JP7190431B2 - Coated inorganic fine particles and method for producing the same - Google Patents

Coated inorganic fine particles and method for producing the same Download PDF

Info

Publication number
JP7190431B2
JP7190431B2 JP2019531016A JP2019531016A JP7190431B2 JP 7190431 B2 JP7190431 B2 JP 7190431B2 JP 2019531016 A JP2019531016 A JP 2019531016A JP 2019531016 A JP2019531016 A JP 2019531016A JP 7190431 B2 JP7190431 B2 JP 7190431B2
Authority
JP
Japan
Prior art keywords
group
fine particles
inorganic fine
carbon atoms
heteroatom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019531016A
Other languages
Japanese (ja)
Other versions
JPWO2019017305A1 (en
Inventor
聖也 田中
秀彦 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Publication of JPWO2019017305A1 publication Critical patent/JPWO2019017305A1/en
Application granted granted Critical
Publication of JP7190431B2 publication Critical patent/JP7190431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、無機微粒子の表面に特定の化合物を反応させて得られる被覆層を有する被覆無機微粒子及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to coated inorganic fine particles having a coating layer obtained by reacting a specific compound on the surface of inorganic fine particles, and a method for producing the same.

従来、透明性が求められるコンポジット材料を得るには、ナノサイズの無機微粒子を有機溶剤等の液中に分散させた分散液を先ず製造し、次に分散液と樹脂等とを混合した後で有機溶剤を除去する方法が一般的である(例えば特許文献1~8参照)。
しかし、従来の方法では、分散液の製造や有機溶剤の除去の工程において、エネルギー的に負荷が掛かり、余分な工程を含むため作業効率も悪い。
Conventionally, in order to obtain a composite material that requires transparency, a dispersion is first produced by dispersing nano-sized inorganic fine particles in a liquid such as an organic solvent, and then the dispersion is mixed with a resin or the like. A common method is to remove the organic solvent (see Patent Documents 1 to 8, for example).
However, the conventional method imposes an energy load in the process of producing the dispersion liquid and removing the organic solvent, and the work efficiency is poor due to the inclusion of extra processes.

また、透明ナノコンポジット材料が求められている用途の中には、フラットパネルディスプレイの1つである有機エレクトロルミネッセンス(以下、「有機EL」と略す場合がある。)に使用される接着剤、発光ダイオード(以下、「LED」と略す場合がある。)に使用される封止材などがあり、接着剤や封止材を紫外線や加熱により硬化する際に、発熱によりアウトガスが発生すると、発光素子の寿命に悪影響を与えてしまうことが知られている(例えば特許文献9及び10参照)。 In addition, among the applications where transparent nanocomposite materials are required, adhesives used in organic electroluminescence (hereinafter sometimes abbreviated as "organic EL"), which is one of flat panel displays, and light emission There is a sealing material used for diodes (hereinafter sometimes abbreviated as "LED"), and when the adhesive or sealing material is cured by ultraviolet light or heat, outgassing is generated due to heat generation. It is known that it adversely affects the life of the battery (see, for example, Patent Documents 9 and 10).

透明ナノコンポジット材料において、無溶剤系のモノマー、オリゴマー、樹脂にビーズミル等の分散機を用いて直接、粒子径20nm以下のナノサイズの無機微粒子を分散させる方法があるが、ナノサイズの無機微粒子は比表面積が大きいため、粒子間のファンデルワールス力が強く、均一に分散することが困難であり、装置的にも粘度上昇が生じると負荷が掛かり、ビーズを攪拌することができない。また、無機微粒子を樹脂中に高濃度に分散させた場合、透明性が得られず、コンポジット材料の粘度も極めて高くなり、混合割合が制限されるうえ、成型時のハンドリング性に悪影響を与える問題が生じる。 In transparent nanocomposite materials, there is a method of directly dispersing nano-sized inorganic fine particles with a particle diameter of 20 nm or less in solvent-free monomers, oligomers, and resins using a dispersing machine such as a bead mill. Since the specific surface area is large, the van der Waals force between particles is strong, making it difficult to uniformly disperse the particles. If the viscosity rises, a load is applied to the apparatus, and the beads cannot be stirred. In addition, when the inorganic fine particles are dispersed in the resin at a high concentration, transparency cannot be obtained and the viscosity of the composite material becomes extremely high, which limits the mixing ratio and adversely affects handling during molding. occurs.

特許文献11及び12では、ナノ粒子分散によるコンポジット材料での高粘度の課題を解決するため、1次粒子径が15nm以下の粒子を数十μm程度の球状又は板状に造粒し、その造粒物をシランカップリング剤にて表面被覆した後、エポキシ又はシリコーン樹脂に混合・攪拌して透明な複合体を得る方法を提案している。
しかし、これらの製造方法では、結晶子径が15nm以下でも粒子サイズが数十μm程度となるため、薄膜用途への適用が困難であり、樹脂中に高濃度でジルコニア球状粒子を分散させた場合では複合体の透明性や硬度に悪影響を与える問題がある。
In Patent Documents 11 and 12, in order to solve the problem of high viscosity in a composite material due to dispersion of nanoparticles, particles having a primary particle diameter of 15 nm or less are granulated into spherical or plate-shaped particles of about several tens of μm, and the granulation is performed. We have proposed a method of obtaining a transparent composite by coating the surface of particles with a silane coupling agent and then mixing and stirring the particles with an epoxy or silicone resin.
However, in these production methods, even if the crystallite diameter is 15 nm or less, the particle size is about several tens of μm, so it is difficult to apply to thin film applications. However, there is a problem that the transparency and hardness of the composite are adversely affected.

特許文献13では、炭素数4以上のカルボン酸により表面被覆して疎水化したZrO等の無機酸化物微粒子の粉末をポリスチレン樹脂に混合して高い透明度のポリスチレン複合体を得ている。その表面被覆方法は、まず、無機酸化物微粒子の水系分散液にて疎水化し、トルエン等の非水溶性有機溶媒とメタノール等の両溶性有機溶媒とを混合した後、水と両溶性有機溶媒を蒸発除去して、非水溶性有機溶媒の無機酸化物微粒子分散液としてから、非水溶性有機溶媒を蒸発除去する。
しかし、この製造方法では、非水溶性有機溶媒と両溶性有機溶媒とを混合して蒸発除去する操作を5~6回繰り返し行うため、操作が煩雑なうえ、疎水化処理の際に有機溶媒を使用するため、蒸発除去を行っても完全に有機溶媒を除去することは困難である。また、表面被覆する有機化合物として、炭素原子数4以上のカルボン酸と限定されるため、様々なモノマー及び樹脂の単体又は数種類を含む混合物の場合には相溶性を合わせることが困難である。
In Patent Document 13, powder of inorganic oxide fine particles such as ZrO 2 whose surface is coated with a carboxylic acid having 4 or more carbon atoms to make it hydrophobic is mixed with a polystyrene resin to obtain a highly transparent polystyrene composite. In the surface coating method, first, hydrophobization is performed with an aqueous dispersion of inorganic oxide fine particles, and after mixing a non-water-soluble organic solvent such as toluene and an amphoteric organic solvent such as methanol, water and the amphoteric organic solvent are mixed. Evaporation is carried out to form a water-insoluble organic solvent inorganic oxide fine particle dispersion, and then the water-insoluble organic solvent is evaporated away.
However, in this production method, the operation of mixing the water-insoluble organic solvent and the amphoteric organic solvent and removing them by evaporation is repeated 5 to 6 times. Therefore, it is difficult to completely remove the organic solvent even by evaporation. In addition, since the organic compound for surface coating is limited to a carboxylic acid having 4 or more carbon atoms, it is difficult to match compatibility in the case of a mixture containing various monomers and resins alone or several types.

特許文献14では、特許文献13と同様の製造方法にてジルコニア含有エポキシ樹脂組成物を得ているため、特許文献13と同様の課題がある。また、特許文献14記載のように湿式法により合成されたジルコニア粒子では、結晶性が低く、塩化物イオンや硫酸イオン等の不純物が多い。さらに、加熱処理によりジルコニア前駆体からジルコニアを合成しているため粒子間が結合又は凝集した粒子となり、ジルコニア含有エポキシ樹脂組成物としての透明性や耐候性等に悪影響を与える問題がある。 In Patent Document 14, since a zirconia-containing epoxy resin composition is obtained by the same production method as in Patent Document 13, there are problems similar to those in Patent Document 13. In addition, zirconia particles synthesized by a wet method as described in Patent Document 14 have low crystallinity and contain many impurities such as chloride ions and sulfate ions. Furthermore, since zirconia is synthesized from a zirconia precursor by heat treatment, the particles are bonded or agglomerated, and there is a problem that the transparency and weather resistance of the zirconia-containing epoxy resin composition are adversely affected.

特許文献15では、SiOナノ粒子を、モノマー液中で攪拌しながら加熱処理し、表面に膜厚1nm以下のモノマー由来の分子膜を形成した後で、別のモノマーと触媒を添加して加熱により架橋させてシリコーン系ポリマーからなる透明コンポジット材料を提案している。
しかし、この製造方法では、シリコーン系ポリマーとの相溶性が重要であり、無機微粒子としてSiOナノ粒子を使用することが限定される。他の無機微粒子を使用する場合には、粒子表面に表面被覆を施す必要が生じるため適用できない。また、SiOナノ粒子の屈折率がシリコーン系ポリマーの屈折率と近い値を示すため、樹脂中に粒子が均一に分散していなくても透明性が得られている。SiOナノ粒子を高濃度に分散した場合や他の無機微粒子の場合では、透明性を維持することは困難である。
In Patent Document 15, SiO 2 nanoparticles are heat-treated in a monomer liquid while stirring to form a monomer-derived molecular film having a thickness of 1 nm or less on the surface, and then another monomer and catalyst are added and heated. proposed a transparent composite material made of a silicone-based polymer crosslinked by
However, in this manufacturing method, the compatibility with silicone-based polymers is important, which limits the use of SiO2 nanoparticles as inorganic fine particles. In the case of using other inorganic fine particles, it is necessary to apply a surface coating to the particle surface, so this method cannot be applied. In addition, since the refractive index of the SiO2 nanoparticles is close to that of the silicone-based polymer, transparency is obtained even if the particles are not uniformly dispersed in the resin. It is difficult to maintain transparency when SiO2 nanoparticles are dispersed in a high concentration or in the case of other inorganic fine particles.

その他、特許文献16~19において、シランカップリング剤やメタクリレート等で表面被覆した無機微粒子の粉末を直接樹脂に分散させたコンポジット材料及びその製造方法を提供しているが、有機溶媒中で無機微粒子を分散させてから表面被覆を施し、有機溶媒を蒸発除去しているため、完全に有機溶媒を除去することは困難である。また、無機微粒子のビーズミル等の分散機による分散工程や有機溶媒の除去工程が必要となるため、エネルギー的負荷や有機溶媒の廃液処理など工業化規模の生産が困難である。 In addition, Patent Documents 16 to 19 provide a composite material in which a powder of inorganic fine particles surface-coated with a silane coupling agent, methacrylate, or the like is directly dispersed in a resin, and a method for producing the same. is dispersed, the surface is coated, and the organic solvent is removed by evaporation. Therefore, it is difficult to completely remove the organic solvent. In addition, since a dispersing step using a dispersing machine such as a bead mill for inorganic fine particles and a removing step of the organic solvent are required, industrial-scale production is difficult due to the energy load and waste liquid treatment of the organic solvent.

特開2003-73558号公報JP-A-2003-73558 特開2006-299126号公報JP 2006-299126 A 特開2008-156390号公報JP 2008-156390 A 特開2009-185185号公報JP 2009-185185 A 特開2010-209186号公報JP 2010-209186 A 特開2011-79927号公報JP 2011-79927 A 特開2014-28873号公報JP 2014-28873 A 特開2016-28998号公報JP 2016-28998 A 特開2005-251631号公報JP 2005-251631 A 特開2014-201617号公報JP 2014-201617 A 特開2007-308345号公報JP 2007-308345 A 特開2010-6647号公報JP 2010-6647 A 特開2011-105553号公報JP 2011-105553 A 特開2014-221866号公報JP 2014-221866 A 特開2012-251110号公報Japanese Unexamined Patent Application Publication No. 2012-251110 特開2008-280443号公報JP 2008-280443 A 特開2009-40938号公報JP 2009-40938 A 特開2009-74023号公報JP 2009-74023 A 特開2011-524444号公報JP 2011-524444 A

本発明は上記のような事情に鑑みなされたものであり、光学部材、電子部材、コーティング材料及び歯科材料などに使用される透明ナノコンポジット材料の用途に適した被覆無機微粒子及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides coated inorganic fine particles suitable for transparent nanocomposite materials used in optical members, electronic members, coating materials, dental materials, and the like, and a method for producing the same. intended to

本発明者らは、これらの課題を解決すべく鋭意検討を進めた結果、無機微粒子の表面に特定の化合物を反応させて得られる被覆層を有する被覆無機微粒子(以下、「被覆無機微粒子」と略す場合がある。)であって、特定の条件を満たし、揮発性有機化合物の含有量を抑制した被覆無機微粒子が、量産性に優れ、高濃度でも凝集せず、無機微粒子が均一に分散した透明なナノコンポジット材料を実現できることを見出し、本発明を完成させた。
即ち、本発明によれば、以下の実施態様が提供される。
[1] 無機微粒子の表面に下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物及びその塩の少なくとも1種を反応させて得られる、被覆層を有する被覆無機微粒子であって、
前記無機微粒子の平均粒子径が1nm以上100nm未満で、かつ比表面積が1m/g以上3,000m/g未満であり、
揮発性有機化合物の含有量が100ppm未満であることを特徴とする、被覆無機微粒子。

Figure 0007190431000001
(式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基、又はケイ素原子数1~20のj価の(ポリ)シロキシ基を、R及びRはそれぞれ独立して下記式(bc-1)~(bc-6)の何れかで表される構造を、Rはヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基を、Xはそれぞれ独立して炭素原子数1~10のアルコキシ基、水素原子、塩素原子、臭素原子、又はヨウ素原子を、X及びXはそれぞれ独立して炭素原子数1~10のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基、塩素原子、臭素原子、又はヨウ素原子を、hは1~4の整数を、iはそれぞれ独立して1~3の整数を、jは2~10の整数を、kは1~4の整数を、lは1~3の整数を、mは1~3の整数を、nは2~10の整数を表す。但し、X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成していてもよい。)
Figure 0007190431000002
(式(bc-1)~(bc-6)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはそれぞれ独立してヒドロキシル基、ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基、又は水素原子を表す。)
[2] 前記揮発性有機化合物の含有量が、1ppm以上80ppm未満である、[1]に記載の被覆無機微粒子。
[3] 屈折率が1.5以上である、[1]又は[2]に記載の被覆無機微粒子。
[4] 前記無機微粒子が、屈折率1.5以上の金属酸化物からなる群より選択される少なくとも1種である、[1]~[3]の何れかに記載の被覆無機微粒子。
[5] 前記無機微粒子が、二酸化ジルコニウム(ZrO)及び二酸化チタン(TiO)からなる群より選択される少なくとも1種である、[1]~[4]の何れかに記載の被覆無機微粒子。
[6] 前記被覆層が、前記式(A-1)で表される化合物又は前記式(A-2)で表される化合物を反応させて形成される層である、[1]~[5]の何れかに記載の被覆無機微粒子。
[7] 前記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物が、前記無機微粒子100重量部に対して、3重量部以上100重量部以下添加されて反応させられる、[1]~[6]の何れかに記載の被覆無機微粒子。
[8] 前記被覆層の含有量が、1重量%以上45重量%以下である、[1]~[7]の何れかに記載の被覆無機微粒子。
[9] 金属水酸化物及び/又は金属水酸化物の縮合物が溶解及び/又は分散する水溶液を準備する準備工程、(2)前記準備工程で準備した前記水溶液を温度200℃以上、圧力20MPa以上、反応時間0.1分以上で水熱反応させて無機微粒子を生成する水熱反応工程、(3)前記水熱反応工程で生成した前記無機微粒子を単離する単離工程、(4)前記単離工程で単離した前記無機微粒子と下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物の少なくとも1種を水溶媒中で反応させる被覆工程、を含むことを特徴とする被覆無機微粒子の製造方法。
Figure 0007190431000003
(式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基、又はケイ素原子数1~20のj価の(ポリ)シロキシ基を、R及びRはそれぞれ独立して下記式(bc-1)~(bc-6)の何れかで表される構造を、Rはヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基を、Xはそれぞれ独立して炭素原子数1~10のアルコキシ基、水素原子、塩素原子、臭素原子、又はヨウ素原子を、X及びXはそれぞれ独立して炭素原子数1~10のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基、塩素原子、臭素原子、又はヨウ素原子を、hは1~4の整数を、iはそれぞれ独立して1~3の整数を、jは2~10の整数を、kは1~4の整数を、lは1~3の整数を、mは1~3の整数を、nは2~10の整数を表す。但し、X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成していてもよい。)
Figure 0007190431000004
(式(bc-1)~(bc-6)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはそれぞれ独立してヒドロキシル基、ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基、又は水素原子を表す。)
[10] [1]~[8]の何れかに記載の被覆無機微粒子を透明な有機化合物に分散させてなるナノコンポジット材料。
[11] 前記有機化合物が、前記有機化合物が、重合性のモノマー及び/又はオリゴマーであり、前記モノマー及び/又はオリゴマーを重合させたときの重合体の波長400nmの光の分光透過率が65%以上である、[10]に記載のナノコンポジット材料。
[12] 前記有機化合物が、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂、及び電子線硬化性樹脂からなる群より選択される少なくとも1種であり、波長400nmの光の分光透過率が65%以上である、[10]のナノコンポジット材料。
[13] 前記被覆無機微粒子の含有量が、10重量%以上85重量%以下である、[10]~[12]の何れかに記載のナノコンポジット材料。The inventors of the present invention conducted intensive studies to solve these problems, and found that coated inorganic fine particles having a coating layer obtained by reacting a specific compound on the surface of the inorganic fine particles (hereinafter referred to as "coated inorganic fine particles") It may be omitted.), and the coated inorganic fine particles that satisfy specific conditions and suppress the content of volatile organic compounds are excellent in mass production, do not aggregate even at high concentrations, and uniformly disperse inorganic fine particles. The inventors have found that a transparent nanocomposite material can be realized, and completed the present invention.
That is, according to the present invention, the following embodiments are provided.
[1] The following formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) are applied to the surface of the inorganic fine particles A coated inorganic fine particle having a coating layer obtained by reacting at least one of a compound represented by any of and a salt thereof,
The inorganic fine particles have an average particle diameter of 1 nm or more and less than 100 nm, and a specific surface area of 1 m 2 /g or more and less than 3,000 m 2 /g,
Coated inorganic fine particles, characterized in that the content of volatile organic compounds is less than 100 ppm.
Figure 0007190431000001
(In formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2), R 1 is is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, or the number of silicon atoms 1 to 20 j-valent (poly)siloxy groups, R 3 and R 4 each independently have a structure represented by any one of the following formulas (bc-1) to (bc-6), R 5 R 6 is a hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom, R 6 is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and X 1 is each X 2 and X 3 are each independently an alkoxy group having 1 to 10 carbon atoms, a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and each independently an alkoxy group having 1 to 10 carbon atoms or a hetero atom may contain an acyloxy group having 1 to 10 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, h is an integer of 1 to 4, i is each independently an integer of 1 to 3, and j is an integer of 2 to 10, k an integer of 1 to 4, l an integer of 1 to 3, m an integer of 1 to 3, and n an integer of 2 to 10, provided that X 2 and X The alkoxy group and/or acyloxy group of 3 may combine with other alkoxy group and/or acyloxy group of X2 and X3 respectively to form a cyclic structure.)
Figure 0007190431000002
(In formulas (bc-1) to (bc-6), R 7 is each independently a hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom, and R 8 contains a heteroatom. Each R 9 is independently a hydroxyl group, an alkoxy group with 1 to 20 carbon atoms which may contain a heteroatom, and a It represents a good hydrocarbon group with 1 to 20 carbon atoms, or a hydrogen atom.)
[2] The coated inorganic fine particles according to [1], wherein the content of the volatile organic compound is 1 ppm or more and less than 80 ppm.
[3] The coated inorganic fine particles according to [1] or [2], which have a refractive index of 1.5 or more.
[4] The coated inorganic fine particles according to any one of [1] to [3], wherein the inorganic fine particles are at least one selected from the group consisting of metal oxides having a refractive index of 1.5 or more.
[5] The coated inorganic fine particles according to any one of [1] to [4], wherein the inorganic fine particles are at least one selected from the group consisting of zirconium dioxide (ZrO 2 ) and titanium dioxide (TiO 2 ). .
[6] The coating layer is a layer formed by reacting the compound represented by the formula (A-1) or the compound represented by the formula (A-2), [1] to [5] ].
[7] Represented by any of the formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) The coated inorganic fine particles according to any one of [1] to [6], wherein the compound is added to 100 parts by weight of the inorganic fine particles in an amount of 3 parts by weight or more and 100 parts by weight or less to react.
[8] The coated inorganic fine particles according to any one of [1] to [7], wherein the content of the coating layer is 1% by weight or more and 45% by weight or less.
[9] A preparatory step of preparing an aqueous solution in which metal hydroxides and/or metal hydroxide condensates are dissolved and/or dispersed; (3) an isolation step of isolating the inorganic fine particles produced in the hydrothermal reaction step; (4) The inorganic fine particles isolated in the isolation step and the following formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and ( A method for producing coated inorganic fine particles, comprising a coating step of reacting at least one compound represented by any one of D-2) in an aqueous solvent.
Figure 0007190431000003
(In formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2), R 1 is is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, or the number of silicon atoms 1 to 20 j-valent (poly)siloxy groups, R 3 and R 4 each independently have a structure represented by any one of the following formulas (bc-1) to (bc-6), R 5 R 6 is a hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom, R 6 is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and X 1 is each X 2 and X 3 are each independently an alkoxy group having 1 to 10 carbon atoms, a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and each independently an alkoxy group having 1 to 10 carbon atoms or a hetero atom may contain an acyloxy group having 1 to 10 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, h is an integer of 1 to 4, i is each independently an integer of 1 to 3, and j is an integer of 2 to 10, k an integer of 1 to 4, l an integer of 1 to 3, m an integer of 1 to 3, and n an integer of 2 to 10, provided that X 2 and X The alkoxy group and/or acyloxy group of 3 may combine with other alkoxy group and/or acyloxy group of X2 and X3 respectively to form a cyclic structure.)
Figure 0007190431000004
(In formulas (bc-1) to (bc-6), R 7 is each independently a hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom, and R 8 contains a heteroatom. Each R 9 is independently a hydroxyl group, an alkoxy group with 1 to 20 carbon atoms which may contain a heteroatom, and a It represents a good hydrocarbon group with 1 to 20 carbon atoms, or a hydrogen atom.)
[10] A nanocomposite material obtained by dispersing the coated inorganic fine particles according to any one of [1] to [8] in a transparent organic compound.
[11] The organic compound is a polymerizable monomer and/or oligomer, and the polymer obtained by polymerizing the monomer and/or oligomer has a spectral transmittance of 65% for light at a wavelength of 400 nm. The nanocomposite material according to [10], which is the above.
[12] The organic compound is at least one selected from the group consisting of thermoplastic resins, thermosetting resins, ultraviolet curable resins, and electron beam curable resins, and has a spectral transmittance of light having a wavelength of 400 nm. 65% or more, the nanocomposite material of [10].
[13] The nanocomposite material according to any one of [10] to [12], wherein the content of the coated inorganic fine particles is 10% by weight or more and 85% by weight or less.

本発明によれば、量産性に優れ、高濃度でも凝集せず、無機微粒子が均一に分散した透明なナノコンポジット材料を実現することができる被覆無機微粒子を提供することができる。また、本発明の当該材料の製造方法は、エネルギー的負荷が高く作業効率が悪い、有機溶剤中での分散や有機溶剤除去の工程を省けるため、製造コストが比較的低減されており、工業化規模の生産に有用である。 According to the present invention, it is possible to provide coated inorganic fine particles that are excellent in mass productivity, do not aggregate even at a high concentration, and can realize a transparent nanocomposite material in which the inorganic fine particles are uniformly dispersed. In addition, the method for producing the material of the present invention has a high energy load and poor work efficiency, and can omit the steps of dispersing in an organic solvent and removing the organic solvent, so that the production cost is relatively reduced, and the scale of industrialization is useful for the production of

図1は製造例1に示したジルコニア微粒子10nmの粒子形態を示す透過型電子顕微鏡(TEM)写真(20万倍)である。FIG. 1 is a transmission electron microscope (TEM) photograph (×200,000) showing the particle morphology of zirconia fine particles of 10 nm shown in Production Example 1. FIG. 図2は製造例2に示したチタニア微粒子10nmの粒子形態を示す透過型電子顕微鏡(TEM)写真(20万倍)である。2 is a transmission electron microscope (TEM) photograph (×200,000) showing the particle morphology of 10 nm titania fine particles shown in Production Example 2. FIG. 図3は実施例1で得られた被覆層を有するジルコニア微粒子10nmの粒子形態を示す透過型電子顕微鏡(TEM)写真(20万倍)である。FIG. 3 is a transmission electron microscope (TEM) photograph (×200,000) showing the particle morphology of zirconia fine particles of 10 nm each having a coating layer obtained in Example 1. FIG. 図4は実施例10で得られた被覆層を有するチタニア微粒子10nmの粒子形態を示す透過型電子顕微鏡(TEM)写真(20万倍)である。4 is a transmission electron microscope (TEM) photograph (×200,000) showing the particle morphology of 10 nm titania fine particles having a coating layer obtained in Example 10. FIG.

発明の実施するための形態MODE FOR CARRYING OUT THE INVENTION

以下、本発明について、好ましい実施形態に基づき記述するが、本発明はこれらの記載に限定されるものではない。 The present invention will be described below based on preferred embodiments, but the present invention is not limited to these descriptions.

<被覆無機微粒子>
本発明の一態様である被覆無機微粒子(以下、「本発明の被覆無機微粒子」と略す場合がある。)は、無機微粒子(以下、「無機微粒子」と略す場合がある。)の表面に下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物及びその塩の少なくとも1種(以下、「被覆剤」と略す場合がある。)を反応させて得られる、被覆層を有する被覆無機微粒子である。そして、無機微粒子の平均粒子径が1nm以上100nm未満で、かつ比表面積が1m/g以上3,000m/g未満であり、揮発性有機化合物の含有量が100ppm未満であることを特徴とする。

Figure 0007190431000005
(式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基、又はケイ素原子数1~20のj価の(ポリ)シロキシ基を、R及びRはそれぞれ独立して下記式(bc-1)~(bc-6)の何れかで表される構造を、Rはヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基を、Xはそれぞれ独立して炭素原子数1~10のアルコキシ基、水素原子、塩素原子、臭素原子、又はヨウ素原子を、X及びXはそれぞれ独立して炭素原子数1~10のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基、塩素原子、臭素原子、又はヨウ素原子を、hは1~4の整数を、iはそれぞれ独立して1~3の整数を、jは2~10の整数を、kは1~4の整数を、lは1~3の整数を、mは1~3の整数を、nは2~10の整数を表す。但し、X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成していてもよい。)
Figure 0007190431000006
(式(bc-1)~(bc-6)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはそれぞれ独立してヒドロキシル基、ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基、又は水素原子を表す。)
本発明者らは、揮発性有機化合物の含有量を抑制した前述の被覆無機微粒子が、量産性に優れ、高濃度でも凝集せず、無機微粒子が均一に分散した透明なナノコンポジット材料を実現できることを見出したのである。
なお、本発明における「無機微粒子」は、例えば高温高圧条件下の水熱反応によって調製することができる。高温高圧条件下の水熱反応によって調製した無機微粒子は、従来の固相反応法、湿式反応法、気相法、低温低圧条件下の水熱反応法と比較して、どのような溶媒に対しても分散性に優れ、粒子形状が均一で比表面積が大きくなる特長を有する。また、粒子表面の反応性が高く、「被覆剤」と均一に反応するため、揮発有機化合物が残存しにくくなるものと考えられる。その結果、モノマー、オリゴマー、樹脂等の有機化合物との相溶性に優れ、無機微粒子の粉末を無溶剤系の有機化合物に直接分散することが可能になり、揮発性有機化合物の含有量が少なく、透明ナノコンポジットにおいても硬化の際に揮発性有機化合物を殆ど生じないものと考えられる。
また、本発明における「無機微粒子」の表面と「被覆剤」との反応は、例えば水溶媒中で行うことができる。従来の無機微粒子の表面処理方法として、ビーズミル等の湿式分散機により、無機微粒子の粉末を有機溶剤中に均一分散してから、又は分散しながらシランカップリング剤等により表面被覆を行っているが、無機微粒子が粉砕されたり、二次凝集したりした状態での表面処理となるため、粒子表面に有機化合物を均一に被覆することが困難である。また、ビーズミルの場合では使用する数十μm程度のビーズに有機化合物が多く付着してしまうため、精密な制御が困難であり、製造コストの増加を招く。さらに表面処理の際に有機溶剤を使用すると、その後乾燥処理を行っても完全に有機溶剤を取り除くことができず、無機微粒子の被覆層由来の揮発性有機化合物を多く含んでしまうのである。
即ち、本発明の被覆無機微粒子は、どのような溶媒に対しても分散性に優れ、粒子形状が均一で比表面積が高く、さらに揮発性有機化合物の含有量を抑制するように調製された被覆無機微粒子なのである。
なお、式(bc-1)~(bc-6)中の波線は、その先でチタン原子(Ti)やアルミニウム原子(Al)に結合していることを意味し、式(bc-4)はリン原子(P)の孤立電子対等でチタン原子(Ti)やアルミニウム原子(Al)に配位していることを意味するものとする。
以下、「無機微粒子」、「被覆剤」、「被覆層」、「揮発性有機化合物」等について詳細に説明する。<Coated inorganic fine particles>
Coated inorganic fine particles (hereinafter, sometimes abbreviated as "coated inorganic fine particles of the present invention"), which is one embodiment of the present invention, are provided on the surfaces of inorganic fine particles (hereinafter, sometimes abbreviated as "inorganic fine particles") as follows. Compounds represented by any of formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) and It is coated inorganic fine particles having a coating layer, obtained by reacting at least one salt thereof (hereinafter sometimes abbreviated as “coating agent”). The inorganic fine particles have an average particle diameter of 1 nm or more and less than 100 nm, a specific surface area of 1 m 2 /g or more and less than 3,000 m 2 /g, and a volatile organic compound content of less than 100 ppm. do.
Figure 0007190431000005
(In formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2), R 1 is is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, or the number of silicon atoms 1 to 20 j-valent (poly)siloxy groups, R 3 and R 4 each independently have a structure represented by any one of the following formulas (bc-1) to (bc-6), R 5 R 6 is a hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom, R 6 is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and X 1 is each X 2 and X 3 are each independently an alkoxy group having 1 to 10 carbon atoms, a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and each independently an alkoxy group having 1 to 10 carbon atoms or a hetero atom may contain an acyloxy group having 1 to 10 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, h is an integer of 1 to 4, i is each independently an integer of 1 to 3, and j is an integer of 2 to 10, k an integer of 1 to 4, l an integer of 1 to 3, m an integer of 1 to 3, and n an integer of 2 to 10, provided that X 2 and X The alkoxy group and/or acyloxy group of 3 may combine with other alkoxy group and/or acyloxy group of X2 and X3 respectively to form a cyclic structure.)
Figure 0007190431000006
(In formulas (bc-1) to (bc-6), R 7 is each independently a hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom, and R 8 contains a heteroatom. Each R 9 is independently a hydroxyl group, an alkoxy group with 1 to 20 carbon atoms which may contain a heteroatom, and a It represents a good hydrocarbon group with 1 to 20 carbon atoms, or a hydrogen atom.)
The inventors of the present invention have found that the above-described coated inorganic fine particles with a suppressed content of volatile organic compounds can realize a transparent nanocomposite material in which the inorganic fine particles are uniformly dispersed without agglomerating even at a high concentration, which is excellent in mass production. I found this.
The "inorganic fine particles" in the present invention can be prepared, for example, by hydrothermal reaction under high temperature and high pressure conditions. Inorganic fine particles prepared by hydrothermal reaction under high temperature and high pressure conditions are more resistant to solvents than conventional solid phase reaction methods, wet reaction methods, gas phase methods, and hydrothermal reaction methods under low temperature and low pressure conditions. It is characterized by excellent dispersibility, uniform particle shape, and large specific surface area. In addition, since the particle surface has high reactivity and uniformly reacts with the "coating agent", it is considered that the volatile organic compounds are less likely to remain. As a result, it has excellent compatibility with organic compounds such as monomers, oligomers, and resins, and it is possible to directly disperse the powder of inorganic fine particles in solvent-free organic compounds, and the content of volatile organic compounds is low. It is believed that even the transparent nanocomposite hardly produces volatile organic compounds during curing.
Further, the reaction between the surface of the "inorganic fine particles" and the "coating agent" in the present invention can be carried out, for example, in an aqueous solvent. As a conventional surface treatment method for inorganic fine particles, the surface is coated with a silane coupling agent or the like after uniformly dispersing the powder of inorganic fine particles in an organic solvent using a wet dispersing machine such as a bead mill or while the particles are being dispersed. Since the surface treatment is performed while the inorganic fine particles are pulverized or secondary agglomerated, it is difficult to evenly coat the surface of the particles with the organic compound. Moreover, in the case of a bead mill, a large amount of the organic compound adheres to beads of about several tens of micrometers, which makes precise control difficult and increases manufacturing costs. Furthermore, if an organic solvent is used in the surface treatment, the organic solvent cannot be completely removed even if the subsequent drying treatment is performed, resulting in a large amount of volatile organic compounds derived from the coating layer of the inorganic fine particles.
That is, the coated inorganic fine particles of the present invention are excellent in dispersibility in any solvent, have a uniform particle shape and a high specific surface area, and are coated so as to suppress the content of volatile organic compounds. They are inorganic fine particles.
Note that the wavy lines in the formulas (bc-1) to (bc-6) mean that they are bonded to a titanium atom (Ti) or an aluminum atom (Al) at the tip, and the formula (bc-4) is It means that a lone electron pair of a phosphorus atom (P) is coordinated to a titanium atom (Ti) or an aluminum atom (Al).
Hereinafter, "inorganic fine particles", "coating agent", "coating layer", "volatile organic compound" and the like will be described in detail.

無機微粒子は、「平均粒子径が1nm以上100nm未満で、かつ比表面積が1m/g以上3,000m/g未満」であれば、材質、粒子形状等は特に限定されないが、材質としては、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、金属等が、粒子形状としては、球状、立方状、板状、薄片状、針状、棒状、繊維状等が挙げられる。
金属酸化物、金属水酸化物、金属窒化物、金属炭化物、金属の金属元素は、1種類に限られず、2種類以上の金属元素を含む複合金属酸化物、複合金属窒化物、複合金属炭化物、合金等であってもよい。
金属酸化物、金属窒化物、金属炭化物、金属等の金属元素としては、
リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等の周期表第1族元素(アルカリ金属元素);
ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等の周期表第2族元素(アルカリ土類金属元素);
スカンジウム(Sc)、イットリウム(Y)、ランタノイド、アクチノイド等の周期表第3族元素;
チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の周期表第4族元素;
バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等の周期表第5族元素;
クロム(Cr)、モリブデン(Mo)、タングステン(W)等の周期表第6族元素;
マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)等の周期表第7族元素;
鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)等の周期表第8族元素;
コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)等の周期表第9族元素;
ニッケル(Ni)、パラジウム(Pd)、白金(Pt)等の周期表第10族元素;
銅(Cu)、銀(Ag)、金(Au)等の周期表第11族元素;
亜鉛(Zn)、カドミウム(Cd)、水銀(Hg)等の周期表第12族元素;
アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等の周期表第13族元素;
ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等の周期表第14族元素が挙げられる。
無機微粒子の材質としては、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、酸化アルミニウム(Al)、水酸化アルミニウム(Al(OH))、水酸化酸化アルミニウム(AlO(OH))、二酸化チタン(TiO)、チタン酸バリウム(BaTiO)、酸化マンガン(II,III)(Mn)、酸化鉄(II,III)(Fe)、酸化鉄(III)(Fe)、水酸化鉄(FeO(OH))、酸化ニッケル(II)(NiO)、酸化亜鉛(II)(ZnO)、酸化イットリウム(III)(Y)、二酸化ジルコニウム(ZrO)、酸化カルシウム安定化二酸化ジルコニウム、酸化イットリウム安定化二酸化ジルコニウムの方がよいか、タングステン酸ジルコニウム(ZrW)、酸化タングステン(VI)(WO)、酸化セリウム(IV)(CeO)、ITO等が挙げられる。この中でも、二酸化ジルコニウム(ZrO)、二酸化チタン(TiO)が特に好ましい。
The material and particle shape of the inorganic fine particles are not particularly limited as long as they have an average particle diameter of 1 nm or more and less than 100 nm and a specific surface area of 1 m 2 /g or more and less than 3,000 m 2 /g. , metal oxides, metal hydroxides, metal nitrides, metal carbides, metals, and the like.
Metal oxides, metal hydroxides, metal nitrides, metal carbides, metal elements of metals are not limited to one type, and composite metal oxides containing two or more types of metal elements, composite metal nitrides, composite metal carbides, It may be an alloy or the like.
As metal elements such as metal oxides, metal nitrides, metal carbides and metals,
Periodic Table Group 1 elements (alkali metal elements) such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs);
Periodic Table Group 2 elements (alkaline earth metal elements) such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba);
Group 3 elements of the periodic table such as scandium (Sc), yttrium (Y), lanthanides, actinides;
Periodic Table Group 4 elements such as titanium (Ti), zirconium (Zr), hafnium (Hf);
Periodic Table Group 5 elements such as vanadium (V), niobium (Nb), tantalum (Ta);
Periodic Table Group 6 elements such as chromium (Cr), molybdenum (Mo), tungsten (W);
Periodic Table Group 7 elements such as manganese (Mn), technetium (Tc), rhenium (Re);
Periodic Table Group 8 elements such as iron (Fe), ruthenium (Ru), osmium (Os);
Periodic Table Group 9 elements such as cobalt (Co), rhodium (Rh), iridium (Ir);
Periodic Table Group 10 elements such as nickel (Ni), palladium (Pd), platinum (Pt);
Periodic Table Group 11 elements such as copper (Cu), silver (Ag), gold (Au);
Periodic Table Group 12 elements such as zinc (Zn), cadmium (Cd), mercury (Hg);
Periodic Table Group 13 elements such as aluminum (Al), gallium (Ga), indium (In);
Group 14 elements of the periodic table such as silicon (Si), germanium (Ge), tin (Sn) and lead (Pb) can be mentioned.
Materials for the inorganic fine particles include magnesium oxide (MgO), magnesium hydroxide (Mg(OH) 2 ), calcium oxide (CaO), calcium hydroxide (Ca(OH) 2 ), aluminum oxide (Al 2 O 3 ), Aluminum hydroxide (Al(OH) 3 ), aluminum hydroxide oxide (AlO(OH)), titanium dioxide (TiO 2 ), barium titanate (BaTiO 3 ), manganese oxide (II, III) (Mn 3 O 4 ) , iron oxide (II, III) (Fe 3 O 4 ), iron oxide (III) (Fe 2 O 3 ), iron hydroxide (FeO(OH)), nickel oxide (II) (NiO), zinc oxide (II ) (ZnO), yttrium (III) oxide (Y 2 O 3 ), zirconium dioxide (ZrO 2 ), calcium oxide-stabilized zirconium dioxide, yttrium oxide-stabilized zirconium dioxide, zirconium tungstate (ZrW 2 O 8 ), tungsten oxide (VI) (WO 3 ), cerium oxide (IV) (CeO 2 ), and ITO. Among these, zirconium dioxide (ZrO 2 ) and titanium dioxide (TiO 2 ) are particularly preferred.

無機微粒子の「平均粒子径」は、「1nm以上100nm未満」であるが、好ましくは5nm以上であり、好ましくは50nm以下、より好ましくは35nm以下である。無機微粒子の平均粒子径が1nm以上であると、粒子形態を均一で、高分散性であり、平均粒子径が100nmを超えるとナノコンポジット材料の透明性が著しく低下する。
なお、無機微粒子の「平均粒子径」は、透過型電子顕微鏡(TEM)による倍率3万~20万倍のTEM像から、200個以上の任意の粒子の粒子径長径を計測し、その平均値より求めた数値を意味するものとする。
The "average particle diameter" of the inorganic fine particles is "1 nm or more and less than 100 nm", preferably 5 nm or more, preferably 50 nm or less, more preferably 35 nm or less. When the average particle size of the inorganic fine particles is 1 nm or more, the particle shape is uniform and highly dispersible.
Incidentally, the "average particle size" of the inorganic fine particles is obtained by measuring the particle size length of any 200 or more particles from a transmission electron microscope (TEM) at a magnification of 30,000 to 200,000 times, and measuring the average value. It means a numerical value obtained from

無機微粒子の「比表面積」は、1m/g以上3,000m/g未満であるが、好ましくは15m/g以上、より好ましくは20m/g以上であり、好ましくは500m/g以下である。比表面積が1m/gより小さい場合、粒子径が大きな粒子となるため、無溶剤系の有機化合物中に分散させたときの透明性が悪く、また、比表面積が3,000m/gより大きい場合、粒子径が小さく、凝集により分散性が悪く、無溶剤系の有機化合物中に分散させたときの充填性が悪い。
なお、無機微粒子の「比表面積」は、液体窒素温度における窒素ガス吸着を行った場合のBET法による測定結果の数値を意味するものとする。
The “specific surface area” of the inorganic fine particles is 1 m 2 /g or more and less than 3,000 m 2 /g, preferably 15 m 2 /g or more, more preferably 20 m 2 /g or more, and preferably 500 m 2 /g. It is below. If the specific surface area is less than 1 m 2 /g, the particles will have a large particle size, resulting in poor transparency when dispersed in a solvent-free organic compound. If it is large, the particle size is small, the dispersibility is poor due to aggregation, and the filling property when dispersed in a solventless organic compound is poor.
The "specific surface area" of the inorganic fine particles means the numerical value of the measurement result by the BET method when nitrogen gas adsorption is performed at liquid nitrogen temperature.

無機微粒子は、屈折率1.5以上の金属酸化物であることが好ましい。無機微粒子の屈折率は、より好ましくは1.6以上、さらに好ましくは2.0以上である。 The inorganic fine particles are preferably metal oxides having a refractive index of 1.5 or more. The refractive index of the inorganic fine particles is more preferably 1.6 or higher, more preferably 2.0 or higher.

被覆剤は、下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物及びその塩の少なくとも1種であるが、具体的種類は特に限定されず、目的とする被覆無機微粒子に応じて適宜選択することができる。以下、「式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物」について詳細に説明する。

Figure 0007190431000007
式(A-1)で表される化合物及び式(A-2)で表される化合物は、加水分解等の反応性を有する反応性官能基を含む、いわゆる「シランカップリング剤」であり、式(A-1)で表される化合物は1つのシリル基を、式(A-2)で表される化合物は2~10のシリル基を有する化合物である。
また、式(A-1)で表される化合物は、下記式(A-1-1)~(A-1-4)の何れかで表される化合物をまとめた記載である。
Figure 0007190431000008
また、式(A-2)で表される化合物は、下記式(A-2-1-1)で表される化合物、下記式(A-2-2-1)で表される化合物等をまとめた記載である。
Figure 0007190431000009
The coating agent is any one of the following formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) Although it is at least one of the represented compounds and salts thereof, the specific kind is not particularly limited and can be appropriately selected according to the intended coated inorganic fine particles. Hereinafter, “represented by any of the formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) “Compounds” will be described in detail.
Figure 0007190431000007
The compound represented by formula (A-1) and the compound represented by formula (A-2) contain a reactive functional group having reactivity such as hydrolysis, and are so-called "silane coupling agents", The compound represented by formula (A-1) has one silyl group, and the compound represented by formula (A-2) has 2 to 10 silyl groups.
Further, the compound represented by the formula (A-1) is a collective description of the compounds represented by any one of the following formulas (A-1-1) to (A-1-4).
Figure 0007190431000008
Further, the compound represented by the formula (A-2) includes a compound represented by the following formula (A-2-1-1), a compound represented by the following formula (A-2-2-1), and the like. This is a summary description.
Figure 0007190431000009

式(B-1)で表される化合物及び式(B-2)で表される化合物は、加水分解等の反応性を有する反応性官能基を含む、いわゆる「チタネートカップリング剤」であり、式(B-1)で表される化合物は1つのチタネート構造を、式(B-2)で表される化合物は2つのチタネート構造を有する化合物である。
式(C)で表される化合物は、加水分解等の反応性を有する反応性官能基を含む、いわゆる「アルミネートカップリング剤」である。
The compound represented by the formula (B-1) and the compound represented by the formula (B-2) are so-called "titanate coupling agents" containing a reactive functional group having reactivity such as hydrolysis, The compound represented by formula (B-1) has one titanate structure, and the compound represented by formula (B-2) has two titanate structures.
The compound represented by formula (C) is a so-called "aluminate coupling agent" containing a reactive functional group having reactivity such as hydrolysis.

式(D-1)で表される化合物及び式(D-2)で表される化合物は、カルボキシル基を有する「有機酸」であり、式(D-1)で表される化合物は1つのカルボキシル基を、式(D-2)で表される化合物は2~10のカルボキシル基を有する化合物である。
また、式(D-2)で表される化合物は、下記式(D-2-1)で表される化合物、下記式(D-2-2)で表される化合物等をまとめた記載である。

Figure 0007190431000010
The compound represented by formula (D-1) and the compound represented by formula (D-2) are "organic acids" having a carboxyl group, and the compound represented by formula (D-1) is one A compound represented by formula (D-2) as a carboxyl group is a compound having 2 to 10 carboxyl groups.
Further, the compound represented by the formula (D-2) is a summary description of the compound represented by the following formula (D-2-1), the compound represented by the following formula (D-2-2), and the like. be.
Figure 0007190431000010

式(A-1)及び(A-2)中のRは、それぞれ独立して「ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基」を表しているが、「炭化水素基」は、分岐構造、環状構造、及び炭素-炭素不飽和結合(炭素-炭素二重結合、炭素-炭素三重結合)のそれぞれを有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。
また、「ヘテロ原子を含んでいてもよい」とは、炭化水素基の水素原子がヘテロ原子、即ち、窒素原子、酸素原子、硫黄原子、ハロゲン原子等を含む1価の官能基で置換されていてもよいほか、炭化水素基の炭素骨格内部の炭素原子が窒素原子、酸素原子、硫黄原子、ハロゲン原子等を含む2価以上の官能基(連結基)で置換されていてもよいことを意味する。
の炭化水素基の炭素原子数は、通常15以下、好ましくは10以下、より好ましくは8以下であり、Rが芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
に含まれる官能基や連結基としては、アミノ基(-N<)、イソシアネート基(-NCO)、オキサ基(-O-)、カルボニル基(-C(=O)-)、エポキシ基、メルカプト基(チオール基、-SH)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、アリル基(-CHCH=CH)、ビニル基(-CH=CH)、フェニル基(-C,-Ph)、3-グリシドキシプロピル基、3-メタクリロキシプロピル基、3-アクリロキシプロピル基、N-2-(アミノエチル)-3-アミノプロピル基等が挙げられる。
R 1 in formulas (A-1) and (A-2) each independently represents a “hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom”, "Hydrogen group" may have a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond (carbon-carbon double bond, carbon-carbon triple bond), saturated hydrocarbon group, unsaturated carbon It may be a hydrogen group, an aromatic hydrocarbon group, or the like.
Further, the phrase "may contain a heteroatom" means that the hydrogen atoms of the hydrocarbon group are substituted with a heteroatom, i.e., a monovalent functional group containing a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, etc. In addition, it means that the carbon atoms inside the carbon skeleton of the hydrocarbon group may be substituted with a divalent or higher functional group (linking group) including a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, etc. do.
The number of carbon atoms in the hydrocarbon group for R 1 is usually 15 or less, preferably 10 or less, more preferably 8 or less, and when R 1 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
Functional groups and linking groups contained in R 1 include amino group (-N<), isocyanate group (-NCO), oxa group (-O-), carbonyl group (-C(=O)-), epoxy group , mercapto group (thiol group, -SH), thia group (-S-), fluoro group (fluorine atom, -F), chloro group (chlorine atom, -Cl), bromo group (bromine atom, -Br), iodine groups (iodine atom, -I) and the like.
R 1 includes a methyl group (--CH 3 , --Me), an ethyl group (--C 2 H 5 , --Et), an n-propyl group ( -n C 3 H 7 , --n Pr) and an i-propyl group. (- i C 3 H 7 , - i Pr), n-butyl group (- n C 4 H 9 , - n Bu), t-butyl group (- t C 4 H 9 , - t Bu), n-pentyl group (- n C 5 H 11 ), n-hexyl group (- n C 6 H 13 , - n Hex), cyclohexyl group (- c C 6 H 11 , -Cy), allyl group (-CH 2 CH=CH 2 ), vinyl group (-CH=CH 2 ), phenyl group (-C 6 H 5 , -Ph), 3-glycidoxypropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N- 2-(aminoethyl)-3-aminopropyl group and the like.

式(A-2)中の「Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基」、又は「ケイ素原子数1~20のj価の(ポリ)シロキシ基」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義であり、「j価の炭化水素基」とはj個の結合部位を有する炭化水素基であることを意味する。また、「(ポリ)シロキシ基」とは、ケイ素原子数1のシロキシ基又はケイ素原子数2~20のポリシロキシ基であることを意味し、式(A-2)のケイ素原子に対して-OSiとして結合している(ポリ)シロキシ基を意味する。なお、「j価の(ポリ)シロキシ基」は、j個の結合部位を有する(ポリ)シロキシ基であることを意味する。
の炭化水素基の炭素原子数は、通常15以下、好ましくは10以下、より好ましくは8以下であり、Rが芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
の(ポリ)シロキシ基のケイ素原子数は、通常15以下、好ましくは10以下、より好ましくは8以下である。また、(ポリ)シロキシ基に含まれる炭化水素基の炭素原子数は、1つの炭化水素基の炭素原子数として、通常15以下、好ましくは10以下、より好ましくは8以下であり、芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
に含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、エポキシ基、メルカプト基(チオール基、-SH)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、メチレン基(-CH-)、エチレン基(-C-)、n-プロピレン基(--)、i-プロピレン基(--)、n-ブチレン基(--)、n-ペンチレン基(-10-)、n-ヘキシレン基(-12-)、フェニレン基(-C-)、メチン基(-CH<)、ジメチルシロキシ基(-OSi(CHO-)、テトラメチルジシロキシ基(-OSi(CHOSi(CHO-)等が挙げられる。
"R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom" or "j-valent (poly) having 1 to 20 silicon atoms" in formula (A-2) "siloxy group", "optionally containing a heteroatom" and "hydrocarbon group" are the same as those described above, and "j-valent hydrocarbon group" has j bonding sites. It means that it is a hydrocarbon group having. Further, the “(poly)siloxy group” means a siloxy group having 1 silicon atom or a polysiloxy group having 2 to 20 silicon atoms, and —OSi means a (poly)siloxy group attached as The "j-valent (poly)siloxy group" means a (poly)siloxy group having j bonding sites.
The number of carbon atoms in the hydrocarbon group for R 2 is usually 15 or less, preferably 10 or less, more preferably 8 or less, and when R 2 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
The number of silicon atoms in the (poly)siloxy group of R 2 is usually 15 or less, preferably 10 or less, more preferably 8 or less. In addition, the number of carbon atoms in the hydrocarbon group contained in the (poly)siloxy group is usually 15 or less, preferably 10 or less, more preferably 8 or less as the number of carbon atoms in one hydrocarbon group. The hydrogen group usually has 6 or more carbon atoms.
Functional groups and linking groups contained in R 2 include oxa group (-O-), carbonyl group (-C(=O)-), epoxy group, mercapto group (thiol group, -SH), thia group (- S—), fluoro group (fluorine atom, —F), chloro group (chlorine atom, —Cl), bromo group (bromine atom, —Br), iodine group (iodine atom, —I), and the like.
R 2 includes a methylene group (-CH 2 -), an ethylene group (-C 2 H 4 -), an n-propylene group (- n C 3 H 6 -), an i-propylene group (- i C 3 H 6 -), n-butylene group (- n C 4 H 8 -), n-pentylene group (- n C 5 H 10 -), n-hexylene group (- n C 6 H 12 -), phenylene group (-C 6 H 4 —), methine group (—CH<), dimethylsiloxy group (—OSi(CH 3 ) 2 O—), tetramethyldisiloxy group (—OSi(CH 3 ) 2 OSi(CH 3 ) 2 O— ) and the like.

式(B-1)及び(B-2)中のR、並びに式(C)中のRは、それぞれ独立して「下記式(bc-1)~(bc-6)の何れかで表される構造」を表し、式(bc-1)及び(bc-2)中のRは、それぞれ独立して「ヘテロ原子を含んでいてもよい炭素原子数11~30の炭化水素基」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義である。

Figure 0007190431000011
の炭化水素基の炭素原子数は、通常11以上であり、通常25以下、好ましくは20以下である。
に含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、メルカプト基(チオール基、-SH)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、n-ウンデシル基(-1123)、n-ドデシル基(-1225)、n-トリデシル基(-1327)、n-テトラデシル基(-1429)、n-ペンタデシル基(-1531)、n-ヘキサデシル基(-1633)等が挙げられる。R 3 in formulas (B-1) and (B-2) and R 4 in formula (C) are each independently represented by any of the following formulas (bc-1) to (bc-6) represented structure”, and R 7 in formulas (bc-1) and (bc-2) is each independently a “hydrocarbon group having 11 to 30 carbon atoms which may contain a heteroatom” However, the terms “optionally containing a heteroatom” and “hydrocarbon group” have the same meanings as those described above.
Figure 0007190431000011
The number of carbon atoms in the hydrocarbon group for R7 is usually 11 or more, and usually 25 or less, preferably 20 or less.
Functional groups and linking groups contained in R 7 include an oxa group (-O-), a carbonyl group (-C(=O)-), a mercapto group (thiol group, -SH), and a thia group (-S-). , fluoro group (fluorine atom, -F), chloro group (chlorine atom, -Cl), bromo group (bromine atom, -Br), iodine group (iodine atom, -I) and the like.
R 7 includes n-undecyl group (- n C 11 H 23 ), n-dodecyl group (- n C 12 H 25 ), n-tridecyl group (- n C 13 H 27 ), n-tetradecyl group (- n C 14 H 29 ), n-pentadecyl group (- n C 15 H 31 ), n-hexadecyl group (- n C 16 H 33 ), and the like.

式(bc-3)中のRは、それぞれ独立して「ヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義である。
の炭化水素基の炭素原子数は、通常25以下、好ましくは20以下、より好ましくは10以下であり、Rが芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
に含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、メルカプト基(チオール基、-SH)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)等が挙げられる。
Each R 8 in formula (bc-3) independently represents a “hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom”, but “a hydrocarbon group which may contain a heteroatom "good" and "hydrocarbon group" are synonymous with those described above.
The number of carbon atoms in the hydrocarbon group for R 8 is usually 25 or less, preferably 20 or less, more preferably 10 or less, and when R 8 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
Functional groups and linking groups contained in R 8 include an oxa group (-O-), a carbonyl group (-C(=O)-), a mercapto group (thiol group, -SH), and a thia group (-S-). , fluoro group (fluorine atom, -F), chloro group (chlorine atom, -Cl), bromo group (bromine atom, -Br), iodine group (iodine atom, -I) and the like.
R 8 includes a methyl group (--CH 3 , --Me), an ethyl group (--C 2 H 5 , --Et), an n-propyl group ( -n C 3 H 7 , --n Pr) and an i-propyl group. (- i C 3 H 7 , - i Pr), n-butyl group (- n C 4 H 9 , - n Bu), t-butyl group (- t C 4 H 9 , - t Bu), n-pentyl group (- n C 5 H 11 ), n-hexyl group (- n C 6 H 13 , - n Hex), cyclohexyl group (- c C 6 H 11 , -Cy), phenyl group (-C 6 H 5 , -Ph) and the like.

式(bc-4)~(bc-6)中のRは、それぞれ独立して「ヒドロキシル基」、「ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基」、「ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基」、又は「水素原子」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義である。また「アルコキシ基」中の炭化水素基は、分岐構造、環状構造、及び炭素-炭素不飽和結合(炭素-炭素二重結合、炭素-炭素三重結合)のそれぞれを有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。
のアルコキシ基の炭素原子数は、通常15以下、好ましくは10以下であり、Rのアルコキシ基の炭化水素基が芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
の炭化水素基の炭素原子数は、通常15以下、好ましくは10以下であり、Rの炭化水素基が芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
としては、ヒドロキシル基(-OH)、メトキシ基(-OCH,-OMe)、エトキシ基(-OC,-OEt)、n-プロポキシ基(-O,-OPr)、i-プロポキシ基(-O,-OPr)、n-ブトキシ基(-O,-OBu)、t-ブトキシ基(-O,-OBu)、フェノキシ基(-OC,-OPh)、メチル基(-CH,-Me)、エチル基(-C,-Et)、n-プロピル基(-,-Pr)、i-プロピル基(-,-Pr)、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)、水素原子等が挙げられる。
R 9 in formulas (bc-4) to (bc-6) each independently represents a “hydroxyl group”, an “alkoxy group having 1 to 20 carbon atoms which may contain a heteroatom”, a “heteroatom A hydrocarbon group having 1 to 20 carbon atoms that may contain ", or a "hydrogen atom", but "optionally containing a heteroatom" and "hydrocarbon group" are the same as those described above. Synonymous. Further, the hydrocarbon group in the "alkoxy group" may have a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond (carbon-carbon double bond, carbon-carbon triple bond). Any of a hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group and the like may be used.
The number of carbon atoms in the alkoxy group for R 9 is usually 15 or less, preferably 10 or less, and when the hydrocarbon group of the alkoxy group for R 9 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
The number of carbon atoms in the hydrocarbon group for R 9 is usually 15 or less, preferably 10 or less, and when the hydrocarbon group for R 9 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more.
R 9 includes a hydroxyl group (--OH), a methoxy group (--OCH 3 , --OMe), an ethoxy group (--OC 2 H 5 , --OEt), an n-propoxy group (--O n C 3 H 7 , -- O n Pr), i-propoxy group (—O i C 3 H 7 , —O i Pr), n-butoxy group (—O n C 4 H 9 , —O n Bu), t-butoxy group (—O t C 4 H 9 , —O t Bu), phenoxy group (—OC 6 H 5 , —OPh), methyl group (—CH 3 , —Me), ethyl group (—C 2 H 5 , —Et), n -propyl group ( -nC3H7 , -nPr ), i - propyl group ( -iC3H7 , -iPr ), n -butyl group ( -nC4H9 , -nBu ), t-butyl group (- t C 4 H 9 , - t Bu), n-pentyl group (- n C 5 H 11 ), n-hexyl group (- n C 6 H 13 ,- n Hex), cyclohexyl group (- -c C 6 H 11 , -Cy), phenyl group (-C 6 H 5 , -Ph), hydrogen atom and the like.

式(D-1)中のRは、それぞれ独立して「ヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義である。
の炭化水素基の炭素原子数は、通常25以下、好ましくは20以下、より好ましくは10以下であり、Rが芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
に含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、メルカプト基(チオール基、-SH)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、n-ブチル基(-,-Bu)、t-ブチル基(-,-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)等が挙げられる。
Each R 5 in formula (D-1) independently represents a “hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom”, but “a hydrocarbon group which may contain a heteroatom "good" and "hydrocarbon group" are synonymous with those described above.
The number of carbon atoms in the hydrocarbon group for R 5 is usually 25 or less, preferably 20 or less, more preferably 10 or less, and when R 5 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
Functional groups and linking groups contained in R 5 include an oxa group (-O-), a carbonyl group (-C(=O)-), a mercapto group (thiol group, -SH), and a thia group (-S-). , fluoro group (fluorine atom, -F), chloro group (chlorine atom, -Cl), bromo group (bromine atom, -Br), iodine group (iodine atom, -I) and the like.
R 5 includes n-butyl group (- n C 4 H 9 , - n Bu), t-butyl group (- t C 4 H 9 , - t Bu), n-pentyl group (- n C 5 H 11 ), n - hexyl group ( -nC6H13 , -nHex ), cyclohexyl group ( -cC6H11 , -Cy ), phenyl group ( -C6H5 , -Ph ), and the like.

式(D-2)中のRは、「ヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基」を表しているが、「ヘテロ原子を含んでいてもよい」と「炭化水素基」は前述のものと同義であり、「n価の炭化水素基」とはn個の結合部位を有する炭化水素基であることを意味する。
の炭化水素基の炭素原子数は、通常15以下、好ましくは10以下、より好ましくは8以下であり、Rが芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
に含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
としては、メチレン基(-CH-)、エチレン基(-C-)、n-プロピレン基(--)、i-プロピレン基(--)、n-ブチレン基(--)、n-ペンチレン基(-10-)、n-ヘキシレン基(-12-)、フェニレン基(-C-)等が挙げられる。
R 6 in formula (D-2) represents “an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom”, but “an n-valent hydrocarbon group which may contain a heteroatom and "hydrocarbon group" are the same as those described above, and "n-valent hydrocarbon group" means a hydrocarbon group having n bonding sites.
The number of carbon atoms in the hydrocarbon group for R 6 is usually 15 or less, preferably 10 or less, more preferably 8 or less, and when R 6 is an aromatic hydrocarbon group, the number of carbon atoms is usually 6 or more. .
Functional groups and linking groups contained in R 6 include oxa group (-O-), carbonyl group (-C(=O)-), thia group (-S-), fluoro group (fluorine atom, -F). , chloro group (chlorine atom, —Cl), bromo group (bromine atom, —Br), iodine group (iodine atom, —I) and the like.
R 6 includes methylene group (-CH 2 -), ethylene group (-C 2 H 4 -), n-propylene group (- n C 3 H 6 -), i-propylene group ( -i C 3 H 6 -), n-butylene group (- n C 4 H 8 -), n-pentylene group (- n C 5 H 10 -), n-hexylene group (- n C 6 H 12 -), phenylene group (-C 6 H 4 -) and the like.

式(A-1)及び(A-2)中のXは、それぞれ独立して「炭素原子数1~10のアルコキシ基」、「水素原子」、「塩素原子」、「臭素原子」、又は「ヨウ素原子」を表しているが、「アルコキシ基」は前述のものと同義である。
のアルコキシ基の炭素原子数は、通常8以下、好ましくは6以下、より好ましくは3以下であり、Xのアルコキシ基の炭化水素基が芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
としては、メトキシ基(-OCH,-OMe)、エトキシ基(-OC,-OEt)、n-プロポキシ基(-O,-OPr)、i-プロポキシ基(-O,-OPr)、n-ブトキシ基(-O,-OBu)、t-ブトキシ基(-O,-OBu)、フェノキシ基(-OC,-OPh)、水素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。この中でも、メトキシ基、エトキシ基等のアルコキシ基が好ましい。Xがアルコキシ基であると、反応させることによってメタノール、エタノール等の揮発性有機化合物が生成することになり、本発明の効果をより有効に活用することができる。
X 1 in formulas (A-1) and (A-2) each independently represents an “alkoxy group having 1 to 10 carbon atoms”, a “hydrogen atom”, a “chlorine atom”, a “bromine atom”, or Although "iodine atom" is represented, "alkoxy group" has the same meaning as described above.
The number of carbon atoms in the alkoxy group of X 1 is usually 8 or less, preferably 6 or less, more preferably 3 or less, and when the hydrocarbon group of the alkoxy group of X 1 is an aromatic hydrocarbon group, the number of carbon atoms is , usually 6 or more.
X 1 includes a methoxy group (--OCH 3 , --OMe), an ethoxy group (--OC 2 H 5 , --OEt), an n-propoxy group (--O n C 3 H 7 , --O n Pr), i- propoxy group (-O i C 3 H 7 , -O i Pr), n-butoxy group (-O n C 4 H 9 , -O n Bu), t-butoxy group (-O t C 4 H 9 ,- O t Bu), phenoxy group (--OC 6 H 5 , --OPh), hydrogen atom, chlorine atom, bromine atom and iodine atom. Among these, alkoxy groups such as a methoxy group and an ethoxy group are preferable. If X1 is an alkoxy group, the reaction will produce a volatile organic compound such as methanol or ethanol, and the effects of the present invention can be utilized more effectively.

式(B-1)、(B-2)、及び(C)中のX及びXは、それぞれ独立して「炭素原子数1~10のアルコキシ基」、「ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基」、「塩素原子」、「臭素原子」、又は「ヨウ素原子」を表しているが、「ヘテロ原子を含んでいてもよい」と「アルコキシ基」は前述のものと同義である。また「アシロキシ基」は、-OC(=O)Rで表される構造を意味し、アシロキシ基中の炭化水素基は、分岐構造、環状構造、及び炭素-炭素不飽和結合(炭素-炭素二重結合、炭素-炭素三重結合)のそれぞれを有していてもよく、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基等の何れであってもよいものとする。さらに「X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成」している構造とは、アルコキシ基やアシロキシ基の炭化水素基同士が結合して環状構造を形成していることを意味する(下記参照。)。なお、環状構造を形成しているときの炭化水素基の炭素原子数は、総炭素原子数が1~10になるものとする。

Figure 0007190431000012
及びXのアルコキシ基とアシロキシ基の炭素原子数は、通常8以下、好ましくは6以下、より好ましくは3以下であり、X及びXのアルコキシ基とアシロキシ基の炭化水素基が芳香族炭化水素基の場合の炭素原子数は、通常6以上である。
及びXに含まれる官能基や連結基としては、オキサ基(-O-)、カルボニル基(-C(=O)-)、チア基(-S-)、フルオロ基(フッ素原子,-F)、クロロ基(塩素原子,-Cl)、ブロモ基(臭素原子,-Br)、ヨード基(ヨウ素原子,-I)等が挙げられる。
及びXとしては、メトキシ基(-OCH,-OMe)、エトキシ基(-OC,-OEt)、n-プロポキシ基(-O,-OPr)、i-プロポキシ基(-O,-OPr)、n-ブトキシ基(-O,-OBu)、t-ブトキシ基(-O,-OBu)、フェノキシ基(-OC,-OPh)、アセチル基、アセチルアセトナート基、塩素原子、臭素原子、ヨウ素原子が挙げられる。この中でも、メトキシ基、エトキシ基等のアルコキシ基、アセチル基、アセチルアセトナート基等のアシロキシ基が好ましい。Xがアルコキシ基やアシロキシ基であると、反応させることによってメタノール、エタノール、アセチルアセトン等の揮発性有機化合物が生成することになり、本発明の効果をより有効に活用することができる。X 2 and X 3 in formulas (B-1), (B-2), and (C) each independently represent an “alkoxy group having 1 to 10 carbon atoms” or “a heteroatom-containing "Good acyloxy group having 1 to 10 carbon atoms", "chlorine atom", "bromine atom" or "iodine atom", but "optionally containing a heteroatom" and "alkoxy group" is synonymous with Further, "acyloxy group" means a structure represented by -OC(=O)R, and the hydrocarbon group in the acyloxy group includes a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond (carbon-carbon two double bond, carbon-carbon triple bond), and may be any of a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, and the like. Furthermore, the structure in which "the alkoxy groups and/or acyloxy groups of X 2 and X 3 are bonded to other alkoxy groups and/or acyloxy groups of X 2 and X 3 , respectively, to form a cyclic structure" refers to an alkoxy It means that the hydrocarbon groups of groups and acyloxy groups are bonded together to form a cyclic structure (see below). The number of carbon atoms in the hydrocarbon group forming the cyclic structure is 1 to 10 in total.
Figure 0007190431000012
The number of carbon atoms in the alkoxy and acyloxy groups of X 2 and X 3 is usually 8 or less, preferably 6 or less, more preferably 3 or less, and the hydrocarbon groups of the alkoxy and acyloxy groups of X 2 and X 3 are The number of carbon atoms in the aromatic hydrocarbon group is usually 6 or more.
Functional groups and linking groups contained in X 2 and X 3 include oxa group (-O-), carbonyl group (-C(=O)-), thia group (-S-), fluoro group (fluorine atom, -F), chloro group (chlorine atom, -Cl), bromo group (bromine atom, -Br), iodo group (iodine atom, -I) and the like.
X 2 and X 3 include a methoxy group (--OCH 3 , --OMe), an ethoxy group (--OC 2 H 5 , --OEt) and an n-propoxy group (--O n C 3 H 7 , --O n Pr). , i-propoxy group (-O i C 3 H 7 , -O i Pr), n-butoxy group (-O n C 4 H 9 , -O n Bu), t-butoxy group (-O t C 4 H 9 , —O t Bu), phenoxy group (—OC 6 H 5 , —OPh), acetyl group, acetylacetonato group, chlorine atom, bromine atom, and iodine atom. Among these, an alkoxy group such as a methoxy group and an ethoxy group, and an acyloxy group such as an acetyl group and an acetylacetonate group are preferable. If X1 is an alkoxy group or an acyloxy group, the reaction will produce a volatile organic compound such as methanol, ethanol, acetylacetone, etc., and the effects of the present invention can be utilized more effectively.

被覆剤は、式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物及びその塩の少なくとも1種であるが、「その塩」とは式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物によって形成される塩を意味する。例えば式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物がアミノ基のような塩基性の官能基を有する場合、塩化水素(HCl)と結びついて塩酸塩を形成する場合があり、式(D-1)で表される化合物等の有機酸はアルカリ金属等の陽イオンと金属塩を形成する場合がある。被覆剤はこのような塩であってもよい。 The coating agent is represented by any of formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2). and at least one of the compounds and salts thereof, but the “salt thereof” refers to formulas (A-1), (A-2), (B-1), (B-2), (C), ( D-1) and means a salt formed by a compound represented by (D-2). For example, compounds represented by formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) has a basic functional group such as an amino group, it may combine with hydrogen chloride (HCl) to form a hydrochloride, and the organic acid such as the compound represented by the formula (D-1) is an alkali metal may form metal salts with cations such as A coating agent may be such a salt.

式(A-1)で表される化合物及び式(A-2)で表される化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。 Examples of the compound represented by formula (A-1) and the compound represented by formula (A-2) include vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, 2-(3,4-epoxycyclohexyl ) Ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryl trimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3 -aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1 ,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltri Ethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane silane, propyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane, trifluoropropyltrimethoxysilane, cyclohexylmethyldimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane ethoxysilane, hexyltriethoxysilane, hexamethyldisilazane, and the like.

式(B-1)で表される化合物及び式(B-2)で表される化合物としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、チタンブトキシドダイマー、テトラ-2-エチルヘキシルチタネート、チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジオクチルパイロホスフェートチタネート、イソプロピルトリス(ドデシルベンゼンスルフォニル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート等が挙げられる。 Examples of the compound represented by formula (B-1) and the compound represented by formula (B-2) include tetraisopropyl titanate, tetra-n-butyl titanate, titanium butoxide dimer, tetra-2-ethylhexyl titanate, and titanium di-2. - ethylhexoxybis(2-ethyl-3-hydroxyhexoxide), isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, bis(dioctylpyrophosphate)oxyacetate titanate, tris(dioctylpyrophosphate)ethylene titanate, isopropyl dioctylpyrophosphate titanate, isopropyl tris(dodecylbenzenesulfonyl) titanate, tetraisopropylbis(dioctylphosphite) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1- butyl)bis(ditridecyl)phosphite titanate and the like.

式(C)で表される化合物としては、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリセカンダリーブトキシド、アルミニウムトリス(アセチルアセトネート)、アルミニウムビスエチルアセトアセテートモノアセチルアセトネート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムアルキルアセトアセテートジイソプロピレート等が挙げられる。 Examples of compounds represented by formula (C) include alkylacetoacetate aluminum diisopropylate, aluminum trisecondary butoxide, aluminum tris(acetylacetonate), aluminum bisethylacetoacetate monoacetylacetonate, aluminum tris(ethylacetoacetate). , aluminum alkylacetoacetate diisopropylate, and the like.

式(D-1)で表される化合物及び式(D-2)で表される化合物としては、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、テトラデカン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸等の有機酸等が挙げられる。 Examples of the compound represented by formula (D-1) and the compound represented by formula (D-2) include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, Examples include organic acids such as tetradecanoic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, and linolenic acid.

本発明の被覆無機微粒子は、無機微粒子の表面に被覆剤を反応させて得られる、被覆層を有する被覆無機微粒子であるが、反応の際の被覆剤の添加量は、無機微粒子100重量部に対して、通常3重量部以上、好ましくは5重量部以上であり、通常100重量部以下、好ましくは55重量部以下である。被覆剤の添加量が3重量部より少ない場合、被覆無機微粒子が無溶剤系の有機化合物中に均一に分散しにくく、二次凝集粒子を含む。有機化合物の被覆量が100重量部より大きな場合、均一に分散することは可能であるが、無機微粒子に比べて被覆剤の割合が多くなり、無機微粒子本来の機能を低下させてしまう。 The coated inorganic fine particles of the present invention are coated inorganic fine particles having a coating layer obtained by reacting the surface of the inorganic fine particles with a coating agent. On the other hand, it is usually 3 parts by weight or more, preferably 5 parts by weight or more, and usually 100 parts by weight or less, preferably 55 parts by weight or less. If the amount of the coating agent added is less than 3 parts by weight, the coated inorganic fine particles are difficult to uniformly disperse in the solvent-free organic compound and contain secondary agglomerated particles. When the coating amount of the organic compound is more than 100 parts by weight, it is possible to uniformly disperse the organic compound, but the ratio of the coating agent becomes larger than that of the inorganic fine particles, and the original function of the inorganic fine particles is deteriorated.

本発明の被覆無機微粒子の被覆層は、無機微粒子の表面に被覆剤が反応(表面修飾)したり、被覆剤同士が反応して無機微粒子の表面に吸着したりして形成した層を意味し、その組成は被覆剤の種類に由来するものである。
本発明の被覆無機微粒子における被覆層の含有量(被覆無機微粒子全体を100重量%とした場合)は、通常1重量%以上、好ましくは3重量%以上であり、通常45重量%以下、好ましくは30重量%以下である。被覆層が1重量%より少ない場合、被覆無機微粒子が無溶剤系の有機化合物中に均一に分散しにくく、二次凝集粒子を含む。被覆層が45重量%より大きな場合、均一に分散することは可能であるが、無機微粒子に比べて被覆層の割合が多くなり、無機微粒子本来の機能を低下させてしまう。
なお、被覆層の含有量は、被覆層に含まれるケイ素元素、チタン元素、アルミニウム元素、有機基等の量を種々の元素分析等で定量することにより決定することができる。
The coating layer of the coated inorganic fine particles of the present invention means a layer formed by reacting (surface-modifying) the coating agent on the surface of the inorganic fine particles, or by reacting the coating agents with each other and adsorbing to the surface of the inorganic fine particles. , its composition is derived from the type of coating.
The content of the coating layer in the coated inorganic fine particles of the present invention (when the entire coated inorganic fine particles is 100% by weight) is usually 1% by weight or more, preferably 3% by weight or more, and usually 45% by weight or less, preferably 30% by weight or less. If the coating layer is less than 1% by weight, it is difficult for the coated inorganic fine particles to disperse uniformly in the solventless organic compound, and secondary agglomerated particles are included. If the coating layer is larger than 45% by weight, it is possible to uniformly disperse the particles, but the ratio of the coating layer to the inorganic fine particles is increased, and the original function of the inorganic fine particles is deteriorated.
The content of the coating layer can be determined by quantifying the amounts of silicon element, titanium element, aluminum element, organic group, etc. contained in the coating layer by various elemental analyses.

本発明の被覆無機微粒子における揮発性有機化合物の含有量は、100ppm未満であるが、「揮発性有機化合物」とは、環境省が示す主なVOC100種をはじめとする、120℃で10分間加熱した際に揮発する全ての有機化合物を意味し、被覆無機微粒子を120℃で10分間加熱した際に生じる全揮発性有機化合物を、トルエン換算の体積濃度として測定した量である。
揮発性有機化合物としては、被覆剤の分解等によって生じるメタノール、エタノール、n-プロパノール、i-プロパノール等のアルコール;ヘキサン、シクロヘキサン、トルエン、キシレン、エチルベンゼン、デカン等の炭化水素系溶媒;ジクロロメタン、トリクロロエチレン、テトラクロロエチレン等のハロゲン系溶媒;テトラヒドロフラン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒、被覆剤の縮合等によって生じるデカメチルシクロペンタシロキサン等のシロキサン化合物等が挙げられる。
The content of volatile organic compounds in the coated inorganic fine particles of the present invention is less than 100 ppm. It means all the organic compounds that volatilize when the coated inorganic fine particles are heated at 120° C. for 10 minutes, and is the amount measured as the toluene-equivalent volume concentration of all the volatile organic compounds generated.
Volatile organic compounds include alcohols such as methanol, ethanol, n-propanol, and i-propanol generated by decomposition of coating agents; hydrocarbon solvents such as hexane, cyclohexane, toluene, xylene, ethylbenzene, and decane; dichloromethane and trichlorethylene. Ether solvents such as tetrahydrofuran; Ester solvents such as ethyl acetate;

揮発性有機化合物の含有量は、通常1ppm以上であり、好ましくは80ppm未満、より好ましくは50ppm未満である。揮発性有機化合物が100ppm以上であると、ナノコンポジット材料を硬化する際にアウトガスが生じ、有機ELやLED等の用途においては、発光素子の寿命に悪影響を与えてしまう。また、成型加工時に揮発性有機化合物の除去のため乾燥工程などが必要となり、製造コストの増加を招く。
なお、揮発性有機化合物の含有量は、市販の揮発性有機化合物測定装置を用いて測定することができる。
The content of volatile organic compounds is usually 1 ppm or more, preferably less than 80 ppm, more preferably less than 50 ppm. If the content of the volatile organic compound is 100 ppm or more, outgassing is generated when the nanocomposite material is cured, which adversely affects the life of the light emitting device in applications such as organic EL and LED. In addition, a drying process or the like is required to remove volatile organic compounds during molding, which leads to an increase in manufacturing costs.
The content of volatile organic compounds can be measured using a commercially available volatile organic compound measuring device.

本発明の被覆無機微粒子は、屈折率1.5以上の金属酸化物であることが好ましい。本発明の被覆無機微粒子の屈折率は、好ましくは1.5以上、より好ましくは1.6以上、さらに好ましくは2.0以上である。液晶ディスプレイ、有機EL、LED、レンズ等の光学部材などの透明ナノコンポジット材料に使用する場合、SiOのように屈折率が1.5未満であると樹脂等の有機化合物の屈折率と同等もしくは低くなるため、屈折率調整することが困難である。The coated inorganic fine particles of the present invention are preferably metal oxides having a refractive index of 1.5 or more. The refractive index of the coated inorganic fine particles of the present invention is preferably 1.5 or higher, more preferably 1.6 or higher, and still more preferably 2.0 or higher. When used for transparent nanocomposite materials such as optical members such as liquid crystal displays, organic ELs, LEDs, and lenses, if the refractive index is less than 1.5, such as SiO2 , it is equivalent to or equal to the refractive index of organic compounds such as resins. Since it becomes low, it is difficult to adjust the refractive index.

<被覆無機微粒子の製造方法>
本発明の被覆無機微粒子の製造方法は、特に限定されないが、好ましい製造方法として、下記(1)~(4)の工程を含む方法が挙げられる。なお、(1)~(4)の工程を含むことを特徴とする被覆無機微粒子の製造方法も本発明の一態様である。
(1)金属水酸化物及び/又は金属水酸化物の縮合物が溶解及び/又は分散する水溶液を準備する準備工程(以下、「準備工程」と略す場合がある。)
(2)準備工程で準備した前記水溶液を温度200℃以上、圧力20MPa以上、反応時間0.1分以上で水熱反応させて無機微粒子を生成する水熱反応工程(以下、「水熱反応工程」と略す場合がある。)
(3)水熱反応工程で生成した前記無機微粒子を単離する単離工程(以下、「単離工程」と略す場合がある。)
(4)単離工程で単離した前記無機微粒子と前記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物の少なくとも1種を水溶媒中で反応させる被覆工程(以下、「被覆工程」と略す場合がある。)
以下、「準備工程」、「水熱反応工程」、「単離工程」、「被覆工程」等について詳細に説明する。
<Method for producing coated inorganic fine particles>
The production method of the coated inorganic fine particles of the present invention is not particularly limited, but a preferred production method includes the following steps (1) to (4). A method for producing coated inorganic fine particles, which includes steps (1) to (4), is also an aspect of the present invention.
(1) A preparatory step of preparing an aqueous solution in which metal hydroxides and/or condensates of metal hydroxides are dissolved and/or dispersed (hereinafter sometimes abbreviated as "preparatory step").
(2) A hydrothermal reaction step of generating inorganic fine particles by hydrothermally reacting the aqueous solution prepared in the preparation step at a temperature of 200 ° C. or higher, a pressure of 20 MPa or higher, and a reaction time of 0.1 minute or longer (hereinafter referred to as "hydrothermal reaction step ” may be abbreviated.)
(3) an isolation step of isolating the inorganic fine particles produced in the hydrothermal reaction step (hereinafter sometimes abbreviated as “isolation step”);
(4) the inorganic fine particles isolated in the isolation step and the formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) in a water solvent reacting at least one of the compounds (hereinafter sometimes abbreviated as "coating step")
The “preparation step”, the “hydrothermal reaction step”, the “isolation step”, the “coating step” and the like will be described in detail below.

(準備工程)
準備工程は、「金属水酸化物」及び/又は「金属水酸化物の縮合物」(以下、「金属水酸化物等」と略す場合がある。)が溶解及び/又は分散する水溶液(以下、「金属水酸化物等の水溶液」と略す場合がある。)を準備する工程であるが、「金属水酸化物」は無機微粒子に粒成長する金属水酸化物質の前駆体を、「金属水酸化物の縮合物」は金属水酸化物同士が縮合し、M-O-M(金属原子-酸素原子-金属原子)結合が形成している状態の前駆体を意味する。また、「水溶液」とは、金属水酸化物等が分子レベルで均一に分散(溶解)している状態に限られず、懸濁液(スラリー)の状態も含むものとする。
即ち、無機微粒子の前駆体は、水溶液中において、金属水酸化物が単量体の状態で溶解していても、金属水酸化物が凝集した状態(以下、「金属水酸化物の凝集体」と略す場合がある。)で分散(懸濁)していても、金属水酸化物の縮合物が分散(懸濁)していても、さらにこれらが混ざり合った状態であってもよいことを意味する。
金属水酸化物等の金属元素の種類は、目的とする無機微粒子の種類に応じて選択されるべきであり、目的とする無機微粒子が複合金属酸化物や合金等である場合には、2種類以上の金属元素が選択されるべきである。
金属水酸化物の凝集体及び金属水酸化物の縮合物は、結晶性を有するものであっても、非晶質(無定形物質)であってもよいが、均一な状態で核生成及び粒成長を行える観点から非晶質であることが好ましい。なお、金属水酸化物の凝集体及び金属水酸化物の縮合物が結晶性を有するものである場合、その平均粒子径は0.1μm以下であることが好ましい。粒子径が0.1μm以下を超えると、金属水酸化物等を均一に分散させることが困難であり、水熱反応工程において沈降し、不均一な反応となるため、粒子径及び粒子形状が均一で、高分散性、高結晶性の無機微粒子が得られにくい。また、金属水酸化物等が沈降する場合、反応器での詰りが生じ易い。
(Preparation process)
In the preparation step, an aqueous solution (hereinafter referred to as It may be abbreviated as "aqueous solution of metal hydroxide, etc."). The term "condensate" means a precursor in which metal hydroxides are condensed with each other to form an MOM (metal atom-oxygen atom-metal atom) bond. Moreover, the "aqueous solution" is not limited to a state in which metal hydroxides and the like are uniformly dispersed (dissolved) at the molecular level, but also includes a state of suspension (slurry).
That is, in the aqueous solution, even if the metal hydroxide is dissolved in the state of a monomer, the precursor of the inorganic fine particles is in a state in which the metal hydroxide is aggregated (hereinafter referred to as "aggregate of metal hydroxide"). It may be abbreviated as ), the metal hydroxide condensate may be dispersed (suspended), or they may be mixed. means.
The type of metal element such as a metal hydroxide should be selected according to the type of the target inorganic fine particles. The above metal elements should be selected.
Aggregates of metal hydroxides and condensates of metal hydroxides may be crystalline or amorphous (amorphous substances), but they are homogeneously nucleated and grained. It is preferably amorphous from the viewpoint of growth. When the metal hydroxide aggregate and the metal hydroxide condensate have crystallinity, the average particle size is preferably 0.1 μm or less. If the particle size exceeds 0.1 μm or less, it is difficult to uniformly disperse the metal hydroxide or the like, and the particles settle in the hydrothermal reaction step, resulting in a non-uniform reaction. Therefore, it is difficult to obtain highly dispersible and highly crystalline inorganic fine particles. In addition, when the metal hydroxide or the like settles, clogging is likely to occur in the reactor.

金属水酸化物等の水溶液中の金属酸化物等の濃度は、金属元素(主成分元素)の物質量として、通常0.01mol/L以上、好ましくは0.05mol/L以上、0.1mol/L以上であり、通常1.0mol/L以下、好ましくは0.5mol/L以下である。金属水酸化物及び/又は金属水酸化物の縮合物の濃度は、水溶液の粘度に大きく影響を与え、1.0mol/Lを超える場合では、高粘度により反応器内で生成物が詰り易く、歩留の低下及びコンタミネーションを招く。 The concentration of the metal oxide or the like in the aqueous solution of the metal hydroxide or the like is usually 0.01 mol/L or more, preferably 0.05 mol/L or more, 0.1 mol/L or more, as the substance amount of the metal element (main component element). L or more, usually 1.0 mol/L or less, preferably 0.5 mol/L or less. The concentration of the metal hydroxide and/or the condensate of the metal hydroxide greatly affects the viscosity of the aqueous solution, and when it exceeds 1.0 mol/L, the product tends to clog the reactor due to the high viscosity, This leads to lower yield and contamination.

金属水酸化物等の水溶液の準備方法は、特に限定されないが、調製方法として目的の金属元素を含む原料化合物を酸性又は塩基性の水溶液中で加水分解する方法が挙げられる。特に原料化合物が溶解及び/分散する水溶液(以下、「原料化合物の水溶液」と略す場合がある。)に塩基を添加して加水分解する方法が好ましい。なお、原料化合物がルイス酸性等を有する酸性化合物である場合、通常水溶液中に塩基を添加することによって、「中和」することになる。
原料化合物は、目的の金属元素を含み、加水分解によって金属水酸化物等が生じる物であれば、特に限定されないが、目的の金属元素を含む、金属塩化物、金属硫酸化物、金属硝酸化物等の金属塩、金属アルコキシド、金属水酸化物等とは異なる組成の金属水酸化物、金属酸化物等が挙げられる。
水溶液中の原料化合物の濃度は、金属元素の種類等に応じて適宜選択することができるが、通常0.05mol/L以上、好ましくは0.1mol/L以上であり、通常3.0mol/L以下、好ましくは0.5mol/L以下である。
塩基としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、アンモニア(NH)、炭酸水素アンモニウム(NHHCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)等が挙げられ、2種類以上組み合わせて使用することも可能である。なお、塩基は、水に溶解して塩基性水溶液(アルカリ水溶液)の状態で原料化合物の水溶液に添加することが好ましい。
塩基性水溶液の添加量は、添加終了時のpHが3.0~14.0となるように添加することが好ましく、6.0~13.0となるように添加することがより好ましい。また、塩基性水溶液と原料化合物の水溶液との好ましい添加量の重量比率(前者:後者)は、100:1~1:100であり、特に10:1~1:10が好ましい。
A method for preparing an aqueous solution of a metal hydroxide or the like is not particularly limited, but examples thereof include a method of hydrolyzing a raw material compound containing the target metal element in an acidic or basic aqueous solution. In particular, a method of hydrolyzing by adding a base to an aqueous solution in which the raw material compound is dissolved and/or dispersed (hereinafter sometimes abbreviated as "aqueous solution of raw material compound") is preferred. When the raw material compound is an acidic compound having Lewis acidity or the like, it is usually "neutralized" by adding a base to the aqueous solution.
The raw material compound is not particularly limited as long as it contains the target metal element and produces a metal hydroxide or the like by hydrolysis, but it is a metal chloride, metal sulfate, metal nitrate, or the like that includes the target metal element. metal hydroxides, metal oxides and the like having different compositions from the metal salts, metal alkoxides and metal hydroxides of
The concentration of the raw material compound in the aqueous solution can be appropriately selected according to the type of metal element, etc., but is usually 0.05 mol/L or more, preferably 0.1 mol/L or more, and usually 3.0 mol/L. Below, preferably 0.5 mol/L or less.
Bases include sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonia ( NH3 ), ammonium hydrogen carbonate ( NH4HCO3 ), sodium carbonate ( Na2CO3 ) , potassium carbonate ( K2CO3 ), sodium hydrogencarbonate (NaHCO 3 ), potassium hydrogencarbonate (KHCO 3 ), etc., and two or more of them may be used in combination. The base is preferably dissolved in water and added to the aqueous solution of the raw material compound in the form of a basic aqueous solution (aqueous alkaline solution).
The amount of the basic aqueous solution to be added is preferably such that the pH at the end of the addition is 3.0 to 14.0, more preferably 6.0 to 13.0. The weight ratio of the amount of the basic aqueous solution and the aqueous solution of the raw material compound (former:latter) is preferably 100:1 to 1:100, more preferably 10:1 to 1:10.

原料化合物の水溶液及び/又は塩基性水溶液には、均一な状態にするため、液相中に分散剤を添加してもよい。分散剤としては、例えば、界面活性剤、クエン酸、アミン、有機溶媒、ポリエチレングリコール(PEG)、又はポリビニルアルコール(PVA)等の有機化合物が挙げられる。これらの分散剤を添加すると、無機微粒子での分散性の向上と共に粒子形態の制御及び高結晶化という効果も奏される。このような分散剤の中でも、特に界面活性剤が分散性をより向上させることが可能で、且つ粒子形態への均一性への効果が大きいので好ましい。界面活性剤としては、例えば、高級脂肪酸及びその塩類、アルキル硫酸エステル塩類、脂肪酸アミン系化合物、アルキルスルホコハク酸塩類等を使用することができる。
分散剤の添加量は、目的とする無機微粒子の理論生成量に対して、通常0.01重量%以上、好ましくは0.1重量%以上であり、通常10.0重量%以下、好ましくは5.0重量%以下である。分散剤の添加量が0.01重量%未満では分散剤による無機アルカリ塩水溶液又はスラリーの均一化、及び生成した無機微粒子の高分散性、高結晶性、高均一化に対して効果が少なく、10.0重量%を超えると、生成した無機微粒子が凝集し易くなる。
A dispersing agent may be added to the liquid phase of the starting compound aqueous solution and/or the basic aqueous solution in order to achieve a uniform state. Dispersants include, for example, surfactants, citric acid, amines, organic solvents, polyethylene glycol (PEG), or organic compounds such as polyvinyl alcohol (PVA). Addition of these dispersants has the effect of improving the dispersibility of the inorganic fine particles, controlling the particle morphology, and increasing the crystallization. Among such dispersants, surfactants are particularly preferable because they can further improve the dispersibility and have a great effect on the uniformity of the particle form. Examples of surfactants that can be used include higher fatty acids and salts thereof, alkyl sulfate ester salts, fatty acid amine compounds, and alkyl sulfosuccinates.
The amount of the dispersant added is usually 0.01% by weight or more, preferably 0.1% by weight or more, and usually 10.0% by weight or less, preferably 5% by weight, based on the theoretical amount of inorganic fine particles to be produced. 0% by weight or less. If the amount of the dispersant added is less than 0.01% by weight, the effect of the dispersant on homogenization of the inorganic alkaline salt aqueous solution or slurry, and on the high dispersibility, high crystallinity, and high uniformity of the inorganic fine particles produced is small. If it exceeds 10.0% by weight, the produced inorganic fine particles tend to aggregate.

(水熱反応工程)
水熱反応工程は、準備工程で準備した水溶液を温度200℃以上、圧力20MPa以上、反応時間0.1分以上で水熱反応させて無機微粒子を生成する工程であるが、「温度200℃以上、圧力20MPa以上、反応時間0.1分以上」という条件を満たすことにより、生成する無機微粒子が、従来の固相反応法、湿式反応法、気相法、低温低圧条件下の水熱反応法と比較して、どのような溶媒に対しても分散性に優れ、粒子形状が均一で比表面積が大きく、さらに粒子表面の反応性が高くなる特長を有する。
水熱反応の温度は、200℃以上であるが、好ましくは250℃以上であり、通常450℃以下、好ましくは400℃以下である。水熱反応の温度は、製造する微粒子により異なるが、圧力と同様に200℃未満の場合、粒子形成が困難であり、結晶性が悪く、原料由来の不純物が取り込まれ易い。温度の上限については特に制限がなく、装置の仕様に制限されるが、圧力と同様に500℃を超える場合では、反応管内で生成物が付着し易くなり、歩留の低下及びコンタミネーションを招く。
(Hydrothermal reaction step)
The hydrothermal reaction step is a step of hydrothermally reacting the aqueous solution prepared in the preparation step at a temperature of 200° C. or higher, a pressure of 20 MPa or higher, and a reaction time of 0.1 minute or longer to generate inorganic fine particles. , a pressure of 20 MPa or more, and a reaction time of 0.1 minute or more”, the inorganic fine particles produced can be produced by conventional solid phase reaction methods, wet reaction methods, gas phase methods, and hydrothermal reaction methods under low temperature and low pressure conditions. Compared to , it has excellent dispersibility in any solvent, uniform particle shape, large specific surface area, and high reactivity of the particle surface.
The temperature of the hydrothermal reaction is 200° C. or higher, preferably 250° C. or higher, and usually 450° C. or lower, preferably 400° C. or lower. The temperature of the hydrothermal reaction varies depending on the microparticles to be produced, but similarly to the pressure, if the temperature is less than 200° C., particle formation is difficult, crystallinity is poor, and impurities derived from raw materials are likely to be incorporated. The upper limit of the temperature is not particularly limited and is limited by the specifications of the apparatus, but if it exceeds 500 ° C. as with the pressure, the product tends to adhere in the reaction tube, resulting in a decrease in yield and contamination. .

水熱反応の圧力は、20MPa以上であるが、通常50MPa以下、好ましくは40MPa以下である。水熱反応の圧力は、製造する微粒子により異なるが、20MPa未満の場合、粒子形成が困難であり、結晶性が悪く、原料由来の不純物が取り込まれ易い。圧力の上限については特に制限がなく、装置の仕様に制限されるが、50MPaを超える場合では、反応管内で生成物が付着し易くなり、歩留の低下及びコンタミネーションを招く。 The pressure of the hydrothermal reaction is 20 MPa or more, but usually 50 MPa or less, preferably 40 MPa or less. The pressure of the hydrothermal reaction varies depending on the microparticles to be produced, but if the pressure is less than 20 MPa, particle formation is difficult, crystallinity is poor, and impurities derived from raw materials are likely to be incorporated. The upper limit of the pressure is not particularly limited and is limited by the specifications of the apparatus, but if it exceeds 50 MPa, the product tends to adhere in the reaction tube, resulting in a decrease in yield and contamination.

水熱反応の反応時間(反応器での滞留時間)は、0.1分以上であるが、通常60分以下、好ましくは30分以下である。反応時間は、製造する微粒子により異なるが、0.1分未満の場合、粒子形成が困難であり、結晶性が悪く、原料由来の不純物が取り込まれ易い。 The reaction time of the hydrothermal reaction (residence time in the reactor) is 0.1 minute or more, but usually 60 minutes or less, preferably 30 minutes or less. Although the reaction time varies depending on the microparticles to be produced, if the reaction time is less than 0.1 minute, it is difficult to form particles, the crystallinity is poor, and impurities derived from raw materials are likely to be incorporated.

水熱反応工程は、前述の条件を満たすものであれば、その他については特に限定されないが、無機微粒子として金属微粒子を生成する場合、例えば、水素ガス等の還元剤の存在下で反応させて、還元反応を進めることが挙げられる。この他にも、水熱反応工程の条件を適宜制御することにより、様々な種類の無機微粒子を生成することができる。また、条件によって、球状、立方状、板状、薄片状、針状、棒状、繊維状等の粒子形状の制御が可能である。 The hydrothermal reaction step is not particularly limited as long as it satisfies the above conditions, but when producing metal fine particles as inorganic fine particles, for example, the reaction is performed in the presence of a reducing agent such as hydrogen gas, Proceeding the reduction reaction can be mentioned. In addition, various kinds of inorganic fine particles can be produced by appropriately controlling the conditions of the hydrothermal reaction step. In addition, depending on the conditions, the particle shape can be controlled to be spherical, cubic, plate-like, flake-like, needle-like, rod-like, fiber-like, and the like.

(単離工程)
単離工程は、水熱反応工程で生成した無機微粒子を単離する工程であるが、単離方法は特に限定されず、公知の方法を適宜採用することができる。通常、水熱工程を終えた水溶液を冷却し、減圧して回収した生成物をろ過、水洗、乾燥する操作が行われる。
(Isolation step)
The isolation step is a step of isolating the inorganic fine particles produced in the hydrothermal reaction step, but the isolation method is not particularly limited, and a known method can be appropriately employed. Usually, the aqueous solution after the hydrothermal step is cooled, the pressure is reduced, and the recovered product is filtered, washed with water, and dried.

(被覆工程)
被覆工程は、単離工程で単離した無機微粒子と被覆剤を水溶媒中で反応させる工程であるが、「水溶媒中」で行われることにより、有機溶剤を使用する場合と比較して、揮発性有機化合物が残存しにくく、さらに被覆剤を無機微粒子の表面に均一に被覆し易くなる特長を有する。
被覆工程の操作方法は、特に限定されないが、通常、水溶媒中に無機微粒子を均一に分散させた後、被覆剤を添加し、反応温度に加熱して反応させる方法が挙げられる。
(Coating process)
The coating step is a step of reacting the inorganic fine particles isolated in the isolation step with the coating agent in an aqueous solvent. It has the advantage that volatile organic compounds are less likely to remain and that the surface of the inorganic fine particles can be uniformly coated with the coating agent.
The operating method of the coating step is not particularly limited, but usually includes a method of uniformly dispersing inorganic fine particles in an aqueous solvent, adding a coating agent, and heating to the reaction temperature to react.

被覆工程における水溶媒の使用量は、無機微粒子の濃度が通常1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上であり、通常45重量%以下、好ましくは35重量%以下、より好ましくは25重量%以下となる量使用される。
無機微粒子を水溶媒中に均一に分散させるために、通常酸又は塩基を添加してpH調整を行うことが好ましい。酸又は塩基は、添加時のpH1.0~14.0となるように添加することが好ましく、3.0~10.0となるように添加することがより好ましい。
無機微粒子を水溶媒中に均一に分散させるために、超音波ホモジナイザー、遊星ボールミル、ヘンシェルミキサー、コロイドミル、湿式ジェットミル、湿式ビーズミル等の分散機によって撹拌を行うことが好ましい。
The amount of the aqueous solvent used in the coating step is such that the concentration of the inorganic fine particles is usually 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, and is usually 45% by weight or less, preferably 35% by weight or less. , more preferably 25% by weight or less.
In order to uniformly disperse the inorganic fine particles in the water solvent, it is usually preferable to add an acid or a base to adjust the pH. The acid or base is preferably added so that the pH at the time of addition is 1.0 to 14.0, more preferably 3.0 to 10.0.
In order to uniformly disperse the inorganic fine particles in the water solvent, it is preferable to stir the mixture with a dispersing machine such as an ultrasonic homogenizer, planetary ball mill, Henschel mixer, colloid mill, wet jet mill, or wet bead mill.

被覆剤の添加量は、無機微粒子100重量部に対して、通常3重量部以上、好ましくは5重量部以上であり、通常100重量部以下、好ましくは55重量部以下である。 The amount of the coating agent added is usually 3 parts by weight or more, preferably 5 parts by weight or more, and usually 100 parts by weight or less, preferably 55 parts by weight or less, relative to 100 parts by weight of the inorganic fine particles.

被覆工程の反応の温度は、通常室温以上、好ましくは25℃以上であり、通常80℃以下、好ましくは60℃以下である。
被覆工程の反応時間(反応器での滞留時間)は、5分以上であるが、通常24時間以下、好ましくは8時間以下である。
The reaction temperature in the coating step is usually room temperature or higher, preferably 25° C. or higher, and usually 80° C. or lower, preferably 60° C. or lower.
The reaction time (residence time in the reactor) in the coating step is 5 minutes or more, but usually 24 hours or less, preferably 8 hours or less.

本発明の被覆無機微粒子の製造方法は、前述の準備工程等以外を含むものであってもよく、通常、被覆工程を終えた懸濁液を200℃以下の温度範囲にて乾燥、解砕して被覆無機微粒子が得られる。 The method for producing coated inorganic fine particles of the present invention may include steps other than the above-described preparatory steps, etc. Generally, the suspension that has undergone the coating step is dried at a temperature of 200° C. or less and pulverized. coated inorganic fine particles are obtained.

<ナノコンポジット材料>
本発明の被覆無機微粒子は、透明なナノコンポジット材料を実現するために有用であることを前述したが、本発明の被覆無機微粒子を透明な有機化合物に分散させてなるナノコンポジット材料(以下、「本発明のナノコンポジット材料」と略す場合がある。)も本発明の一態様である。
以下、「透明な有機化合物」等について詳細に説明する。
<Nanocomposite material>
As mentioned above, the coated inorganic fine particles of the present invention are useful for realizing a transparent nanocomposite material. Nanocomposite materials (hereinafter referred to as " may be abbreviated as "the nanocomposite material of the present invention") is also an aspect of the present invention.
The “transparent organic compound” and the like will be described in detail below.

本発明のナノコンポジット材料は、本発明の被覆無機微粒子を透明な有機化合物に分散させてなる材料であるが、有機化合物としては、有機溶剤;重合性のモノマー、オリゴマー;例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル、ポリ塩化ビニル、ポリカーボネート、ナイロン、ウレタン、PBT、PET、ABS等の熱可塑性樹脂、メラミン、フェノール、エポキシ、ウレタン、ポリイミド、ジアリルフタレート、不飽和ポリエステル、フラン、シリコーン等の熱硬化性樹脂、エラストマー、ゴム、ラジカル重合型又はカチオン重合型の紫外線硬化性樹脂、可視光線、赤外線、電子線等の硬化性樹脂などが挙げられる。単独で又は併用して使用してもよく、ナノコンポジット材料を用途に応じて適宜選択することが可能である。 The nanocomposite material of the present invention is a material obtained by dispersing the coated inorganic fine particles of the present invention in a transparent organic compound. Examples of the organic compound include organic solvents; polymerizable monomers and oligomers; Thermoplastic resins such as polystyrene, acrylic, polyvinyl chloride, polycarbonate, nylon, urethane, PBT, PET, and ABS, thermosetting resins such as melamine, phenol, epoxy, urethane, polyimide, diallyl phthalate, unsaturated polyester, furan, and silicone Examples thereof include resins, elastomers, rubbers, radical polymerizable or cationic polymerizable UV-curable resins, visible light-, infrared-, electron-beam-curable resins, and the like. They may be used alone or in combination, and the nanocomposite material can be appropriately selected depending on the application.

本発明のナノコンポジット材料は、「透明」であることが好ましい。なお、「透明」とは、可視光線、近赤外線、近紫外線等の所定の波長帯域の光が透過するものであればよいが、具体的には波長400nmの光の分光透過率が65%以上であることが好ましく、85%以上であることがより好ましい。光学部材等の用途においては、分光透過率が65%未満であると、光学デバイスの性能低下に直接影響するため好ましくない。また、光学部材等の用途以外においても透過率が65%以上となる、均一な無機微粒子の分散状態が求められている。 The nanocomposite materials of the present invention are preferably "transparent". It should be noted that the term “transparent” means that light in a predetermined wavelength band such as visible light, near-infrared rays, and near-ultraviolet rays can be transmitted. is preferably 85% or more. In applications such as optical members, if the spectral transmittance is less than 65%, it is not preferable because it directly affects the deterioration of the performance of the optical device. In addition, even in applications other than optical members, there is a demand for a uniformly dispersed state of inorganic fine particles with a transmittance of 65% or more.

本発明のナノコンポジット材料における被覆無機微粒子の含有量は、通常10重量%以上、好ましくは20重量%以上であり、通常85重量%以下、好ましくは75重量%以下である。被覆無機微粒子の含有量が10重量%より少ない場合、無機微粒子の機能性を発現することが困難である。被覆無機微粒子の含有量が85重量%より大きな場合、有機化合物本来の機能性を発揮することができず、コンポジット材料の粘度も極めて高くなり、成型時のハンドリング性に悪影響を与える。 The content of the coated inorganic fine particles in the nanocomposite material of the present invention is usually 10% by weight or more, preferably 20% by weight or more, and usually 85% by weight or less, preferably 75% by weight or less. When the content of the coated inorganic fine particles is less than 10% by weight, it is difficult to develop the functionality of the inorganic fine particles. If the content of the coated inorganic fine particles is more than 85% by weight, the original functionality of the organic compound cannot be exhibited, and the viscosity of the composite material becomes extremely high, adversely affecting handling during molding.

本発明の被覆無機微粒子を有機化合物中に均一に分散させるためには、リボンミキサー、コニーダ、押出し機、インターナルミキサー、ニーダー、パグミル、ギャコンパウンダ、オーガ、ピンミキサー、ロッドミキサー、サンドミル、クラッチャ、高速流動型ミキサー、ヘンシェルミキサー、シュギーミキサー、シンプソンミル、ワールミックス、アイリッヒミル、万能ミキサー、らいかい機、プラネタリーミキサー、3本ロールミル、テーパロールミル等の混錬機、湿式ビーズミル、湿式ジェットミル、超音波ホモジナイザー等の分散機、高速攪拌式や圧力式の乳化機、撹拌機、混合機により行うことが望ましい。分散処理の際に加熱又は真空にして、粘度を下げたり、脱泡したりして、より均一に分散させることができる。 Ribbon mixers, co-kneaders, extruders, internal mixers, kneaders, pug mills, galacon pounders, augers, pin mixers, rod mixers, sand mills and crutchers are used to uniformly disperse the coated inorganic fine particles of the present invention in organic compounds. , High-speed fluidized mixer, Henschel mixer, Shugi mixer, Simpson mill, Whirlmix, Eirich mill, Universal mixer, Rai kneader, Planetary mixer, 3 roll mill, Taper roll mill, Wet bead mill, Wet jet mill , a dispersing machine such as an ultrasonic homogenizer, a high-speed stirring or pressure emulsifying machine, a stirrer, or a mixer. It is possible to disperse more uniformly by heating or applying vacuum during the dispersion treatment to lower the viscosity or defoam.

本発明のナノコンポジット材料には、必要に応じて様々な種類の添加剤を単独で又は併用して使用してもよい。添加剤としては、熱安定剤、酸化防止剤、耐光安定剤、耐候安定剤、紫外線吸収及び近赤外線吸収等の安定剤、滑剤、可塑剤、白濁防止剤、分散剤、着色剤、帯電防止剤、難燃剤、離型剤、硬化剤、開始剤等が挙げられる。
本発明のナノコンポジット材料の形状は、液体状、バルク状、フィルム状、シート状、薄膜状など用途に応じて適宜選択することが可能である。
Various types of additives may be used alone or in combination in the nanocomposite material of the present invention as required. Additives include heat stabilizers, antioxidants, light stabilizers, weather stabilizers, stabilizers for ultraviolet absorption and near-infrared absorption, lubricants, plasticizers, anti-clouding agents, dispersants, colorants, and antistatic agents. , flame retardants, release agents, curing agents, initiators, and the like.
The shape of the nanocomposite material of the present invention can be appropriately selected from liquid, bulk, film, sheet, thin film, and the like, depending on the application.

以下、実施例により本発明の被覆無機微粒子及びその製造方法について説明するが、本発明はこれらの実施例に限定されるものではない。 The coated inorganic fine particles and the method for producing the same according to the present invention will be described below with reference to examples, but the present invention is not limited to these examples.

[製造例1(ジルコニア微粒子)]
ジルコニウム塩水溶液としてオキシ塩化ジルコニウム水溶液を、アルカリ水溶液として水酸化ナトリウム水溶液を用いて、Zr量が0.40mol、アルカリ量が0.8mol[中和度=アルカリ量/(2×Zr量)=1.0]となるように原料を準備した。次に原料タンク内で、室温、大気下にてジルコニウム塩水溶液に水酸化ナトリウム水溶液を添加して、反応前駆体である無定形のジルコニウム水酸化物含有水溶液を調製した。調製後の反応前駆体のpH値は12.5であった。調製した反応前駆体を水熱反応装置により温度300℃、圧力20MPa、滞留時間0.25分にて水熱反応を行い、その後、ろ過、水洗、乾燥してジルコニア微粒子を得た。
得られたジルコニア微粒子は、平均粒子径、比表面積を評価した。また、透過型電子顕微鏡(TEM)写真を(20万倍)を図1に示す。平均粒子径が10nm、平均粒子径の相対標準偏差は0.20であり、比表面積は140m/gであった。TEMによる観察から粒子形態の均一性がよい。
[Production Example 1 (zirconia fine particles)]
Using an aqueous solution of zirconium oxychloride as an aqueous solution of zirconium salt and an aqueous solution of sodium hydroxide as an aqueous alkali solution, the amount of Zr is 0.40 mol and the amount of alkali is 0.8 mol [degree of neutralization = alkali amount / (2 × Zr amount) = 1 .0]. Next, an aqueous sodium hydroxide solution was added to the aqueous zirconium salt solution at room temperature in the atmosphere in the raw material tank to prepare an aqueous solution containing amorphous zirconium hydroxide as a reaction precursor. The pH value of the reaction precursor after preparation was 12.5. The prepared reaction precursor was subjected to a hydrothermal reaction in a hydrothermal reactor at a temperature of 300° C., a pressure of 20 MPa, and a residence time of 0.25 minutes, followed by filtration, washing with water and drying to obtain zirconia fine particles.
The obtained zirconia fine particles were evaluated for average particle size and specific surface area. A transmission electron microscope (TEM) photograph (200,000 times) is shown in FIG. The average particle size was 10 nm, the relative standard deviation of the average particle size was 0.20, and the specific surface area was 140 m 2 /g. Good uniformity of particle morphology is observed by TEM.

[製造例2(チタニア微粒子)]
チタン塩水溶液として四塩化チタン水溶液を、アルカリ水溶液として水酸化ナトリウム水溶液を用いて、Ti量が0.40mol、アルカリ量が1.2mol[中和度=アルカリ量/(4×Ti量)=1.0]となるように原料を準備した。次に原料タンク内で、室温、大気下にてチタン塩水溶液に硝酸水溶液を添加して、反応前駆体である無定形のチタン水酸化物含有水溶液を調製した。調製後の反応前駆体のpH値は5.0であった。調製した反応前駆体を水熱反応装置により温度350℃、圧力20MPa、滞留時間0.25分にて水熱反応を行い、その後、ろ過、水洗、乾燥して10nmのチタニア微粒子を得た。
得られたチタニア微粒子は、平均粒子径、比表面積を評価した。また、透過型電子顕微鏡(TEM)写真を(20万倍)を図2に示す。平均粒子径が10nm、平均粒子径の相対標準偏差は0.24であり、比表面積は160m/gであった。TEMによる観察から粒子形態の均一性がよい。
[Production Example 2 (titania fine particles)]
Using an aqueous solution of titanium tetrachloride as an aqueous titanium salt solution and an aqueous sodium hydroxide solution as an alkaline aqueous solution, the amount of Ti is 0.40 mol and the amount of alkali is 1.2 mol [degree of neutralization = alkali amount / (4 × Ti amount) = 1 .0]. Next, an aqueous nitric acid solution was added to the aqueous titanium salt solution at room temperature in the atmosphere in the raw material tank to prepare an amorphous titanium hydroxide-containing aqueous solution as a reaction precursor. The pH value of the reaction precursor after preparation was 5.0. The prepared reaction precursor was subjected to a hydrothermal reaction in a hydrothermal reactor at a temperature of 350° C., a pressure of 20 MPa, and a residence time of 0.25 minutes.
The obtained titania fine particles were evaluated for average particle size and specific surface area. A transmission electron microscope (TEM) photograph (200,000 times) is shown in FIG. The average particle size was 10 nm, the relative standard deviation of the average particle size was 0.24, and the specific surface area was 160 m 2 /g. Good uniformity of particle morphology is observed by TEM.

[被覆無機微粒子の調製]
<実施例1~9>
製造例1のジルコニア微粒子300gを、水2700g中に分散させ、酢酸を24g添加し、均一分散させた。この水分散液を攪拌しながら、表1に従って有機ケイ素化合物を添加し、50℃で4時間撹拌した。その後、混合分散液を80℃にて乾燥を行って、有機ケイ素化合物で被覆されたジルコニア微粒子を得た。
[Preparation of coated inorganic fine particles]
<Examples 1 to 9>
300 g of the zirconia fine particles of Production Example 1 were dispersed in 2700 g of water, and 24 g of acetic acid was added and uniformly dispersed. While stirring this aqueous dispersion, an organosilicon compound was added according to Table 1, and the mixture was stirred at 50° C. for 4 hours. After that, the mixed dispersion was dried at 80° C. to obtain zirconia fine particles coated with an organosilicon compound.

<実施例10>
製造例2のチタニア微粒子300gを、水2700g中に分散させ、酢酸を24g添加し、均一分散させた。この水分散液を攪拌しながら、表1に従って有機ケイ素化合物を添加し、50℃で4時間撹拌した。その後、混合分散液を80℃にて乾燥を行って、有機ケイ素化合物で被覆されたチタニア微粒子を得た。
<Example 10>
300 g of the titania fine particles of Production Example 2 were dispersed in 2700 g of water, and 24 g of acetic acid was added and uniformly dispersed. While stirring this aqueous dispersion, an organosilicon compound was added according to Table 1, and the mixture was stirred at 50° C. for 4 hours. After that, the mixed dispersion was dried at 80° C. to obtain fine titania particles coated with the organosilicon compound.

<比較例1>
製造例1のジルコニア微粒子300gを、エタノール2700g中に均一分散させた。このエタノール分散液を攪拌しながら、3-メタクリロキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製「A-174」)を66.9g添加し、50℃で4時間撹拌した。その後、混合分散液を60℃にて減圧乾燥することにより、有機ケイ素化合物で被覆されたジルコニア微粒子を得た。
<Comparative Example 1>
300 g of zirconia fine particles of Production Example 1 were uniformly dispersed in 2700 g of ethanol. While stirring this ethanol dispersion, 66.9 g of 3-methacryloxypropyltrimethoxysilane (“A-174” manufactured by Momentive Performance Materials) was added and stirred at 50° C. for 4 hours. After that, the mixed dispersion was dried under reduced pressure at 60° C. to obtain zirconia fine particles coated with an organosilicon compound.

<比較例2>
平均粒子径が15nm、比表面積が90m/gである湿式法にて合成された市販品のジルコニア微粒子300gを、水2700g中に分散させ、酢酸を24g添加し、均一分散させた。この水分散液を攪拌しながら、3-メタクリロキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製「A-174」)を66.9g添加し、50℃で4時間撹拌した。その後、混合分散液を80℃にて乾燥を行って、有機ケイ素化合物で被覆されたジルコニア微粒子を得た。
<Comparative Example 2>
300 g of commercially available zirconia fine particles having an average particle diameter of 15 nm and a specific surface area of 90 m 2 /g synthesized by a wet method were dispersed in 2700 g of water, and 24 g of acetic acid was added to uniformly disperse. While stirring this aqueous dispersion, 66.9 g of 3-methacryloxypropyltrimethoxysilane (“A-174” manufactured by Momentive Performance Materials) was added and stirred at 50° C. for 4 hours. After that, the mixed dispersion was dried at 80° C. to obtain zirconia fine particles coated with an organosilicon compound.

<比較例3>
平均粒子径が15nm、比表面積が90m/gである湿式法にて合成された市販品のジルコニア微粒子300gを、エタノール2700g中に均一分散させた。このエタノール分散液を攪拌しながら、3-メタクリロキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製「A-174」)を66.9g添加し、50℃で4時間撹拌した。その後、混合分散液を60℃にて減圧乾燥することにより、有機ケイ素化合物で被覆されたジルコニア微粒子を得た。
<Comparative Example 3>
300 g of commercially available zirconia fine particles synthesized by a wet method having an average particle diameter of 15 nm and a specific surface area of 90 m 2 /g were uniformly dispersed in 2700 g of ethanol. While stirring this ethanol dispersion, 66.9 g of 3-methacryloxypropyltrimethoxysilane (“A-174” manufactured by Momentive Performance Materials) was added and stirred at 50° C. for 4 hours. After that, the mixed dispersion was dried under reduced pressure at 60° C. to obtain zirconia fine particles coated with an organosilicon compound.

上記実施例1~10及び比較例1~3で得られた被覆無機微粒子について、下記の特性評価(3)~(5)を行い、その結果を表1に示した。
<評価手法>
(1)平均粒子径の測定、粒子形状及び均一性評価
日立ハイテクノロジーズ製透過型電子顕微鏡(H-7600)を用いて倍率3万~20万倍で粒子の画像を取得し、200個以上の粒子の長径を計測し、その平均値を求めることにより平均粒子径を測定した。粒子形状はTEM像の観察より評価し、均一性は平均粒子径の測定値の相対標準偏差より評価した。
The coated inorganic fine particles obtained in Examples 1 to 10 and Comparative Examples 1 to 3 were subjected to the following property evaluations (3) to (5), and the results are shown in Table 1.
<Evaluation method>
(1) Measurement of average particle size, evaluation of particle shape and uniformity Using a Hitachi High-Technologies transmission electron microscope (H-7600), an image of particles is obtained at a magnification of 30,000 to 200,000 times, and 200 or more The average particle diameter was measured by measuring the long diameter of the particles and obtaining the average value. The particle shape was evaluated by observation of TEM images, and the uniformity was evaluated by the relative standard deviation of the measured values of the average particle size.

(2)比表面積の測定
150℃にて脱気した被覆無機微粒子を使用し、マウンテック社製全自動BET比表面積測定装置(Macsorb HM Model-1210)を用いて、窒素ガスの吸脱着よりBET法で比表面積を測定した。
(2) Measurement of specific surface area Using coated inorganic fine particles degassed at 150 ° C., using a fully automatic BET specific surface area measuring device (Macsorb HM Model-1210) manufactured by Mountech, BET method from adsorption and desorption of nitrogen gas. to measure the specific surface area.

(3)揮発性有機化合物量の測定
揮発性有機化合物量の評価は、O.S.P.Inc.社製揮発性有機化合物測定装置(VOC-401P)を用いて、被覆無機微粒子0.500gを120℃で10分間加熱した際に容積140mLの測定器内に放出された揮発性有機化合物の体積濃度(トルエン換算ppm)を測定した。環境省が示す主なVOC100種をはじめとする、加熱温度で揮発するすべての揮発性有機化合物を測定した。
(3) Measurement of amount of volatile organic compounds S. P. Inc. Volatile organic compound measuring device (VOC-401P) manufactured by Co., Ltd. is used to heat 0.500 g of coated inorganic fine particles at 120 ° C. for 10 minutes. (ppm in terms of toluene) was measured. All volatile organic compounds that volatilize at the heating temperature, including 100 major VOCs indicated by the Ministry of the Environment, were measured.

(4)被覆無機微粒子中における被覆層量の測定
ブルカー・エイエックスエス社製蛍光エックス線分析装置(S8 TIGER)を用いて、被覆無機微粒子中の各元素量を定量した。得られた定量値より、被覆無機微粒子に対する被覆層の重量分率Xは下記式1に基づいて算出した。

Figure 0007190431000013
((式1)中、Wは被覆剤の添加量を、Wは無機微粒子量を、Mは被覆剤の分子量を、MC’は被覆剤が反応した後の構造の分子量を、pは下記式2で示される被覆剤の反応率を表す。)
Figure 0007190431000014
((式2)中、C”XRFは被覆剤に含まれるSi又はTi又はAl元素のXRFにおける定量値を、PXRFは原料となる無機微粒子を構成する金属もしくは金属酸化物のXRFにおける定量値を、Wは被覆剤の添加量を、Wは無機微粒子量を、Mは被覆剤の分子量を、MC”は被覆剤に含まれるSi又はTi又はAl元素原子量を表す。)(4) Measurement of Coating Layer Amount in Coated Inorganic Fine Particles Using a fluorescent X-ray spectrometer (S8 TIGER) manufactured by Bruker AXS, the amount of each element in the coated inorganic fine particles was quantified. From the obtained quantitative values, the weight fraction X of the coating layer with respect to the coated inorganic fine particles was calculated based on the following formula 1.
Figure 0007190431000013
(In (Formula 1), W C is the amount of the coating agent added, W P is the amount of the inorganic fine particles, M C is the molecular weight of the coating agent, and M C′ is the molecular weight of the structure after the reaction of the coating agent. p represents the reaction rate of the coating material represented by the following formula 2.)
Figure 0007190431000014
(In (Formula 2), C″ XRF is the quantitative value of the Si or Ti or Al element contained in the coating agent in XRF, and P XRF is the quantitative value in XRF of the metal or metal oxide that constitutes the raw material inorganic fine particles. , WC is the amount of coating agent added, WP is the amount of inorganic fine particles, M C is the molecular weight of the coating agent, and M C” is the atomic weight of Si, Ti or Al element contained in the coating agent.)

(5)透明ナノコンポジット材料及び被覆無機微粒子の屈折率の測定
被覆無機微粒子を含有する透明ナノコンポジット材料を容積15mm×30mm×0.5mmのPTFE製の型枠に流し込んだ後に、セン特殊光源社製高圧水銀ランプ(ハンディキュア100)を用いて硬化させた試験片を作製した。透明ナノコンポジット材料の屈折率は、この試験片の温度25℃、波長589nmにおける屈折率を、アタゴ社製多波長アッベ屈折率計(DR-M4)を用いて測定することで評価した。さらに、得られた透明ナノコンポジット材料の屈折率及び、エトキシ化-o-フェニルフェノールアクリレート単独で作成した試験片の屈折率より、被覆無機微粒子の屈折率を算出した。
(5) Measurement of refractive index of transparent nanocomposite material and coated inorganic fine particles A cured test piece was prepared using a high pressure mercury lamp (Handicure 100). The refractive index of the transparent nanocomposite material was evaluated by measuring the refractive index of this test piece at a temperature of 25° C. and a wavelength of 589 nm using a multi-wavelength Abbe refractometer (DR-M4) manufactured by Atago. Further, the refractive index of the coated inorganic fine particles was calculated from the refractive index of the obtained transparent nanocomposite material and the refractive index of a test piece prepared solely from ethoxylated o-phenylphenol acrylate.

実施例1~10の結果より、本発明では、高温高圧条件下の水熱反応によって合成した無機微粒子を水溶媒中にて被覆剤で表面被覆することで、揮発性有機化合物が100ppm以下の被覆無機微粒子を得ることができた。
比較例1及び3の被覆無機微粒子は、無機微粒子を有機溶剤中に分散させて表面被覆を行い、その後有機溶剤を除去する方法で製造しているため、分散媒由来の揮発性有機化合物を含む被覆無機微粒子となった。また、比較例2の被覆無機微粒子は、水溶媒中にて表面被覆した被覆無機微粒子であるが、湿式法により合成された市販品のジルコニア微粒子を使用しており、製法の違いにより粒子表面における被覆剤の反応性が低いため、揮発性有機化合物が100ppm以上の被覆無機微粒子となった。
From the results of Examples 1 to 10, in the present invention, by coating the surface of inorganic fine particles synthesized by a hydrothermal reaction under high temperature and high pressure conditions with a coating agent in an aqueous solvent, a coating with a volatile organic compound content of 100 ppm or less can be obtained. Inorganic fine particles could be obtained.
The coated inorganic fine particles of Comparative Examples 1 and 3 are produced by dispersing the inorganic fine particles in an organic solvent to coat the surface, and then removing the organic solvent. Therefore, they contain volatile organic compounds derived from the dispersion medium. Coated inorganic fine particles were obtained. The coated inorganic fine particles of Comparative Example 2 are coated inorganic fine particles surface-coated in an aqueous solvent. Since the reactivity of the coating agent was low, the coated inorganic fine particles contained 100 ppm or more of volatile organic compounds.



Figure 0007190431000015
Figure 0007190431000015

[透明ナノコンポジット材料の作製]
<実施例11>
上記実施例1記載の被覆無機微粒子100gに、エトキシ化-o-フェニルフェノールアクリレート(新中村化学社製「NKエステルA-LEN-10」)を100g、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製「IRGACURE184」)を6g添加し、高速撹拌機を用いて16,000rpmで1時間分散処理することで、被覆ジルコニア微粒子を50重量%含有するナノコンポジット材料を得た。被覆無機微粒子を含有する透明ナノコンポジット材料をPETフィルム(東レ社製「ルミラーT60」、12mm×80mm×100μm)上に膜厚40μmで塗布した後に、セン特殊光源社製高圧水銀ランプ(ハンディキュア100)を用いて硬化させた試験片を作製した。この試験片の波長400nmにおける透過率を、リファレンスをPETフィルムとして、日立ハイテクサイエンス社製レシオビーム式紫外可視分光光度計(U-5100)を用いて測定したところ、83.4%Tであった。また、得られたナノコンポジット材料を容積15mm×30mm×0.5mmのPTFE製の型枠に流し込んだ後に、セン特殊光源社製高圧水銀ランプ(ハンディキュア100)を用いて硬化させた試験片を作製した。この試験片の温度25℃、波長589nmにおける屈折率を、アタゴ社製多波長アッベ屈折率計(DR-M4)を用いて測定したところ1.649であった。
[Preparation of transparent nanocomposite material]
<Example 11>
To 100 g of the coated inorganic fine particles described in Example 1, 100 g of ethoxylated-o-phenylphenol acrylate (“NK Ester A-LEN-10” manufactured by Shin-Nakamura Chemical Co., Ltd.), 1-hydroxycyclohexylphenyl ketone (manufactured by BASF “ 6 g of IRGACURE 184”) was added, and dispersion treatment was performed using a high-speed stirrer at 16,000 rpm for 1 hour to obtain a nanocomposite material containing 50% by weight of coated zirconia fine particles. After applying a transparent nanocomposite material containing coated inorganic fine particles to a film thickness of 40 μm on a PET film (“Lumirror T60” manufactured by Toray Industries, Inc., 12 mm × 80 mm × 100 μm), a high-pressure mercury lamp manufactured by Sen Special Light Source Co., Ltd. (Handicure 100 ) was used to prepare a cured test piece. The transmittance of this test piece at a wavelength of 400 nm was measured using a PET film as a reference and a ratio beam ultraviolet-visible spectrophotometer (U-5100) manufactured by Hitachi High-Tech Science Co., Ltd., and was 83.4% T. . In addition, after pouring the obtained nanocomposite material into a PTFE mold with a volume of 15 mm × 30 mm × 0.5 mm, a test piece cured using a high-pressure mercury lamp (Handicure 100) manufactured by Sen Special Light Source Co., Ltd. made. The refractive index of this test piece at a temperature of 25° C. and a wavelength of 589 nm was 1.649 when measured using a multi-wavelength Abbe refractometer (DR-M4) manufactured by Atago Co., Ltd.

<比較例4>
上記比較例1記載の被覆無機微粒子100gに、エトキシ化-o-フェニルフェノールアクリレート(新中村化学社製「NKエステルA-LEN-10」)を100g、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製「IRGACURE184」)を6g添加し、高速撹拌機を用いて16,000rpmで1時間分散処理することで、被覆ジルコニア微粒子を50重量%含有するナノコンポジット材料を得た。得られたナノコンポジットは、上記実施例11と同様に透明性及び屈折率の評価を行ったところ、波長400nmにおける透過率は29.3%Tであり、屈折率は1.652であった。
<Comparative Example 4>
To 100 g of the coated inorganic fine particles described in Comparative Example 1, 100 g of ethoxylated-o-phenylphenol acrylate (“NK Ester A-LEN-10” manufactured by Shin-Nakamura Chemical Co., Ltd.), 1-hydroxycyclohexylphenyl ketone (manufactured by BASF “ 6 g of IRGACURE 184”) was added, and dispersion treatment was performed using a high-speed stirrer at 16,000 rpm for 1 hour to obtain a nanocomposite material containing 50% by weight of coated zirconia fine particles. The obtained nanocomposite was evaluated for transparency and refractive index in the same manner as in Example 11, and the transmittance at a wavelength of 400 nm was 29.3% T and the refractive index was 1.652.

実施例11の結果より、本発明の被覆無機微粒子は、有機化合物への分散性が良いため、無溶剤系で透明性が高いナノコンポジット材料を得ることができる。
比較例4のナノコンポジット材料は、湿式法により合成された市販品のジルコニア微粒子を用いた被覆無機微粒子を使用しているが、無機微粒子の製法の違いにより、有機化合物への分散性が低く、透明性が低いナノコンポジット材料となる。
From the results of Example 11, the coated inorganic fine particles of the present invention have good dispersibility in organic compounds, so that a solvent-free nanocomposite material with high transparency can be obtained.
The nanocomposite material of Comparative Example 4 uses coated inorganic fine particles using commercially available zirconia fine particles synthesized by a wet method. It becomes a nanocomposite material with low transparency.

本発明の被覆無機微粒子は、液晶ディスプレイ、有機EL、LED、レンズ等の光学部材、電子部材、コーティング材料、歯科材料などに使用される透明ナノコンポジット材料に好適に使用することができる。

The coated inorganic fine particles of the present invention can be suitably used for transparent nanocomposite materials used in liquid crystal displays, organic ELs, LEDs, optical members such as lenses, electronic members, coating materials, dental materials, and the like.

Claims (13)

無機微粒子の表面に下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物及びその塩の少なくとも1種を反応させて得られる、被覆層を有する被覆無機微粒子であって、
前記無機微粒子の平均粒子径が1nm以上100nm未満で、かつ比表面積が1m/g以上3,000m/g未満であり、
揮発性有機化合物の含有量が89ppm以下であることを特徴とする、被覆無機微粒子。
Figure 0007190431000016
(式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基、又はケイ素原子数1~20のj価の(ポリ)シロキシ基を、R及びRはそれぞれ独立して下記式(bc-1)~(bc-6)の何れかで表される構造を、Rはヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基を、Xはそれぞれ独立して炭素原子数1~10のアルコキシ基、水素原子、塩素原子、臭素原子、又はヨウ素原子を、X及びXはそれぞれ独立して炭素原子数1~10のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基、塩素原子、臭素原子、又はヨウ素原子を、hは1~4の整数を、iはそれぞれ独立して1~3の整数を、jは2~10の整数を、kは1~4の整数を、lは1~3の整数を、mは1~3の整数を、nは2~10の整数を表す。但し、X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成していてもよい。

Figure 0007190431000017

(式(bc-1)~(bc-6)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはそれぞれ独立してヒドロキシル基、ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基、又は水素原子を表す。)
Any one of the following formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) on the surface of the inorganic fine particles A coated inorganic fine particle having a coating layer obtained by reacting at least one of a compound represented by and a salt thereof,
The inorganic fine particles have an average particle diameter of 1 nm or more and less than 100 nm, and a specific surface area of 1 m 2 /g or more and less than 3,000 m 2 /g,
Coated inorganic fine particles, characterized in that the content of a volatile organic compound is 89 ppm or less .
Figure 0007190431000016
(In formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2), R 1 is is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, or the number of silicon atoms 1 to 20 j-valent (poly)siloxy groups, R 3 and R 4 each independently have a structure represented by any one of the following formulas (bc-1) to (bc-6), R 5 R 6 is a hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom, R 6 is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and X 1 is each X 2 and X 3 are each independently an alkoxy group having 1 to 10 carbon atoms, a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and each independently an alkoxy group having 1 to 10 carbon atoms or a hetero atom may contain an acyloxy group having 1 to 10 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, h is an integer of 1 to 4, i is each independently an integer of 1 to 3, and j is an integer of 2 to 10, k an integer of 1 to 4, l an integer of 1 to 3, m an integer of 1 to 3, and n an integer of 2 to 10, provided that X 2 and X The alkoxy group and/or acyloxy group of 3 may be combined with other alkoxy group and/or acyloxy group of X 2 and X 3 respectively to form a cyclic structure.
)
Figure 0007190431000017

(In formulas (bc-1) to (bc-6), R 7 is each independently a hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom, and R 8 contains a heteroatom. Each R 9 is independently a hydroxyl group, an alkoxy group with 1 to 20 carbon atoms which may contain a heteroatom, and a It represents a good hydrocarbon group with 1 to 20 carbon atoms, or a hydrogen atom.)
前記揮発性有機化合物の含有量が、1ppm以上50ppm未満である、請求項1に記載の被覆無機微粒子。 2. The coated inorganic fine particles according to claim 1, wherein the content of said volatile organic compound is 1 ppm or more and less than 50 ppm. 屈折率が1.5以上である、請求項1又は2に記載の被覆無機微粒子。 3. The coated inorganic fine particles according to claim 1, which have a refractive index of 1.5 or more. 前記無機微粒子が、屈折率1.5以上の金属酸化物からなる群より選択される少なくとも1種である、請求項1~3の何れか1項に記載の被覆無機微粒子。 The coated inorganic fine particles according to any one of claims 1 to 3, wherein the inorganic fine particles are at least one selected from the group consisting of metal oxides having a refractive index of 1.5 or more. 前記無機微粒子が、二酸化ジルコニウム(ZrO)及び二酸化チタン(TiO)からなる群より選択される少なくとも1種である、請求項1~4の何れか1項に記載の被覆無機微粒子。 The coated inorganic fine particles according to any one of claims 1 to 4, wherein the inorganic fine particles are at least one selected from the group consisting of zirconium dioxide (ZrO 2 ) and titanium dioxide (TiO 2 ). 前記被覆層が、前記式(A-1)で表される化合物及び前記式(A-2)で表される化合物からなる群より選択される少なくとも1種を反応させて形成される層である、請求項1~5の何れか1項に記載の被覆無機微粒子。 The coating layer is a layer formed by reacting at least one selected from the group consisting of the compound represented by the formula (A-1) and the compound represented by the formula (A-2). The coated inorganic fine particles according to any one of claims 1 to 5. 前記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物が、前記無機微粒子100重量部に対して、3重量部以上100重量部以下添加されて反応させられる、請求項1~6の何れか1項に記載の被覆無機微粒子。 Compounds represented by any of the formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2) The coated inorganic fine particles according to any one of claims 1 to 6, wherein 3 parts by weight or more and 100 parts by weight or less are added to 100 parts by weight of the inorganic fine particles to react. 前記被覆層の含有量が、1重量%以上45重量%以下である、請求項1~7の何れか1項に記載の被覆無機微粒子。 The coated inorganic fine particles according to any one of claims 1 to 7, wherein the content of the coating layer is 1% by weight or more and 45% by weight or less. (1)金属水酸化物及び/又は金属水酸化物の縮合物が溶解及び/又は分散する水溶液を準備する準備工程、(2)前記準備工程で準備した前記水溶液を温度250℃以上、圧力20MPa以上、反応時間0.1分以上で水熱反応させて無機微粒子を生成する水熱反応工程、(3)前記水熱反応工程で生成した前記無機微粒子を単離する単離工程、(4)前記単離工程で単離した前記無機微粒子と下記式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)の何れかで表される化合物の少なくとも1種を水溶媒中で反応させる被覆工程を含み、揮発性有機化合物の含有量が89ppm以下であることを特徴とする被覆無機微粒子の製造方法。
Figure 0007190431000018
(式(A-1)、(A-2)、(B-1)、(B-2)、(C)、(D-1)、及び(D-2)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のj価の炭化水素基、又はケイ素原子数1~20のj価の(ポリ)シロキシ基を、R及びRはそれぞれ独立して下記式(bc-1)~(bc-6)の何れかで表される構造を、Rはヘテロ原子を含んでいてもよい炭素原子数4~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~20のn価の炭化水素基を、Xはそれぞれ独立して炭素原子数1~10のアルコキシ基、水素原子、塩素原子、臭素原子、又はヨウ素原子を、X及びXはそれぞれ独立して炭素原子数1~10のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~10のアシロキシ基、塩素原子、臭素原子、又はヨウ素原子を、hは1~4の整数を、iはそれぞれ独立して1~3の整数を、jは2~10の整数を、kは1~4の整数を、lは1~3の整数を、mは1~3の整数を、nは2~10の整数を表す。但し、X及びXのアルコキシ基及び/又はアシロキシ基は、それぞれX及びXの他のアルコキシ基及び/又はアシロキシ基と結合して環状構造を形成していてもよい。)
Figure 0007190431000019
(式(bc-1)~(bc-6)中、Rはそれぞれ独立してヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはヘテロ原子を含んでいてもよい炭素原子数1~30の炭化水素基を、Rはそれぞれ独立してヒドロキシル基、ヘテロ原子を含んでいてもよい炭素原子数1~20のアルコキシ基、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基、又は水素原子を表す。)
(1) a preparatory step of preparing an aqueous solution in which metal hydroxides and/or condensates of metal hydroxides are dissolved and/or dispersed; (3) an isolation step of isolating the inorganic fine particles produced in the hydrothermal reaction step; (4) The inorganic fine particles isolated in the isolation step and the following formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and ( Manufacture of coated inorganic fine particles, comprising a coating step of reacting at least one of the compounds represented by any of D-2) in an aqueous solvent, and having a volatile organic compound content of 89 ppm or less. Method.
Figure 0007190431000018
(In formulas (A-1), (A-2), (B-1), (B-2), (C), (D-1), and (D-2), R 1 is is a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, R 2 is a j-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, or the number of silicon atoms 1 to 20 j-valent (poly)siloxy groups, R 3 and R 4 each independently have a structure represented by any one of the following formulas (bc-1) to (bc-6), R 5 R 6 is a hydrocarbon group having 4 to 30 carbon atoms which may contain a heteroatom, R 6 is an n-valent hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and X 1 is each X 2 and X 3 are each independently an alkoxy group having 1 to 10 carbon atoms, a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and each independently an alkoxy group having 1 to 10 carbon atoms or a hetero atom may contain an acyloxy group having 1 to 10 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, h is an integer of 1 to 4, i is each independently an integer of 1 to 3, and j is an integer of 2 to 10, k an integer of 1 to 4, l an integer of 1 to 3, m an integer of 1 to 3, and n an integer of 2 to 10, provided that X 2 and X The alkoxy group and/or acyloxy group of 3 may combine with other alkoxy group and/or acyloxy group of X2 and X3 respectively to form a cyclic structure.)
Figure 0007190431000019
(In formulas (bc-1) to (bc-6), R 7 is each independently a hydrocarbon group having 1 to 30 carbon atoms which may contain a heteroatom, and R 8 contains a heteroatom. Each R 9 is independently a hydroxyl group, an alkoxy group with 1 to 20 carbon atoms which may contain a heteroatom, and a It represents a good hydrocarbon group with 1 to 20 carbon atoms, or a hydrogen atom.)
請求項1~8の何れか1項に記載の被覆無機微粒子を透明な有機化合物に分散させてなるナノコンポジット材料。 A nanocomposite material obtained by dispersing the coated inorganic fine particles according to any one of claims 1 to 8 in a transparent organic compound. 前記有機化合物が、重合性のモノマー及び/又はオリゴマーであり、前記モノマー及び/又はオリゴマーを重合させたときの重合体の波長400nmの光の分光透過率が65%以上である、請求項10に記載のナノコンポジット材料。 11. The method according to claim 10, wherein the organic compound is a polymerizable monomer and/or oligomer, and the polymer obtained by polymerizing the monomer and/or oligomer has a spectral transmittance of 65% or more for light having a wavelength of 400 nm. A nanocomposite material as described. 前記有機化合物が、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂、及び電子線硬化性樹脂からなる群より選択される少なくとも1種であり、波長400nmの光の分光透過率が65%以上である、請求項10に記載のナノコンポジット材料。 The organic compound is at least one selected from the group consisting of thermoplastic resins, thermosetting resins, ultraviolet curable resins, and electron beam curable resins, and has a spectral transmittance of 65% or more for light with a wavelength of 400 nm. The nanocomposite material according to claim 10, wherein 前記被覆無機微粒子の含有量が、10重量%以上85重量%以下である、請求項10~12の何れか1項に記載のナノコンポジット材料。 The nanocomposite material according to any one of claims 10 to 12, wherein the content of said coated inorganic fine particles is 10% by weight or more and 85% by weight or less.
JP2019531016A 2017-07-19 2018-07-13 Coated inorganic fine particles and method for producing the same Active JP7190431B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017140311 2017-07-19
JP2017140311 2017-07-19
PCT/JP2018/026576 WO2019017305A1 (en) 2017-07-19 2018-07-13 Coated inorganic fine particle and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019017305A1 JPWO2019017305A1 (en) 2020-07-16
JP7190431B2 true JP7190431B2 (en) 2022-12-15

Family

ID=65015764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531016A Active JP7190431B2 (en) 2017-07-19 2018-07-13 Coated inorganic fine particles and method for producing the same

Country Status (3)

Country Link
JP (1) JP7190431B2 (en)
TW (1) TW201908388A (en)
WO (1) WO2019017305A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220195202A1 (en) * 2019-03-29 2022-06-23 Sumitomo Osaka Cement Co., Ltd. Surface modification method for inorganic particles, method for producing dispersion liquid, and dispersion liquid
JP7505355B2 (en) 2020-09-30 2024-06-25 住友大阪セメント株式会社 Method for modifying inorganic particles' surface and method for producing dispersion liquid
CN114229805B (en) * 2021-11-03 2023-07-25 深圳市本征方程石墨烯技术股份有限公司 Preparation method and application of nitrogen-doped porous carbon-coated cobalt diselenide composite material
WO2023112953A1 (en) * 2021-12-14 2023-06-22 関東電化工業株式会社 Zro2 liquid dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255450A (en) 2004-03-10 2005-09-22 National Institute Of Advanced Industrial & Technology Zirconium oxide crystal particle and method for producing the same
JP2009056387A (en) 2007-08-31 2009-03-19 Jgc Catalysts & Chemicals Ltd Base material with hard coat film and coating solution for forming hard coat film
JP2009114008A (en) 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
JP2010105892A (en) 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd Zirconia fine particle and method for producing the same
JP2014196215A (en) 2013-03-29 2014-10-16 日揮触媒化成株式会社 Modified metal oxide particulate powder and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255450A (en) 2004-03-10 2005-09-22 National Institute Of Advanced Industrial & Technology Zirconium oxide crystal particle and method for producing the same
JP2009056387A (en) 2007-08-31 2009-03-19 Jgc Catalysts & Chemicals Ltd Base material with hard coat film and coating solution for forming hard coat film
JP2009114008A (en) 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
JP2010105892A (en) 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd Zirconia fine particle and method for producing the same
JP2014196215A (en) 2013-03-29 2014-10-16 日揮触媒化成株式会社 Modified metal oxide particulate powder and method for producing the same

Also Published As

Publication number Publication date
WO2019017305A1 (en) 2019-01-24
JPWO2019017305A1 (en) 2020-07-16
TW201908388A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP7190431B2 (en) Coated inorganic fine particles and method for producing the same
JP4968450B2 (en) Method for producing metal oxide sol
JP5603582B2 (en) Surface-modified zirconia nanocrystal particles and method for producing the same
US20070154561A1 (en) Metal oxide particle and its uses
JP4922040B2 (en) Metal oxide fine particle aqueous dispersion and method for producing the same
WO2012032868A1 (en) Manufacturing method for surface-modified titanium particles, dispersion of titanium particles, and resin having titanium particles dispersed therein
JP2014077117A (en) Highly refractive surface treatment agent, and fine member and optical material surface-treated by using the same
US9273073B2 (en) Tin dioxide nanopartcles and method for making the same
JP2009114008A (en) Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
KR20170048404A (en) Organic solvent dispersion of zirconium oxide particles and method for producing same
JP6468020B2 (en) Inorganic oxide particle dispersion, resin composition, masterbatch, resin composite, and optical semiconductor light emitting device
Bhattacharjee et al. Homogeneous chemical precipitation route to ZnO nanosphericals
JP4922061B2 (en) Surface-modified zinc oxide fine particles
TWI593629B (en) Magnesium hydroxide particle and resin composition comprising the same
JP5924463B1 (en) Method for producing barium sulfate powder and barium sulfate powder
JP5177970B2 (en) Method for producing metal oxide nanoparticles, metal nanoparticles, treated metal nanoparticles and uses thereof
JP2010138020A (en) Organic solvent dispersion of titanium oxide fine powder and process of producing the same
JP6907295B2 (en) Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition
JP4922038B2 (en) Metal oxide fine particle dispersion and method for producing the same
JP2008290914A (en) Method for producing surface-modified metal oxide fine particles
JP5133532B2 (en) Method for producing alumina organic solvent dispersion
JP2004315356A (en) Acicular titanium oxide particulate, method for manufacturing the same and application for the same
JP4191511B2 (en) Film-forming agent and film
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
TW202132222A (en) Coated zirconia microparticle and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R150 Certificate of patent or registration of utility model

Ref document number: 7190431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150