JP7185127B2 - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP7185127B2
JP7185127B2 JP2018083817A JP2018083817A JP7185127B2 JP 7185127 B2 JP7185127 B2 JP 7185127B2 JP 2018083817 A JP2018083817 A JP 2018083817A JP 2018083817 A JP2018083817 A JP 2018083817A JP 7185127 B2 JP7185127 B2 JP 7185127B2
Authority
JP
Japan
Prior art keywords
cutting edge
thinning
edge
outer peripheral
rotational direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083817A
Other languages
Japanese (ja)
Other versions
JP2019188525A (en
Inventor
繁栄 藤原
輝明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Priority to JP2018083817A priority Critical patent/JP7185127B2/en
Publication of JP2019188525A publication Critical patent/JP2019188525A/en
Application granted granted Critical
Publication of JP7185127B2 publication Critical patent/JP7185127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

本発明は回転軸を挟んだ一対のシンニング面がチゼルエッジを形成し、切削時にドリル本体の先端面が被削材から受けるスラストを低減するドリルに関するものである。 TECHNICAL FIELD The present invention relates to a drill in which a pair of thinning surfaces sandwiching a rotating shaft form a chisel edge, and the thrust received by the tip surface of the drill body from a work material during cutting is reduced.

回転軸を挟んだ一対のシンニング面からチゼルエッジを形成することは、一対のシンニング面の、回転方向前方側の逃げ面側の部分間距離である行き違い量を大きくすることになるから、ドリル先端部(先端面)の被削材への接触面積を減少させる意味がある。結果として、ドリル先端部が切削時に被削材から受けるスラストを低減することができる利点がある(特許文献1~6参照)。 Forming the chisel edge from a pair of thinning surfaces sandwiching the rotation axis increases the crossover amount, which is the distance between the flank side portions on the forward side in the rotation direction, of the pair of thinning surfaces. It is meaningful to reduce the contact area of (tip surface) with the work material. As a result, there is an advantage that the thrust that the drill tip receives from the work material during cutting can be reduced (see Patent Documents 1 to 6).

一方、一対のシンニング面間の行き違い量を大きく取ることは(特許文献2、3、6、7)、切れ刃の回転方向後方側に形成される逃げ面(2番面)の、シンニング面寄りの部分の回転方向の幅を小さくすることでもあるため、切れ刃が被削材から受ける抵抗であるトルクに対する強度が低下し易くなる不利益を伴う。 On the other hand, if the amount of misalignment between a pair of thinning surfaces is large (Patent Documents 2, 3, 6, and 7), the flank surface (second surface) formed on the rear side in the rotational direction of the cutting edge is closer to the thinning surface. Since the width in the rotational direction of the portion is also reduced, there is a disadvantage that the strength against the torque, which is the resistance that the cutting edge receives from the work material, tends to decrease.

シンニング面間の行き違い量を大きく取れば、2番面の内、切れ刃とシンニング面とに挟まれた領域のドリル本体の回転方向の幅を狭めることになる。トルクは逃げ面には回転方向に作用し、トルクによるせん断応力度は回転軸(中心)からの半径方向の距離に比例することから、行き違い量が大きくなれば、トルクに対する強度を低下させ、切れ刃に欠けを発生させ易くなるため、行き違い量を大きく取ることには限界がある。 If the difference between the thinning surfaces is increased, the width in the rotational direction of the drill body in the area sandwiched between the cutting edge and the thinning surface in the second surface will be narrowed. Torque acts on the flank in the direction of rotation, and the degree of shear stress due to torque is proportional to the radial distance from the rotation axis (center). Since chipping is likely to occur in the blade, there is a limit to setting a large crossover amount.

特開平6-91415号公報(請求項1、段落0009~0012、図1)Japanese Patent Application Laid-Open No. 6-91415 (claim 1, paragraphs 0009 to 0012, FIG. 1) 特開2008-213121号公報(請求項1、段落0014~0019、図3)Japanese Patent Application Laid-Open No. 2008-213121 (claim 1, paragraphs 0014 to 0019, FIG. 3) 特開2008-296313号公報(請求項1、段落0023~0031、図3、図6)Japanese Patent Application Laid-Open No. 2008-296313 (claim 1, paragraphs 0023 to 0031, FIGS. 3 and 6) 特開2015-139845号公報(請求項1、段落0020~0028、図2~図4)JP 2015-139845 A (claim 1, paragraphs 0020 to 0028, FIGS. 2 to 4) 特開2015-155137号公報(請求項1、段落0010~0032、図2、図3)JP 2015-155137 A (claim 1, paragraphs 0010 to 0032, FIGS. 2 and 3) 国際公開第2016/158463号(請求項1、段落0022~0029、0027~0040、図3~図5)WO 2016/158463 (Claim 1, paragraphs 0022-0029, 0027-0040, FIGS. 3-5) 特開2006-212724号公報(請求項1、段落0006、図1)Japanese Patent Application Laid-Open No. 2006-212724 (claim 1, paragraph 0006, FIG. 1)

一対のシンニング面間に行き違い量を確保している特許文献2、3、6、7でも切れ刃は半径方向外周側からチゼルエッジまでに形成される一方(特許文献2の段落0015、特許文献3の段落0024、特許文献6の段落0027、0028、特許文献7の0007)、切れ刃の回転方向後方側の2番面を挟んだシンニング面はほぼチゼルエッジの端部までに形成されるに過ぎない(特許文献2の図3、特許文献3の図3、特許文献6の図1)。 Even in Patent Documents 2, 3, 6, and 7, which secure a misalignment amount between a pair of thinning surfaces, the cutting edge is formed from the radial outer peripheral side to the chisel edge (Patent Document 2 paragraph 0015, Patent Document 3 Paragraph 0024, Paragraphs 0027 and 0028 of Patent Document 6, 0007 of Patent Document 7), the thinning surface sandwiching the second surface on the rear side in the rotational direction of the cutting edge is formed only approximately to the end of the chisel edge ( FIG. 3 of Patent Document 2, FIG. 3 of Patent Document 3, and FIG. 1 of Patent Document 6).

このようにいずれの特許文献でもシンニング面を切れ刃の回転方向後方側の2番面(逃げ面)側へ深く入り込ませることには限界があり、例えば2番面の半径方向中心(回転軸)寄りの、シンニング面を除いた一部区間を帯状に形成するような例はない。特許文献6では一見、2番面が帯状に形成されているように見えるが、回転方向にチゼルエッジとシンニングの回転軸O寄りの部分との間は切れ刃のない領域であるから、被削材の切削に関与することはないため、被削材からトルクを受けることはない。 In this way, in any patent document, there is a limit to deeply inserting the thinning surface into the second surface (flank) side on the rear side in the rotational direction of the cutting edge, for example, the radial center (rotational axis) of the second surface There is no example of forming a belt-like partial section except for the thinning surface on the side. At first glance, in Patent Document 6, the second surface seems to be formed in a strip shape, but since there is no cutting edge between the chisel edge and the portion of the thinning near the rotation axis O in the rotation direction, the work material Since it does not participate in the cutting of the workpiece, it does not receive torque from the work material.

本発明は上記背景より、切れ刃の半径方向中心寄りの区間が被削材から受けるトルクに対する抵抗力を高め、シンニング面を半径方向外周側へ向けて2番面側へ深く入り込ませることを可能にする形態のドリルを提案するものである。 From the above background, the present invention increases the resistance to the torque received from the work material in the section near the center in the radial direction of the cutting edge, and makes it possible to make the thinning surface face the radially outer peripheral side and deeply enter the second surface side. We propose a drill of the form to make

請求項1に記載の発明のドリルは、ドリル本体の軸方向先端の先端面に回転方向前方側を向いて形成された一対の切れ刃と、
前記各切れ刃の回転方向後方側に位置する逃げ面の回転方向後方側と前記切れ刃との間に形成された切屑排出溝と、
前記各逃げ面の回転方向後方側と前記切屑排出溝との間に形成された一対のシンニング面とを備え、
前記一対のシンニング面間に前記ドリル本体の回転軸上を通り前記シンニング面に接するチゼルエッジが形成されたドリルであり、
前記切れ刃は前記チゼルエッジの端部から前記先端面の半径方向外周側に連続する内側刃と、この内側刃より半径方向外周側に連続する外側刃とに区分され、
前記逃げ面の内、前記切れ刃の回転方向後方側に連続して形成された2番面の少なくとも前記内側刃の区間の回転方向の幅は半径方向外周側へ向かって次第に拡大する形状に形成され、
前記チゼルエッジの全長が前記一対のシンニング面の境界線であり、前記ドリル本体の前記先端面を前記回転軸の方向に見たとき、前記チゼルエッジの延長線の全長は前記内側刃に重ならずに、前記2番面の範囲内を通過していることを特徴とする。
A drill according to the first aspect of the invention is characterized by a pair of cutting edges formed on a tip surface of an axial tip of a drill body facing forward in a rotational direction;
A chip discharge groove formed between the cutting edge and a flank located on the rear side in the rotation direction of each cutting edge in the rotation direction,
A pair of thinning surfaces formed between the rear side of each flank in the rotational direction and the chip discharge groove,
A drill in which a chisel edge passing through the rotation axis of the drill body and in contact with the thinning surfaces is formed between the pair of thinning surfaces,
The cutting edge is divided into an inner edge that continues from the end of the chisel edge to the radially outer peripheral side of the tip surface, and an outer edge that continues from the inner edge to the radially outer peripheral side,
Of the flanks, the width in the rotational direction of at least the section of the inner edge of the second surface formed continuously on the rear side in the rotational direction of the cutting edge is formed in a shape that gradually expands radially toward the outer peripheral side. is,
The total length of the chisel edge is the boundary line between the pair of thinning surfaces, and when the tip end surface of the drill body is viewed in the direction of the rotation axis, the total length of the extension line of the chisel edge does not overlap the inner cutting edge. , passing through the range of the second surface .

「ドリル本体の先端面」は図5に示すドリル本体の先端(先端面30)をその側から軸方向(回転軸Oの方向)に見たときの端面を言う。「ドリル本体の先端面30を軸方向(回転軸Oの方向)に見たとき」とは、「先端面30を回転軸Oの方向に、ドリル本体の軸方向先端側の反対側であるシャンク部2側へ向かって見たとき」の意味である。「ドリル本体」はドリル1の本体(全体)を指す。切れ刃4は一対であるから、切れ刃4の本数(枚数)は2本(枚)である。一対の切れ刃4、4は回転軸Oを挟んで(回転軸Oに関して)点対称位置に形成され、2本であるから、切れ刃4の少なくとも一部(内側刃41)の稜線が直線であれば、その稜線は互いに平行になる。 The "tip face of the drill body" refers to the end face of the tip (tip face 30) of the drill body shown in FIG. "When the tip end face 30 of the drill body is viewed in the axial direction (direction of the rotation axis O)" means that "the tip face 30 is on the opposite side of the tip end side of the drill body in the axial direction in the direction of the rotation axis O. When viewed toward the part 2 side". "Drill body" refers to the body (whole) of the drill 1 . Since the cutting edge 4 is a pair, the number (number of sheets) of the cutting edge 4 is two (sheets). The pair of cutting edges 4, 4 are formed at point-symmetrical positions with respect to the rotation axis O (with respect to the rotation axis O), and since there are two, at least a part of the cutting edge 4 (the inner edge 41) has a straight ridgeline. If so, the edges are parallel to each other.

請求項1における「各切れ刃の回転方向後方側に位置する逃げ面」は切れ刃4の回転方向後方側に連続して形成された2番面61を指す場合と、2番面61の回転方向後方側に3番面62が連続して形成された場合の3番面62を指す場合と、2番面61と3番面62を合わせた逃げ面6全体を指す場合がある。逃げ面6としては4番面以降の面が形成されることもある。「逃げ面6の回転方向後方側と切れ刃4との間に形成された切屑排出溝7」とは、逃げ面6の回転方向後方側と、その回転方向後方側に位置する切れ刃4との間に切屑排出溝7が形成されることを言う。 The "flank located on the rear side in the rotation direction of each cutting edge" in claim 1 refers to the second surface 61 formed continuously on the rear side in the rotation direction of the cutting edge 4, and the rotation of the second surface 61 In some cases, it refers to the third surface 62 when the third surface 62 is continuously formed on the direction rear side, and in other cases it refers to the entire flank surface 6 that combines the second surface 61 and the third surface 62 . As the flank 6, the fourth and subsequent surfaces may be formed. The “chip discharge groove 7 formed between the rear side of the flank 6 in the rotational direction and the cutting edge 4” is the rear side of the flank 6 in the rotational direction and the cutting edge 4 located on the rear side in the rotational direction. It means that the chip discharge groove 7 is formed between.

「一対のシンニング面」はシンニング面8、8が2個で対になることを言う。一対のシンニング面8、8は回転軸Oを挟んで(回転軸Oに関して)点対称位置に形成される。「回転軸Oを通りシンニング面8、8に接するチゼルエッジ5」とは、回転軸Oを通るチゼルエッジ5の全長一対のシンニング面8、8の双方に接して(面して)いることを言う "A pair of thinning surfaces" means that two thinning surfaces 8, 8 form a pair. The pair of thinning surfaces 8, 8 are formed at point-symmetrical positions with the rotation axis O interposed therebetween (with respect to the rotation axis O). "The chisel edge 5 passing through the rotation axis O and in contact with the thinning surfaces 8, 8" means that the entire length of the chisel edge 5 passing through the rotation axis O is in contact with (facing) both of the pair of thinning surfaces 8, 8. say .

図1、図2に示すようにチゼルエッジ5の全長がシンニング面8に接することで、チゼルエッジ5の全長が一対のシンニング面8、8の境界線になる(請求項)。このことは、上記のシンニング面8とその回転方向前方側の2番面61との間の境界線84がチゼ
ルエッジ5の端部(点P)に交わることであるため、参考例を示す図6、図7との対比から分かるように両シンニング面8、8の境界線84、84がチゼルエッジ5、または回転軸Oを挟んで行き違う配置状態になることでもある。
As shown in FIGS. 1 and 2, the entire length of the chisel edge 5 is in contact with the thinning surface 8, so that the entire length of the chisel edge 5 becomes the boundary line between the pair of thinning surfaces 8, 8 (claim 1 ). This means that the boundary line 84 between the thinning surface 8 and the second surface 61 on the forward side in the rotational direction intersects the end (point P) of the chisel edge 5, so FIG . 7, the boundary lines 84, 84 of both thinning surfaces 8, 8 may be in an arrangement state in which the chisel edge 5 or the rotation axis O is interposed.

「行き違う」とは、各境界線84を含むシンニング面8を半径方向外周側から見たとき、各境界線84が回転軸Oを越えた位置にあり、各境界線84の、回転軸Oを挟んだ反対側のシンニング面8側の延長線が、そのシンニング面8の境界線84に連続する境界線85(シンニング面8と逃げ面6との間の境界線85)に交わる状態にあることを言う。この場合、先端面30を軸方向に見たときの先端面30の面積に占めるシンニング面8の面積が拡大するため、シンニング面8が有する切屑収容能力が向上することが言える。 “Missing each other” means that each boundary line 84 is positioned beyond the rotation axis O when the thinning surface 8 including each boundary line 84 is viewed from the radially outer peripheral side, and each boundary line 84 is located on the rotation axis O The extension line on the side of the thinning surface 8 on the opposite side intersects the boundary line 85 (the boundary line 85 between the thinning surface 8 and the flank surface 6) continuous with the boundary line 84 of the thinning surface 8 Say things. In this case, since the area of the thinning surface 8 that occupies the area of the tip end face 30 when viewed in the axial direction is increased, it can be said that the chip accommodation capacity of the thinning face 8 is improved.

請求項1における「切れ刃4はチゼルエッジ5の端部(点P)から先端面30の半径方向外周側へ連続する内側刃41」とは、先端面30側へ凸の稜線をなす直線状のチゼルエッジ5の一方の端部(点P)から切れ刃4が開始し、半径方向外周側へ連続して形成されることを言う。その切れ刃4の内、チゼルエッジ5の端部P寄りの区間が内側刃41である。先端面30を軸方向に見たとき、チゼルエッジ5は直線状であるから、切れ刃4は直線(チゼルエッジ5)の両側の端部(P、P)からそれぞれ半径方向外周側へ形成され、対になる。 In claim 1, "the cutting edge 4 is an inner cutting edge 41 that continues from the end (point P) of the chisel edge 5 to the radially outer peripheral side of the tip surface 30" is a straight line that forms a convex ridge toward the tip surface 30 side. It means that the cutting edge 4 starts from one end (point P) of the chisel edge 5 and is continuously formed radially outward. A section of the cutting edge 4 near the end P of the chisel edge 5 is an inner cutting edge 41 . When the tip surface 30 is viewed in the axial direction, the chisel edge 5 is straight, so the cutting edges 4 are formed radially outward from both ends (P, P) of the straight line (chisel edge 5). become.

切れ刃4は先端面30の半径方向(以下、半径方向)には、図2に示すようにチゼルエッジ5の端部Pに接し、チゼルエッジ5(直線PP)に連続する内周側の内側刃41と、内側刃41の半径方向外周側の端部(点Q)に接し、そのまま半径方向外周側へ連続する外側刃42とに区分される。点Qは内側刃41と外側刃42の境界(交点)であるから、点Pと点Qを結ぶ(凸の)稜線が内側刃41(稜線PQ、またはQP)である。このことと、上記のようにチゼルエッジ5が一対のシンニング面8、8の境界線になっている場合(請求項)には、シンニング面8は先端面30を軸方向に見たとき、チゼルエッジ5の片側に付き、稜線QPとチゼルエッジ5(直線PP)を通る、または稜線QPとチゼルエッジ5(直線PP)を含む平面、あるいは曲面として、稜線QPの回転方向後方側(切屑排出溝6側)へ形成される。 The cutting edge 4 is in contact with the end P of the chisel edge 5 as shown in FIG. and an outer cutting edge 42 which is in contact with the radially outer edge (point Q) of the inner cutting edge 41 and continues to the radially outer circumferential side. Since the point Q is the boundary (intersection point) between the inner cutting edge 41 and the outer cutting edge 42, the (convex) ridgeline connecting the points P and Q is the inner cutting edge 41 (ridgeline PQ or QP). In addition to this, when the chisel edge 5 is the boundary line between the pair of thinning surfaces 8, 8 as described above (claim 1 ), the thinning surface 8 has a chisel edge when the tip end surface 30 is viewed in the axial direction. 5 and passing through the ridge line QP and the chisel edge 5 (straight line PP), or as a plane or curved surface containing the ridge line QP and the chisel edge 5 (straight line PP), the rotational direction rear side of the ridge line QP (chip discharge groove 6 side) formed to.

後述するようにシンニング面8が2段に区分された場合(請求項)の例を示す図1、図2では、1段目シンニング面81と2段目シンニング面82との間の境界線86が切れ刃4と交わる点が、内側刃41と外側刃42との境界としての交点Qのように描かれているが、交点Qは境界線86と切れ刃4との交点とは関係ない。 As will be described later, in FIGS. 1 and 2 showing an example in which the thinning surface 8 is divided into two stages (claim 5 ), the boundary line between the first thinning surface 81 and the second thinning surface 82 The point where 86 intersects the cutting edge 4 is depicted as the intersection Q as the boundary between the inner cutting edge 41 and the outer cutting edge 42, but the intersection Q is not related to the intersection of the boundary line 86 and the cutting edge 4. .

請求項1における「逃げ面6の内、切れ刃4の回転方向後方側に連続して形成された2番面61の少なくとも内側刃41の区間」とは、2番面61の全体を半径方向に、切れ刃4の半径方向の区分に合わせて内側刃41の区間と外側刃42の区間に区分したときの、内側刃41の回転方向後方側に位置する領域を指す。この「2番面61の内側刃41の区間」と「2番面61の外側刃42の区間」はそれぞれ後述の「内周側2番面61a」と「外周側2番面61b」に相当する(請求項)。 In claim 1, "the section of at least the inner edge 41 of the second surface 61 formed continuously on the rear side in the rotational direction of the cutting edge 4 in the flank 6" means that the entire second surface 61 is radially 2, refers to a region located on the rear side in the rotational direction of the inner cutting edge 41 when divided into a section of the inner cutting edge 41 and a section of the outer cutting edge 42 according to the division of the cutting edge 4 in the radial direction. The "section of the inner cutting edge 41 of the second surface 61" and the "section of the outer cutting edge 42 of the second surface 61" respectively correspond to the "inner peripheral side second surface 61a" and the "outer peripheral side second surface 61b" described later. (Claim 3 ).

この2番面61の中の内側刃41の区間(2番面61の半径方向中心(回転軸O)寄りの区間)の回転方向後方側の領域(内周側2番面61a)の回転方向の幅が半径方向外周側へ向かって次第に拡大する形状に形成される(請求項1)。このことは、半径方向に、チゼルエッジ5の端部(点P)から、内側刃41と外側刃42との境界(交点Q)と、その回転方向後方側の位置の2方向へ向け、ドリル本体の回転方向の幅が次第に拡大する形状に形成されることを言う。「内側刃41と外側刃42との境界(交点Q)とその回転方向後方側の位置へ向け」とは、「チゼルエッジ5の端部Pから交点Qへ向かう方向と、交点Qより回転方向後方側の位置へ向かう方向の2方向に向けて」の意味である。チゼルエッジ5の端部Pから交点Qまでの区間の稜線が内側刃41であり、交点Qから切れ刃4の半径方向外周側の縁(端縁)までの区間の稜線が外側刃42になる。 The rotation direction of the region (inner peripheral side second surface 61a) on the rear side in the rotational direction of the section of the inner cutting edge 41 in this second surface 61 (the section near the radial center (rotational axis O) of the second surface 61) is formed in a shape whose width gradually expands toward the outer peripheral side in the radial direction (claim 1). This means that the drill body is radially directed from the end (point P) of the chisel edge 5 to the boundary (point of intersection Q) between the inner cutting edge 41 and the outer cutting edge 42 and the rearward position in the rotational direction. is formed in a shape in which the width in the direction of rotation of is gradually expanded. "Toward the boundary (intersection point Q) between the inner cutting edge 41 and the outer cutting edge 42 and the position on the rear side in the rotational direction" means "toward the intersection Q from the end P of the chisel edge 5 and to the rearward of the intersection Q in the rotational direction." It means "toward two directions toward the position of the side". The ridgeline of the section from the end P of the chisel edge 5 to the intersection point Q is the inner cutting edge 41, and the ridgeline of the section from the intersection point Q to the radially outer edge (edge) of the cutting edge 4 is the outer cutting edge 42.

チゼルエッジ5の端部Pから交点Qへ向かう方向と、交点Qより回転方向後方側の位置へ向かう方向の2方向に向け、2番面61中の内側刃41の区間が、回転方向に幅が次第に拡大する形状に形成されることで、チゼルエッジ5の端部Pから半径方向外周側へ向けて幅が次第に拡大する形状に形成される。具体的には2番面61中の内側刃41の区間(内周側2番面61a)はチゼルエッジ5の端部Pを頂点とする三角形状、もしくはチゼルエッジ5の端部Pを中心とする扇形状に近似した形状等になる。 A section of the inner cutting edge 41 on the second surface 61 has a width in the direction of rotation in two directions, ie, the direction from the end P of the chisel edge 5 to the intersection Q and the direction toward the position on the rear side of the intersection Q in the rotation direction. By being formed into a gradually expanding shape, the chisel edge 5 is formed into a shape whose width gradually expands from the end P of the chisel edge 5 toward the outer peripheral side in the radial direction. Specifically, the section of the inner cutting edge 41 in the second surface 61 (the inner peripheral second surface 61a) has a triangular shape with the end P of the chisel edge 5 as the apex, or a sector centered at the end P of the chisel edge 5. It becomes a shape or the like that approximates the shape or the like.

この三角形状の頂点、または扇形状等の中心から2方向に向かう2本の線の内、回転方向前方側の線は切れ刃4(内側刃41(稜線PQ))であり、回転方向後方側の線は2番面61(内周側2番面61a)とその回転方向後方側のシンニング面8との間の境界線84である。この2方向の線は直線とは限らず、曲線の場合もある。内側刃41(稜線PQ)の回転方向後方側の境界線84は回転軸Oを通るチゼルエッジ5(直線PP)に沿った方向を向くため、半径方向に沿った方向を向く。なお、内側刃41はチゼルエッジ5の端部Pから半径方向外周側へ形成されるから(請求項1)、先端面30を軸方向に見たとき、チゼルエッジ5の延長線が内側刃41の回転方向後方側に連続する2番面61の範囲内を通過するようにチゼルエッジ5を形成することができる(請求項)。 Of the two lines directed in two directions from the center of the triangular vertex or fan shape, the line on the front side in the rotation direction is the cutting edge 4 (inner edge 41 (ridgeline PQ)), and the rear side in the rotation direction. is a boundary line 84 between the second surface 61 (the inner peripheral second surface 61a) and the thinning surface 8 on the rear side in the rotation direction. The lines in these two directions are not necessarily straight lines, and may be curved lines. Since the boundary line 84 on the rear side in the rotation direction of the inner cutting edge 41 (ridge line PQ) faces the direction along the chisel edge 5 (straight line PP) passing through the rotation axis O, it faces the direction along the radial direction. Since the inner cutting edge 41 is formed radially outward from the end P of the chisel edge 5 (Claim 1), when the tip end surface 30 is viewed in the axial direction, the extension of the chisel edge 5 corresponds to the rotation of the inner cutting edge 41. The chisel edge 5 can be formed so as to pass through the range of the second surface 61 that continues to the direction rearward side (claim 1 ).

「チゼルエッジ5(直線PP)の延長線が内側刃41の回転方向後方側の2番面61の範囲内を通過する」とは、先端面30を軸方向に見たとき、図2に示すようにチゼルエッジ5の延長線が内側刃41(稜線PQ)に重なる状態から、2番面61の回転方向後方側とシンニング面8との間の境界線84に重なる状態までの範囲内を通ることを言う。図2中、チゼルエッジ5の延長線を破線で示している。 "The extension of the chisel edge 5 (straight line PP) passes within the range of the second surface 61 on the rear side in the rotational direction of the inner cutting edge 41" means that when the tip surface 30 is viewed in the axial direction, as shown in FIG. Secondly, the extension line of the chisel edge 5 passes through the range from the state where the extension line overlaps with the inner cutting edge 41 (ridgeline PQ) to the state where it overlaps with the boundary line 84 between the rear side of the rotation direction of the second surface 61 and the thinning surface 8. To tell. In FIG. 2, the extension of the chisel edge 5 is indicated by a dashed line.

「チゼルエッジ5(直線PP)の延長線が内側刃41に重なる」とは、先端面30を軸方向に見たとき、内側刃41(稜線PQ)がチゼルエッジ5に連続した直線である(直線を描く)こと、または連続した直線に近い緩やかな曲線状である(曲線を描く)ことを言う。チゼルエッジ5の延長線が直線に近い曲線を描くことは、少なくともチゼルエッジ5と内側刃41の交点Pを挟んでチゼルエッジ5と内側刃41が不連続な線とはなっていないこと、または交点Pに近い内側刃41の接線がチゼルエッジ5とは明確な角度をなさないこと、とも言い換えられる。 "The extension line of the chisel edge 5 (straight line PP) overlaps the inner cutting edge 41" means that the inner cutting edge 41 (ridge line PQ) is a straight line continuous with the chisel edge 5 when the tip surface 30 is viewed in the axial direction (the straight line is to draw) or to have a gentle curve that is close to a continuous straight line (to draw a curve). The fact that the extension line of the chisel edge 5 draws a curve close to a straight line means that at least the chisel edge 5 and the inner blade 41 do not form a discontinuous line across the intersection P of the chisel edge 5 and the inner blade 41, or In other words, the tangent of the near inner cutting edge 41 does not form a distinct angle with the chisel edge 5 .

この場合(請求項では)、図6、図7に示すようにチゼルエッジ5(直線PP)の延長線が内側刃41(稜線PQ)の回転方向前方側を通過し、内側刃41とチゼルエッジとが鈍角をなす場合との対比では、図1、図2に示すように内側刃41とそれが接するシンニング面8との間の境界線83の内、内側刃41と外側刃42の交点Qの部分を、交点Qを含む2番面61の回転方向後方側へ寄せ易くなる。このことは、図6、図7に示す例との対比では各切れ刃4の内側刃41(境界線83)を2番面61の回転方向後方側へ寄せ易くなることであるから、内側刃41とシンニング面8との間の境界線83が回転方向後方側へ後退できる分、シンニング面8内の容積が増すことになる。結果として、シンニング面8内での切屑の収容能力が増大し、切屑の詰まりの抑制効果と排出性が向上することになる In this case (in claim 1 ), as shown in FIGS. 6 and 7, the extension of the chisel edge 5 (straight line PP) passes through the front side of the inner cutting edge 41 (ridgeline PQ) in the rotational direction, and the inner cutting edge 41 and the chisel edge are aligned. form an obtuse angle, as shown in FIGS. It becomes easy to bring the portion to the rear side in the rotational direction of the second surface 61 including the intersection point Q. 6 and 7, the inner cutting edge 41 (boundary line 83) of each cutting edge 4 can be easily moved to the rear side in the rotational direction of the second surface 61. Since the boundary line 83 between 41 and the thinning surface 8 can retreat rearward in the rotational direction, the volume inside the thinning surface 8 increases. As a result, the capacity of the thinning surface 8 to accommodate chips is increased, and the effect of suppressing clogging of chips and the discharging performance are improved .

このことはまた、図6、図7と図1との対比から分かるようにチゼルエッジ5を挟んだ一対のシンニング面8、8とそれぞれの回転方向前方側が接する2番面61、61との間の境界線84、84を互いに接近させる(境界線84、84を通る直線間距離を短縮させる)ことでもあり、チゼルエッジ5(直線PP)と境界線84とのなす角度を小さくすることでもある。シンニング面8内の容積が増すことは、先端面30を軸方向に見たときの、先端面30の面積を減少させることでもあるから、切れ刃4による被削材の切削時に先端面30が被削材から受けるスラストとトルクを低減させる効果も向上する。 As can be seen from a comparison of FIGS. 6 and 7 with FIG. 1, there is a gap between a pair of thinning surfaces 8, 8 sandwiching the chisel edge 5 and the second surfaces 61, 61 which are in contact with each other on the forward side in the rotational direction. It is to bring the boundary lines 84, 84 closer to each other (reduce the distance between straight lines passing through the boundary lines 84, 84) and to reduce the angle formed by the chisel edge 5 (straight line PP) and the boundary line 84. The increase in the volume of the thinning surface 8 also reduces the area of the tip surface 30 when viewed in the axial direction. The effect of reducing the thrust and torque received from the work material is also improved.

請求項1では2番面61中の内側刃41の区間(稜線PQ(境界線83)と境界線84とに挟まれた領域(内周側2番面61a))が、点Pから半径方向外周側へかけて回転方向に幅が次第に拡大する形状に形成されることで、特に2番面61中の内側刃41の区間に内側刃41から作用する被削材からのトルク(捩りモーメント)に対する、内側刃41の区間の抵抗力(せん断応力度)を一様にすることができる。結果的に、内側刃41の区間(内周側2番面61a)内ではいずれかの部分がトルクに対して弱点になりにくくなり、内側刃41に欠けを生じにくくする利点が得られる。前記のように「2番面61中の内側刃41の区間」は内側刃41(稜線PQ)と、その回転方向後方側の内周側2番面61aとその回転方向後方側のシンニング面8との間の境界線84とに挟まれた三角形状の領域を指す。 In claim 1, the section of the inner cutting edge 41 in the second surface 61 (the area sandwiched between the ridge line PQ (boundary line 83) and the boundary line 84 (inner peripheral second surface 61a)) extends radially from the point P By forming a shape in which the width gradually expands in the rotational direction toward the outer peripheral side, torque (torsion moment) from the work material acting from the inner cutting edge 41 particularly on the section of the inner cutting edge 41 in the second surface 61 The resistance (shear stress) of the section of the inner cutting edge 41 can be made uniform. As a result, any part in the section (inner peripheral side second surface 61a) of the inner cutting edge 41 is less likely to become a weak point against torque, and the inner cutting edge 41 is less likely to be chipped. As described above, the "section of the inner cutting edge 41 in the second surface 61" includes the inner cutting edge 41 (ridgeline PQ), the inner peripheral second surface 61a on the rear side in the rotational direction, and the thinning surface 8 on the rear side in the rotational direction. It refers to a triangular area sandwiched between and a boundary line 84 between .

詳しく言えば、前記したようにトルクは内側刃41の区間では内側刃41から2番面61の内周側2番面61aに回転方向後方側へ作用し、中心(回転軸O)からの距離が異なる各部分に作用するトルクTによる力(負担)の程度を示すせん断応力度τは中心(回転軸O)からの半径方向の距離rに比例する(τ=(T/Ip)・r(Ipは断面二次極モーメント))。このことは、回転軸Oからの半径方向の距離rが大きくなる程、その部分(2番面61)に作用するせん断応力が大きくなり、せん断応力は半径方向の中心からの距離rに比例して増大し、切れ刃4から三角形を描くように直線状に分布することを意味する。 Specifically, as described above, in the section of the inner cutting edge 41, the torque acts on the inner peripheral second surface 61a of the second surface 61 from the inner cutting edge 41 toward the rear in the rotational direction, and the torque is applied to the inner circumferential side second surface 61a of the second surface 61 in the section of the inner cutting edge 41. is proportional to the radial distance r from the center (rotational axis O) (τ = (T / Ip) r ( Ip is the polar moment of inertia)). This means that the greater the radial distance r from the rotation axis O, the greater the shear stress acting on that portion (second surface 61), and the shear stress is proportional to the radial distance r from the center. It means that it increases linearly from the cutting edge 4 to draw a triangle.

従ってトルクTを負担する2番面61(内側刃41の区間(内周側2番面61a))の回転方向の幅を、先端面30を軸方向に見たときに回転軸O側から半径方向外周側へ向けて次第に拡大する形状に形成すれば(請求項1)、2番面61(内周側2番面61a)のトルク(せん断応力度)に対する抵抗力が半径方向の各部において均等になり易くなる。トルクに対する抵抗力が半径方向の各部において均等になることで、内側刃41の半径方向のいずれかの部分が相対的に弱点になりにくくなり、内側刃41の半径方向各部の破損(欠け)に対する安全性が向上する。 Therefore, the width in the rotational direction of the second surface 61 (the section of the inner cutting edge 41 (inner peripheral second surface 61a)) that bears the torque T is the radius If it is formed in a shape that gradually expands toward the outer peripheral side of the direction (claim 1), the resistance to the torque (shear stress) of the second surface 61 (inner peripheral side second surface 61a) is uniform in each part in the radial direction. becomes easier. Since the resistance to torque is uniform at each radial portion, any portion of the inner blade 41 in the radial direction is relatively unlikely to become a weak point, and damage (chipping) of each radial portion of the inner blade 41 is prevented. Improves safety.

2番面61中の内側刃41の区間(内周側2番面61a)のトルク(せん断応力度)に対する半径方向各部の抵抗力が均等になり、破損に対する安全性が高まることで、2番面61中の内側刃41の区間の回転方向の幅(奥行き)の大きさを調整、あるいは抑制することが可能になる。この結果、前記のように2番面61の回転方向後方側と切屑排出溝7との間に形成されるシンニング面8をこの2番面61中の内側刃41の区間の回転方向後方側において、半径方向外周側にまで入り込むように形成することが可能になる(請求項)。 The resistance to the torque (shear stress) of the section of the inner cutting edge 41 in the second surface 61 (the inner peripheral second surface 61a) is equalized at each part in the radial direction, and the safety against breakage is increased. It becomes possible to adjust or suppress the size of the width (depth) in the rotational direction of the section of the inner cutting edge 41 in the surface 61 . As a result, the thinning surface 8 formed between the rear side of the second surface 61 in the rotation direction and the chip discharge groove 7 is formed on the rear side in the rotation direction of the section of the inner cutting edge 41 in the second surface 61 as described above. , can be formed so as to extend to the outer peripheral side in the radial direction (claim 2 ).

言い換えれば、先端面30の半径方向には、図1に示すようにチゼルエッジ5(直線PP)を挟んだ片側に付き、シンニング面8を一対の切れ刃4、4の内、一方の切れ刃4の内側刃41と外側刃42の境界(交点Q)からチゼルエッジ5を経由し、一対の切れ刃4、4の内、他方の切れ刃4の内側刃41と外側刃42の境界(交点Q)の回転方向後方側の位置にまで形成することが可能になる(請求項)。このことは、シンニング面8とその半径方向外周側(の縁)が接する逃げ面6(2番面61と3番面62)との間の境界線85を半径方向外周側へ寄せ易くなることであるから、シンニング面8上の容積を大きく確保できることになり、シンニング面8内での切屑の収容能力を高め、切屑の詰まりを抑
制できる利点に結び付く。シンニング面8と逃げ面6との間の境界線85は図1に示すように境界線84に交差する半径方向に沿った方向を向く。
In other words, in the radial direction of the tip end face 30, as shown in FIG. Via the chisel edge 5 from the boundary (intersection point Q) between the inner cutting edge 41 and the outer cutting edge 42 of the pair of cutting edges 4, 4, the boundary between the inner cutting edge 41 and the outer cutting edge 42 of the other cutting edge 4 (intersecting point Q) It is possible to form even a position on the rear side in the rotational direction of the (claim 2 ). This makes it easier to move the boundary line 85 between the thinning surface 8 and the flank 6 (the second surface 61 and the third surface 62) with which the thinning surface 8 and the flank 6 (the edge thereof) contact the radially outer side. As a result, a large volume can be secured on the thinning surface 8, which leads to the advantage of being able to increase the ability to accommodate chips within the thinning surface 8 and suppress clogging of chips. A boundary line 85 between the thinning surface 8 and the flank surface 6 is oriented along a radial direction that intersects the boundary line 84 as shown in FIG.

シンニング面8は上記のように稜線QPとチゼルエッジ5(直線PP)を通るため、請求項ではシンニング面8の開始位置側から見たときに、チゼルエッジ5を越えた部分が、チゼルエッジ5を挟んだ側に位置する2番面61(外周側2番面61b)内に入り込む形になる。 Since the thinning surface 8 passes through the ridge line QP and the chisel edge 5 (straight line PP) as described above, in claim 2 , when viewed from the side of the starting position of the thinning surface 8, the portion beyond the chisel edge 5 sandwiches the chisel edge 5. The second surface 61 (the second surface 61b on the outer peripheral side) is located on the outer side.

シンニング面8、8はチゼルエッジ5(直線PP)を挟んで対になるから、対になるシンニング面8、8のチゼルエッジ5を越えた部分がチゼルエッジ5(回転軸O)を挟んで互いに半径方向に行き違う状態になるため、一対のシンニング面8、8の行き違い量を大きく確保することが可能になる。この結果、被削材の切削時に被削材に接触する先端面30の面積を抑制することができるため、先端面30が被削材から受ける抵抗であるスラストとトルクを低減することが可能になる。「シンニング面8、8の行き違い量」はチゼルエッジ5の方向に、各シンニング面8の2番面61(外周側2番面61b)内に入り込む部分(境界線84が湾曲して境界線85に移行する部分)間の距離を指す。 Since the thinning surfaces 8, 8 are paired with the chisel edge 5 (straight line PP) interposed therebetween, the portions of the paired thinning surfaces 8, 8 beyond the chisel edge 5 are radially aligned with each other with the chisel edge 5 (rotational axis O) interposed therebetween. Since the thinning surfaces 8, 8 are in a crossed state, it is possible to secure a large crossing amount between the pair of thinning surfaces 8, 8. - 特許庁As a result, it is possible to reduce the area of the tip end surface 30 that contacts the work material when cutting the work material, so that the thrust and torque, which are the resistance that the tip end surface 30 receives from the work material, can be reduced. Become. "Amount of misalignment between the thinning surfaces 8, 8" is a portion (the boundary line 84 is curved to the boundary line 85) in the direction of the chisel edge 5 and enters the second surface 61 (outer peripheral side second surface 61b) of each thinning surface 8. It refers to the distance between the transitioning parts).

請求項では内側刃41とそれが接するシンニング面8との間の境界線83を2番面61の回転方向後方側へ寄せ易くなり、請求項ではシンニング面8とその回転方向前方側が接する2番面61との間の境界線84を半径方向外周側へ寄せ易くなるが、シンニング面8上の容積を増し、先端面30の面積を減少させる点では共通し、共に切屑の収容能力を高めることと、被削材から受ける抵抗力を低減させることの利点が得られる。 In claim 1 , the boundary line 83 between the inner cutting edge 41 and the thinning surface 8 with which it contacts can be easily shifted to the rear side in the rotation direction of the second surface 61, and in claim 2 , the thinning surface 8 and the front side in the rotation direction are in contact. Although the boundary line 84 between the second surface 61 and the second surface 61 can be easily brought to the radially outer side, the volume on the thinning surface 8 is increased and the area of the tip surface 30 is decreased. Advantages of increased and reduced drag from the work material are obtained.

請求項1では2番面61中の内側刃41の区間(内周側2番面61a)の回転方向の幅が回転軸O側から半径方向外周側へ向けて次第に拡大する形状に形成されることで(請求項1)、前記のように2番面61全体を半径方向に見たとき、内側刃41の区間である内周側2番面61aとそれより半径方向外周側の外周側2番面61bとに半径方向に区分することができる(請求項)。2番面61は詳しくは、先端面30の半径方向には、チゼルエッジ5の端部Pから半径方向外周側へ向け、内側刃41と外側刃42の境界Qまでを含む区間の内周側2番面61aと、内周側2番面61aの半径方向外周側に連続する外周側2番面61bとに区分される(請求項)。 In claim 1, the width in the direction of rotation of the section (inner peripheral side second surface 61a) of the inner cutting edge 41 in the second surface 61 is formed in a shape that gradually expands from the rotation axis O side toward the radial direction outer peripheral side. Thus (claim 1), when the entire second surface 61 is viewed in the radial direction as described above, the inner peripheral second surface 61a that is the section of the inner cutting edge 41 and the outer peripheral side 2 It can be divided radially into the second surface 61b (Claim 3 ). More specifically, the second surface 61 extends in the radial direction of the tip surface 30 from the end P of the chisel edge 5 toward the radially outer side to the boundary Q between the inner cutting edge 41 and the outer cutting edge 42 . It is divided into a second surface 61a and an outer second surface 61b that is continuous with the radially outer circumference of the inner second surface 61a (claim 3 ).

前記のように内周側2番面61aはチゼルエッジ5の端部Pを頂点とする三角形状に形成されるから、チゼルエッジ5の端部Pから開始する内周側2番面61aの区間は、内側刃41(境界線83)上では内側刃41と外側刃42の境界Qまでであり、内周側2番面61aとその回転方向後方側のシンニング面8との境界線84上では境界Qから回転方向後方側に向かう線と境界線84との交点までになる。 As described above, the inner second surface 61a is formed in a triangular shape with the end P of the chisel edge 5 as the vertex. On the inner cutting edge 41 (boundary line 83), it extends up to the boundary Q between the inner cutting edge 41 and the outer cutting edge 42. On the boundary line 84 between the inner peripheral second surface 61a and the thinning surface 8 on the rear side in the rotational direction, the boundary Q to the intersection of the boundary line 84 and a line directed toward the rear side in the rotational direction.

内周側2番面61aは内側刃41(境界線83)から回転方向後方側に向け、内側刃41と外側刃42の境界(交点Q)より回転方向後方側に位置する境界線84までの領域であり、境界線84上では境界線84が湾曲して境界線85に移行する部分までになる。外周側2番面61bは内周側2番面61aの半径方向外周側に連続する領域を指す。2番面61が内周側2番面61aと外周側2番面61bとに区分された場合、境界線84が湾曲して境界線85に移行する関係で、内側刃41と外側刃42の境界(交点Q)、もしくはその付近から形成されるシンニング面8は内周側2番面61aの回転方向後方側と外周側2番面61bの切屑排出溝7側に連続する曲面を有する(請求項)。 The inner peripheral second surface 61a extends from the inner cutting edge 41 (boundary line 83) toward the rear side in the rotational direction to the boundary line 84 located on the rearward side in the rotational direction from the boundary (intersection point Q) between the inner cutting edge 41 and the outer cutting edge 42. It is an area on the boundary line 84 up to the part where the boundary line 84 curves and transitions to the boundary line 85 . The second surface 61b on the outer peripheral side indicates a region that continues from the second surface 61a on the inner peripheral side to the outer peripheral side in the radial direction. When the second surface 61 is divided into the inner peripheral second surface 61a and the outer peripheral second surface 61b, the boundary line 84 curves and shifts to the boundary line 85, so that the inner cutting edge 41 and the outer cutting edge 42 are separated. The thinning surface 8 formed from the boundary (intersection point Q) or its vicinity has a curved surface that continues to the rear side in the rotation direction of the inner peripheral second surface 61a and the chip discharge groove 7 side of the outer peripheral second surface 61b. Item 3 ).

具体的には、境界線84が湾曲して境界線85に移行することに伴い、例えば外周側2番面61bの回転方向後方側に3番面62が連続して形成され、外周側2番面61bの切屑排出溝7側から3番面62の切屑排出溝7側に連続してシンニング面8が形成される(
請求項)。
Specifically, as the boundary line 84 curves and transitions to the boundary line 85, for example, the third surface 62 is continuously formed on the rear side in the rotation direction of the second surface 61b on the outer peripheral side. A thinning surface 8 is formed continuously from the chip discharge groove 7 side of the surface 61b to the chip discharge groove 7 side of the third surface 62 (
Claim 4 ).

この場合、シンニング面8の逃げ面6寄りの部分(シンニング面8と逃げ面6(シンニング面8とその半径方向外周側が接する逃げ面6)との間の境界線85)が外周側2番面61bの切屑排出溝7側から3番面62の切屑排出溝7側に連続することで、シンニング面8の逃げ面6との間の境界線85はチゼルエッジ5から外周側2番面61b側へ半径方向外周側へ入り込んだ後に、回転方向後方側へ向かい、2方向を向く形になる。結果的に先端面30を軸方向に見たとき、シンニング面8の外周側2番面61b寄りの部分が外周側2番面61b側へ深く入り込んだ形状になり、シンニング面8上の空間の容積が拡大されるため、シンニング面8上での切屑の収容能力が高まり、切屑のシンニング面8での詰まりが発生しにくくなる。 In this case, the portion of the thinning surface 8 near the flank 6 (the boundary line 85 between the thinning surface 8 and the flank 6 (the flank 6 with which the thinning surface 8 is in contact with the radially outer peripheral side)) is the second surface on the outer peripheral side. By continuing from the chip discharge groove 7 side of 61b to the chip discharge groove 7 side of the third surface 62, the boundary line 85 between the thinning surface 8 and the flank surface 6 extends from the chisel edge 5 to the outer peripheral second surface 61b side. After entering the outer peripheral side in the radial direction, it goes to the rear side in the rotational direction and faces in two directions. As a result, when the tip end surface 30 is viewed in the axial direction, the portion of the thinning surface 8 near the second surface 61b on the outer peripheral side is deeply recessed toward the second surface 61b on the outer peripheral side, and the space above the thinning surface 8 is formed. Since the capacity is increased, the chip accommodation capacity on the thinning surface 8 is increased, and chip clogging on the thinning surface 8 is less likely to occur.

また先端面30を軸方向に見たとき、シンニング面8が回転方向前方側の逃げ面6側から回転方向後方側の切屑排出溝7側へかけて1段目シンニング面81と、この1段目シンニング面81より深い2段目シンニング面82とに区分されれば(請求項)、1段目シンニング面81と2段目シンニング面82との間に、先端面30側へ凸の稜線となる境界線86が形成されるため、境界線86での切屑の切断効果を期待することが可能になる。ここで言う「逃げ面6」は主に2番面61を指す。 Further, when the tip end face 30 is viewed in the axial direction, the thinning surface 8 extends from the flank surface 6 on the front side in the rotational direction to the chip discharge groove 7 side on the rearward side in the rotational direction. If it is divided into a second thinning surface 82 deeper than the first thinning surface 81 (claim 5 ), a convex ridge toward the tip surface 30 is formed between the first thinning surface 81 and the second thinning surface 82. Since the boundary line 86 is formed, it is possible to expect the cutting effect of chips at the boundary line 86 . The “flank 6” referred to here mainly refers to the second surface 61 .

「回転方向前方側の逃げ面6(2番面61)側から回転方向後方側の切屑排出溝7側へかけて」とは、「シンニング面8から見たときに、回転方向前方側に位置する2番面61側から回転方向後方側に位置する切屑排出溝7側へ向かって」の意味である。「1段目シンニング面81より深い2段目シンニング面82」とは、先端面30を軸方向に、シャンク部2側へ向かって見たとき、1段目シンニング面81(表面)が2段目シンニング面82(表面)より手前(先端面30寄り)に位置し、2段目シンニング面82(表面)が1段目シンニング面81(表面)よりシャンク部2寄りに位置することを言う。 "From the side of the flank 6 (second surface 61) on the forward side in the rotational direction to the side of the chip discharge groove 7 on the rearward side in the rotational direction" means "when viewed from the thinning surface 8, it is located on the forward side in the rotational direction. from the side of the second surface 61 toward the side of the chip discharge groove 7 located on the rear side in the rotational direction. The "second-stage thinning surface 82 deeper than the first-stage thinning surface 81" means that the first-stage thinning surface 81 (surface) is two-stage when viewed from the tip surface 30 in the axial direction toward the shank portion 2 side. It means that the second thinning surface 82 (surface) is located in front (closer to the tip surface 30) than the second thinning surface 82 (surface), and the second stage thinning surface 82 (surface) is located closer to the shank portion 2 than the first stage thinning surface 81 (surface).

先端面30を回転方向前方側の2番面61側から回転方向後方側の切屑排出溝7側へ向かって見たときに、1段目シンニング面81が回転方向前方側の2番面61寄りに位置し、2段目シンニング面82が切屑排出溝7寄りに位置することで、1段目シンニング面81と2段目シンニング面82との間には角度が付く。 When the tip surface 30 is viewed from the second surface 61 on the forward side in the rotational direction toward the chip discharge groove 7 side on the rearward side in the rotational direction, the first-stage thinning surface 81 is closer to the second surface 61 on the forward side in the rotational direction. , and the second-stage thinning surface 82 is positioned closer to the chip discharging groove 7 , so that an angle is formed between the first-stage thinning surface 81 and the second-stage thinning surface 82 .

上記のように1段目シンニング面81と2段目シンニング面82との間の境界線86は先端面30側へ向かって凸の稜線をなし、先端面30側へ突起状(峰状)に連続して突出する。このため、切屑が1段目シンニング面81と2段目シンニング面82に沿って円錐形状に丸まりながら境界線86に接触したときに、境界線86が切屑に対し、円錐形状の軸方向(長さ方向)に交差する方向のせん断力(切断力)を与える状態にある。1段目シンニング面81と2段目シンニング面82との間の境界線86が円錐形状に丸まる切屑に、軸方向に交差する方向のせん断力を与えることで、円錐形状に丸まりながら軸方向に成長しようとする切屑を軸方向に分断させることができるため、切屑が軸方向に成長することが防止、または抑制される。 As described above, the boundary line 86 between the first-stage thinning surface 81 and the second-stage thinning surface 82 forms a convex ridgeline toward the tip surface 30 side, and protrudes (ridge-like) toward the tip surface 30 side. protrude continuously. Therefore, when the chips come into contact with the boundary line 86 while being rounded into a conical shape along the first-stage thinning surface 81 and the second-stage thinning surface 82, the boundary line 86 moves against the chip in the axial direction (longitudinal direction) of the conical shape. It is in a state of applying a shearing force (cutting force) in a direction that intersects the vertical direction). By applying a shearing force in a direction intersecting the axial direction to the chips whose boundary line 86 between the first-stage thinning surface 81 and the second-stage thinning surface 82 is rounded into a conical shape, the chips are axially rolled up into a conical shape. Since the chips that are about to grow can be divided in the axial direction, the chips are prevented or suppressed from growing in the axial direction.

ここで、シンニング面8は上記のように切屑排出溝7側から見たとき、稜線QPとチゼルエッジ5(直線PP)、及び直線PPに連続する稜線PQの回転方向後方側の位置へ向けて形成されるため、1段目シンニング面81と2段目シンニング面82との間の境界線86は切屑排出溝7側から見たとき、回転方向前方側の2番面側へ凸の曲線状に形成される。 Here, when viewed from the chip discharge groove 7 side as described above, the thinning surface 8 is formed toward the rear side of the ridge line QP, the chisel edge 5 (straight line PP), and the ridge line PQ continuing to the straight line PP in the rotational direction. Therefore, a boundary line 86 between the first-stage thinning surface 81 and the second-stage thinning surface 82 forms a convex curved line toward the second surface on the forward side in the rotational direction when viewed from the chip discharging groove 7 side. It is formed.

この形状から、切屑が例えば2段目シンニング面82に沿って円錐形状に丸まるときに、境界線86が円錐を円錐の軸(中心)に交差する平面で円錐台と円錐に切断するような曲線になるため、円錐形状に丸まろうとする切屑を軸方向に分離させるように作用し易くなる。円錐の軸(中心)に交差し、円錐を切断する平面(切断面)と円錐との交線は円形、もしくは楕円形であるが、1段目シンニング面81と2段目シンニング面82との間の境界線86が2番面61側へ凸の曲線状であれば、この境界線86が円錐の軸に交差する平面と円錐との交線に近い曲線を描くからである。 From this shape, when the chip is rounded into a conical shape, for example along the second thinning surface 82, a curve such that the boundary line 86 cuts the cone into a truncated cone and a cone in a plane that intersects the axis (center) of the cone. Therefore, it becomes easy to act to separate the chips that tend to be rounded into a conical shape in the axial direction. The line of intersection between the cone and the plane (cut plane) that intersects the axis (center) of the cone and cuts the cone is circular or elliptical. This is because, if the boundary line 86 between them has a curved shape convex toward the second surface 61, this boundary line 86 draws a curve close to the line of intersection between the cone and a plane that intersects the axis of the cone.

切れ刃をチゼルエッジの端部からドリル本体先端面の半径方向外周側へ連続する内側刃と、内側刃より外周側に連続する外側刃とに区分し、逃げ面の内、切れ刃の回転方向後方側に連続して形成された2番面の少なくとも内側刃の区間を、チゼルエッジの端部から、内側刃と外側刃との境界とその回転方向後方側の位置へ向け、ドリル本体の回転方向の幅が次第に拡大する形状に形成するため、2番面のトルクに対する抵抗力を半径方向の各部において均等にし易くすることができる。この結果、内側刃の半径方向のいずれかの部分が相対的に弱点になりにくくなり、内側刃の半径方向各部の破損(欠け)に対する安全性が向上する。 The cutting edge is divided into an inner edge that continues from the end of the chisel edge to the radial direction outer peripheral side of the tip surface of the drill body, and an outer edge that continues from the inner edge to the outer peripheral side. At least the section of the inner cutting edge of the second surface formed continuously on the side is directed from the end of the chisel edge to the boundary between the inner cutting edge and the outer cutting edge and the rearward position in the rotational direction of the drill body. Since it is formed in a shape in which the width gradually increases, it is possible to easily equalize the resistance force against the torque of the second surface at each portion in the radial direction. As a result, any portion of the inner cutting edge in the radial direction is relatively unlikely to become a weak point, and safety against breakage (chipping) of each portion in the radial direction of the inner cutting edge is improved.

チゼルエッジの延長線がドリル本体先端面の逃げ面の内、2番面の範囲内を通過する場合の、ドリル本体の先端面を軸方向に見たときのドリルの製作例を示した端面図である。An end view showing an example of manufacturing a drill when the tip face of the drill body is viewed in the axial direction when the extension line of the chisel edge passes through the range of the second surface of the flank face of the tip face of the drill body. be. 図1のチゼルエッジ部分の拡大図である。FIG. 2 is an enlarged view of the chisel edge portion of FIG. 1; 図1に示すドリルの先端面をやや斜め上方からx-x線の方向に見たときの側面図である。FIG. 2 is a side view of the tip surface of the drill shown in FIG. 1 as seen from slightly obliquely above in the direction of line xx. 図1に示すドリルの刃部を回転軸に垂直なx-x線の方向に見たときの側面図である。FIG. 2 is a side view of the cutting edge of the drill shown in FIG. 1 when viewed in the direction of line xx perpendicular to the axis of rotation; 図1に示すドリル本体の全体を示した側面図である。Fig. 2 is a side view showing the entire drill body shown in Fig. 1; (a)は内側刃とチゼルエッジが鈍角をなす場合の、ドリル本体の先端面を軸方向に見たときのドリルの参考製作例を示した端面図、(b)は(a)の拡大図である。(a) is an end view showing a reference manufacturing example of a drill when the tip surface of the drill body is viewed in the axial direction when the inner cutting edge and the chisel edge form an obtuse angle, and (b) is an enlarged view of (a). be. (a)は内側刃とチゼルエッジが鈍角をなす場合の、ドリル本体の先端面を軸方向に見たときのドリルの他の参考製作例を示した端面図、(b)は(a)の拡大図である。(a) is an end view showing another reference manufacturing example of a drill when the tip surface of the drill body is viewed in the axial direction when the inner cutting edge and the chisel edge form an obtuse angle; (b) is an enlarged view of (a). It is a diagram. シンニング面とその回転方向前方側が接する2番面との間の境界線がチゼルエッジの端部(点P)以外の点に交わる場合のドリルの参考製作例を示した端面図である。FIG. 10 is an end view showing a reference manufacturing example of a drill when the boundary line between the thinning surface and the second surface with which the front side in the rotational direction is in contact intersects with a point other than the end (point P) of the chisel edge.

図1、図5はドリル本体の軸方向先端の先端面30に回転方向前方側を向いて形成された一対の切れ刃4、4と、各切れ刃4の回転方向後方側に位置する逃げ面6の回転方向後方側と切れ刃4との間に形成された切屑排出溝7と、各逃げ面6の回転方向後方側と切屑排出溝7との間に形成された一対のシンニング面8、8とを備え、一対のシンニング面8、8間にドリル本体の回転軸O上を通り、少なくとも一部がシンニング面8、8に接するチゼルエッジ5が形成されたドリル1の製作例を示す。 1 and 5 show a pair of cutting edges 4, 4 formed on a tip surface 30 at the axial tip of the drill body facing forward in the rotational direction, and a flank located on the rearward side in the rotational direction of each cutting edge 4. A chip discharge groove 7 formed between the rear side in the rotational direction of 6 and the cutting edge 4, and a pair of thinning surfaces 8 formed between the rear side in the rotational direction of each flank 6 and the chip discharge groove 7, 8, and a chisel edge 5 passing through the rotation axis O of the drill body between a pair of thinning surfaces 8, 8 and at least partially in contact with the thinning surfaces 8, 8 is formed.

ドリル本体(ドリル1)は図5に示すようにドリル本体の軸(回転軸O)方向後方側に位置するシャンク部2とそれより軸方向先端側に形成される刃部3とに軸方向に区分され、刃部3の軸方向先端の先端面30に一対(2本)の切れ刃4、4が形成される。以下、ドリル本体はドリル1の本体のことを言う。図面では刃部3がドリル本体に一体化したソリッド型のドリル1の例を示しているが、刃部3がドリル本体に対して着脱自在に固定され、保持される刃先交換型のドリル1の場合もある。 As shown in FIG. 5, the drill body (drill 1) has a shank portion 2 located on the rear side in the direction of the axis (rotational axis O) of the drill body and a blade portion 3 formed on the tip side in the axial direction. A pair of (two) cutting edges 4 , 4 are formed on a tip surface 30 at the tip of the blade portion 3 in the axial direction. Hereinafter, the drill body refers to the body of the drill 1 . Although the drawing shows an example of a solid type drill 1 in which the blade portion 3 is integrated with the drill body, the blade portion 3 is detachably fixed to and held by the drill body. In some cases.

「先端面30」はドリル本体の先端面30を回転軸Oの方向に見たときの、切屑排出溝7とシンニング面8を除いた領域(部分)を指し、逃げ面6の領域を指す。図面では図1に示すように切れ刃4の回転方向後方側に、逃げ面6としての2番面61が連続して形成され、2番面61の回転方向後方側に逃げ面6としての3番面62が連続して形成されているが、この場合、逃げ面6は2番面61と3番面62を合わせた領域になる。 The “tip face 30 ” refers to the region (part) excluding the chip discharge groove 7 and the thinning face 8 when the tip face 30 of the drill body is viewed in the direction of the rotation axis O, and indicates the region of the flank face 6 . In the drawing, as shown in FIG. 1, a second surface 61 as a flank 6 is formed continuously on the rear side of the cutting edge 4 in the rotational direction, and a third surface 61 as the flank 6 is formed on the rear side in the rotational direction of the second surface 61. Although the numbered surface 62 is formed continuously, in this case, the flank surface 6 is a region where the second surface 61 and the third surface 62 are combined.

切れ刃4は図1、図2に示すようにチゼルエッジ5(直線PP)の端部(点P)から先端面30の半径方向外周側へ形成され、先端面30の半径方向には、チゼルエッジ5の端部(点P)に接する内周側の内側刃41(稜線PQ)と、内側刃41より半径方向外周側に連続する外側刃42とに区分される。内側刃41と外側刃42の境界が交点Qであり、外側刃42は交点Qから半径方向外周側の端部(端縁)まで連続して形成される。図面では内側刃41(稜線PQ)を直線状に、外側刃42(稜線Q~)を曲線状に形成しているが、内側刃41と外側刃42の形状はこれには限定されない。 As shown in FIGS. 1 and 2, the cutting edge 4 is formed from the end (point P) of the chisel edge 5 (straight line PP) to the radially outer peripheral side of the tip end face 30. In the radial direction of the tip end face 30, the chisel edge 5 It is divided into an inner cutting edge 41 (ridgeline PQ) on the inner peripheral side that contacts the end (point P) of the inner cutting edge 41 and an outer cutting edge 42 that continues from the inner cutting edge 41 to the outer peripheral side in the radial direction. A boundary between the inner cutting edge 41 and the outer cutting edge 42 is an intersection point Q, and the outer cutting edge 42 is formed continuously from the intersection point Q to an end portion (edge) on the radially outer peripheral side. In the drawing, the inner cutting edge 41 (ridgeline PQ) is formed in a straight line and the outer cutting edge 42 (ridgeline Q~) is formed in a curved shape, but the shape of the inner cutting edge 41 and the outer cutting edge 42 is not limited to this.

外側刃42(稜線Q~)は内側刃41(稜線PQ)から連続する曲線を描くように形成されることもあるが、図面では図2に示すように内側刃41と外側刃42とに挟まれた交点Qに2番面61側が鈍角となるような角度を付け、あるいは交点Q部分を湾曲させ、ドリル本体の回転軸O回りの回転時に、被削材に内側刃41が先行して接触し、内側刃41の後に外側刃42が被削材に接触するようにしている。 The outer cutting edge 42 (ridge line Q~) may be formed so as to draw a continuous curve from the inner cutting edge 41 (ridge line PQ). The second surface 61 side of the intersecting point Q is made obtuse, or the intersecting point Q is curved so that the inner cutting edge 41 comes into contact with the work material first when the drill body rotates around the rotation axis O. Then, the outer cutting edge 42 comes into contact with the work material after the inner cutting edge 41 .

逃げ面6の内、切れ刃4の回転方向後方側に連続して形成された2番面61の少なくとも内側刃41の区間(後述の内周側2番面61a)の回転方向の幅は半径方向外周側へ向かって次第に拡大する形状に形成される。言い換えれば、先端面30の半径方向には、図2に示すようにチゼルエッジ5の端部Pから、内側刃41と外側刃42との境界(交点)Qとその回転方向後方側の位置(後述の境界線84の方向)へ向かい、ドリル本体の回転方向の幅が次第に拡大する形状に形成される。ここで、「端部(点)Pから、境界Qとその回転方向後方側の位置へ向かい」とは、「半径方向中心(回転軸O)側から半径方向外周側にかけ、点Qの方向と境界線84に沿った方向の2方向へ向けて」の意味である。 Among the flanks 6, the width in the rotational direction of at least the section of the inner cutting edge 41 (inner peripheral side second surface 61a described later) of the second surface 61 formed continuously on the rear side of the cutting edge 4 in the rotational direction is the radius It is formed in a shape that gradually expands toward the direction outer peripheral side. In other words, in the radial direction of the tip surface 30, as shown in FIG. ), the width of the drill body in the rotational direction gradually increases. Here, "from the end (point) P to the boundary Q and the position on the rear side in the rotational direction" means "from the radial center (rotational axis O) side to the radial outer peripheral side, the direction of the point Q and the It means "toward two directions along the boundary line 84".

切れ刃4は半径方向に、内周側の内側刃41とそれより外周側の外側刃42とに区分されるから、この区分に従い、2番面61は「2番面61の内側刃41の区間」に対応する「内周側2番面61a」と、それより外周側の「外周側2番面61b」とに区分される。内周側2番面61aの回転方向前方側の稜線が内側刃41であり、外周側2番面61bの回転方向前方側の稜線が外側刃42である。 Since the cutting edge 4 is divided in the radial direction into an inner cutting edge 41 on the inner peripheral side and an outer cutting edge 42 on the outer peripheral side, according to this division, the second surface 61 is defined as "the inner cutting edge 41 of the second surface 61 It is divided into an "inner peripheral side second surface 61a" corresponding to the "section" and an "outer peripheral side second surface 61b" on the outer peripheral side. The ridgeline on the forward side in the rotational direction of the inner peripheral second surface 61a is the inner cutting edge 41, and the ridgeline on the forward side in the rotational direction of the outer peripheral second surface 61b is the outer cutting edge .

内周側2番面61aは半径方向外周側へかけ、ドリル本体の回転方向の幅が次第に拡大する形状に形成されるから、内周側2番面61aを区画する内側刃41と、内周側2番面61aとその回転方向後方側のシンニング面8との間の境界線84とで挟まれた領域は三角形状、またはこれに近似した扇形状等に形成される。内周側2番面61aが三角形状等に形成されることで、被削材から内周側2番面61aに作用するトルクに対しては内側刃41の全長(稜線PQ)は均等な抵抗力を持つため、内周側2番面61aが三角形状等でない形状の場合よりトルクによる破損に対する安全性が高まっている。 Since the inner peripheral second surface 61a is formed in a shape in which the width in the direction of rotation of the drill body gradually increases toward the outer peripheral side in the radial direction, the inner cutting edge 41 that defines the inner peripheral second surface 61a and the inner periphery The area sandwiched between the side second surface 61a and the boundary line 84 between the thinning surface 8 on the rear side in the rotational direction is formed in a triangular shape or a sector shape similar thereto. Since the inner circumference side second surface 61a is formed in a triangular shape or the like, the entire length (ridgeline PQ) of the inner cutting edge 41 has a uniform resistance against the torque acting on the inner circumference side second surface 61a from the work material. Since it has a force, it is more secure against damage due to torque than when the inner peripheral side second surface 61a has a shape other than a triangular shape or the like.

このことから、図面では図3、図4に示すように内側刃41の区間には破損(欠け)を防止するためのホーニングを(形成)せず、内側刃41に繊細な切削能力を持たせている。一方、内側刃41にホーニングを(形成)しないことによる欠けを予防する目的で、内側刃41の軸方向すくい角を負にし、内側刃41の区間の刃部3の肉厚を増している。「軸方向すくい角が負」とは、シンニング面8の内、内側刃41の回転方向前方側に連続するすくい面となる部分の接平面と、内周側2番面61aとが刃部3側になす角度が、内側刃41の方向に見たときに90°より大きいことを言う。 For this reason, as shown in FIGS. 3 and 4, the section of the inner blade 41 is not honed (formed) to prevent breakage (chipping), and the inner blade 41 is given a delicate cutting ability. ing. On the other hand, for the purpose of preventing chipping due to no honing (formation) in the inner cutting edge 41, the rake angle in the axial direction of the inner cutting edge 41 is made negative, and the thickness of the cutting portion 3 in the section of the inner cutting edge 41 is increased. The term "negative rake angle in the axial direction" means that the tangential plane of the portion of the thinning surface 8 that becomes the rake surface that continues forward in the rotation direction of the inner cutting edge 41 and the inner peripheral second surface 61a It means that the angle formed to the side is larger than 90° when viewed in the direction of the inner blade 41.

これに対し、外側刃42には内側刃41程の繊細な切削能力を要しないことから、図3、図4に示すように外側刃42にはホーニング42aを形成し、破損に対する安全性を確保している。これに伴い、外側刃42の軸方向すくい角を正にしている。「軸方向すくい角が正」とは、外側刃42の回転方向前方側に連続するすくい面となる部分の接平面と外周側2番面61bとの刃部3側になす角度が、外側刃42の方向に見たときに90°より小さいことを言う。 On the other hand, since the outer cutting edge 42 does not require as fine a cutting ability as the inner cutting edge 41, the outer cutting edge 42 is formed with honing 42a as shown in FIGS. is doing. Along with this, the rake angle in the axial direction of the outer cutting edge 42 is made positive. The term "positive rake angle in the axial direction" means that the angle formed between the tangential plane of the rake face portion continuing forward in the rotation direction of the outer cutting edge 42 and the second surface 61b on the outer peripheral side toward the cutting portion 3 side is Less than 90° when viewed in the direction of 42.

各切れ刃4の半径方向外周縁からは図1に示すようにドリル本体の軸方向後方側(シャンク部2側)へ向かってマージン9が連続し、ドリル本体の周方向(回転方向)にはマージン9の回転方向後方側の部分であるランド10の区間に3番面62が形成される。図面では2番面61はドリル本体の周方向にはマージン9からランド10に移行した部分まで形成されている。 As shown in FIG. 1, a margin 9 continues from the radial outer edge of each cutting edge 4 toward the axial rear side (shank portion 2 side) of the drill body. A third surface 62 is formed in a section of the land 10 which is a portion on the rear side of the margin 9 in the rotational direction. In the drawing, the second surface 61 is formed from the margin 9 to the land 10 in the circumferential direction of the drill body.

シンニング面8は切屑排出溝7側から見たときには、図1に示すように外側刃42と内側刃41のすくい面を兼ねながら、一旦、2番面61(内周側2番面61a)の回転方向後方側へ入り込み、そのまま2番面61(外周側2番面61b)と3番面62の切屑排出溝7側を向いた部分の側面をなすように形成される。シンニング面8と、外周側2番面61bの回転方向前方側の稜線との境界線は外側刃42であり、内周側2番面61aの回転方向前方側の稜線との境界線83は内側刃41である。 When the thinning surface 8 is viewed from the chip discharge groove 7 side, as shown in FIG. It is formed so as to form the side surfaces of the second surface 61 (the second surface 61b on the outer peripheral side) and the third surface 62 facing the chip discharge groove 7 side. The boundary line between the thinning surface 8 and the ridgeline on the forward side in the rotational direction of the outer peripheral side second surface 61b is the outer cutting edge 42, and the boundary line 83 with the ridgeline on the forward side in the rotational direction of the inner peripheral side second surface 61a is the inner side. It is the blade 41 .

内側刃41と外側刃42の境界Qから2番面61側へ向かって形成されるシンニング面8は内周側2番面61aの回転方向後方側と外周側2番面61bの切屑排出溝7側に連続する曲面を有する。2番面61の回転方向後方側に3番面62が連続して形成された場合、シンニング面8は外周側2番面61bの切屑排出溝7側から3番面62の切屑排出溝7側に連続して形成される。 The thinning surface 8 formed from the boundary Q between the inner cutting edge 41 and the outer cutting edge 42 toward the second surface 61 is the chip discharge groove 7 on the rear side in the rotation direction of the inner peripheral second surface 61a and the outer peripheral second surface 61b. It has a continuous curved surface on the side. When the third surface 62 is formed continuously behind the second surface 61 in the rotation direction, the thinning surface 8 extends from the second surface 61b on the outer peripheral side toward the chip discharge groove 7 to the third surface 62 toward the chip discharge groove 7. is formed continuously.

図1、図2はまた、チゼルエッジ5の全長が一対のシンニング面8、8の境界線となり、両シンニング面8、8の境界線84、84がチゼルエッジ5、または回転軸Oを挟んで行き違う状態にある場合のドリル1の製作例を示している。この例では各シンニング面8を半径方向外周側から見たとき、各シンニング面8の各境界線84が図2に示す回転軸Oを越え、反対側のシンニング面8寄りに位置するため、両境界線84、84の、チゼルエッジ5の端部P側の延長線が、チゼルエッジ5を越えた側のシンニング面8の境界線84に連続する境界線85(シンニング面8と逃げ面6との間の境界線85)に交わる状態になっている。このことから、図1、図2に示す例では後述の図6、図7に示す例との対比では先端面30を軸方向に見たときの先端面30全体の面積に占めるシンニング面8の面積が拡大し、シンニング面8の切屑収容能力が増す利点がある。 1 and 2 also show that the entire length of the chisel edge 5 is the boundary line between the pair of thinning surfaces 8, 8, and the boundary lines 84, 84 of both thinning surfaces 8, 8 intersect the chisel edge 5 or the rotation axis O. 1 shows an example of fabrication of a drill 1 in the state shown. In this example, when each thinning surface 8 is viewed from the radially outer peripheral side, each boundary line 84 of each thinning surface 8 crosses the rotation axis O shown in FIG. A boundary line 85 (between the thinning surface 8 and the flank 6 border line 85). 1 and 2, the thinning surface 8 occupies the area of the entire tip surface 30 when the tip surface 30 is viewed in the axial direction in comparison with the example shown in FIGS. 6 and 7 described later. There is an advantage that the area is enlarged and the chip accommodation capacity of the thinning surface 8 is increased.

図面ではドリル本体の先端面30を回転軸Oの方向に見たとき、シンニング面8を回転方向前方側の逃げ面6側から回転方向後方側の切屑排出溝7側へかけて1段目シンニング面81とこの1段目シンニング面81より深い2段目シンニング面82とに区分し、1段目シンニング面81と2段目シンニング面82との間に先端面30側へ凸となる稜線(境界線86)を形成している。境界線86は先端面30側へ凸の稜線になることで、切屑が1段目シンニング面81と2段目シンニング面82に沿って円錐形状に丸まりながら成長するときに、切屑を軸方向に分断させる働きをする。 In the drawing, when the tip surface 30 of the drill body is viewed in the direction of the rotation axis O, the first thinning surface 8 is thinned from the side of the flank surface 6 on the front side in the rotation direction to the side of the chip discharge groove 7 on the rear side in the rotation direction. It is divided into a surface 81 and a second-stage thinning surface 82 deeper than the first-stage thinning surface 81, and between the first-stage thinning surface 81 and the second-stage thinning surface 82, a ridge line ( border 86). The boundary line 86 is a convex ridge toward the tip end surface 30, so that when the chips grow along the first-stage thinning surface 81 and the second-stage thinning surface 82 in a conical shape, the chips are axially moved. It works to divide.

図面では特に先端面30を軸方向に見たとき、チゼルエッジ5(直線PP)の延長線が2番面61(内周側2番面61a)の範囲内を通過するようにチゼルエッジ5の方向を調整することで、各切れ刃4の内側刃41(境界線83)を2番面61の回転方向後方側へ寄せ、図6、図7に示す例よりシンニング面8内の容積を増している。 In the drawings, when the tip end face 30 is viewed in the axial direction, the direction of the chisel edge 5 is oriented so that the extension line of the chisel edge 5 (straight line PP) passes within the range of the second surface 61 (inner peripheral second surface 61a). By adjusting, the inner edge 41 (boundary line 83) of each cutting edge 4 is moved to the rear side in the rotation direction of the second surface 61, and the volume in the thinning surface 8 is increased from the examples shown in FIGS. .

なお、1段目シンニング面81と2段目シンニング面82に沿って成長しようとする切屑は1段目シンニング面81と2段目シンニング面82の少なくともいずれか一方に接触し続けることにより捩れ、円錐形状に丸まりながら成長しようとする。この関係で、1段目シンニング面81と2段目シンニング面82が切屑を丸ませようとする上では、1段目シンニング面81と2段目シンニング面82は共に、先端面30を軸方向に見たときに先端面30側へ凹の曲面をなしていることが適切である。両シンニング面81、82が凹曲面をなすことは、シンニング面8内の容積を増すことにもなる。 Chips growing along the first-stage thinning surface 81 and the second-stage thinning surface 82 continue to contact at least one of the first-stage thinning surface 81 and the second-stage thinning surface 82, and are twisted and twisted. Attempts to grow while curling into a cone shape. In this relationship, when the first-stage thinning surface 81 and the second-stage thinning surface 82 try to round the chips, both the first-stage thinning surface 81 and the second-stage thinning surface 82 have the tip end surface 30 in the axial direction. It is appropriate that the curved surface is concave toward the tip surface 30 side when viewed from above. Forming both thinning surfaces 81 and 82 with concave surfaces also increases the volume within the thinning surface 8 .

図6、図7は各(b)に示すようにチゼルエッジ5(直線PP)の、破線で示す延長線が内側刃41(境界線83(稜線PQ))の回転方向前方側を通過し、内側刃41とチゼルエッジとが鈍角をなす場合の製作例(参考例)を示している。この場合、チゼルエッジ5が内側刃41に対して回転方向前方側を向き、内周側2番面61aの範囲内を通過しない関係で、チゼルエッジ5を挟む一対の内側刃41、41間(内側刃41、41の延長線間)に距離が確保され、結果的に内周側2番面61aの回転方向の幅が大きめになる。 6 and 7, as shown in each (b), the chisel edge 5 (straight line PP), the extension line indicated by the dashed line passes the rotation direction front side of the inner blade 41 (boundary line 83 (ridgeline PQ)), the inner side A production example (reference example) in which the blade 41 and the chisel edge form an obtuse angle is shown. In this case, the chisel edge 5 faces forward in the rotational direction with respect to the inner blade 41 and does not pass through the range of the inner peripheral side second surface 61a. 41, 41) is ensured, and as a result, the width in the rotational direction of the inner peripheral side second surface 61a becomes large.

これに対し、図1に示す例では図1の拡大図である図2と図6、図7の各(b)との対比から分かるようにチゼルエッジ5の、破線で示す延長線が2番面61(内周側2番面61a)の範囲内を通過することで、チゼルエッジ5を挟む一対の内側刃41、41間(内側刃41、41の延長線間)に距離が図6、図7に示す例より短縮され、内側刃41が回転方向後方側へ後退している。結果的に図6、図7に示す例より内周側2番面61aの回転方向の幅が相対的に小さくなり、シンニング面8内の容積が増しているため、シンニング面8内での切屑の収容能力が増大し、切屑の詰まりの抑制効果が向上することになる。 On the other hand, in the example shown in FIG. 1, as can be seen from the comparison between FIG. 2, which is an enlarged view of FIG. 1, and each of FIGS. 61 (inner peripheral side second surface 61a), the distance between the pair of inner blades 41, 41 sandwiching the chisel edge 5 (between the extension lines of the inner blades 41, 41) is increased in FIGS. 2, and the inner cutting edge 41 is retracted rearward in the rotational direction. As a result, the width in the direction of rotation of the inner peripheral side second surface 61a is relatively smaller than in the examples shown in FIGS. The storage capacity of is increased, and the effect of suppressing chip clogging is improved.

図7は内側刃41、41(境界線83、83)間距離が図6に示す例より小さい場合の例を、図1は図7に示す例より小さい場合の例を示している。「内側刃41、41間距離が相対的に大きいこと」は2番面61(内周側2番面61a)とその回転方向後方側のシンニング面8との間の境界線84とチゼルエッジ5とのなす角度が相対的に大きいことでもある。図6、図7に示す例では図1に示す例との対比で「内側刃41、41間距離が相対的に大きいこと」の結果、内側刃41とその回転方向後方側の境界線84との間の距離が相対的に大きくなり、内周側2番面61aの回転方向の幅が相対的に大きくなる。 7 shows an example in which the distance between the inner blades 41, 41 (boundary lines 83, 83) is smaller than the example shown in FIG. 6, and FIG. 1 shows an example in which the distance is smaller than the example shown in FIG. ``The distance between the inner blades 41, 41 is relatively large. It is also because the angle formed by is relatively large. In the examples shown in FIGS. 6 and 7, as a result of "the distance between the inner blades 41, 41 being relatively large" in comparison with the example shown in FIG. becomes relatively large, and the width of the inner peripheral second surface 61a in the rotational direction becomes relatively large.

結論として、図1、図2に示すようにチゼルエッジ5(直線PP)の延長線が2番面61の範囲内を通過すれば、チゼルエッジ5の延長線が2番面61の回転方向前方側の境界線83である内側刃41(稜線PQ)の回転方向前方側を通過する場合より内周側2番面61aの回転方向の幅が相対的に小さくなり、シンニング面8内の容積が増すことにつながる。 In conclusion, if the extension of the chisel edge 5 (straight line PP) passes through the range of the second surface 61 as shown in FIGS. The width in the rotational direction of the inner peripheral side second surface 61a is relatively smaller than when passing through the front side in the rotational direction of the inner cutting edge 41 (ridge line PQ), which is the boundary line 83, and the volume within the thinning surface 8 is increased. leads to

図8はシンニング面8とその回転方向前方側が接する2番面61との間の境界線84がチゼルエッジ5の端部(点P)以外の点に交わるようにドリル1を製作した場合(参考例)のチゼルエッジ5とその両端部P、P、及び境界線84の関係を示す。この例のシンニング面8は図1に示す製作例と図6、図7に示す製作例の中間的な形状になる。
FIG. 8 shows the case where the drill 1 is manufactured so that the boundary line 84 between the thinning surface 8 and the second surface 61 with which the front side in the rotational direction is in contact intersects with a point other than the end (point P) of the chisel edge 5 (reference example ) of the chisel edge 5 and its ends P, P and the boundary line 84. FIG. The thinning surface 8 of this example has an intermediate shape between the manufacturing example shown in FIG. 1 and the manufacturing examples shown in FIGS.

1……ドリル(ドリル本体)、
2……シャンク部、
3……刃部、30……先端面、
4……切れ刃、
41……内側刃、42……外側刃、42a……ホーニング、
5……チゼルエッジ、
6……逃げ面、61……2番面、61a……内周側2番面、61b……外周側2番面、62……3番面、
7……切屑排出溝、
8……シンニング面、
81……1段目シンニング面、82……2段目シンニング面、
83……内側刃41とそれが接するシンニング面8(内側刃81とその回転方向前方側のシンニング面8)との間の境界線、
84……シンニング面8とその回転方向前方側が接する2番面61(2番面61とその回転方向後方側のシンニング面8)との間の境界線、
85……シンニング面8とその半径方向外周側が接する逃げ面6(逃げ面6とその回転方向後方側のシンニング面8)との間の境界線、
86……1段目シンニング面81と2段目シンニング面82との間の境界線、
87……シンニング面8と切屑排出溝7との間の境界線、
9……マージン、10……ランド、
O……回転軸、
P……チゼルエッジ5の端部(チゼルエッジ5と内側刃41との交点)、
Q……内側刃41と外側刃42との境界(交点)。
1……drill (drill body),
2 ...... shank part,
3 ... blade portion, 30 ... tip surface,
4 …… cutting edge,
41... inner blade, 42... outer blade, 42a... honing,
5 …… chisel edge,
6... flank, 61... second surface, 61a... second surface on inner peripheral side, 61b... second surface on outer peripheral side, 62... third surface,
7 ... chip discharge groove,
8 …… Thinning surface,
81 …… 1st stage thinning surface, 82 …… 2nd stage thinning surface,
83 Boundary line between the inner blade 41 and the thinning surface 8 with which it contacts (the inner blade 81 and the thinning surface 8 on the front side in the rotational direction),
84 Boundary line between the thinning surface 8 and the second surface 61 (the second surface 61 and the thinning surface 8 on the rear side in the rotation direction) with which the front side in the rotation direction is in contact,
85 Boundary line between the thinning surface 8 and the flank 6 with which the radially outer peripheral side is in contact (the flank 6 and the thinning surface 8 on the rear side in the rotational direction);
86: Boundary line between the first stage thinning surface 81 and the second stage thinning surface 82,
87...... Boundary line between the thinning surface 8 and the chip discharge groove 7,
9......margin, 10...land,
O……Rotating axis,
P ... the end of the chisel edge 5 (the intersection of the chisel edge 5 and the inner cutting edge 41),
Q Boundary (point of intersection) between the inner cutting edge 41 and the outer cutting edge 42 .

Claims (5)

ドリル本体の軸方向先端の先端面に回転方向前方側を向いて形成された一対の切れ刃と、
前記各切れ刃の回転方向後方側に位置する逃げ面の回転方向後方側と前記切れ刃との間に形成された切屑排出溝と、
前記各逃げ面の回転方向後方側と前記切屑排出溝との間に形成された一対のシンニング面とを備え、
前記一対のシンニング面間に前記ドリル本体の回転軸上を通り前記シンニング面に接するチゼルエッジが形成されたドリルであり、
前記切れ刃は前記チゼルエッジの端部から前記先端面の半径方向外周側に連続する内側刃と、この内側刃より半径方向外周側に連続する外側刃とに区分され、
前記逃げ面の内、前記切れ刃の回転方向後方側に連続して形成された2番面の少なくとも前記内側刃の区間の回転方向の幅は半径方向外周側へ向かって次第に拡大する形状に形成され、
前記チゼルエッジの全長が前記一対のシンニング面の境界線であり、前記ドリル本体の前記先端面を前記回転軸の方向に見たとき、前記チゼルエッジの延長線の全長は前記内側刃に重ならずに、前記2番面の範囲内を通過している ことを特徴とするドリル。
a pair of cutting edges formed on the tip surface of the axial tip of the drill body facing forward in the rotational direction;
A chip discharge groove formed between the cutting edge and a flank located on the rear side in the rotation direction of each cutting edge in the rotation direction,
A pair of thinning surfaces formed between the rear side of each flank in the rotational direction and the chip discharge groove,
Passing on the rotation axis of the drill body between the pair of thinning surfaces,A drill having a chisel edge in contact with the thinning surface,
The cutting edge is divided into an inner edge that continues from the end of the chisel edge to the radially outer peripheral side of the tip surface, and an outer edge that continues from the inner edge to the radially outer peripheral side,
Of the flanks, the width in the rotational direction of at least the section of the inner edge of the second surface formed continuously on the rear side in the rotational direction of the cutting edge is formed in a shape that gradually expands radially toward the outer peripheral side. is,
The total length of the chisel edge is the boundary line between the pair of thinning surfaces, and when the tip end surface of the drill body is viewed in the direction of the rotation axis, the total length of the extended line of the chisel edge does not overlap the inner cutting edge. , passing through the second range A drill characterized by:
前記シンニング面は前記先端面の半径方向には、前記チゼルエッジを挟んだ片側に付き、前記一対の切れ刃の内、一方の前記切れ刃の前記内側刃と前記外側刃の境界から前記チゼルエッジを経由し、前記一対の切れ刃の内、他方の前記切れ刃の前記内側刃と前記外側刃の境界の回転方向後方側の位置にまで形成されていることを特徴とする請求項に記載のドリル。 The thinning surface is attached to one side of the tip surface in the radial direction across the chisel edge, and passes through the chisel edge from the boundary between the inner edge and the outer edge of one of the pair of cutting edges. 2. The drill according to claim 1 , wherein, of the pair of cutting edges, it is formed up to a position on the rear side in the rotational direction of the boundary between the inner cutting edge and the outer cutting edge of the other cutting edge. . 前記2番面は前記先端面の半径方向には、前記チゼルエッジの端部から前記内側刃と前記外側刃の境界までを含む区間の内周側2番面と、この内周側2番面の半径方向外周側に連続する外周側2番面とに区分され、
前記内側刃と前記外側刃の境界、もしくはその付近から形成される前記シンニング面は前記内周側2番面の回転方向後方側と前記外周側2番面の前記切屑排出溝側に連続する曲面を有していることを特徴とする請求項に記載のドリル。
In the radial direction of the tip surface, the second surface is the inner second surface of the section including the end of the chisel edge to the boundary between the inner cutting edge and the outer cutting edge, and the inner second surface of the inner peripheral second surface. It is divided into the second surface on the outer peripheral side that is continuous with the outer peripheral side in the radial direction,
The thinning surface formed from the boundary between the inner cutting edge and the outer cutting edge, or the vicinity thereof, is a curved surface that continues to the rear side of the second surface on the inner peripheral side in the rotation direction and the second surface on the outer peripheral side to the chip discharge groove side. 3. A drill according to claim 2 , comprising:
前記外周側2番面の回転方向後方側に3番面が連続して形成され、前記シンニング面は前記外周側2番面の前記切屑排出溝側から前記3番面の前記切屑排出溝側に連続して形成されていることを特徴とする請求項に記載のドリル。 A third surface is formed continuously on the rear side of the second surface on the outer peripheral side in the rotational direction, and the thinning surface extends from the chip discharge groove side of the second surface on the outer peripheral side to the chip discharge groove side of the third surface. 4. A drill according to claim 3 , characterized in that it is formed continuously. 前記ドリル本体の前記先端面を前記回転軸の方向に見たとき、前記シンニング面は回転方向前方側の前記逃げ面側から回転方向後方側の前記切屑排出溝側へかけて1段目シンニング面とこの1段目シンニング面より深い2段目シンニング面とに区分されている特徴とする請求項1乃至請求項のいずれかに記載のドリル。 When the tip surface of the drill body is viewed in the direction of the rotating shaft, the thinning surface is a first-stage thinning surface extending from the flank surface on the front side in the rotation direction to the chip discharge groove side on the rear side in the rotation direction. 5. A drill according to any one of claims 1 to 4 , characterized in that it is divided into a second-stage thinning surface deeper than the first-stage thinning surface.
JP2018083817A 2018-04-25 2018-04-25 Drill Active JP7185127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083817A JP7185127B2 (en) 2018-04-25 2018-04-25 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083817A JP7185127B2 (en) 2018-04-25 2018-04-25 Drill

Publications (2)

Publication Number Publication Date
JP2019188525A JP2019188525A (en) 2019-10-31
JP7185127B2 true JP7185127B2 (en) 2022-12-07

Family

ID=68391529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083817A Active JP7185127B2 (en) 2018-04-25 2018-04-25 Drill

Country Status (1)

Country Link
JP (1) JP7185127B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill
JP7422442B1 (en) 2023-06-23 2024-01-26 株式会社メドメタレックス Drill

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115750A (en) 2008-11-13 2010-05-27 Mitsubishi Materials Corp Cemented carbide twist drill
WO2011151155A1 (en) 2010-05-31 2011-12-08 Seco Tools Ab Cutting head and twist drill
JP2012529375A (en) 2009-06-08 2012-11-22 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Drill bit
WO2016158463A1 (en) 2015-03-30 2016-10-06 三菱日立ツール株式会社 Drill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115750A (en) 2008-11-13 2010-05-27 Mitsubishi Materials Corp Cemented carbide twist drill
JP2012529375A (en) 2009-06-08 2012-11-22 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Drill bit
WO2011151155A1 (en) 2010-05-31 2011-12-08 Seco Tools Ab Cutting head and twist drill
WO2016158463A1 (en) 2015-03-30 2016-10-06 三菱日立ツール株式会社 Drill

Also Published As

Publication number Publication date
JP2019188525A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
KR101359119B1 (en) End mill
JP5823840B2 (en) Drill and cutting method
JP7352106B2 (en) Drill
JP6473761B2 (en) End mill and method of manufacturing cut product
JP3196394B2 (en) Indexable tip
JP6508212B2 (en) Ceramic end mill and cutting method of difficult-to-cut materials using the same
WO2013137021A1 (en) Ball end mill comprising coolant holes
JP2017013231A (en) drill
WO2017038763A1 (en) End mill and manufacturing method for cut work
JP6359419B2 (en) drill
JP7185127B2 (en) Drill
TWI766145B (en) End mill having a peripheral cutting edge with a variable angle configuration
CN105636729A (en) Roughing end mill
JP4677722B2 (en) 3-flute ball end mill
JP5956705B1 (en) End mill
JP5470796B2 (en) Overall cutter
JP2004268230A (en) Drill
JP6519971B2 (en) drill
JP2006015418A (en) End mill for longitudinal feed machining
JP7089171B2 (en) End mill
JP6704132B2 (en) Ball end mill
JP5969287B2 (en) drill
JP4992460B2 (en) End mill
JP6028841B2 (en) Ball end mill
JP7473818B2 (en) End Mills

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7185127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150