water-absorbing resin is added, for example, a swelling inhibitor such as calcium chloride or ferrous sulfate heptahydrate is added to the removal soil. Thereby, an amount of the polymer water-absorbing resin remaining in purified soil Sp purified by the classification cleaning treatment can be reduced. The classification cleaning treatment can achieve passage of more soil particles of less than 75 μm, and accordingly the amount of the soil particles of less than 75 μm contained in purified soil Sp can be reduced. Specifically, an amount of Cs having a high possibility that a comparatively large amount of Cs is adsorbed in the soil particles of less than 75 μm can be reduced, and accordingly a dose of the purified soil Sp can be lowered. Thereby, characteristics of the purified soil Sp can be improved.SELECTED DRAWING: Figure 11

Description

本発明は、汚染土壌の分級洗浄処理方法に関し、例えば、中間貯蔵等された汚染土壌を再利用するための分級洗浄処理方法に関するものである。 The present invention relates to a method for classifying and cleaning contaminated soil, for example, a method for classifying and cleaning for reusing contaminated soil that has been intermediately stored.

除染等で発生した除去土壌は、30年間を目途として貯蔵保管するために、破砕や分別処理等が施されている。この分別処理では、例えば、対象土壌の3wt%程度の改質材を添加することで粘性の高い土壌を砂状に改質して木の枝や葉等と分別し易くする等、分別処理の処理能力を向上させるための改質処理が施されている。この改質材には、高分子吸水性樹脂や高性能凝集剤等が微量に含まれている。 The removed soil generated by decontamination and the like is crushed and separated in order to be stored and stored for about 30 years. In this separation treatment, for example, by adding a modifier of about 3 wt% of the target soil, the highly viscous soil is modified into a sand shape to facilitate separation from tree branches, leaves, etc. Modification treatment is applied to improve the processing capacity. This modifier contains a trace amount of a super absorbent polymer, a high-performance flocculant, and the like.

このような分別処理後の除去土壌は、最終処分に回す土壌を減容するため、線量の低い土壌を盛土材のあんこや道路路床として再利用する等、再利用のための調整が実施されている。この再利用のための処理方法としては、放射性セシウムの濃度を低減させるために、分級洗浄処理により除去土壌を粗粒分と細粒分とに分別し、放射性セシウムの吸着量が相対的に多い細粒分(一般的には、例えば、75μm未満の篩を通過した土粒子)を分離して抽出する一方、粗粒分を資材として再利用することで再利用時の公衆被ばくを抑制することが処理方法の1つとして検討されている。 In order to reduce the volume of soil to be used for final disposal of the removed soil after such separation treatment, adjustments have been made for reuse, such as reusing low-dose soil as embankment material and roadbed. ing. As a treatment method for this reuse, in order to reduce the concentration of radioactive cesium, the removed soil is separated into coarse particles and fine particles by a classification washing treatment, and the amount of radioactive cesium adsorbed is relatively large. Fine particles (generally, for example, soil particles that have passed through a sieve of less than 75 μm) are separated and extracted, while coarse particles are reused as a material to suppress public exposure during reuse. Is being considered as one of the processing methods.

なお、例えば、特許文献1には、高分子吸水性樹脂を使用した紙おむつについて、使用済み紙おむつ使用材の再生処理および紙おむつに使用されているパルプ成分及び不織布・ビニールを再利用できるように回収する技術について開示されている。 For example, in Patent Document 1, regarding a paper diaper using a super absorbent polymer, the used paper diaper material is recycled and the pulp component and non-woven fabric / vinyl used in the paper diaper are collected so that they can be reused. The technology is disclosed.

特開2000−84533号公報Japanese Unexamined Patent Publication No. 2000-84533

しかし、分別処理後の除去土壌には、含有量は多くないものの高分子吸水性樹脂が含まれているため、分級洗浄処理に際して、除去土壌中の高分子吸水性樹脂が含水膨張することにより篩を通過せずに目詰まりを起こさせるので、膨潤した高分子吸水性樹脂や、75μm未満の土粒子が篩を通過せず、再利用される土壌(以下、再生土壌という)中に多く含まれてしまう。このように、高分子吸水性樹脂が含まれているため、常に含水率が高く、水を吸って膨張する等、再生土壌の特性が低下する虞がある。 However, since the removed soil after the separation treatment contains a polymer water-absorbent resin, although the content is not high, the polymer water-absorbent resin in the removed soil undergoes water-containing expansion during the classification cleaning treatment, resulting in a sieve. Because it causes clogging without passing through the soil, swollen high-molecular-weight water-absorbent resin and soil particles of less than 75 μm do not pass through the sieve and are contained in a large amount in the recycled soil (hereinafter referred to as regenerated soil). It ends up. As described above, since the superabsorbent polymer is contained, the water content is always high, and there is a risk that the characteristics of the regenerated soil may deteriorate, such as absorbing water and expanding.

また、放射性セシウムは75μm未満の土粒子に比較的多く吸着し集積する可能性が高いので、75μm未満の土粒子が篩を通過せず再生土壌中に多く含まれることにより、改質材とともに再生土壌中に放射性セシウムが残される可能性があり、再生土壌の線量が高くなる虞がある。 In addition, since radioactive cesium is likely to be adsorbed and accumulated in a relatively large amount on soil particles of less than 75 μm, soil particles of less than 75 μm do not pass through the sieve and are contained in a large amount in the regenerated soil, so that they are regenerated together with the modifier. Radioactive cesium may be left in the soil, which may increase the dose of regenerated soil.

本発明は、上述の技術的背景からなされたものであって、再生土壌の特性を向上させることを目的とする。 The present invention has been made from the above-mentioned technical background, and an object of the present invention is to improve the characteristics of regenerated soil.

上記課題を解決するため、請求項1に記載の本発明の汚染土壌の分級洗浄処理方法は、高分子吸水性樹脂を含む汚染土壌の分級洗浄処理の開始時に、前記汚染土壌に膨潤抑制剤を添加することを特徴とする。 In order to solve the above problems, the method for classifying and cleaning contaminated soil according to claim 1 applies a swelling inhibitor to the contaminated soil at the start of the classifying cleaning process for contaminated soil containing a polymer water-absorbent resin. It is characterized by being added.

請求項2に記載の発明は、上記請求項1に記載の発明において、前記膨潤抑制剤の添加量を変えることにより、前記分級洗浄処理において篩を通過する土粒子の量および前記篩を通過せず残留する土粒子の量を制御することを特徴とする。 The invention according to claim 2 is the invention according to claim 1, wherein by changing the addition amount of the swelling inhibitor, the amount of soil particles passing through the sieve and the sieve can be passed through the classification cleaning treatment. It is characterized in that the amount of soil particles remaining is controlled.

請求項3に記載の発明は、上記請求項1または2に記載の発明において、前記汚染土壌が除去土壌であり、前記除去土壌のうち、汚染物質濃度が相対的に高い除去土壌に添加する前記膨潤抑制剤の添加量を、前記汚染物質濃度が相対的に低い除去土壌に添加する前記膨潤抑制剤の添加量よりも多くすることを特徴とする。 The invention according to claim 3 is the invention according to claim 1 or 2, wherein the contaminated soil is the removed soil, and the removed soil is added to the removed soil having a relatively high concentration of pollutants. It is characterized in that the amount of the swelling inhibitor added is larger than the amount of the swelling inhibitor added to the removed soil having a relatively low concentration of pollutants.

請求項4に記載の発明は、上記請求項1〜3のいずれか1項に記載の発明において、前記膨潤抑制剤は塩化カルシウムまたは硫酸第一鉄七水和塩を含むことを特徴とする。 The invention according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the swelling inhibitor contains calcium chloride or ferrous sulfate heptahydrate.

請求項5に記載の発明は、上記請求項1に記載の発明において、前記膨潤抑制剤は塩化カルシウムを含み、前記塩化カルシウムの添加量は、0.25〜5wt%であることを特徴とする。 The invention according to claim 5 is characterized in that, in the invention according to claim 1, the swelling inhibitor contains calcium chloride, and the amount of calcium chloride added is 0.25 to 5 wt%. ..

請求項6に記載の発明は、上記請求項5に記載の発明において、前記塩化カルシウムの添加量は、1〜5wt%であることを特徴とする。 The invention according to claim 6 is characterized in that, in the invention according to claim 5, the amount of calcium chloride added is 1 to 5 wt%.

請求項7に記載の発明は、上記請求項1に記載の発明において、前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記硫酸第一鉄七水和塩の添加量は、0.1〜5wt%であることを特徴とする。 The invention according to claim 7 is the invention according to claim 1, wherein the swelling inhibitor contains ferrous sulfate heptahydrate, and the amount of the ferrous sulfate heptahydrate added is 0. It is characterized by being 1 to 5 wt%.

請求項8に記載の発明は、上記請求項7に記載の発明において、前記硫酸第一鉄七水和塩の添加量は、0.5〜3wt%であることを特徴とする。 The invention according to claim 8 is characterized in that, in the invention according to claim 7, the amount of the ferrous sulfate heptahydrate added is 0.5 to 3 wt%.

請求項9に記載の発明は、上記請求項3に記載の発明において、前記膨潤抑制剤は塩化カルシウムを含み、前記汚染物質濃度が相対的に低い除去土壌に添加する塩化カルシウムの添加量は、0.25〜1wt%であり、前記汚染物質濃度が相対的に高い除去土壌に添加する塩化カルシウムの添加量は、1〜5wt%であることを特徴とする。 The invention according to claim 9 is the invention according to claim 3, wherein the swelling inhibitor contains calcium chloride, and the amount of calcium chloride added to the removed soil having a relatively low pollutant concentration is It is 0.25 to 1 wt%, and the amount of calcium chloride added to the removed soil having a relatively high pollutant concentration is 1 to 5 wt%.

請求項10に記載の発明は、上記請求項3に記載の発明において、前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記汚染物質濃度が相対的に低い除去土壌に添加する硫酸第一鉄七水和塩の添加量は、0.1〜0.5wt%であり、前記汚染物質濃度が相対的に高い除去土壌に添加する硫酸第一鉄七水和塩の添加量は、0.5〜3wt%であることを特徴とする。 The invention according to claim 10 is the invention according to claim 3, wherein the swelling inhibitor contains ferrous sulfate heptahydrate, and sulfuric acid is added to the removed soil having a relatively low concentration of pollutants. The amount of ferrous heptahydrate added is 0.1 to 0.5 wt%, and the amount of ferrous sulfate heptahydrate added to the removed soil having a relatively high concentration of contaminants is It is characterized by being 0.5 to 3 wt%.

本発明によれば、分級洗浄処理によって得られる再生土壌の特性を向上させることが可能となる。 According to the present invention, it is possible to improve the characteristics of the regenerated soil obtained by the classification washing treatment.

国等で検討が進められている除去土壌の処理の流れを示す概念図である。It is a conceptual diagram showing the flow of treatment of removed soil, which is being studied in the national government. 中間貯蔵施設における除去土壌の処理施設の要部概念図である。It is a conceptual diagram of a main part of a treatment facility for removed soil in an interim storage facility. 受入分別施設の一例の説明図である。It is explanatory drawing of an example of a receiving sorting facility. 分級洗浄処理の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the classification cleaning process. (a)は高分子吸水性樹脂の要部平面図、(b)は図5(a)の高分子吸水性樹脂の化学式を示す図である。(A) is a plan view of a main part of a superabsorbent polymer resin, and (b) is a diagram showing a chemical formula of the superabsorbent polymer resin of FIG. 5 (a). (a)は高分子吸水性樹脂を構成するCOO基の挙動を示す図、(b)は吸水前後の高分子吸水性樹脂の要部平面図である。(A) is a diagram showing the behavior of COO groups constituting the superabsorbent polymer resin, and (b) is a plan view of a main part of the superabsorbent polymer resin before and after water absorption. (a)は改質剤の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、(b)は塩化カルシウムの添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、(c)は硫酸第一鉄七水和塩の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図である。(A) is a diagram showing the relationship between the addition rate of the modifier and the water content of the residue remaining without passing through the 75 μm sieve, and (b) is the addition rate of calcium chloride and the residue remaining without passing through the 75 μm sieve. The figure which shows the relationship with the water content of a minute, (c) is the figure which shows the relationship between the addition rate of ferrous sulfate heptahydrate and the water content of the residue which does not pass through a 75 μm sieve. 図7(b),(c)から分かる結果をまとめて示した図である。It is the figure which showed the result which can be seen from FIG. 7 (b) and (c) collectively. 本発明の一実施の形態に係る分級洗浄施設の一例の概略構成図である。It is a schematic block diagram of an example of the classification cleaning facility which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る分級洗浄施設の他の例の概略構成図である。It is a schematic block diagram of another example of the classification cleaning facility which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る除去土壌の分級洗浄方法を示すフロー図である。It is a flow chart which shows the classification washing method of the removed soil which concerns on one Embodiment of this invention. (a),(b)はそれぞれ塩化カルシウムと硫酸第一鉄七水和塩とを膨潤抑制剤として用いた場合の75μmの篩を通過した分の土壌量(乾燥重量)を示す図である。(A) and (b) are diagrams showing the amount of soil (dry weight) that has passed through a 75 μm sieve when calcium chloride and ferrous sulfate heptahydrate are used as swelling inhibitors, respectively. 図12から分かる結果をまとめて示した図である。It is a figure which showed the result which can be seen from FIG.

以下、本発明の一例としての実施の形態について、図面に基づいて詳細に説明する。なお、実施の形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。また、ここでは汚染物質を含む土壌として放射性物質を含む土壌を例示する。この場合、汚染物質を含む土壌の汚染物質濃度とは放射性物質を含む土壌の放射線濃度のことである。 Hereinafter, embodiments as an example of the present invention will be described in detail with reference to the drawings. In addition, in the drawing for demonstrating the embodiment, the same constituent elements are in principle given the same reference numerals, and the repeated description thereof will be omitted. In addition, here, soil containing radioactive substances is exemplified as soil containing pollutants. In this case, the pollutant concentration of soil containing pollutants is the radiation concentration of soil containing radioactive substances.

(第1の実施の形態) (First Embodiment)

図1は国等で検討が進められている除去土壌の処理の流れを示す概念図である。 FIG. 1 is a conceptual diagram showing the flow of treatment of removed soil, which is being studied in the national government.

この処理の流れによれば除去土壌等は、放射線セシウム(Cs)濃度(汚染物質濃度、放射線濃度)に応じて土壌S1〜S4に区分され、中間貯蔵施設Fiに一時保管される。この間、減容処理等を行い、浄化物は再生資材として再利用する。また、減容処理等により生じた濃縮物は最終処分場で処分する。なお、土壌S1はCs濃度が8000Bq/kg以下、土壌S2はCs濃度が8000〜20000Bq/kg以下、土壌S3はCs濃度が200000〜80000Bq/kg以下、土壌S4はCs濃度が80000Bq/kg以上である。 According to the flow of this treatment, the removed soil and the like are classified into soils S1 to S4 according to the radiation cesium (Cs) concentration (pollutant concentration, radiation concentration), and are temporarily stored in the intermediate storage facility Fi. During this period, volume reduction treatment is performed and the purified product is reused as a recycled material. In addition, the concentrate produced by volume reduction treatment will be disposed of at the final disposal site. Soil S1 has a Cs concentration of 8000 Bq / kg or less, soil S2 has a Cs concentration of 8000 to 20000 Bq / kg or less, soil S3 has a Cs concentration of 200,000 to 80,000 Bq / kg or less, and soil S4 has a Cs concentration of 80000 Bq / kg or more. is there.

この計画によれば、土壌S1〜S4は、中間貯蔵施設Fiの受入分別施設Fsに運ばれ、分別処理が施され土壌中の異物が除去される。この分別処理においては、上記したように、高分子吸水性樹脂等を含む改質材が土壌中に添加される。分別処理後の土壌S1,S2の一部は、適宜放射能の減衰処理等が施された後、再生土壌として回収される。また、分別処理後の土壌S3は、分級洗浄施設Fcにおいて分級洗浄処理が施される。この分級洗浄処理において、例えば、75μm以上の土粒子の一群として残留したものは再生土壌として回収される。一方、上記分級洗浄処理において、例えば、75μm未満の土粒子の一群として抽出された濃縮物は、熱処理施設Ftにおいて熱処理等が施されて、スラグや焼成物になるものと、熱処理後に洗浄処理施設Fwにおいて洗浄処理等が施されて最終処分場で最終処分されるものとに分かれる。 According to this plan, the soils S1 to S4 are transported to the receiving and sorting facility Fs of the interim storage facility Fi, and are subjected to sorting treatment to remove foreign substances in the soil. In this separation treatment, as described above, a modifier containing a super absorbent polymer or the like is added to the soil. A part of the soils S1 and S2 after the separation treatment is recovered as regenerated soil after being appropriately subjected to radioactivity attenuation treatment and the like. Further, the soil S3 after the separation treatment is subjected to the classification cleaning treatment at the classification cleaning facility Fc. In this classification cleaning treatment, for example, what remains as a group of soil particles of 75 μm or more is recovered as regenerated soil. On the other hand, in the above-mentioned classification cleaning treatment, for example, the concentrate extracted as a group of soil particles of less than 75 μm is heat-treated at the heat treatment facility Ft to become slag or a calcined product, and the cleaning treatment facility after the heat treatment. It is divided into those that are subjected to cleaning treatment at Fw and are finally disposed of at the final disposal site.

図2は中間貯蔵施設における除去土壌の処理施設の要部概念図である。 FIG. 2 is a conceptual diagram of a main part of a soil removal facility in an interim storage facility.

中間貯蔵施設には、受入分別施設Fsと、分級洗浄施設Fcとが設置されている。受入分別施設Fsでは、受け入れた除去土壌に対して分別処理を施すことにより、可燃物等のような異物を除去する。分級洗浄施設Fcでは、分別処理が施された除去土壌に対して分級洗浄処理を施すことにより、例えば、粒径が約2mm以上の礫等と、粒径が約2〜0.075mmの砂等と、粒径が約0.075mm以下のシルト・粘土等とに分類する。 In the interim storage facility, a receiving sorting facility Fs and a classification cleaning facility Fc are installed. At the receiving and sorting facility Fs, foreign substances such as combustibles are removed by performing a sorting treatment on the received removed soil. In the classification cleaning facility Fc, by performing the classification cleaning treatment on the removed soil that has been subjected to the classification treatment, for example, gravel having a particle size of about 2 mm or more, sand having a particle size of about 2 to 0.075 mm, etc. And, it is classified into silt, clay, etc. with a particle size of about 0.075 mm or less.

図3は受入分別施設の一例の説明図である。 FIG. 3 is an explanatory diagram of an example of a receiving and sorting facility.

受入分別施設Fsには、除去土壌の移動方向に沿って順に、荷下ろし設備Fu、破袋設備Fbおよび分別設備Fssが設置されている。除去土壌は、フレキシブルコンテナバック等のような包材CBに収容された状態でトラックTR等に載せられて荷下ろし設備Fuに運ばれる。 In the receiving and sorting facility Fs, the unloading facility Fu, the bag breaking facility Fb, and the sorting facility Fss are installed in order along the moving direction of the removed soil. The removed soil is placed on a truck TR or the like in a state of being housed in a packaging material CB such as a flexible container bag or the like, and is carried to an unloading facility Fu.

荷下ろし設備Fuは、トラックTR等で運ばれた包材CBを受け入れ、クレーンCR等によりベルトコンベアBC1に移載する設備である。この段階では除去土壌が包材CBに収容されており外部に飛散し難いので、荷下ろし設備Fuは屋根等を有する簡単な建物内に設置されている。 The unloading facility Fu is a facility that receives the packaging material CB carried by a truck TR or the like and transfers it to the belt conveyor BC1 by a crane CR or the like. At this stage, the removed soil is contained in the packaging material CB and is difficult to scatter to the outside. Therefore, the unloading facility Fu is installed in a simple building having a roof or the like.

破袋設備Fbは、ベルトコンベアBC1で運ばれた包材CBを破袋機BMで破る設備である。破袋設備Fbやその後段の分別設備Fssは、除去土壌に因る粉塵が周囲に広がらないように屋根および周壁等を有する建屋内に設置されている。 The bag-breaking facility Fb is a facility that breaks the packaging material CB carried by the belt conveyor BC1 with the bag-breaking machine BM. The bag-breaking facility Fb and the subsequent sorting facility Fss are installed in a building having a roof, a peripheral wall, and the like so that dust due to the removed soil does not spread to the surroundings.

分別設備Fssは、破袋処理後の除去土壌から可燃物等のような異物を除去して分別する設備であり、例えば、直列に並んだ2台の篩機SV1,SV2と、各部を繋ぐ3台のベルトコンベアBC2〜BC4とを有している。すなわち、破袋機BMから排出された除去土壌等は、ベルトコンベアBC2を通じて前段の篩機SV1に収容される。この篩機SV1で包材残渣等のような異物FM1が除去された除去土壌は、ベルトコンベアBC3を通じて後段の篩機SV2に収容される。この篩機SV2で木の枝、葉または根等のような異物FM2が除去された除去土壌は、分別後の除去土壌としてベルトコンベアBC4を通じて後段に送られる。 The sorting facility Fss is a facility that removes foreign substances such as combustibles from the soil removed after the bag breaking process and sorts them. For example, two sieving machines SV1 and SV2 arranged in series are connected to each part 3 It has two belt conveyors BC2 and BC4. That is, the removed soil or the like discharged from the bag breaking machine BM is stored in the sieve machine SV1 in the previous stage through the belt conveyor BC2. The removed soil from which the foreign matter FM1 such as the packaging material residue has been removed by the sieving machine SV1 is housed in the sieving machine SV2 at the subsequent stage through the belt conveyor BC3. The removed soil from which foreign substances FM2 such as tree branches, leaves, roots, etc. have been removed by this sieve SV2 is sent to the subsequent stage as the removed soil after sorting through the belt conveyor BC4.

ところで、この分別設備Fssでは、上記したように篩機SV2前段のベルトコンベアBC3上において除去土壌に対象土壌の3wt%程度の改質材を添加、混合することにより、粘性の高い除去土壌を砂状に改質して木の枝、葉または根等を分別し易くし、例えば、粒径が20mm以下の除去土壌を効率的に回収するようにしている。 By the way, in this sorting facility Fss, as described above, by adding and mixing a modifier of about 3 wt% of the target soil to the removed soil on the belt conveyor BC3 in the front stage of the sieve SV2, the highly viscous removed soil is sanded. It is modified into a shape to facilitate the separation of tree branches, leaves, roots, etc., and for example, the removed soil having a particle size of 20 mm or less is efficiently recovered.

改質材としては、例えば、シリカ系、石膏系またはゼオライト系材料を母材として高分子吸水性樹脂や高性能凝集剤等を微量に添加した組成のものが多く使用されている。このため、上記した分別後の除去土壌中には、改質材中に配合された高分子吸水性樹脂等が微量に含まれている。 As the modifier, for example, a material having a composition in which a silica-based, gypsum-based or zeolite-based material is used as a base material and a small amount of a super absorbent polymer, a high-performance flocculant or the like is added is often used. Therefore, the superabsorbent polymer compounded in the modifier is contained in a small amount in the removed soil after the separation.

しかし、除去土壌中に高分子吸水性樹脂が含まれていると、分別処理後の分級洗浄処理に際して、除去土壌中の高分子吸水性樹脂が吸水膨張することにより篩を通過せずに目詰まりを起こさせるので、膨潤した高分子吸水性樹脂や、75μm未満の土粒子が篩を通過せず、再生土壌中に多く含まれてしまう。このように、高分子吸水性樹脂が含まれているため、常に含水率が高く、水を吸って膨張する等、再生土壌の特性が低下する虞がある。また、放射性セシウムは75μm未満の土粒子に比較的多く吸着し集積する可能性が高いので、75μm未満の土粒子が篩を通過せず再生土壌中に多く含まれることにより、改質材とともに再生土壌中に放射性セシウムが残される可能性があり、再生土壌の線量が高くなる虞がある。したがって、再生土壌の特性(粒度特性、含水率、含有Cs量による放射線濃度)が低下してしまう虞がある。 However, if the removed soil contains a superabsorbent polymer, the superabsorbent polymer in the removed soil absorbs and expands during the classification cleaning treatment after the separation treatment, so that the resin does not pass through the sieve and is clogged. Therefore, the swollen super absorbent polymer and soil particles of less than 75 μm do not pass through the sieve and are contained in a large amount in the regenerated soil. As described above, since the superabsorbent polymer is contained, the water content is always high, and there is a risk that the characteristics of the regenerated soil may deteriorate, such as absorbing water and expanding. In addition, since radioactive cesium is likely to be adsorbed and accumulated in a relatively large amount on soil particles of less than 75 μm, soil particles of less than 75 μm do not pass through the sieve and are contained in a large amount in the regenerated soil, so that they are regenerated together with the modifier. Radioactive cesium may be left in the soil, which may increase the dose of regenerated soil. Therefore, there is a risk that the characteristics of the regenerated soil (particle size characteristics, water content, radiation concentration depending on the amount of Cs contained) will deteriorate.

そこで、本実施の形態においては、分別後の除去土壌の分級洗浄処理の開始時に、高分子吸水性樹脂の含水膨潤特性を抑制(制御)する添加材として膨潤抑制剤を除去土壌中に添加する。これにより、除去土壌中の高分子吸水性樹脂の膨潤を抑制または防止することができるので、膨張した高分子吸水性樹脂に因る篩の目詰まりを低減または解消することができる。このため、残留した除去土壌に含まれる高分子吸水性樹脂の量を低減できるので、残留した除去土壌(すなわち、再生土壌)の特性(粒度特性、含水率、含有Cs量による放射線濃度)を向上させることができる。 Therefore, in the present embodiment, at the start of the classification cleaning treatment of the removed soil after separation, a swelling inhibitor is added to the removed soil as an additive for suppressing (controlling) the water-containing swelling property of the superabsorbent polymer. .. As a result, the swelling of the superabsorbent polymer resin in the removed soil can be suppressed or prevented, so that clogging of the sieve due to the expanded superabsorbent polymer resin can be reduced or eliminated. Therefore, the amount of the polymer water-absorbent resin contained in the residual removed soil can be reduced, so that the characteristics (particle size characteristics, water content, radiation concentration depending on the content of Cs) of the remaining removed soil (that is, regenerated soil) are improved. Can be made to.

また、除去土壌に添加する膨潤抑制剤の量を調整することにより、除去土壌に含まれる高分子吸水性樹脂の膨潤に因る篩の目詰まりの状態を調節することができるので、75μmの篩を通過する土粒子の一群(除去土壌)の量および75μmの篩を通過せず残留する土粒子の一群(除去土壌)の量を制御することができる。 Further, by adjusting the amount of the swelling inhibitor added to the removed soil, the state of clogging of the sieve due to the swelling of the polymer water-absorbent resin contained in the removed soil can be adjusted, so that the sieve of 75 μm The amount of a group of soil particles (removed soil) that passes through the sieve and the amount of a group of soil particles (removed soil) that remain without passing through a 75 μm sieve can be controlled.

まず、分級洗浄処理について図4を用いて説明する。図4は分級洗浄処理の原理を説明するための説明図である。なお、図4では図面を見易くするため、細粒分Pfおよび汚染物質Ph等にそれぞれ異なるハッチングを付した。汚染物質Ph等は、例えば、ヒ素等のような重金属元素や放射性物質のことである。 First, the classification cleaning process will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining the principle of the classification cleaning process. In FIG. 4, different hatches are attached to the fine particle Pf, the pollutant Ph, and the like in order to make the drawing easier to see. The pollutant Ph and the like are heavy metal elements such as arsenic and radioactive substances.

図4の左は、粗粒分Pcと細粒分Pfと汚染物質Ph等とが混合している除去土壌Scを示している。分級洗浄処理は、除去土壌Scに対して機械を用いて洗浄処理および研磨処理を施すとともに、粒径を分級することにより、汚染物質Ph等が吸着している粒径区分を分離し、または、汚染物質Ph等を洗浄液中に溶解させて、汚染物質Ph等を除去土壌Scから抽出する処理方法である。この分級洗浄処理により、図4右上の浄化済等土壌Spを得ることができるとともに、図4右下の脱水ケーキSd(汚染の濃縮)を抽出することができる。なお、浄化済等土壌Spは、定められた放射線量以下の土壌である。 The left side of FIG. 4 shows the removed soil Sc in which the coarse particle Pc, the fine particle Pf, the pollutant Ph, and the like are mixed. In the classification cleaning treatment, the removed soil Sc is subjected to cleaning treatment and polishing treatment using a machine, and the particle size is classified to separate the particle size classification on which pollutants Ph and the like are adsorbed, or This is a treatment method in which a pollutant Ph or the like is dissolved in a cleaning liquid and the pollutant Ph or the like is extracted from the removed soil Sc. By this classification washing treatment, the purified soil Sp in the upper right of FIG. 4 can be obtained, and the dehydrated cake Sd (concentration of contamination) in the lower right of FIG. 4 can be extracted. The purified soil Sp is soil with a specified radiation dose or less.

次に、上記した高分子吸水性樹脂の膨潤の原理と、その膨潤を抑制する膨潤抑制剤について図5および図6を用いて説明する。図5(a)は高分子吸水性樹脂の要部平面図、図5(b)は図5(a)の高分子吸水性樹脂の化学式を示す図、図6(a)は高分子吸水性樹脂を構成するCOO基の挙動を示す図、図6(b)は吸水前後の高分子吸水性樹脂の要部平面図である。なお、図6(b)の矢印の左が吸水前を示し、矢印の右が吸水後を示している。 Next, the principle of swelling of the super absorbent polymer described above and the swelling inhibitor that suppresses the swelling will be described with reference to FIGS. 5 and 6. 5 (a) is a plan view of a main part of the super absorbent polymer, FIG. 5 (b) is a diagram showing the chemical formula of the superabsorbent polymer of FIG. 5 (a), and FIG. 6 (a) is a polymer absorbent polymer. The figure which shows the behavior of the COO group which constitutes a resin, FIG. 6B is a plan view of the main part of a super absorbent polymer before and after water absorption. The left side of the arrow in FIG. 6B indicates before water absorption, and the right side of the arrow indicates after water absorption.

図5(a)に示すように、高分子吸水性樹脂は網目状の構造になっている。この高分子吸水性樹脂が水に接すると、図5(b)に示すように、高分子吸水性樹脂を構成するCOO基に配位されたNaイオンが水分中に溶け出してCOO基がマイナス基となる。すると、図6(a)に示すように、互いに隣り合うCOO基同士が反発し合うことで網目が膨らみ、図6(b)に示すように、網の中に水分を取り込む。これが膨潤の原理とされている。 As shown in FIG. 5A, the super absorbent polymer has a network-like structure. When this polymer water-absorbent resin comes into contact with water, as shown in FIG. 5 (b), Na ions coordinated to the COO groups constituting the polymer water-absorbent resin dissolve into the water and the COO group becomes negative. It becomes the basis. Then, as shown in FIG. 6 (a), the COO groups adjacent to each other repel each other to swell the network, and as shown in FIG. 6 (b), water is taken into the network. This is the principle of swelling.

そこで、NaイオンよりもCOO基への吸着力の高い多価陽イオンが多く存在する環境を醸成されると、COO基に再び多価陽イオンが配位され、取り込んだ水分を吐き出す挙動が生じ膨潤性能が抑制される。このため、イオン化傾向が高くCOO基との親和性がより高い多価陽イオン試薬を膨潤抑制剤として使用することで吸水膨潤した高分子吸水性樹脂から脱水させることができる。 Therefore, when an environment is created in which more polyvalent cations have a higher adsorption power to the COO group than Na ions, the polyvalent cations are coordinated again to the COO group, and the taken-in water is discharged. Swelling performance is suppressed. Therefore, by using a polyvalent cation reagent having a high ionization tendency and a higher affinity for the COO group as a swelling inhibitor, the superabsorbent polymer water-absorbent resin that has absorbed water and swelled can be dehydrated.

このような膨潤抑制剤の具体例としては、例えば、塩化カルシウムを用いることができる。塩化カルシウムの場合、安価に調達することができる。ただし、塩化カルシウムを用いた場合、脱水処理して回収された75μm未満の土粒子の一群(除去土壌)の最終処分場等への処分の際に、塩化物を含む廃棄物として受け入れが制限される場合がある。その場合は、塩化物イオンを含まない膨潤抑制剤として、例えば、硫酸第一鉄七水和塩を用いることができる。なお、膨潤抑制剤の例としては、上記膨潤抑制の原理を示す材料であれば良く、塩化カルシウムや硫酸第一鉄七水和塩に限定されるものではなく種々変更可能である。 As a specific example of such a swelling inhibitor, for example, calcium chloride can be used. In the case of calcium chloride, it can be procured at low cost. However, when calcium chloride is used, acceptance is restricted as waste containing chloride when a group of soil particles smaller than 75 μm (removed soil) recovered by dehydration is disposed of at a final disposal site, etc. May occur. In that case, for example, ferrous sulfate heptahydrate can be used as a swelling inhibitor containing no chloride ion. The swelling inhibitor may be any material that exhibits the principle of swelling inhibition, and is not limited to calcium chloride or ferrous sulfate heptahydrate, and can be changed in various ways.

次に、除去土壌のうち分級洗浄処理により75μmの篩を通過せず残留した残留分の含水率について図7および図8を参照して説明する。図7(a)は改質剤の添加率と75μmの篩を通過せず残留した残留分の含水率との関係を示す図、図7(b)は塩化カルシウムの添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、図7(c)は硫酸第一鉄七水和塩の添加率と75μmの篩を通過せず残る残留分の含水率との関係を示す図、図8は図7(b),(c)から分かる結果をまとめて示した図である。 Next, the water content of the residual portion of the removed soil that has not passed through the 75 μm sieve due to the classification washing treatment will be described with reference to FIGS. 7 and 8. FIG. 7 (a) shows the relationship between the addition rate of the modifier and the water content of the residual residue that did not pass through the 75 μm sieve, and FIG. 7 (b) shows the addition rate of calcium chloride and the 75 μm sieve. The figure showing the relationship between the water content of the residue remaining without passing through, FIG. 7 (c) shows the relationship between the addition rate of ferrous sulfate heptahydrate and the water content of the residue remaining without passing through the 75 μm sieve. FIG. 8 is a diagram showing the results that can be seen from FIGS. 7 (b) and 7 (c).

分級洗浄処理によって75μmの篩を通過せず残留した残留分の量は、改質材中に含まれる高分子吸水性樹脂の含水膨潤性に依存する。すなわち、膨潤抑制剤を用いることなく分級洗浄処理した除去土壌については高分子吸水性樹脂が膨潤して含水率が高くなる結果、75μmの篩を通過せず残留した残留分が土粒子単味よりも多くなる。実際、図7(a)に示すように、除去土壌に添加した改質材の添加率が増えるとともに、75μmの篩を通過せず残る残留分の含水率が増大し、残留分中に水分が残存する状態が生じている。例えば、2mmの篩を通過した除去土壌に改質材を3wt%添加し、膨潤抑制剤を添加しなかった場合、75μmの篩を通過せず残る残留分の含水率は54%に達している。 The amount of the residual component remaining without passing through the 75 μm sieve by the classification cleaning treatment depends on the water-containing swelling property of the superabsorbent polymer contained in the modifier. That is, as a result of the superabsorbent polymer swelling and the water content of the removed soil that has been classified and washed without using a swelling inhibitor, the residual content that does not pass through the 75 μm sieve is larger than that of the soil particles alone. Will also increase. In fact, as shown in FIG. 7 (a), as the addition rate of the modifier added to the removed soil increases, the water content of the residual component that does not pass through the 75 μm sieve increases, and the water content in the residual component increases. There is a residual condition. For example, when 3 wt% of the modifier is added to the removed soil that has passed through the 2 mm sieve and no swelling inhibitor is added, the water content of the residual residue that has not passed through the 75 μm sieve has reached 54%. ..

これに対して、発明者の検討によれば、分級洗浄処理の開始時に除去土壌中に膨潤抑制剤を添加した場合、図7(b),(c)に示すように、75μmの篩を通過せず残る残留分の含水率を下げることができた。 On the other hand, according to the study of the inventor, when the swelling inhibitor was added to the removed soil at the start of the classification washing treatment, it passed through a 75 μm sieve as shown in FIGS. 7 (b) and 7 (c). It was possible to reduce the water content of the remaining residue.

すなわち、図7(b)および図8に示すように、膨潤抑制剤として塩化カルシウムを用いた場合、75μmの篩を通過せず残る残留分の膨潤性を抑制(含水率を制御)するのに好ましい膨潤抑制剤の添加量は、例えば、0.25以上、5wt%以下であり、特に、1.0wt%の膨潤抑制剤の添加で含水率を23ポイント低減でき、膨潤抑制剤を用いない場合(含水率が54%)に対して含水率を31%に低減することができた。 That is, as shown in FIGS. 7 (b) and 8 when calcium chloride is used as the swelling inhibitor, the swelling property of the residual residue that does not pass through the 75 μm sieve is suppressed (water content is controlled). The preferable amount of the swelling inhibitor added is, for example, 0.25 or more and 5 wt% or less, and in particular, the water content can be reduced by 23 points by adding 1.0 wt% of the swelling inhibitor, and no swelling inhibitor is used. The water content could be reduced to 31% with respect to (water content of 54%).

また、図7(c)および図8に示すように、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合、75μmの篩を通過せず残る残留分の膨潤性を抑制(含水率を制御)するのに好ましい膨潤抑制剤の添加量は、例えば、0.1以上、5wt%以下であり、特に、1.5wt%または3wt%の膨潤抑制剤の添加で含水率を25ポイント低減でき、膨潤抑制剤を用いない場合(含水率が54%)に対して含水率を29%に低減することができた。 Further, as shown in FIGS. 7C and 8, when ferrous sulfate heptahydrate is used as the swelling inhibitor, the swelling property of the residual residue that does not pass through the 75 μm sieve is suppressed (moisture content). The amount of the swelling inhibitor added is preferably 0.1 or more and 5 wt% or less, and in particular, the water content is reduced by 25 points by adding 1.5 wt% or 3 wt% of the swelling inhibitor. It was possible to reduce the water content to 29% compared to the case where the swelling inhibitor was not used (water content was 54%).

このように膨潤抑制剤を用いることにより、分級洗浄処理後の除去土壌(再生土壌)の特性を向上させることができる。例えば、この75μmの篩を通過せず残る残留分を盛り土等として再利用する場合、膨潤性を抑制することができるので、水切りを容易にすることができ、締固め作業の効率やトラフィカビリティ等を向上させることができる。 By using the swelling inhibitor in this way, the characteristics of the removed soil (regenerated soil) after the classification washing treatment can be improved. For example, when the residual residue that does not pass through the 75 μm sieve is reused as an embankment or the like, the swelling property can be suppressed, so that draining can be facilitated, and the efficiency and trafficability of the compaction work, etc. Can be improved.

次に、本実施の形態の分級洗浄施設の一例を図9および図10を参照して説明する。図9および図10は本実施の形態に係る分級洗浄施設の一例の概略構成図である。なお、図9および図10において、実線の矢印は汚染物質等の流れを示し、破線の矢印は排水の流れを示し、一点鎖線の矢印は除去土壌の流れを示している。また、図9の点線の矢印は洗浄水の流れを示している。 Next, an example of the classification cleaning facility of the present embodiment will be described with reference to FIGS. 9 and 10. 9 and 10 are schematic configuration diagrams of an example of a classification cleaning facility according to the present embodiment. In FIGS. 9 and 10, the solid line arrow indicates the flow of pollutants and the like, the broken line arrow indicates the drainage flow, and the alternate long and short dash line arrow indicates the flow of the removed soil. The dotted arrow in FIG. 9 indicates the flow of wash water.

図9に示すように、分級洗浄施設Fcは、洗浄処理装置WMと、分級処理装置CMと、分離処理装置DMと、脱水処理装置DHMと、排水処理装置DWMとを有している。 As shown in FIG. 9, the classification cleaning facility Fc includes a cleaning treatment device WM, a classification treatment device CM, a separation treatment device DM, a dehydration treatment device DHM, and a wastewater treatment device DWM.

洗浄処理装置WMは、例えば、ドラムウォッシャで構成されている。この洗浄処理装置WMは、ドラムD内に散水しながらドラムDを回転させることでドラムD内に収容された除去土壌Scに対して洗浄処理および研磨処理を施す装置である。本実施の形態では、例えば、洗浄処理装置WMのドラムD内に上記した膨潤抑制剤が投入される。 The cleaning processing apparatus WM is composed of, for example, a drum washer. This cleaning treatment device WM is a device that performs cleaning treatment and polishing treatment on the removed soil Sc contained in the drum D by rotating the drum D while sprinkling water in the drum D. In the present embodiment, for example, the above-mentioned swelling inhibitor is put into the drum D of the cleaning treatment apparatus WM.

分級処理装置CMは、分級処理を行う装置であり、例えば、図示しない振動篩機とサイクロンとを一体で備えている。洗浄処理装置WMから送られた泥水は、分級処理装置CMのサイクロンで遠心分離される。この分離された重い土壌部分が分級処理装置CMの振動篩機にかけられ水切りされる。すなわち、振動篩機の網に落ちた土砂は、網の上を横方向に移動しながら水切れが行われ、やがて網の端からこぼれ落ちる。また、振動篩機で水切りされた水が、洗浄処理装置WMから次々に送られる泥水に混合されて再びサイクロンに供給されるようになっている。ここでは、例えば、75μm未満の土粒子の一群を抽出して後段に送る一方、75μm以上の土粒子の一群を浄化済等土壌Spとして得る。上記ドラムウォッシャや振動篩機に代えて、例えば、トロンメルやハイメッシュセパレータを用いても良い。また、分級洗浄性能を向上させるため分級処理装置CMとして、例えば、泡浮遊式分離装置や重力式分離装置を用いても良い。 The classification processing device CM is a device that performs classification processing, and for example, a vibrating sieve (not shown) and a cyclone are integrally provided. The muddy water sent from the cleaning treatment device WM is centrifuged by the cyclone of the classification treatment device CM. This separated heavy soil portion is placed on a vibrating sieve of the classification treatment device CM and drained. That is, the earth and sand that has fallen on the net of the vibrating sieve is drained while moving laterally on the net, and eventually spills from the edge of the net. Further, the water drained by the vibrating sieve is mixed with the muddy water sent one after another from the cleaning treatment apparatus WM and supplied to the cyclone again. Here, for example, a group of soil particles having a size of less than 75 μm is extracted and sent to the subsequent stage, while a group of soil particles having a size of 75 μm or more is obtained as purified soil Sp. Instead of the drum washer and the vibrating sieve, for example, a trommel or a high mesh separator may be used. Further, in order to improve the classification cleaning performance, for example, a bubble floating type separation device or a gravity type separation device may be used as the classification processing device CM.

分離処理装置DMは、例えば、シックナーで構成されている。分離処理装置DMは、分級処理装置CMから送られた泥水中の個体粒子を泥漿として分離する装置である。個体粒子は分離処理装置DMの処理槽Tの底に沈殿し、上澄み液は処理槽T内に貯えられるようになっている。 The separation processing apparatus DM is composed of, for example, a thickener. The separation processing device DM is a device that separates solid particles in muddy water sent from the classification processing device CM as slurry. The solid particles settle on the bottom of the treatment tank T of the separation treatment apparatus DM, and the supernatant liquid is stored in the treatment tank T.

脱水処理装置DHMは、例えば、フィルタプレスで構成されている。脱水処理装置DHMでは、泥状の微粒分を袋状のフィルタに充填した状態で高圧を加えることで脱水し、脱水ケーキSdとして取り出すようになっている。フィルタプレスに代えて、例えば、ベルトプレスを用いても良い。 The dehydration processing apparatus DHM is composed of, for example, a filter press. In the dehydration processing apparatus DHM, the mud-like fine particles are filled in a bag-shaped filter and dehydrated by applying a high pressure, and the dehydrated cake Sd is taken out. For example, a belt press may be used instead of the filter press.

排水処理装置DWMは、脱水処理装置DHMから送られた排水(汚染物質を含む)を浄化する装置である。排水処理装置DWMで浄化された浄化水は、再び洗浄処理装置WMや分級処理装置CMに送られる。 The wastewater treatment device DWM is a device that purifies the wastewater (including pollutants) sent from the dehydration treatment device DHM. The purified water purified by the wastewater treatment device DWM is sent to the cleaning treatment device WM and the classification treatment device CM again.

図10に示す分級洗浄施設Fcの構成は図9とほぼ同じである。こでは、排水の流れが若干異なっている。すなわち、分離処理装置DMで得られた洗浄水を洗浄処理装置WMや分級処理装置CMに供給するとともに、脱水処理装置DHMで得られた排水(汚染物質を含む)を分離処理装置DMに供給するようになっている。 The configuration of the classification cleaning facility Fc shown in FIG. 10 is almost the same as that in FIG. Here, the drainage flow is slightly different. That is, the washing water obtained by the separation treatment device DM is supplied to the cleaning treatment device WM and the classification treatment device CM, and the waste water (including pollutants) obtained by the dehydration treatment device DHM is supplied to the separation treatment device DM. It has become like.

次に、本実施の形態の除去土壌の分級洗浄方法の一例について図9を参照しながら図11のフロー図に沿って説明する。図11は本実施の形態の除去土壌の分級洗浄方法を示すフロー図である。 Next, an example of the classification cleaning method of the removed soil of the present embodiment will be described with reference to FIG. 9 along with the flow chart of FIG. FIG. 11 is a flow chart showing a method for classifying and cleaning the removed soil according to the present embodiment.

まず、除去土壌Sc、水および膨潤抑制剤を洗浄処理装置WMのドラムD内に投入した後、ドラムDを回転させることで混合攪拌し、ドラムD内の除去土壌Scを洗浄および研磨する(図11の工程100)。 First, the removed soil Sc, water, and the swelling inhibitor are put into the drum D of the cleaning treatment device WM, and then the drum D is rotated to mix and stir to wash and polish the removed soil Sc in the drum D (FIG. 11 steps 100).

続いて、洗浄処理後の除去土壌(泥水)を分級処理装置CMに送り、分級処理を施すことにより、75μm未満の土粒子(細粒分Pf(図4参照))の一群を抽出する一方、75μm以上の土粒子(粗粒分Pc(図4参照))の一群を残留分として取り出す(図11の工程101)。この残留分は浄化確認調査により基準適合が確認された後、浄化済等土壌Sp(再生土壌)となる(図11の工程102)。 Subsequently, the removed soil (muddy water) after the washing treatment is sent to the classification treatment device CM, and the classification treatment is performed to extract a group of soil particles (fine particle Pf (see FIG. 4)) having a size of less than 75 μm. A group of soil particles (coarse particle Pc (see FIG. 4)) having a thickness of 75 μm or more is taken out as a residual component (step 101 in FIG. 11). After the conformity with the standard is confirmed by the purification confirmation survey, this residual amount becomes the purified soil Sp (regenerated soil) (step 102 in FIG. 11).

その後、分級処理装置CMを通過し、汚染が濃縮された細粒分Pf(図4参照)は分離処理装置DMにおいて凝集沈殿を経て脱水処理装置DHMにおいて脱水処理が施され(図11の工程103)、脱水ケーキSdとして排出される。この脱水ケーキSdは、汚染が濃縮していることから汚染土壌として取り扱われ、再処理汚染土壌処理施設等へ搬出される(図11の工程104)。 After that, the fine-grained Pf (see FIG. 4) that has passed through the classification treatment device CM and has concentrated contamination is coagulated and precipitated in the separation treatment device DM, and then dehydrated in the dehydration treatment device DHM (step 103 in FIG. 11). ), It is discharged as a dehydrated cake Sd. Since the dewatered cake Sd is highly contaminated, it is treated as contaminated soil and carried out to a retreated contaminated soil treatment facility or the like (step 104 in FIG. 11).

このように本実施の形態においては、上記したように除去土壌の分級洗浄処理の開始時に除去土壌中に膨潤抑制剤を添加したことにより、除去土壌に含まれる高分子吸水性樹脂の膨潤を抑制または防止することができるので、膨張した高分子吸水性樹脂に因る篩の目詰まりを低減または解消することができる。 As described above, in the present embodiment, the swelling of the superabsorbent polymer contained in the removed soil is suppressed by adding the swelling inhibitor to the removed soil at the start of the classification cleaning treatment of the removed soil as described above. Alternatively, since it can be prevented, clogging of the sieve due to the expanded polymer water-absorbent resin can be reduced or eliminated.

このため、浄化済等土壌Sp中に残留する改質材(高分子吸水性樹脂)の量を低減できるので、浄化済等土壌Sp(再生土壌)の特性(例えば、粒度特性および含水率)を向上させることができる。 Therefore, the amount of the modifier (polymer water-absorbent resin) remaining in the purified soil Sp can be reduced, so that the characteristics (for example, particle size characteristics and water content) of the purified soil Sp (regenerated soil) can be improved. Can be improved.

また、分級洗浄処理時に篩の目詰まりが低減または解消されることにより、分級洗浄処理によって75μm未満の土粒子をより多く通過させることができるので、浄化済等土壌Sp(再生土壌)中に含まれる75μm未満の土粒子の量を低減できる。すなわち、75μm未満の土粒子に比較的多く吸着し集積する可能性の高いCsの量を低減できるので、浄化済等土壌Spの線量を低くすることができる。このため、浄化済等土壌Spの特性を向上(例えば、含有Cs量による放射線濃度を低下)させることができる。 In addition, since clogging of the sieve is reduced or eliminated during the classification cleaning treatment, more soil particles of less than 75 μm can be passed through the classification cleaning treatment, so that the soil is included in the purified soil Sp (regenerated soil). The amount of soil particles smaller than 75 μm can be reduced. That is, since the amount of Cs that is likely to be adsorbed and accumulated in a relatively large amount on soil particles of less than 75 μm can be reduced, the dose of purified soil Sp can be reduced. Therefore, it is possible to improve the characteristics of the purified soil Sp (for example, reduce the radiation concentration depending on the amount of Cs contained).

(第2の実施の形態) (Second Embodiment)

一般的に、75μmの篩を通過する土粒子にCsが多く吸着されていることが知られているが、上記実施の形態によれば、分級洗浄処理の過程において膨潤抑制剤の添加量を調整すると、除去土壌に含まれる高分子吸水性樹脂の膨潤に因る篩の目詰まりの状態を調節することができるので、75μmの篩を通過する土壌の量を制御することができる。すなわち、膨潤抑制剤の添加量を調整することで、75μmの篩を通過せず残る残留分の土壌(再生土壌)に含まれるCsの多寡を調整することができる。 Generally, it is known that a large amount of Cs is adsorbed on soil particles passing through a 75 μm sieve, but according to the above embodiment, the amount of the swelling inhibitor added is adjusted in the process of the classification cleaning treatment. Then, since the state of clogging of the sieve due to the swelling of the polymer water-absorbent resin contained in the removed soil can be adjusted, the amount of soil passing through the 75 μm sieve can be controlled. That is, by adjusting the amount of the swelling inhibitor added, the amount of Cs contained in the residual soil (regenerated soil) that does not pass through the 75 μm sieve can be adjusted.

ここで、図12(a),(b)はそれぞれ塩化カルシウムと硫酸第一鉄七水和塩とを膨潤抑制剤として用いた場合の75μmの篩を通過した分の土壌量(乾燥重量)を示している。また、図13は図12から分かる結果をまとめて示した図である。 Here, FIGS. 12 (a) and 12 (b) show the amount of soil (dry weight) that passed through a 75 μm sieve when calcium chloride and ferrous sulfate heptahydrate were used as swelling inhibitors, respectively. Shown. Further, FIG. 13 is a diagram showing the results obtained from FIG. 12 collectively.

図12(a)および図13に示すように、膨潤抑制剤として塩化カルシウムを用いた場合において、膨潤抑制剤の添加量が、例えば、0.25以上、1wt%未満では、75μmの篩を通過する土壌量が相対的に少なくなり、特に、膨潤抑制剤の添加量が0.75wt%で、75μmの篩を通過する土壌量が最小(56%減)となる。この場合は、75μmの篩を通過せず残る残留分が多くなるので、再生土壌におけるCs量の低減効果が抑制される。 As shown in FIGS. 12A and 13, when calcium chloride is used as the swelling inhibitor, when the amount of the swelling inhibitor added is, for example, 0.25 or more and less than 1 wt%, it passes through a 75 μm sieve. The amount of soil to be added is relatively small, and in particular, the amount of the swelling inhibitor added is 0.75 wt%, and the amount of soil passing through the 75 μm sieve is the minimum (56% reduction). In this case, since the residual amount remaining without passing through the 75 μm sieve increases, the effect of reducing the amount of Cs in the regenerated soil is suppressed.

また、膨潤抑制剤として塩化カルシウムを用いた場合において、膨潤抑制剤の添加量が、例えば、1以上、5wt%未満では、75μmの篩を通過する土壌量が相対的に多くなり、特に、膨潤抑制剤の添加量が3wt%で、75μmの篩を通過する土壌量が最大(24%増)となる。この場合は、75μmの篩を通過せず残る残留分が少なくなるので、再生土壌におけるCs量の低減効果が促進される。 Further, when calcium chloride is used as the swelling inhibitor, if the amount of the swelling inhibitor added is, for example, 1 or more and less than 5 wt%, the amount of soil passing through the 75 μm sieve becomes relatively large, and in particular, swelling. The amount of the inhibitor added is 3 wt%, and the amount of soil passing through the 75 μm sieve is the maximum (24% increase). In this case, the residual amount that does not pass through the 75 μm sieve is reduced, so that the effect of reducing the amount of Cs in the regenerated soil is promoted.

一方、図12(b)および図13に示すように、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合において、膨潤抑制剤の添加量が、例えば、0.1以上、0.5wt%未満では、75μmの篩を通過する土壌量が相対的に少なくなり、特に、膨潤抑制剤の添加量が0.1wt%で、75μmの篩を通過する土壌量が最小(38%減)となる。この場合は、75μmの篩を通過せず残る残留分が多くなるので、再生土壌におけるCs量の低減効果が抑制される。 On the other hand, as shown in FIGS. 12B and 13, when ferrous sulfate heptahydrate is used as the swelling inhibitor, the amount of the swelling inhibitor added is, for example, 0.1 or more, 0. When it is less than 5 wt%, the amount of soil passing through the 75 μm sieve is relatively small, and in particular, when the amount of the swelling inhibitor added is 0.1 wt%, the amount of soil passing through the 75 μm sieve is the minimum (38% reduction). It becomes. In this case, since the residual amount remaining without passing through the 75 μm sieve increases, the effect of reducing the amount of Cs in the regenerated soil is suppressed.

また、膨潤抑制剤として硫酸第一鉄七水和塩を用いた場合において、膨潤抑制剤の添加量が、例えば、1.5以上、3wt%以下では、75μmの篩を通過する土壌量が相対的に多くなり、特に、膨潤抑制剤の添加量が1.5wt%で、75μmの篩を通過する土壌量が最大(108%増)となる。この場合は、75μmの篩を通過せず残る残留分が少なくなるので、再生土壌におけるCs量の低減効果が促進される。 Further, when ferrous sulfate heptahydrate is used as the swelling inhibitor, when the amount of the swelling inhibitor added is, for example, 1.5 or more and 3 wt% or less, the amount of soil passing through the 75 μm sieve is relative. In particular, the amount of the swelling inhibitor added is 1.5 wt%, and the amount of soil passing through the 75 μm sieve is the maximum (up 108%). In this case, the residual amount that does not pass through the 75 μm sieve is reduced, so that the effect of reducing the amount of Cs in the regenerated soil is promoted.

このように、膨潤抑制剤の未添加(添加材量=0wt%)の土壌に比して、75μmの篩を通過する土壌量が少なくなる、または、多くなるときの膨潤抑制剤の添加量を判別することができるが、その膨潤抑制剤の添加量は、再生土壌中のCs量を抑制または促進させる境界値となることが理解できる。 In this way, the amount of the swelling inhibitor added when the amount of soil passing through the 75 μm sieve is smaller or larger than that of the soil without the swelling inhibitor added (additive amount = 0 wt%). Although it can be discriminated, it can be understood that the amount of the swelling inhibitor added is a boundary value that suppresses or promotes the amount of Cs in the regenerated soil.

このことと、Cs含有土壌の再利用の前提が8000Bq/kgを超えないものとされていることから、本実施の形態においては、8000Bq/kg以下の土壌と、それを超える土壌とで膨潤抑制剤の添加量を変えるようにする。これにより、合理的な浄化処理を実施することが可能になる。以下、それぞれの場合について適用例を説明する。 Since this and the premise of reuse of soil containing Cs is not to exceed 8000 Bq / kg, in the present embodiment, swelling is suppressed in soil of 8000 Bq / kg or less and soil exceeding 8000 Bq / kg. Try to change the amount of the agent added. This makes it possible to carry out rational purification treatment. An application example will be described below for each case.

まず、分級洗浄処理対象が比較的Cs濃度の高い土壌(図1の土壌S2,S3等)の場合において用いる膨潤抑制剤の添加方法を説明する。 First, a method of adding a swelling inhibitor used when the target of the classification cleaning treatment is soil having a relatively high Cs concentration (soils S2, S3, etc. in FIG. 1) will be described.

この場合は、膨潤抑制剤として塩化カルシウムを用いる場合、その添加量を、例えば、1以上、5wt%以下の範囲とする。また、膨潤抑制剤として硫酸第一鉄七水和塩を用いる場合、その添加量を、例えば、0.5以上、3wt%以下の範囲とする。これにより、分級洗浄処理時に篩を通過する75μm未満の土粒子を多くすることができるので、再生土壌(75μmの篩を通過せず残る残留分)のCs濃度を低減することができる。 In this case, when calcium chloride is used as the swelling inhibitor, the amount of calcium chloride added is, for example, in the range of 1 or more and 5 wt% or less. When ferrous sulfate heptahydrate is used as the swelling inhibitor, the amount added thereof is, for example, in the range of 0.5 or more and 3 wt% or less. As a result, it is possible to increase the number of soil particles having a size of less than 75 μm that pass through the sieve during the classification cleaning treatment, so that the Cs concentration of the regenerated soil (residual residue that does not pass through the 75 μm sieve) can be reduced.

次に、分級洗浄処理対象が比較的Cs濃度の低い土壌(図1の土壌S1等)の場合において用いる膨潤抑制剤の添加方法を説明する。 Next, a method of adding the swelling inhibitor used when the target of the classification cleaning treatment is soil having a relatively low Cs concentration (soil S1 or the like in FIG. 1) will be described.

この場合は、膨潤抑制剤として塩化カルシウムを用いる場合、その添加量を、例えば、0.25以上、1wt%未満の範囲とする。また、膨潤抑制剤として硫酸第一鉄七水和塩を用いる場合、その添加量を、例えば、0.1以上、0.5wt%未満の範囲とする。これにより、分級洗浄処理時に篩を通過する75μm未満の土粒子を少なくすることができるので、再生土壌(75μmの篩を通過せず残る残留分)を増加させることができる。 In this case, when calcium chloride is used as the swelling inhibitor, the amount of calcium chloride added is, for example, in the range of 0.25 or more and less than 1 wt%. When ferrous sulfate heptahydrate is used as the swelling inhibitor, the amount added thereof is, for example, in the range of 0.1 or more and less than 0.5 wt%. As a result, it is possible to reduce the amount of soil particles having a size of less than 75 μm that passes through the sieve during the classification washing process, so that the amount of regenerated soil (residual residue that does not pass through the 75 μm sieve) can be increased.

(第3の実施の形態) (Third Embodiment)

上記第1の実施の形態においては、土壌S3(図1参照)を対象の除去土壌とした場合について説明した。ここで、土壌S1,S2については洗浄処理が施されないものの中間貯蔵施設Fi(図1参照)に運び込まれて改質材を添加して異物除去処理が施された後に中間貯蔵施設Fiにて保管されつつある。また、この土壌は30年以内に掘り出されて再利用か最終処分場に搬出されることが法律で決められている。そして、土壌S1,S2についても貯蔵保管中の水分の影響や掘り出し後の水分との接触により膨潤性が顕在化することが想定される。 In the first embodiment described above, the case where the soil S3 (see FIG. 1) is used as the target removed soil has been described. Here, although the soils S1 and S2 are not washed, they are carried to the interim storage facility Fi (see FIG. 1), the modifier is added, and the foreign matter is removed, and then the soil is stored in the interim storage facility Fi. Is being done. In addition, it is legally required that this soil be excavated within 30 years and reused or transported to a final disposal site. It is also assumed that the soils S1 and S2 also have swelling properties due to the influence of water during storage and contact with water after excavation.

そこで、本実施の形態においては、分級洗浄処理が施されない土壌S1,S2においても土壌S1,S2を掘り出した後に膨潤抑制剤を添加し攪拌する。これにより、土壌S1,S2での膨潤を抑制できる。また、土壌S1,S2の特性(例えば、粒度特性および含水率)を向上させることができる。 Therefore, in the present embodiment, even in the soils S1 and S2 that are not subjected to the classification cleaning treatment, the swelling inhibitor is added and stirred after the soils S1 and S2 are dug out. As a result, swelling in soils S1 and S2 can be suppressed. In addition, the characteristics of soils S1 and S2 (for example, particle size characteristics and water content) can be improved.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって、開示された技術に限定されるものではない。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載に従って解釈されるべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲の要旨を逸脱しない限りにおけるすべての変更が含まれる。 Although the invention made by the present inventor has been specifically described above based on the embodiments, the embodiments disclosed in the present specification are exemplary in all respects and are limited to the disclosed technology. is not. That is, the technical scope of the present invention is not limitedly interpreted based on the description in the above-described embodiment, but should be interpreted according to the description of the claims, and the scope of claims. All changes are included as long as they do not deviate from the description technology and the technology equivalent to the above and the gist of the claims.

以上の説明では、本発明の汚染土壌の分級洗浄処理方法を除去土壌の分級洗浄処理方法に適用した場合について説明したが、例えば、脱水汚泥等のような産業廃棄物処理においても高分子吸水性樹脂を含む処理剤が使用されている場合もあるので、その場合の膨潤抑制対策として適用することができる。 In the above description, the case where the classification cleaning treatment method for contaminated soil of the present invention is applied to the classification cleaning treatment method for removed soil has been described, but for example, even in the treatment of industrial waste such as dehydrated sludge, high molecular weight water absorption. Since a treatment agent containing a resin may be used, it can be applied as a measure for suppressing swelling in that case.

Fi 中間貯蔵施設
Fs 受入分別施設
Fc 分級洗浄施設
BM 破袋機
SV1,SV2 篩機
BC1〜BC4 ベルトコンベア
WM 洗浄処理装置
CM 分級処理装置
DM 分離処理装置
DHM 脱水処理装置
DWM 排水処理装置
S1〜S4 土壌
Sc 除去土壌
Sp 浄化済等土壌
Sd 脱水ケーキ
Pf 細粒分
Pc 粗粒分
Ph 汚染物質
Fi Intermediate storage facility Fs receiving and sorting facility Fc classification washing facility BM bag breaking machine SV1, SV2 sieving machine BC1 to BC4 Belt conveyor WM washing treatment device CM classification treatment device DM separation treatment device DHM dehydration treatment device DWM wastewater treatment device S1 to S4 soil Sc-removed soil Sp Purified soil Sd Dewatered cake Pf Fine grain Pc Coarse grain Ph Contaminant

Claims (10)

高分子吸水性樹脂を含む汚染土壌の分級洗浄処理の開始時に、前記汚染土壌に膨潤抑制剤を添加することを特徴とする汚染土壌の分級洗浄方法。 A method for classifying and cleaning contaminated soil, which comprises adding a swelling inhibitor to the contaminated soil at the start of the classification and cleaning treatment of contaminated soil containing a polymer water-absorbent resin. 前記膨潤抑制剤の添加量を変えることにより、前記分級洗浄処理において篩を通過する土粒子の量および前記篩を通過せず残留する土粒子の量を制御することを特徴とする請求項1記載の汚染土壌の分級洗浄方法。 The first aspect of claim 1, wherein the amount of soil particles that pass through the sieve and the amount of soil particles that do not pass through the sieve and remain in the classification cleaning treatment are controlled by changing the amount of the swelling inhibitor added. How to classify and clean contaminated soil. 前記汚染土壌が除去土壌であり、前記除去土壌のうち、汚染物質濃度が相対的に高い除去土壌に添加する前記膨潤抑制剤の添加量を、前記汚染物質濃度が相対的に低い除去土壌に添加する前記膨潤抑制剤の添加量よりも多くすることを特徴とする請求項1または2記載の汚染土壌の分級洗浄方法。 The contaminated soil is the removed soil, and the amount of the swelling inhibitor added to the removed soil having a relatively high pollutant concentration is added to the removed soil having a relatively low pollutant concentration. The method for classifying and cleaning contaminated soil according to claim 1 or 2, wherein the amount is larger than the amount of the swelling inhibitor added. 前記膨潤抑制剤は塩化カルシウムまたは硫酸第一鉄七水和塩を含むことを特徴とする請求項1〜3のいずれか1項に記載の汚染土壌の分級洗浄方法。 The method for classifying and cleaning contaminated soil according to any one of claims 1 to 3, wherein the swelling inhibitor contains calcium chloride or ferrous sulfate heptahydrate. 前記膨潤抑制剤は塩化カルシウムを含み、前記塩化カルシウムの添加量は、0.25〜5wt%であることを特徴とする請求項1記載の汚染土壌の分級洗浄方法。 The method for classifying and cleaning contaminated soil according to claim 1, wherein the swelling inhibitor contains calcium chloride, and the amount of calcium chloride added is 0.25 to 5 wt%. 前記塩化カルシウムの添加量は、1〜5wt%であることを特徴とする請求項5記載の汚染土壌の分級洗浄方法。 The method for classifying and cleaning contaminated soil according to claim 5, wherein the amount of calcium chloride added is 1 to 5 wt%. 前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記硫酸第一鉄七水和塩の添加量は、0.1〜5wt%であることを特徴とする請求項1記載の汚染土壌の分級洗浄方法。 The contaminated soil according to claim 1, wherein the swelling inhibitor contains ferrous sulfate heptahydrate, and the amount of the ferrous sulfate heptahydrate added is 0.1 to 5 wt%. Classification cleaning method. 前記硫酸第一鉄七水和塩の添加量は、0.5〜3wt%であることを特徴とする請求項7記載の汚染土壌の分級洗浄方法。 The method for classifying and cleaning contaminated soil according to claim 7, wherein the amount of ferrous sulfate heptahydrate added is 0.5 to 3 wt%. 前記膨潤抑制剤は塩化カルシウムを含み、前記汚染物質濃度が相対的に低い除去土壌に添加する塩化カルシウムの添加量は、0.25〜1wt%であり、前記汚染物質濃度が相対的に高い除去土壌に添加する塩化カルシウムの添加量は、1〜5wt%であることを特徴とする請求項3記載の汚染土壌の分級洗浄方法。 The swelling inhibitor contains calcium chloride, and the amount of calcium chloride added to the removed soil having a relatively low pollutant concentration is 0.25 to 1 wt%, and the removal having a relatively high pollutant concentration. The method for classifying and cleaning contaminated soil according to claim 3, wherein the amount of calcium chloride added to the soil is 1 to 5 wt%. 前記膨潤抑制剤は硫酸第一鉄七水和塩を含み、前記汚染物質濃度が相対的に低い除去土壌に添加する硫酸第一鉄七水和塩の添加量は、0.1〜0.5wt%であり、前記汚染物質濃度が相対的に高い除去土壌に添加する硫酸第一鉄七水和塩の添加量は、0.5〜3wt%であることを特徴とする請求項3記載の汚染土壌の分級洗浄方法。 The swelling inhibitor contains ferrous sulfate heptahydrate, and the amount of ferrous sulfate heptahydrate added to the removed soil having a relatively low concentration of pollutants is 0.1 to 0.5 wt. The contamination according to claim 3, wherein the amount of ferrous sulfate heptahydrate added to the removed soil having a relatively high concentration of pollutants is 0.5 to 3 wt%. Classification cleaning method of soil.
JP2019065336A 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil Active JP7217581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065336A JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065336A JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Publications (2)

Publication Number Publication Date
JP2020163265A true JP2020163265A (en) 2020-10-08
JP7217581B2 JP7217581B2 (en) 2023-02-03

Family

ID=72715512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065336A Active JP7217581B2 (en) 2019-03-29 2019-03-29 Method for classifying and cleaning polluted soil

Country Status (1)

Country Link
JP (1) JP7217581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112718832A (en) * 2020-12-17 2021-04-30 徐州云乐环保设备科技有限公司 Self-dispersion remediation method for heavy metal contaminated soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328321A (en) * 2005-05-30 2006-12-07 Nippon Shokubai Co Ltd Method for granulating water-containing soil and agent for treating water-containing soil
JP2013092428A (en) * 2011-10-25 2013-05-16 Shimizu Corp Cleaning processing method for radioactive material contaminated soil
JP2019021336A (en) * 2018-10-03 2019-02-07 パイオニア株式会社 Server device, terminal device, information presentation system, information presentation method, information presentation program, and recording medium
JP2019103989A (en) * 2017-12-14 2019-06-27 清水建設株式会社 Cleaning classification processing method of contaminated soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328321A (en) * 2005-05-30 2006-12-07 Nippon Shokubai Co Ltd Method for granulating water-containing soil and agent for treating water-containing soil
JP2013092428A (en) * 2011-10-25 2013-05-16 Shimizu Corp Cleaning processing method for radioactive material contaminated soil
JP2019103989A (en) * 2017-12-14 2019-06-27 清水建設株式会社 Cleaning classification processing method of contaminated soil
JP2019021336A (en) * 2018-10-03 2019-02-07 パイオニア株式会社 Server device, terminal device, information presentation system, information presentation method, information presentation program, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112718832A (en) * 2020-12-17 2021-04-30 徐州云乐环保设备科技有限公司 Self-dispersion remediation method for heavy metal contaminated soil

Also Published As

Publication number Publication date
JP7217581B2 (en) 2023-02-03

Similar Documents

Publication Publication Date Title
CN102745872B (en) Treatment method and device for riverway and lake heavy metal pollution bottom sludge
CN104475441B (en) A kind of Soil leaching repair system and method thereof concentrating design concept based on decrement
EP0605136B1 (en) Method for remediating soil containing radioactive contaminants
CA2041727A1 (en) Method and apparatus for cleaning contaminated particulate material
JP2009202089A (en) Reclamation treatment method and reclamation treatment system of earth and sand-waste mixture
CN105750316A (en) Method for washing and remedying soil at different positions in engineering multi-level sieving manner
JP2013164379A (en) Processor for radiation-contaminated soil
CN204220613U (en) A kind of Soil leaching equipment
CA2788671A1 (en) Method for treating and conditioning tailings
JP2015229124A (en) Detoxification treatment method for contaminated soil
CN104275341A (en) Treatment method for heavy metal polluted sediment
JP2020163265A (en) Classification cleaning treatment method of contaminated soil
JP2006255515A (en) Method for decontaminating soil contaminated with heavy metal
JP4697719B2 (en) Method for purifying contaminated soil and separation apparatus used therefor
JP2009125610A (en) Method for cleaning contaminated soil
JP2013108758A (en) Method for decontaminating radiation-contaminated soil
JP3968752B2 (en) Purification method for heavy metal contaminated soil
JP2019103989A (en) Cleaning classification processing method of contaminated soil
JP2011255261A (en) Treatment method of construction sludge and reclaimed sand from construction sludge
JP4351930B2 (en) How to clean contaminated soil
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
KR101129876B1 (en) Complex method for remediation of soil being contaminated by highly concentrated heavy metal
Chilcote et al. 9 DEVELOPMENT OF A SOIL WASHING SYSTEM
CN113683274A (en) System and method for ex-situ treatment of sludge in urban pipe gallery
JP3444395B2 (en) Oil contaminated soil treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7217581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150