JP2015229124A - Detoxification treatment method for contaminated soil - Google Patents

Detoxification treatment method for contaminated soil Download PDF

Info

Publication number
JP2015229124A
JP2015229124A JP2014115083A JP2014115083A JP2015229124A JP 2015229124 A JP2015229124 A JP 2015229124A JP 2014115083 A JP2014115083 A JP 2014115083A JP 2014115083 A JP2014115083 A JP 2014115083A JP 2015229124 A JP2015229124 A JP 2015229124A
Authority
JP
Japan
Prior art keywords
soil
iron powder
contaminated soil
mass
magnetic separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014115083A
Other languages
Japanese (ja)
Other versions
JP5647371B1 (en
Inventor
勝 友口
Masaru Tomoguchi
勝 友口
俊輔 吉
Toshisuke Yoshi
俊輔 吉
成雄 日野
Shigeo Hino
成雄 日野
雅美 鎌田
Masami Kamata
雅美 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2014115083A priority Critical patent/JP5647371B1/en
Application granted granted Critical
Publication of JP5647371B1 publication Critical patent/JP5647371B1/en
Priority to TW104114525A priority patent/TWI673096B/en
Publication of JP2015229124A publication Critical patent/JP2015229124A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detoxification method for contaminated soil capable of easily and effectively utilizing contaminated soil as purified soil by dry treatment without using a large quantity of water.SOLUTION: Provided is a detoxification method for contaminated soil comprising: an iron powder addition step where iron powder is added to contaminated soil including at least one kind of contaminated substance selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyanogen, fluorine and boron; a moisture content regulation step where the moisture content of the contaminated soil before electromagnetic separation is regulated to 36 mass% or lower; and a dry magnetic separation step where the iron powder is recovered and removed from the contaminated soil having a moisture content of 36 mass% or lower by dry magnetic separation.

Description

本発明は、汚染土壌の無害化処理方法に関する。   The present invention relates to a detoxification method for contaminated soil.

近年、景気浮揚等に伴いトンネル工事や再開発工事の着手が多くなってきている。これに伴って発生する残土の捨て場の確保が問題となっている。前記残土中には砒素をはじめとする自然由来の汚染物質による汚染土壌も含まれ、その対応方法が課題となっている。前記汚染土壌の特徴として、汚染物質の含有量が土壌汚染対策法に規定されている含有量基準に比較して、比較的微量である一方、溶出量基準を数倍〜数10倍程度超過するという傾向がある。   In recent years, tunnel construction and redevelopment construction have begun to increase with the rise of the economy. Along with this, securing a dumping site for the remaining soil is a problem. The remaining soil includes soil contaminated with naturally occurring pollutants such as arsenic, and there is a problem with how to deal with it. As a characteristic of the contaminated soil, the content of the pollutant is relatively small compared to the content standard stipulated in the Soil Contamination Countermeasures Law, but exceeds the elution standard by several to several tens of times. There is a tendency.

このような汚染土壌の発生場所の近傍、例えば、道路工事の場合は路体等に遮水性のシート又はコンクリート等で遮水性の封じ込め施設を設置し、前記施設に汚染土壌をそのまま埋め立て管理する方法が報告されている(非特許文献1参照)。しかし、前記方法では、定期的なモニタリング及び施設管理が必要であり、根本的な対策とは言えない。また、設置場所の確保及び周辺住民の了解を得ることが難しいという課題がある。更に、汚染土壌の仮置き場から汚染が浸透して、周辺の地下水汚染が生じるという問題が発生している。   In the vicinity of such contaminated soil generation place, for example, in the case of road construction, a method of installing a water-blocking containment facility with a water-blocking sheet or concrete on a road body etc., and managing the landfill of the contaminated soil as it is Has been reported (see Non-Patent Document 1). However, this method requires periodic monitoring and facility management, and is not a fundamental measure. Moreover, there is a problem that it is difficult to secure the installation location and obtain the consent of the surrounding residents. Furthermore, there is a problem that the contamination penetrates from the temporary storage site of the contaminated soil and the surrounding groundwater is contaminated.

また、汚染土壌に種々の不溶化剤を混錬して汚染物質を不溶化することにより、無害化処理を図る方法が記載されている(非特許文献2及び特許文献1参照)。前記不溶化処理土壌は、前記封じ込め措置と同様に、管理し続ける必要のある土壌として取り扱うように土壌汚染対策法では規定されており、不溶化処理土壌を埋め戻して管理する場所の確保が課題である。   In addition, a method is described in which a detoxification process is performed by kneading various insolubilizers in a contaminated soil to insolubilize contaminants (see Non-Patent Document 2 and Patent Document 1). The insolubilized soil is regulated by the Soil Contamination Countermeasures Law so that it can be handled as soil that needs to be managed similarly to the containment measures, and it is an issue to secure a place to backfill and manage the insolubilized soil. .

また、セメント副原材料として汚染土壌を処理する方法、管理型処分場に埋立処分する方法が報告されている(非特許文献2参照)。しかし、これらの報告の方法では、処理能力や容量が発生量に対して追い付かない状況である。   In addition, a method for treating contaminated soil as a secondary cement material and a method for landfilling in a management-type disposal site have been reported (see Non-Patent Document 2). However, in these reporting methods, the processing capacity and capacity cannot keep up with the generated amount.

前記汚染土壌を無害化処理して浄化された土壌を得る方法として、洗浄分級処理する方法が報告されている(非特許文献3参照)。しかし、この報告の方法は、湿式処理であるため、スラリー化する設備及び脱水設備の能力を大きくすることが必要であり、安価で簡便かつ大量な処理を実施することが難しい状況である。   As a method for obtaining a purified soil by detoxifying the contaminated soil, a method of washing and classifying has been reported (see Non-Patent Document 3). However, since the method of this report is a wet process, it is necessary to increase the capacity of the equipment for slurrying and the capacity of the dewatering equipment, and it is difficult to carry out inexpensive, simple and large-scale processing.

また、湿式磁選機及び乾式磁選機の少なくともいずれかを用いて汚染物質を磁着物として濃縮し、分離する方法が提案されている(特許文献2参照)。しかし、この提案の方法は、汚染物質の減量を目的としており、溶出性の汚染物質の除去能力が不足しているという課題がある。
また、鉄粉を汚染土壌スラリーに添加して汚染物質を吸着させた後、該汚染物質を吸着した鉄粉を磁選によって回収除去することで浄化土壌を得る方法が提案されている(特許文献3参照)。この提案では、溶出性の汚染物質の除去も可能である。しかし、この提案の方法は、湿式処理であるため、多量の水を用いスラリー化する設備及び脱水設備の能力を大きくすることが必要であり、安価で簡便かつ大量な処理を実施することが難しい状況である。
In addition, a method of concentrating and separating contaminants as magnetic deposits using at least one of a wet magnetic separator and a dry magnetic separator has been proposed (see Patent Document 2). However, this proposed method is aimed at reducing the amount of pollutants, and there is a problem that the ability to remove the eluting pollutants is insufficient.
Moreover, after adding iron powder to a contaminated soil slurry and adsorbing contaminants, a method for obtaining purified soil by collecting and removing the iron powder adsorbing the contaminants by magnetic separation has been proposed (Patent Document 3). reference). This proposal also allows for the removal of eluting contaminants. However, since the proposed method is a wet process, it is necessary to increase the capacity of the equipment for slurrying with a large amount of water and the capacity of the dewatering equipment, and it is difficult to carry out a cheap, simple and large-scale treatment. Is the situation.

したがって、多量の水を用いることなく、乾式処理により汚染土壌を浄化土壌として簡便かつ有効に利用できる汚染土壌の無害化処理方法の提供が望まれている。   Therefore, it is desired to provide a detoxification method for contaminated soil that can be conveniently and effectively used as purified soil by dry treatment without using a large amount of water.

特開2003−290757号公報JP 2003-290757 A 特開平10−71387号公報Japanese Patent Laid-Open No. 10-71387 特開2000−51835号公報JP 2000-51835 A

建設工事における自然由来重金属等含有土砂への対応マニュアル検討委員会(2010):「建設工事における自然由来重金属等含有岩石・土壌への対応マニュアル(暫定版)」Committee for manuals for responding to sediment containing natural heavy metals in construction work (2010): “Manual for responding to rocks and soils containing natural heavy metals in construction (provisional version)” 「土壌汚染対策法の基づく調査及び措置に関するガイドライン(改定第2版)」(2012.8):環境省水・大気環境局土壌環境課“Guidelines on Surveys and Measures Based on the Soil Contamination Countermeasures Law (Revised 2nd Edition)” (2012.2.8): Ministry of the Environment 「土壌洗浄法を基盤とする重金属汚染土壌の浄化について」:資源・素材巻:2000号:p.117−120(2010)“Purification of heavy metal-contaminated soil based on the soil cleaning method”: Resources and Materials Volume: 2000: p. 117-120 (2010)

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、多量の水を用いることなく、乾式処理により汚染土壌を浄化土壌として簡便かつ有効に利用できる汚染土壌の無害化処理方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, an object of the present invention is to provide a detoxification method for contaminated soil that can be used simply and effectively as purified soil by dry treatment without using a large amount of water.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する鉄粉添加工程と、
磁選前の汚染土壌の水分含有量を36質量%以下に調整する水分含有量調整工程と、
水分含有量が36質量%以下である汚染土壌から鉄粉を乾式磁選により回収除去する乾式磁選工程と、を含むことを特徴とする汚染土壌の無害化処理方法である。
<2> 汚染土壌に対して0.05質量%以上10質量%以下の鉄粉を添加する前記<1>に記載の汚染土壌の無害化処理方法である。
<3> 鉄粉添加前の汚染土壌の水分含有量が60質量%以下である前記<1>から<2>のいずれかに記載の汚染土壌の無害化処理方法である。
<4> 鉄粉添加工程において、硫酸及び塩酸のいずれかを添加する前記<1>から<3>のいずれかに記載の汚染土壌の無害化処理方法である。
Means for solving the problems are as follows. That is,
<1> An iron powder addition step of adding iron powder to contaminated soil containing at least one pollutant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyanide, fluorine and boron; ,
A moisture content adjusting step for adjusting the moisture content of the contaminated soil before magnetic separation to 36% by mass or less;
And a dry magnetic separation step of recovering and removing iron powder from the contaminated soil having a water content of 36% by mass or less by dry magnetic separation.
<2> The detoxification method for contaminated soil according to <1>, wherein 0.05% by mass or more and 10% by mass or less of iron powder is added to the contaminated soil.
<3> The method for detoxifying contaminated soil according to any one of <1> to <2>, wherein the moisture content of the contaminated soil before addition of iron powder is 60% by mass or less.
<4> The method for detoxifying contaminated soil according to any one of <1> to <3>, wherein in the iron powder addition step, either sulfuric acid or hydrochloric acid is added.

本発明によると、従来における問題を解決することができ、多量の水を用いることなく、乾式処理により処理土壌を浄化土壌として簡便かつ有効に利用できる汚染土壌の無害化処理方法を提供することができる。   According to the present invention, it is possible to provide a method for detoxifying contaminated soil, which can solve conventional problems and can simply and effectively use treated soil as purified soil by dry treatment without using a large amount of water. it can.

図1は、本発明の汚染土壌の無害化処理方法のフロー図である。FIG. 1 is a flowchart of the detoxification method for contaminated soil of the present invention. 図2は、本発明の汚染土壌の無害化処理方法を行うための設備フロー図である。FIG. 2 is an equipment flow diagram for performing the detoxification method for contaminated soil of the present invention. 図3は、特開2000−51835号公報(特許文献3)に記載の汚染土壌の無害化処理方法を行うための設備フロー図である。FIG. 3 is an equipment flow diagram for performing the detoxification method for contaminated soil described in Japanese Patent Application Laid-Open No. 2000-51835 (Patent Document 3). 図4は、土壌Aにおける磁選前水分含有量と磁着物の回収率及びAs回収率の関係[a)]、磁選前水分含有量とAs溶出量の関係[b)]を示すグラフである。FIG. 4 is a graph showing the relationship between the moisture content before magnetic separation in the soil A, the recovery rate of magnetic deposits and the As recovery rate [a)], and the relationship between the moisture content before magnetic separation and the As elution amount [b)]. 図5は、土壌Bにおける磁選前水分含有量と磁着物の回収率及びF回収率の関係[a)]、磁選前水分含有量とF溶出量の関係[b)]を示すグラフである。FIG. 5 is a graph showing the relationship [a)] between the moisture content before magnetic separation in the soil B, the recovery rate of magnetic deposits, and the F recovery rate, and the relationship [b)] between the moisture content before magnetic separation and the F elution amount. 図6は、土壌Aにおける鉄粉添加後の養生時間と磁着物の回収率及びAs回収率の関係[a)]、鉄粉添加後の養生時間とAs溶出量の関係[b)]を示すグラフである。FIG. 6 shows the relationship between the curing time after addition of iron powder and the recovery rate of magnetic deposits and As recovery rate in soil A [a)], and the relationship between the curing time after addition of iron powder and As elution amount [b)]. It is a graph. 図7は、土壌Cにおける鉄粉添加後の養生時間と磁着物の回収率及びSe回収率の関係[a)]、鉄粉添加後の養生時間とSe溶出量の関係[b)]を示すグラフである。FIG. 7 shows the relationship between the curing time after the iron powder addition in the soil C, the recovery rate of magnetic deposits and the Se recovery rate [a)], and the relationship between the curing time after the iron powder addition and the Se elution amount [b)]. It is a graph. 図8は、土壌Dにおける鉄粉添加後の養生時間と磁着物の回収率、Pb及びCr回収率の関係[a)]、鉄粉添加後の養生時間とPb及びCr6+溶出量の関係[b)]を示すグラフである。FIG. 8 shows the relationship between the curing time after the iron powder addition in the soil D and the recovery rate of magnetic deposits, the Pb and Cr recovery rate [a)], the relationship between the curing time after the iron powder addition and the Pb and Cr 6+ elution amount [ b)]. 図9は、土壌Aにおける鉄粉添加量と磁着物の回収率及びAs回収率の関係[a)]、鉄粉添加量とAs溶出量の関係[b)]を示すグラフである。FIG. 9 is a graph showing the relationship [a)] between the iron powder addition amount in the soil A, the recovery rate of magnetic deposits, and the As recovery rate, and the relationship [b)] between the iron powder addition amount and the As elution amount. 図10は、土壌Cにおける鉄粉添加量と磁着物の回収率及びSe回収率の関係[a)]、鉄粉添加量とSe溶出量の関係[b)]を示すグラフ。FIG. 10 is a graph showing the relationship [a)] between the iron powder addition amount in the soil C, the recovery rate of magnetic deposits and the Se recovery rate, and the relationship [b)] between the iron powder addition amount and the Se elution amount. 図11は、土壌Dにおける鉄粉添加量と磁着物の回収率及びPb及びCr回収率の関係[a)]、鉄粉添加量とPb及びCr溶出量の関係[b)]を示すグラフである。FIG. 11 is a graph showing the relationship [a)] between the iron powder addition amount in the soil D, the recovery rate of magnetic deposits, and the Pb and Cr recovery rate, and the relationship [b)] between the iron powder addition amount and the Pb and Cr elution amounts. is there. 図12は、土壌Aにおける硫酸添加量と磁着物の回収率及びAs回収率の関係[a)]、酸添加量とAs溶出量の関係[b)]を示すグラフである。FIG. 12 is a graph showing the relationship [a)] between the addition amount of sulfuric acid, the recovery rate of magnetic deposits and the As recovery rate in soil A, and the relationship [b)] between the addition amount of acid and the As elution amount. 図13は、土壌Cにおける硫酸添加量と磁着物の回収率及びSe回収率の関係[a)]、酸添加量とSe溶出量の関係[b)]を示すグラフである。FIG. 13 is a graph showing the relationship [a)] between the addition amount of sulfuric acid and the recovery rate of magnetic deposits and Se recovery rate in soil C, and the relationship [b)] between the addition amount of acid and the Se elution amount. 図14は、土壌Dにおける酸添加量と磁着物の回収率、Pb及びCr回収率の関係[a)]、酸添加量とPb及びCr6+溶出量の関係[b)]を示すグラフである。FIG. 14 is a graph showing the relationship [a)] between the acid addition amount in the soil D and the recovery rate of magnetic deposits, Pb and Cr recovery rate, and the relationship [b)] between the acid addition amount and Pb and Cr 6+ elution amounts. . 図15は、磁選前水分含有量と磁着物回収質量との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the moisture content before magnetic separation and the magnetized material recovery mass. 図16は、実施例6、8、11及び比較例1における磁選前の汚染土壌の水分含有量の変化による土壌の性状の違いを示す写真である。FIG. 16 is a photograph showing differences in soil properties due to changes in the water content of contaminated soil before magnetic separation in Examples 6, 8, 11 and Comparative Example 1.

(汚染土壌の無害化処理方法)
本発明の汚染土壌の無害化処理方法は、鉄粉添加工程と、水分含有量調整工程と、乾式磁選工程とを含み、更に必要に応じてその他の工程を含んでなる。
(Method for detoxifying contaminated soil)
The method for detoxifying contaminated soil of the present invention includes an iron powder addition step, a moisture content adjustment step, and a dry magnetic separation step, and further includes other steps as necessary.

<鉄粉添加工程>
前記鉄粉添加工程は、砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する工程である。
<Iron powder addition process>
The iron powder adding step is a step of adding iron powder to contaminated soil containing at least one pollutant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyan, fluorine and boron. It is.

前記汚染土壌とは、例えば、道路工事、トンネル建設工事、再開発工事等の各種建設工事に伴って発生する残土であり、自然由来の前記汚染物質を含有する土壌を意味する。
前記汚染物質としては、例えば、砒素(As)、鉛(Pb)、六価クロム(Cr(VI))、カドミウム(Cd)、セレン(Se)、水銀(Hg)、シアン(CN)、フッ素(F)、ほう素(B)などが挙げられる。これらの汚染物質は、土壌の汚染に係る環境基準の対象物質のうち、自然由来で岩石や土壌に存在する物質である。
The contaminated soil is, for example, residual soil generated in connection with various construction works such as road construction, tunnel construction work, and redevelopment construction, and means soil containing the naturally-occurring pollutants.
Examples of the pollutants include arsenic (As), lead (Pb), hexavalent chromium (Cr (VI)), cadmium (Cd), selenium (Se), mercury (Hg), cyanogen (CN), fluorine ( F), boron (B) and the like. These pollutants are substances that are naturally derived and present in rocks and soil among the environmental standards related to soil contamination.

鉄粉添加前の汚染土壌の水分含有量は60質量%以下が好ましく、0質量%以上45質量%以下が好ましく、10質量%以上35質量%以下が更に好ましい。前記汚染土壌の水分含有量の範囲であれば、後述する水分含有量調整工程での水分調整が少なくてすみ(省略することも可能)、土質にもよるが、ダンプトラック等に積み込んで液状化せずに運搬可能な状態であり、搬送性の点からも有利である。   The moisture content of the contaminated soil before adding iron powder is preferably 60% by mass or less, preferably 0% by mass to 45% by mass, and more preferably 10% by mass to 35% by mass. If it is within the range of the moisture content of the contaminated soil, the moisture adjustment in the moisture content adjustment process described later is less (may be omitted), and depending on the soil, it can be liquefied by loading it onto a dump truck or the like. This is advantageous in terms of transportability.

前記鉄粉の添加量は、前記汚染土壌に対して、0.05質量%以上10質量%以下が好ましく、0.05質量%以上1質量%以下がより好ましい。前記鉄粉の添加量の範囲において、乾式磁選により効率よく汚染物質を回収除去することができる。
前記鉄粉の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、還元鉄粉、ダライコ鉄粉(屑鉄を原料とする)、アトマイズ鉄粉などが挙げられる。これらの中でも、還元鉄粉が好ましい。
The addition amount of the iron powder is preferably 0.05% by mass or more and 10% by mass or less, and more preferably 0.05% by mass or more and 1% by mass or less with respect to the contaminated soil. Contaminants can be efficiently recovered and removed by dry magnetic separation within the range of the iron powder addition amount.
There is no restriction | limiting in particular as a kind of said iron powder, According to the objective, it can select suitably, For example, reduced iron powder, Dariko iron powder (made from scrap iron as a raw material), atomized iron powder, etc. are mentioned. Among these, reduced iron powder is preferable.

前記鉄粉の汚染土壌への添加に併せて酸を添加することが好ましい。前記酸は、前記汚染物質の移動を促進するために添加される。
前記酸としては、塩酸及び硫酸のいずれかが好ましい。
前記酸の添加量は、特に制限はなく、目的に応じて適宜選択することができるが、前記汚染土壌に対して、0質量%以上1質量%以下が好ましい。
前記酸処理後の汚染土壌のpHは、4.0〜9.0が好ましく、6.0〜8.0がより好ましい。前記pHが上記範囲であると、汚染物質が溶出性に変化することがなく、安全である。また、処理後土壌を浄化土として利用する場合にも、通常の土壌は中性域にあるため、前記pH範囲であることが好ましい。
また、前記酸の使用にあたっては後に水分含有量調整工程を行うため、水での希釈は行わないことが好ましい。前記水分含有量調整に掛かる脱水剤の添加量、乾燥の時間及び乾燥温度のいずれかを多くする必要が生じるためである。
It is preferable to add an acid together with the addition of the iron powder to the contaminated soil. The acid is added to facilitate the migration of the contaminant.
As the acid, either hydrochloric acid or sulfuric acid is preferable.
There is no restriction | limiting in particular in the addition amount of the said acid, Although it can select suitably according to the objective, 0 mass% or more and 1 mass% or less are preferable with respect to the said contaminated soil.
The pH of the contaminated soil after the acid treatment is preferably 4.0 to 9.0, and more preferably 6.0 to 8.0. When the pH is within the above range, the contaminant does not change to elution and is safe. In addition, when the treated soil is used as the purified soil, it is preferably in the pH range because normal soil is in a neutral region.
In addition, when the acid is used, it is preferable not to perform dilution with water because a water content adjusting step is performed later. This is because it is necessary to increase any of the added amount of the dehydrating agent, the drying time, and the drying temperature for adjusting the water content.

前記鉄粉添加前の水分含有量の掘削した汚染土壌に対して、鉄粉及び酸の少なくともいずれかを混合機に投入してよく混練する。この場合、前記汚染土壌中に粗大な礫等が入っている場合は、前記混練に支障をきたすため、事前に篩分け及び破砕するなどの前処理を行うことが好ましい。   At least one of iron powder and acid is introduced into a mixer and kneaded with respect to the contaminated soil excavated with water content before the iron powder is added. In this case, when coarse gravel or the like is contained in the contaminated soil, pretreatment such as sieving and crushing in advance is preferably performed in order to hinder the kneading.

前記混練方法としては、特に制限はなく、目的に応じて適宜選択することができるが、団粒の細分効果を勘案すると、打撃式混合機よりも、せん断式混合機が好ましい。前記せん断式混合機としては、例えば、二軸式パドル混合機などが挙げられる。   The kneading method is not particularly limited and may be appropriately selected depending on the intended purpose. However, in consideration of the subdivided effect of the agglomerates, a shearing type mixer is preferable to an impact type mixer. Examples of the shear mixer include a biaxial paddle mixer.

<水分含有量調整工程>
前記水分含有量調整工程は、磁選前の汚染土壌の水分含有量を36質量%以下に調整する工程である。
なお、磁選前の汚染土壌の水分含有量が、既に36質量%以下である場合には、前記水分含有量調整工程を行うことなく、後述する乾式磁選工程を行うことができる。
前記磁選前の汚染土壌の水分含有量は、36質量%以下であり、22質量%以下が好ましく、14質量%以下がより好ましい。前記磁選前の汚染土壌の水分含有量が、36質量%以下であると、団粒が概ね土壌粒子単体となり、磁性分離しやすくなり、乾式磁選を効率よく行うことができる。
前記汚染土壌の水分含有量は、例えば、汚染土壌の質量(湿潤土壌質量w1)を測定の後、乾燥炉などを用いて汚染土壌を乾燥させた上で、あらためて土壌質量(乾燥土壌質量w2)を測定し、次式により算出することができる。
水分含有量(%)=[(1−乾燥土壌質量w2)/湿潤土壌質量w1]×100
<Moisture content adjustment process>
The moisture content adjusting step is a step of adjusting the moisture content of the contaminated soil before magnetic separation to 36% by mass or less.
In addition, when the moisture content of the contaminated soil before magnetic separation is already 36% by mass or less, the dry magnetic separation step described later can be performed without performing the moisture content adjusting step.
The moisture content of the contaminated soil before magnetic separation is 36% by mass or less, preferably 22% by mass or less, and more preferably 14% by mass or less. When the moisture content of the contaminated soil before the magnetic separation is 36% by mass or less, the aggregate becomes almost a single soil particle, and magnetic separation is facilitated, and dry magnetic separation can be performed efficiently.
The moisture content of the contaminated soil is, for example, after measuring the mass of the contaminated soil (wet soil mass w1), after drying the contaminated soil using a drying furnace or the like, the soil mass (dry soil mass w2). Can be calculated by the following formula.
Water content (%) = [(1−dry soil mass w2) / wet soil mass w1] × 100

前記水分含有量調整工程における水分含有量の調整方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、吸湿剤を添加する方法、乾燥機を用いた乾燥などが挙げられる。
前記吸湿剤としては、特に制限はなく、生石灰又はセメントといった資材も考えられるが、これらは強アルカリ性の資材であるため、pH範囲を制御することが必要になるため、中性固化材がより好ましい。
前記中性固化材としては、例えば、半水石膏を主成分とする材料、酸化マグネシウムを主成分とする材料などが挙げられる。これらの中でも、経済性の点から、半水石膏を主成分とする材料が好ましい。
なお、鉄粉添加後の汚染土壌の水分含有量が36質量%以下であり、団粒を形成せず、細分された状態であって、乾式磁選に支障がない場合には前記吸湿剤の添加を省略することもできる。
There is no restriction | limiting in particular as the adjustment method of the water content in the said water content adjustment process, According to the objective, it can select suitably, For example, the method of adding a hygroscopic agent, the drying using a dryer, etc. are mentioned. It is done.
The hygroscopic agent is not particularly limited, and materials such as quick lime or cement are also conceivable. However, since these are strongly alkaline materials, it is necessary to control the pH range, and thus a neutral solidifying material is more preferable. .
Examples of the neutral solidifying material include a material mainly composed of hemihydrate gypsum and a material mainly composed of magnesium oxide. Among these, the material which has hemihydrate gypsum as a main component is preferable from an economical point.
In addition, when the moisture content of the contaminated soil after addition of iron powder is 36% by mass or less, no aggregate is formed, it is in a subdivided state, and there is no problem in dry magnetic separation, the addition of the moisture absorbent Can be omitted.

前記乾燥に用いる乾燥機としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、二軸混練式乾燥炉、ロータリードライヤ、トンネル炉などが挙げられる。これらの中でも、団粒を細分する効果の点から、二軸混練式乾燥炉、ロータリードライヤが好ましい。   There is no restriction | limiting in particular as a dryer used for the said drying, According to the objective, it can select suitably, For example, a twin-screw kneading-type drying furnace, a rotary dryer, a tunnel furnace etc. are mentioned. Among these, a biaxial kneading type drying furnace and a rotary dryer are preferable from the viewpoint of the effect of subdividing the aggregate.

<乾式磁選工程>
前記乾式磁選工程は、磁選前の汚染土壌の水分含有量が36質量%以下に調整された汚染土壌から鉄粉を乾式磁選により回収除去する工程である。
<Dry magnetic selection process>
The dry magnetic separation step is a step of recovering and removing iron powder from the contaminated soil in which the moisture content of the contaminated soil before magnetic separation is adjusted to 36% by mass or less.

ここで、図15に示すように、汚染土壌から鉄粉を磁選できる範囲は、磁選前の汚染土壌の水分含有量に応じて、2つの領域が存在する。
一つは、磁選前水分含有量が36質量%以下である低水分含有量領域であり、もう一つは、磁選前水分含有量が45質量%以上である高水分含有量領域である。
本発明の汚染土壌の無害化処理方法は、前記低水分含有量領域において乾式磁選を行うものである。
一方、特開2000−51835号公報(特許文献3)に記載の方法では、前記高水分量含有領域において湿式磁選を行うものである。この方法では、汚染土壌から鉄粉を磁選することができるが、汚染土壌をスラリー化するため、大量の水が必要となり、その排水も必要であり、安価で簡便かつ大量な処理を実施することは困難である。
磁選前の汚染土壌の水分含有量が38質量%以上43質量%以下の範囲は、乾式磁選及び湿式磁選のいずれも分離効率が著しく悪い領域(磁選困難領域)である。
Here, as shown in FIG. 15, there are two regions in which the iron powder can be magnetically selected from the contaminated soil according to the moisture content of the contaminated soil before the magnetic separation.
One is a low moisture content region in which the moisture content before magnetic separation is 36% by mass or less, and the other is a high moisture content region in which the moisture content before magnetic separation is 45% by mass or more.
The method for detoxifying contaminated soil according to the present invention performs dry magnetic separation in the low moisture content region.
On the other hand, in the method described in Japanese Patent Laid-Open No. 2000-51835 (Patent Document 3), wet magnetic separation is performed in the high moisture content region. In this method, iron powder can be magnetically selected from the contaminated soil, but in order to make the contaminated soil into a slurry, a large amount of water is required, and its drainage is also necessary. It is difficult.
When the moisture content of the contaminated soil before magnetic separation is in the range of 38% by mass to 43% by mass, both the dry magnetic separation and the wet magnetic separation are regions where separation efficiency is extremely poor (magnetic separation difficult region).

前記乾式磁選としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、磁選前の汚染土壌の水分含有量が36質量%以下である汚染土壌を磁力選別機に投入し、磁石により磁着物と非磁着物とに分離する。前記磁力選別機の磁力としては、特に制限はなく、目的に応じて適宜選択することができるが、1,500G以上12,000G以下が好ましく、1,500G以上7,000G以下がより好ましい。
前記乾式磁選工程は、汚染物質を吸着した鉄粉を分離除去することにより、被磁着物の有害物溶出量を低減することが目的であり、1,500G以上7,000G以下の磁力で十分に分離回収できる。これよりも高い磁力であると、予め汚染土壌中に存在した弱磁性の土壌粒子も回収されてしまい、磁着物の量が多くなってしまう。前記磁着物は別途汚染濃縮土壌として処分が必要なため、不必要にこれを多く回収することは経済的ではない。
The dry magnetic separation is not particularly limited and can be appropriately selected according to the purpose. For example, the contaminated soil having a moisture content of 36 mass% or less before the magnetic separation is put into a magnetic separator. The magnet is separated into a magnetized product and a non-magnetized product. There is no restriction | limiting in particular as magnetic force of the said magnetic separator, Although it can select suitably according to the objective, 1,500G or more and 12,000G or less are preferable, and 1,500G or more and 7,000G or less are more preferable.
The purpose of the dry magnetic separation process is to reduce the amount of harmful substance elution from the magnetic adherend by separating and removing the iron powder adsorbing the pollutants, and the magnetic force of 1,500G to 7,000G is sufficient. Separated and recovered. If the magnetic force is higher than this, weak magnetic soil particles previously present in the contaminated soil are also collected, and the amount of magnetic deposits increases. Since the magnetic deposits need to be disposed of separately as contaminated and concentrated soil, it is not economical to unnecessarily collect a large amount of them.

ここで、図1は、本発明の汚染土壌の無害化処理方法のフロー図である。
まず、掘削した汚染土壌に鉄粉及び酸の少なくともいずれかを混合機に投入してよく混合する。このとき、汚染土壌中に粗大な礫等が入っている場合は、混合に支障をきたすため、事前に篩分け及び破砕するなどの前処理を行うことが好ましい。
次に、鉄粉を所定量汚染土壌に添加する(鉄粉添加工程)。鉄粉及び必要に応じて酸を添加混合した汚染土壌を0分間以上、好ましくは10分間程度養生した後、必要に応じて吸湿剤として中性固化材を0kg以上200kg以下とともに混合機に投入してよく混合するか、又は乾燥機にて水分を除去する等して、磁選前の汚染土壌の水分含有量を36質量%以下に調整する(水分含有量調整工程)。
次に、1,500G以上7,000G以下の磁力で乾式磁選により、汚染物質を吸着した鉄粉を回収除去する(乾式磁選工程)。
Here, FIG. 1 is a flowchart of the detoxification method for contaminated soil of the present invention.
First, at least one of iron powder and acid is put into a mixer and mixed well with excavated contaminated soil. At this time, when coarse gravel or the like is contained in the contaminated soil, it is preferable to perform pretreatment such as sieving and crushing in advance in order to hinder mixing.
Next, a predetermined amount of iron powder is added to the contaminated soil (iron powder addition step). After the soil contaminated with iron powder and acid added and mixed is cured for 0 minutes or more, preferably for about 10 minutes, a neutral solidifying material is added to the mixer together with 0 kg or more and 200 kg or less as a moisture absorbent as necessary. The moisture content of the contaminated soil before magnetic separation is adjusted to 36% by mass or less by mixing well or removing moisture with a dryer (moisture content adjustment step).
Next, the iron powder having adsorbed contaminants is recovered and removed by dry magnetic separation with a magnetic force of 1,500 G or more and 7,000 G or less (dry magnetic separation step).

また、図2に本発明の乾式磁選による汚染土壌の無害化処理方法の設備フロー図を示す。比較として図3に特開2000−51835号公報(特許文献3)に記載の湿式磁選による汚染土壌の無害化処理方法の一例を示す設備フロー図を示す。
図2と図3を比較すると、特開2000−51835号公報に記載の無害化処理方法の方が、処理フローが複雑であり、運転管理が難しくなる。例えば、図2中の混錬機としては汎用のレンタル機械である土壌改良機などでも代用でき、簡便な設備フローで無害化処理を行うことができる。また、図3のフローは湿式であるため用水やスプレー水での加水処理が必要である。
FIG. 2 shows a facility flow diagram of the detoxification method for contaminated soil by dry magnetic separation according to the present invention. As a comparison, FIG. 3 shows an equipment flow diagram showing an example of a method for detoxifying contaminated soil by wet magnetic separation described in Japanese Patent Application Laid-Open No. 2000-51835 (Patent Document 3).
When FIG. 2 is compared with FIG. 3, the harmless treatment method described in Japanese Patent Laid-Open No. 2000-51835 has a more complicated process flow, and operation management becomes difficult. For example, the kneading machine in FIG. 2 can be substituted with a soil improvement machine, which is a general-purpose rental machine, and can be detoxified with a simple equipment flow. Moreover, since the flow of FIG. 3 is wet, it needs to be hydrated with water or spray water.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<試験に用いたサンプル>
下記表1に示す、5種類の土壌A〜土壌Eをサンプルとして用いた。なお、土壌Dは人為的汚染土壌であり、その他は自然起因汚染土壌である。
<Sample used for testing>
Five types of soil A to soil E shown in Table 1 below were used as samples. The soil D is an artificially contaminated soil and the other is a naturally contaminated soil.

*表1中の土壌A〜土壌Eの汚染物質の含有量については底質調査法、土壌A〜土壌Eの汚染物質の溶出量は環境省告示第18号で実施した。 * Regarding the content of pollutants in soil A to soil E in Table 1, the sediment survey method and the amount of pollutants eluted from soil A to soil E were carried out in Notification No. 18 of the Ministry of the Environment.

(実施例1〜11及び比較例1)
−水分含有量の影響−
土壌A及び土壌Bを用いて水分含有量の影響を調べた。
まず、土壌A及び土壌Bを予め風乾した後、イオン交換水を任意量添加して表2及び表3に示す水分含有量の土壌を調整した。
次に、水分含有量を調整した土壌A又は土壌Bを100gポリプロピレン製カップに量り取り、いずれも還元鉄粉(特殊鉄粉E200、DOWAIPクリエーション株式会社製)1g、土壌Aに対しては濃硫酸0.3mL(酸濃度として0.1N/kg)、土壌Bに対しては10質量%塩酸水溶液5mL(酸濃度として0.1N/kg)を添加し、薬さじで1分間混合した。10分間養生した後、石膏を主成分とする中性固化材(ジプサンダーC、石原産業株式会社製)を0g〜20gの範囲で添加して、1分間程度混合した。
その後、土壌をバットに開けて薄く敷均し、表面磁力1,500Gの磁石を敷均した土壌表面上を走査して、磁着物粒子と非磁着物粒子(浄化土)を磁性分離し、それぞれ土壌中の汚染物質含有量(土壌Aについて底質調査法、土壌Bについて環境省告示第19号)、及び非磁着物粒子について溶出量分析(環境省告示第18号)を実施した。
また、鉄粉添加前及び処理後(磁選前)の汚染土壌の水分含有量は、汚染土壌の質量(湿潤土壌質量w1)を測定の後、乾燥炉などを用いて汚染土壌を乾燥させた上で、あらためて土壌質量(乾燥土壌質量w2)を測定し、次式により算出した。
水分含有量(%)=[(1−乾燥土壌質量w2)/湿潤土壌質量w1]×100
土壌A及び土壌Bの試験結果を表2及び表3にそれぞれ示した。
また、土壌Bについて、磁選前水分含有量が10.4質量%、20.0質量%、35.5質量%、41.7質量%である実施例6、8、11、及び比較例1について、土壌の性状を図16に示した。図16の結果から、磁選前水分含有量が35.5質量%までは土壌に流動性はなく、固体状であることがわかった。
(Examples 1-11 and Comparative Example 1)
-Effect of moisture content-
Using soil A and soil B, the effect of water content was examined.
First, soil A and soil B were air-dried in advance, and then an arbitrary amount of ion-exchanged water was added to adjust the soil with the water content shown in Tables 2 and 3.
Next, soil A or soil B with adjusted water content was weighed into a 100 g polypropylene cup, both of which were 1 g of reduced iron powder (special iron powder E200, manufactured by DOWAIP Creation Co., Ltd.) and concentrated sulfuric acid for soil A. 0.3 mL (0.1 N / kg as the acid concentration) and 5 mL of 10 mass% hydrochloric acid aqueous solution (0.1 N / kg as the acid concentration) were added to the soil B, and mixed with a spoon for 1 minute. After curing for 10 minutes, a neutral solidifying material mainly composed of gypsum (Gypsander C, manufactured by Ishihara Sangyo Co., Ltd.) was added in the range of 0 to 20 g and mixed for about 1 minute.
After that, the soil is opened with a bat and spread thinly, and the surface of the soil with a surface magnetic force of 1,500 G is scanned to magnetically separate the magnetized particles and non-magnetized particles (purified soil). Contaminant content in the soil (Sediment A for the bottom sediment survey method, soil B for the Ministry of the Environment Notification No. 19), and elution amount analysis (Ministry of the Environment Notification No. 18) for the non-magnetized particles.
In addition, the moisture content of the contaminated soil before the addition of iron powder and after the treatment (before magnetic separation) is measured after drying the contaminated soil using a drying furnace after measuring the mass of the contaminated soil (wet soil mass w1). Then, the soil mass (dry soil mass w2) was again measured and calculated by the following formula.
Water content (%) = [(1−dry soil mass w2) / wet soil mass w1] × 100
The test results of soil A and soil B are shown in Table 2 and Table 3, respectively.
Moreover, about the soil B, about Example 6, 8, 11, and the comparative example 1 whose moisture content before magnetic separation is 10.4 mass%, 20.0 mass%, 35.5 mass%, and 41.7 mass% The properties of the soil are shown in FIG. From the results of FIG. 16, it was found that the soil had no fluidity and was solid up to a moisture content before magnetic separation of 35.5% by mass.

<土壌Aの試験結果>
*As溶出量の定量下限値は0.001mg/Lであるが、参考としてそれ以下の数値を示す。
<Soil A test results>
* The lower limit of quantification of the As elution amount is 0.001 mg / L, but a value below that is shown for reference.

<土壌Bの試験結果>
*F含有量の分析は底質調査法による。
*F含有量の分析は底質調査法による。
<Soil B test results>
* Analysis of F content is based on the sediment survey method.
* Analysis of F content is based on the sediment survey method.

本発明の汚染土壌の無害化処理方法を適用することにより、土壌A及び土壌Bのいずれにおいても、試験した範囲では磁選前水分含有量に関わらず、浄化土の汚染物質溶出量は処理前の土壌よりも低下することが示された。
土壌Aについては、鉄粉添加前の汚染土壌の水分含有量が10質量%以下であれば団粒の形成を生じずに磁性分離が比較的しやすく、中性固化材の添加は不要であった。鉄粉添加前の汚染土壌の水分含有量が20質量%以上では、汚染土壌が団粒を形成するため、中性固化材の添加が必要であった。鉄粉添加前水分含有量が30質量%では、磁選前の汚染土壌が流動化する状態であったが、中性固化材を増量することで磁選が可能であった。この時の磁選前水分含有量は25.0質量%であった。
By applying the method for detoxifying contaminated soil according to the present invention, in both soil A and soil B, the amount of pollutant elution in the purified soil is the same as that before treatment regardless of the moisture content before magnetic separation in the tested range. It was shown to be lower than soil.
For soil A, if the moisture content of the contaminated soil before addition of iron powder is 10% by mass or less, magnetic separation is relatively easy without forming aggregates, and the addition of a neutral solidifying material is unnecessary. It was. When the water content of the contaminated soil before the addition of iron powder is 20% by mass or more, the contaminated soil forms aggregates, and thus it is necessary to add a neutral solidifying material. When the moisture content before iron powder addition was 30% by mass, the contaminated soil before magnetic separation was in a fluidized state, but magnetic separation was possible by increasing the amount of neutral solidified material. The moisture content before magnetic separation at this time was 25.0% by mass.

土壌Bについては、土壌Aと同様に鉄粉添加前の汚染土壌の水分含有量が24.1質量%以下であれば磁性分離がしやすく、中性固化材の添加は不要である。鉄粉添加前水分含有量が34.8質量%以上では中性固化材の添加が必要であった。鉄粉添加前水分含有量が41.7質量%では、中性固化材を15質量%添加することで、磁性分離できる程度の団粒となったが、この時の磁選前水分含有量は35.5質量%であった。鉄粉添加前水分含有量が41.7質量%で中性固化材を添加しない場合には、磁性分離はできなかった(比較例1)。   As for the soil B, as in the case of the soil A, if the water content of the contaminated soil before the addition of iron powder is 24.1% by mass or less, magnetic separation is easy, and the addition of a neutral solidifying material is unnecessary. When the water content before iron powder addition was 34.8% by mass or more, it was necessary to add a neutral solidifying material. When the water content before iron powder addition was 41.7% by mass, the addition of 15% by mass of the neutral solidified material resulted in aggregates capable of magnetic separation, but the moisture content before magnetic separation at this time was 35 It was 5% by mass. When the water content before iron powder addition was 41.7% by mass and no neutral solidifying material was added, magnetic separation could not be performed (Comparative Example 1).

図4には、土壌Aにおける磁選前水分含有量と磁着物の回収率及びAs回収率の関係[a)]、磁選前水分含有量とAs溶出量の関係[b)]を示す。図5には、土壌Bにおける磁選前水分含有量と磁着物の回収率及びF回収率の関係[a)]、磁選前水分含有量とF溶出量の関係[b)]を示す
図4及び図5の結果から、磁選前水分含有量が多くなるにつれて、磁着物回収量、汚染物質回収量が増加する傾向を示した。これは水分含有量が増加すると土壌粒子の団粒が若干増加するためであると考えられる。一方、溶出量については、磁選前水分含有量が増加すると低下する傾向であった。磁選前水分含有量が多いとAsの鉄粉への吸着が進みやすくなるものと考えられた。なお、試験した範囲ではいずれの磁選前水分含有量範囲においても、汚染物質の溶出量は十分に低減されており、効果があることがわかった。
FIG. 4 shows the relationship [a)] between the moisture content before magnetic separation in the soil A, the recovery rate of magnetic deposits, and the As recovery rate, and the relationship [b)] between the moisture content before magnetic separation and the As elution amount. FIG. 5 shows the relationship between the moisture content before magnetic separation in the soil B, the recovery rate of magnetic deposits and the F recovery rate [a)], and the relationship between the moisture content before magnetic separation and the F elution amount [b)]. From the results of FIG. 5, it was shown that the amount of magnetic deposits recovered and the amount of contaminants recovered increased as the moisture content before magnetic separation increased. This is considered to be because the aggregate of soil particles slightly increases when the water content increases. On the other hand, the elution amount tended to decrease as the water content before magnetic separation increased. It was considered that the adsorption of As to the iron powder facilitated when the moisture content before magnetic separation was large. In addition, in the range tested, in any moisture content range before magnetic separation, it was found that the elution amount of the pollutant was sufficiently reduced and effective.

(実施例12〜39)
<鉄粉添加後の養生時間、鉄粉添加量及び酸添加量の影響>
土壌A、土壌C、及び土壌Dを用いて、鉄粉添加後の養生時間、鉄粉添加量及び酸添加量の影響を確認した。
各土壌試料100gをポリプロピレン製カップに量り取り、実施例1と同じ還元鉄粉を任意量、濃硫酸を任意量添加し、薬さじで1分間混合した。任意時間養生した後、石膏を主成分とする中性固化材(ジプサンダーC、石原産業株式会社製)を10g添加して、1分間程度混合した。その後、土壌をバットに開けて薄く敷均し、表面磁力1,500Gの磁石の磁石を用いて、磁着物粒子と非磁着物粒子(浄化土)を磁性分離し、それぞれ土壌中の汚染物質含有量(底質調査法)及び非磁着物について溶出量分析(環境省告示第18号)を実施した。土壌A、土壌C、及び土壌Dの結果を表4〜表6及び図6〜図14にそれぞれ示した。
(Examples 12 to 39)
<Effect of curing time after iron powder addition, iron powder addition amount and acid addition amount>
Using soil A, soil C, and soil D, the effects of curing time, iron powder addition amount, and acid addition amount after iron powder addition were confirmed.
100 g of each soil sample was weighed into a polypropylene cup, and the same amount of reduced iron powder as in Example 1 and an arbitrary amount of concentrated sulfuric acid were added and mixed with a spoon for 1 minute. After curing for an arbitrary time, 10 g of a neutral solidifying material (Gypsander C, manufactured by Ishihara Sangyo Co., Ltd.) mainly composed of gypsum was added and mixed for about 1 minute. After that, the soil is opened in a bat and spread thinly. Using a magnet with a surface magnetic force of 1,500G, magnetically separated particles and non-magnetically adhered particles (purified soil) are magnetically separated, and each contains contaminants in the soil. Elution amount analysis (Ministry of the Environment Notification No. 18) was conducted on the amount (bottom quality survey method) and non-magnetic deposits. The results of soil A, soil C, and soil D are shown in Tables 4 to 6 and FIGS.

<土壌Aの結果>
*表4−1中「養生時間」は、鉄粉添加後の養生時間を意味する。
<Result of soil A>
* In Table 4-1, “curing time” means the curing time after the addition of iron powder.

<土壌Cの結果>
*表5−1中「養生時間」は、鉄粉添加後の養生時間を意味する。
<Result of soil C>
* In Table 5-1, “curing time” means the curing time after the addition of iron powder.

<土壌Dの結果>
*表6−1中「養生時間」は、鉄粉添加後の養生時間を意味する。
<Result of soil D>
* “Curing time” in Table 6-1 means the curing time after addition of iron powder.

<鉄粉添加後の養生時間の影響>
表4〜表6の結果から、試験した範囲では、いずれの土壌においても鉄粉添加後の養生時間に対して、磁着物回収率、汚染物質回収率、汚染物質溶出量の相関は認められなかった。このことから、鉄粉混合時間は1分間程度で十分であることがわかった。
<Effect of curing time after iron powder addition>
From the results of Tables 4 to 6, in any tested range, there is no correlation between the magnetic deposit recovery rate, the contaminant recovery rate, and the pollutant elution amount with respect to the curing time after the addition of iron powder in any soil. It was. From this, it was found that about 1 minute is sufficient as the iron powder mixing time.

<鉄粉添加量の影響>
表4〜表6の結果から、試験した範囲では、いずれの土壌においても鉄粉添加量の増加に伴い、磁着物回収率、及び汚染物質回収率の増加が認められた。また、汚染物質溶出量は土壌DにおけるCr6+を除き、鉄粉添加量の増加に伴い、減少する傾向を示した。なお、いずれの水準においても、処理前の溶出量に対しては大幅に溶出量が低下しており、溶出成分の除去効果があると判断した。試験した範囲で、最も少ない鉄粉添加量は土壌Aにおける0.05質量%であったが、この鉄粉添加量でも十分な低減効果が認められた。
<Influence of iron powder addition amount>
From the results of Tables 4 to 6, in the tested range, an increase in the magnetic deposit recovery rate and the contaminant recovery rate was observed with an increase in the amount of iron powder added in any soil. Moreover, the elution amount of the pollutant showed a tendency to decrease as the amount of iron powder added increased except for Cr 6+ in soil D. At any level, the elution amount was significantly reduced with respect to the elution amount before the treatment, and it was judged that there was an effect of removing the eluted components. In the range tested, the smallest iron powder addition amount was 0.05 mass% in the soil A, but a sufficient reduction effect was recognized even with this iron powder addition amount.

<酸添加量の影響>
表4〜表6の結果から、試験した範囲では、いずれの土壌においても酸添加量に対して、磁着物回収率、汚染物質回収率の相関は認められなかった。また、土壌Dを除いて、酸添加量に対する汚染物質溶出量の相関は認められなかった。土壌Dでは酸添加量の増加にともない、Pb溶出量が若干増加傾向を示し、Cr6+が若干低下傾向を示したが、いずれの水準においても、処理前の溶出量に対しては大幅に溶出量が低下していた。
なお、いずれの土壌においても酸添加量0N/kgで十分な溶出性汚染成分の除去ができており、経済的な効果を考慮すると敢えて酸を添加せずともよいものと考えられた。
<Effect of acid addition amount>
From the results of Tables 4 to 6, in any tested range, no correlation was found between the magnetic deposit recovery rate and the contaminant recovery rate with respect to the acid addition amount in any soil. Further, except for soil D, no correlation between the amount of acid added and the amount of pollutant elution was observed. In soil D, as the amount of acid added increased, the Pb elution amount showed a slight increase trend, and Cr 6+ showed a slight decrease trend. At any level, the elution amount before treatment was significantly increased. The amount was decreasing.
It should be noted that in all soils, the sufficient amount of elution-polluting components could be removed with an acid addition amount of 0 N / kg, and it was considered that it was not necessary to add acid in consideration of economic effects.

(比較例2)
<水分含有量の調整をしない場合>
鉄粉添加前水分含有量を41.3質量%に調整した土壌Bを用い、中性固化材を用いず、水分含有量を調整しなかった(磁選前水分含有量41.3質量%)以外は、実施例1と同様にして、磁性分離を試みた。その結果、土壌の粘性が高く、団粒が大きいため、磁着物を得ることはできなかった。更に、表面磁力12,000Gの磁石を用いて、磁性分離を試みたところ、土壌がすべて磁石に付着し、磁着物と非磁着物の分離はできなかった。
(Comparative Example 2)
<When water content is not adjusted>
Other than using soil B whose water content before iron powder addition was adjusted to 41.3 mass%, not using a neutral solidifying material, and not adjusting the water content (moisture content before magnetic separation 41.3 mass%) Tried magnetic separation in the same manner as in Example 1. As a result, it was not possible to obtain a magnetic deposit due to the high viscosity of the soil and large aggregates. Furthermore, when magnetic separation was attempted using a magnet having a surface magnetic force of 12,000 G, all the soil adhered to the magnet, and separation of magnetic and non-magnetic substances was not possible.

(実施例40〜42)
<異なる鉄粉での磁性分離の比較>
土壌Cと同じサイトのSe汚染土壌(Se含有量0.75mg/kg〜0.86mg/kg、Se溶出量0.013mg/L)をポリプロピレン製カップに100gとり、これを3つ準備した。
各カップに実施例1と同じ還元鉄粉、ダライコ鉄粉(CC−1004、Connelly社製)、又はアトマイズ鉄粉(−180μm、和光純薬工業株式会社製)をそれぞれ1g添加し、塩酸を0.07N/kg添加して1分間混合した。30分間養生後、石膏を主成分とする中性固化材(ジプサンダーC、石原産業株式会社製)を10g添加して、1分間程度混合した。
その後、土壌をバットに開けて薄く敷均し、表面磁力7,000Gの磁石を用いて、磁着物粒子と非磁着物粒子(浄化土)を磁性分離し、それぞれ土壌中の汚染物質含有量(底質調査法)、及び非磁着物について溶出量(環境省告示第18号)を測定した。結果を表7に示した。
(Examples 40 to 42)
<Comparison of magnetic separation with different iron powder>
100 g of Se-contaminated soil (Se content 0.75 mg / kg to 0.86 mg / kg, Se elution amount 0.013 mg / L) at the same site as soil C was taken in a polypropylene cup, and three of them were prepared.
To each cup, 1 g of the same reduced iron powder, dariko iron powder (CC-1004, manufactured by Connelly), or atomized iron powder (-180 μm, manufactured by Wako Pure Chemical Industries, Ltd.) as in Example 1 was added, and hydrochloric acid was 0. 0.07 N / kg was added and mixed for 1 minute. After curing for 30 minutes, 10 g of a neutral solidifying material (Gypsander C, manufactured by Ishihara Sangyo Co., Ltd.) mainly composed of gypsum was added and mixed for about 1 minute.
After that, the soil is opened on a bat and spread thinly. Using a magnet with a surface magnetic force of 7,000 G, magnetically separated particles and non-magnetically adhered particles (purified soil) are magnetically separated, and the content of contaminants in the soil ( The amount of elution (Ministry of the Environment Notification No. 18) was measured for the bottom sediment investigation method) and non-magnetic deposits. The results are shown in Table 7.

<異なる鉄粉での磁性分離の結果>
表7の結果から、異なる鉄粉で処理試験を実施したところ、磁着物回収率及びSe回収率は還元鉄粉が最も高く、次いで、ダライコ粉、アトマイズ粉の順であった。磁着物回収率の差は、還元鉄粉の粒径が比較的細かいため、団粒を形成し、付着土壌が多かったのでSe回収率が増えた結果と考えられる。一方、非磁着物の溶出量について比較すると、若干差が出る程度であった。
<Results of magnetic separation with different iron powder>
From the results of Table 7, when a treatment test was carried out with different iron powders, the reduced magnetic powder collection rate and Se recovery rate were the highest for the reduced iron powder, followed by Daliko powder and atomized powder. The difference in the recovery rate of magnetic deposits is considered to be a result of an increase in the Se recovery rate because of the relatively small particle size of the reduced iron powder that formed aggregates and a large amount of attached soil. On the other hand, when comparing the elution amount of non-magnetic deposits, there was a slight difference.

(比較例3〜4)
−鉄粉を添加せずに磁性分離のみ実施した結果(特開平10−71837号公報に記載の方法)−
風乾した土壌A及び実施例40〜42で用いた土壌試料について、それぞれ100gバットに薄く敷均し、表面磁力7,000Gの磁石の磁石を用いて、磁着物粒子と非磁着物粒子(浄化土)を磁性分離し、それぞれ土壌中の汚染物質含有量(底質調査法)、及び非磁着物について溶出量分析(環境省告示第18号)を実施した。結果を表8及び表9に示した。
(Comparative Examples 3-4)
-Results of magnetic separation only without adding iron powder (method described in JP-A-10-71837)-
For the air-dried soil A and the soil samples used in Examples 40 to 42, each of them was spread thinly on a 100 g vat and magnetized particles and non-magnetized particles (purified soil) using a magnet having a surface magnetic force of 7,000 G. ) Were magnetically separated, and the content of pollutants in the soil (sediment survey method) and elution amount analysis (Ministry of the Environment Notification No. 18) were conducted for non-magnetic deposits. The results are shown in Tables 8 and 9.

<土壌Aの磁選結果>
<Magnetic selection result of soil A>

<実施例40〜42で用いた土壌試料の磁選結果>
<Magnetic separation results of soil samples used in Examples 40 to 42>

表8及び表9の結果から、土壌Aの磁選の結果、磁着物が10.4質量%得られ、Asとして10.3質量%が回収できたが、As溶出量の低減は認められなかった。このことから、溶出性Asは鉄粉に吸着して回収されるものと判断した。一方、実施例40〜42で用いた土壌試料では磁性分離による磁着物がほとんど得られなかった。このことから、特開平10−71837号公報に記載の方法と比較して、本発明の汚染土壌の無害化処理方法は、溶出性汚染物質の回収除去に効果があることがわかった。   From the results of Tables 8 and 9, as a result of magnetic separation of soil A, 10.4% by mass of magnetic deposits were obtained, and 10.3% by mass was recovered as As, but no decrease in As elution amount was observed. . From this, it was judged that the elution As was recovered by adsorbing to the iron powder. On the other hand, in the soil samples used in Examples 40 to 42, magnetic deposits due to magnetic separation were hardly obtained. From this, it was found that the method for detoxifying contaminated soil according to the present invention is more effective in the recovery and removal of eluting pollutants than the method described in JP-A-10-71837.

(比較例5)
実施例40〜42で用いた土壌Cと同じサイトのSe汚染土壌(Se含有量0.75〜0.86mg/kg、Se溶出量0.013mg/L)100gを1.0L広口ポリビンに取り、実施例1と同じ還元鉄粉1g及びイオン交換水400mL、濃硫酸を0.5mL添加して密栓し、振とう機にて200往復/分間で30分間振とうし、Se汚染土壌をスラリー化した。
振とう後、ポリビン内のスラリーをポリプロピレン製バットに開け、表面磁力0.7T棒磁石をスラリー中で走査し、磁着物を分離した。なお、スラリーを別容器等へ移し替える際、付着する土壌粒子を回収するため、イオン交換水100mLを用いた。
ポリプロピレン製バットに残った非磁着物スラリーは5Cろ紙を用いて吸引濾過し、非磁着物と処理水を得た。
得られた非磁着物は、底質調査方法に基づくSe含有量分析及び環境省告示第18号に基づくSe溶出量分析を行った。磁着物は、底質調査方法に基づくSe含有量分析を行った。処理水は、底質調査方法に基づくSe含有量分析を行った。それぞれの結果を表10に示した。なお、表7の実施例40の抜粋を表11に示した。
(Comparative Example 5)
100 g of Se-contaminated soil (Se content of 0.75 to 0.86 mg / kg, Se elution amount of 0.013 mg / L) at the same site as the soil C used in Examples 40 to 42 was taken in a 1.0 L wide-mouthed polybin, The same reduced iron powder 1 g as in Example 1, 400 mL of ion exchange water, and 0.5 mL of concentrated sulfuric acid were added and sealed, and the mixture was shaken with a shaker at 200 reciprocations / min for 30 minutes to slurry Se-contaminated soil. .
After shaking, the slurry in the polybin was opened in a polypropylene vat, and a surface magnetic force 0.7 T bar magnet was scanned in the slurry to separate the magnetic deposits. In addition, when transferring a slurry to another container etc., in order to collect | recover the soil particles which adhere, 100 mL of ion-exchange water was used.
The non-magnetized product slurry remaining in the polypropylene vat was suction filtered using 5C filter paper to obtain a non-magnetized product and treated water.
The obtained non-magnetized material was subjected to Se content analysis based on the sediment survey method and Se elution analysis based on Ministry of the Environment Notification No. 18. The magnetized material was subjected to Se content analysis based on the bottom sediment investigation method. The treated water was subjected to Se content analysis based on the bottom sediment investigation method. The results are shown in Table 10. An extract of Example 40 in Table 7 is shown in Table 11.

<表7の抜粋>
表10の結果から、鉄粉添加前土壌に対して、処理後土壌(非磁着物)は表11の実施例40の結果と同程度に低下した。しかし、水分含有量が多い比較例5の汚染土壌では、磁着物へのSeの収支は表11の実施例40よりも大幅に低く、むしろ処理水へSeが分配される結果となり、表11の実施例40とは異なる結果が得られた。このことから、Se汚染土壌について、湿式磁選を行った場合、処理水へのSeの移行が見られ、乾式磁選を行った場合に比べ、磁着物として回収できるSe量が減少することがわかった。
なお、処理水のSe含有量は0.022mg/kgであり、環境基準を超過しているため、別途排水処理が必要であった。
<Excerpt from Table 7>
From the results in Table 10, the treated soil (non-magnetized material) decreased to the same extent as the results of Example 40 in Table 11 with respect to the soil before addition of iron powder. However, in the contaminated soil of Comparative Example 5 having a high water content, the balance of Se in the magnetic deposit is much lower than that in Example 40 in Table 11, and rather, Se is distributed to the treated water. Results different from Example 40 were obtained. From this fact, it was found that when wet magnetic separation is performed on Se-contaminated soil, Se is transferred to the treated water, and the amount of Se that can be recovered as a magnetic deposit is reduced compared to when dry magnetic separation is performed. .
The Se content of the treated water was 0.022 mg / kg, which exceeded the environmental standard, and therefore a separate wastewater treatment was required.

Claims (4)

砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する鉄粉添加工程と、
磁選前の汚染土壌の水分含有量を36質量%以下に調整する水分含有量調整工程と、
水分含有量が36質量%以下である汚染土壌から鉄粉を乾式磁選により回収除去する乾式磁選工程と、を含むことを特徴とする汚染土壌の無害化処理方法。
An iron powder addition step of adding iron powder to contaminated soil containing at least one pollutant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyanide, fluorine and boron;
A moisture content adjusting step for adjusting the moisture content of the contaminated soil before magnetic separation to 36% by mass or less;
And a dry magnetic separation step of recovering and removing iron powder from the contaminated soil having a moisture content of 36% by mass or less by dry magnetic separation.
汚染土壌に対して0.05質量%以上10質量%以下の鉄粉を添加する請求項1に記載の汚染土壌の無害化処理方法。   The method for detoxifying contaminated soil according to claim 1, wherein 0.05 to 10 mass% of iron powder is added to the contaminated soil. 鉄粉添加前の汚染土壌の水分含有量が60質量%以下である請求項1から2のいずれかに記載の汚染土壌の無害化処理方法。   The method for detoxifying contaminated soil according to any one of claims 1 to 2, wherein the moisture content of the contaminated soil before addition of iron powder is 60% by mass or less. 鉄粉添加工程において、硫酸及び塩酸のいずれかを添加する請求項1から3のいずれかに記載の汚染土壌の無害化処理方法。   The method for detoxifying contaminated soil according to any one of claims 1 to 3, wherein either sulfuric acid or hydrochloric acid is added in the iron powder addition step.
JP2014115083A 2014-06-03 2014-06-03 Detoxification method for contaminated soil Active JP5647371B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014115083A JP5647371B1 (en) 2014-06-03 2014-06-03 Detoxification method for contaminated soil
TW104114525A TWI673096B (en) 2014-06-03 2015-05-07 Method for detoxifying polluted soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115083A JP5647371B1 (en) 2014-06-03 2014-06-03 Detoxification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP5647371B1 JP5647371B1 (en) 2014-12-24
JP2015229124A true JP2015229124A (en) 2015-12-21

Family

ID=52139283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115083A Active JP5647371B1 (en) 2014-06-03 2014-06-03 Detoxification method for contaminated soil

Country Status (2)

Country Link
JP (1) JP5647371B1 (en)
TW (1) TWI673096B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110964A1 (en) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 Insolubilization material and insolubilization method for arsenic
JP2017148719A (en) * 2016-02-24 2017-08-31 株式会社奥村組 Contaminant-containing solid treatment method
JP2018008254A (en) * 2016-07-15 2018-01-18 Dowaエコシステム株式会社 Harmless processing method of contaminated soil
JP2018103133A (en) * 2016-12-27 2018-07-05 日鉄住金セメント株式会社 Soil treatment material and purification method of heavy metal contaminated soil
CN110293122A (en) * 2019-08-09 2019-10-01 周成宗 One kind containing metal impurities soil remediation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688576B2 (en) * 2015-08-20 2020-04-28 Dowaエコシステム株式会社 Decontamination method for contaminated soil
JP6692136B2 (en) * 2015-09-01 2020-05-13 Dowaエコシステム株式会社 Decontamination method for contaminated soil
JP6531013B2 (en) * 2015-09-09 2019-06-12 株式会社神戸製鋼所 Purification method and purification agent
CN106825028B (en) * 2017-02-10 2020-11-06 环保桥(湖南)生态环境修复有限公司 In-situ remediation method capable of removing farmland soil arsenic
CN115430696A (en) * 2022-08-15 2022-12-06 中国原子能科学研究院 Dry decontamination method for radioactive contaminated soil containing cesium-137

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033525A1 (en) * 1997-12-25 1999-07-08 Chiyoda Corporation Wet type method of rendering dioxins innoxious
TWI445671B (en) * 2010-03-24 2014-07-21 Sony Corp Cation exchanger and method of removing heavy metal ions in wastewater
JP5652293B2 (en) * 2011-03-29 2015-01-14 栗田工業株式会社 Method for processing heavy metal-containing solids
CN103302088A (en) * 2013-07-01 2013-09-18 东营金川水土环境工程有限公司 Method for treating soil pollution in a hierarchically cyclic cleaning manner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110964A1 (en) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 Insolubilization material and insolubilization method for arsenic
CN108430658A (en) * 2015-12-25 2018-08-21 株式会社神户制钢所 The insoluble material of arsenic and insoluble method
JP2017148719A (en) * 2016-02-24 2017-08-31 株式会社奥村組 Contaminant-containing solid treatment method
JP2018008254A (en) * 2016-07-15 2018-01-18 Dowaエコシステム株式会社 Harmless processing method of contaminated soil
JP2018103133A (en) * 2016-12-27 2018-07-05 日鉄住金セメント株式会社 Soil treatment material and purification method of heavy metal contaminated soil
CN110293122A (en) * 2019-08-09 2019-10-01 周成宗 One kind containing metal impurities soil remediation method
CN110293122B (en) * 2019-08-09 2021-10-26 山东同其数字技术有限公司 Method for restoring soil containing metal impurities

Also Published As

Publication number Publication date
TWI673096B (en) 2019-10-01
TW201545796A (en) 2015-12-16
JP5647371B1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5647371B1 (en) Detoxification method for contaminated soil
KR101726742B1 (en) Soil cleaning method
Ma et al. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size
CN102745872B (en) Treatment method and device for riverway and lake heavy metal pollution bottom sludge
JP4235688B2 (en) Purification method for contaminated soil
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
JP6692136B2 (en) Decontamination method for contaminated soil
JP6688576B2 (en) Decontamination method for contaminated soil
JP6850634B2 (en) How to purify mercury-contaminated soil
JP2009102518A (en) Treatment material for reducing heavy metals, treatment method for reducing heavy metals, method for manufacturing material for granulation treatment, and ground material
Akinwumi et al. Sawdust stabilization of lateritic clay as a landfill liner to retain heavy metals
JP3968752B2 (en) Purification method for heavy metal contaminated soil
JP6719758B2 (en) Incineration ash treatment agent and incineration ash treatment method
JP4913193B2 (en) Recycled ground material and manufacturing method thereof
JP2018103133A (en) Soil treatment material and purification method of heavy metal contaminated soil
JP2016097351A (en) Purification method and purification device for slurry including arsenic
JP6567288B2 (en) Recycling method of selected soil extracted from earth and sand mixed waste
CN104275346A (en) Insolubilization agent for harmful substances and insolubilization method
JP6177528B2 (en) Insolubilizing material and insolubilizing method for arsenic-containing heavy metal contaminated soil
JP6578257B2 (en) Detoxification method for contaminated soil
JP7147662B2 (en) Purification method and equipment for contaminated soil, incineration ash or sludge
JP6818330B1 (en) Heavy metal adsorbent and its manufacturing method
JP7147661B2 (en) Contaminated Soil Remediation Method and Contaminated Soil Remediation Equipment
JP6238519B2 (en) Paddy field repair method
JP2003320365A (en) Method for treating object to be treated containing contaminant and treating agent for contaminated object to be treated

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141106

R150 Certificate of patent or registration of utility model

Ref document number: 5647371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250