JP6519971B2 - drill - Google Patents

drill Download PDF

Info

Publication number
JP6519971B2
JP6519971B2 JP2014005578A JP2014005578A JP6519971B2 JP 6519971 B2 JP6519971 B2 JP 6519971B2 JP 2014005578 A JP2014005578 A JP 2014005578A JP 2014005578 A JP2014005578 A JP 2014005578A JP 6519971 B2 JP6519971 B2 JP 6519971B2
Authority
JP
Japan
Prior art keywords
cutting edge
thinning
front side
thinning surface
rear side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014005578A
Other languages
Japanese (ja)
Other versions
JP2015131384A (en
Inventor
真弘 古野
真弘 古野
武則 清水
武則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Mitsubishi Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Tool Engineering Ltd filed Critical Mitsubishi Hitachi Tool Engineering Ltd
Priority to JP2014005578A priority Critical patent/JP6519971B2/en
Publication of JP2015131384A publication Critical patent/JP2015131384A/en
Application granted granted Critical
Publication of JP6519971B2 publication Critical patent/JP6519971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は主として工作機械等で使用され、金属への穴あけ加工時の切り屑排出性を高め、特に高送りでの穴あけ加工時にも切り屑の生成を促し、切り屑の詰まりを抑制する機能を持たせたドリルに関するものである。   The present invention is mainly used in machine tools and the like, and has a function of enhancing chip dischargeability in metal drilling, particularly promoting chip formation even in high feed drilling and suppressing chip clogging. It relates to the drill I had.

金型加工や部品加工等、工作機械に保持されて使用される穴あけ用ドリルによる加工では、切り屑の詰まり等によるドリルの損傷がドリルの寿命を早めるため、切り屑の排出性を高めることがドリルを製作する上での一つの目標になる。切れ刃が生成する切り屑の形状はドリルの食い付き開始時とその後の切削時とで異なるが、食い付き時以降には主に切れ刃が切り屑を生成し、切れ刃のすくい面に沿って成長させ、すくい面に面する溝へ排出させるため、切れ刃のすくい面と溝の形状との関係が切り屑の排出性を決定付ける要素になる。   In machining with a drilling drill held and used by machine tools such as mold processing and parts processing, damage to the drill due to chip clogging etc. shortens the life of the drill, so that the chip dischargeability can be improved It becomes one goal in making a drill. The shape of the chips generated by the cutting edge differs depending on when the drill bites and starts cutting, but after the biting, the cutting edge mainly generates chips, and along the cutting face of the cutting edge The relationship between the rake face of the cutting edge and the shape of the groove is a factor that determines the chip dischargeability, as it is grown and discharged to the groove facing the rake face.

切れ刃の半径方向中心側の回転方向前方側から、隣接する切れ刃の逃げ面の回転方向後方側までには、チゼルエッジの長さを短縮し、切削時のスラストを低減するシンニング部が形成されるが、このシンニング部は切れ刃の回転方向前方側の切れ刃側シンニング面と逃げ面の回転方向後方側の逃げ面側シンニング面から構成される。切れ刃側シンニング面は切れ刃の内、半径方向中心側の副切れ刃のすくい面を兼ね、逃げ面側シンニング面は切り屑排出用の溝に連続するため、切り屑の排出上、両シンニング面の交差部分は連続性を持つことが適切であり、凹曲面状に形成される(特許文献1〜5参照)。   A thinning portion is formed to shorten the length of the chisel edge and reduce the thrust during cutting from the rotation direction front side on the radial center side of the cutting edge to the rotation direction rear side of the flank of the adjacent cutting edge. However, this thinning portion is composed of a cutting edge side thinning surface on the front side in the rotational direction of the cutting edge and a flank surface thinning surface on the rear side in the rotational direction of the flank surface. The cutting edge side thinning surface also serves as the rake surface of the minor cutting edge on the radial center side of the cutting edge, and the flank surface thinning surface is continuous with the groove for chip discharge, so both chips are discharged. It is appropriate that the intersections of the surfaces have continuity, and they are formed in a concave curve (see Patent Documents 1 to 5).

切れ刃側シンニング面と逃げ面側シンニング面の交差部分である溝底が凹曲面状に形成されることで、副切れ刃が切削し、生成した切り屑が切れ刃側シンニング面(すくい面)に誘導されながら、逃げ面側シンニング面側へ送り込まれ、そのまま回転して切り屑排出用の溝へ排出されようとするため、切り屑の排出性が向上する利点があると考えられる(特許文献1)。   The groove bottom which is the intersection of the cutting edge side thinning surface and the flank side thinning surface is formed in a concave surface shape, and the sub cutting edge is cut, and the generated chips are on the cutting edge side thinning surface (rake surface) It is considered that there is an advantage that the chip dischargeability is improved because it is sent to the flank side thinning surface side while being guided to be rotated and discharged as it is into the groove for chip discharge. 1).

但し、切れ刃は半径方向には外周側の主切れ刃と内周(中心)側の、切れ刃側シンニング面に面する副切れ刃(シンニング刃)に区分され、副切れ刃が切削した切り屑は逃げ面側シンニング面側へ送り込まれようとし(特許文献1)、切り屑は副切れ刃のすくい面となる切れ刃側シンニング面に沿って成長しようとするため、生成される切り屑を成長させながら溝へ排出させる上では、シンニング部の溝底が凹曲面状であるだけでは十分とは言い難い。   However, the cutting edge is divided in the radial direction into the main cutting edge on the outer circumference side and the minor cutting edge (sinning blade) facing the cutting edge side thinning surface on the inner circumference (center) side, and the minor cutting edge is cut The chips are sent to the flank side thinning surface side (Patent Document 1), and the chips are grown along the cutting edge side thinning surface which becomes the rake surface of the sub cutting edge, so the generated chips are It is difficult to say that the groove bottom of the thinning portion is concave-curved only in order to discharge it into the groove while growing it.

切れ刃の内、主切れ刃が切削し、生成する切り屑は溝の表面に沿って成長し、そのままカールした形で溝から排出されるが(特許文献5)、副切れ刃は主切れ刃とは異なる方向を向くことから、副切れ刃が切削した切り屑は切れ刃側シンニング面(すくい面)から逃げ面側シンニング面側へ送り込まれた後に溝へ排出されようとするため、主切れ刃が切削した切り屑と同様には処理できないと考えられる。   Among the cutting edges, the main cutting edge cuts, and the chips generated are grown along the surface of the groove and discharged from the groove in a curled form as it is (Patent Document 5), but the minor cutting edge is the main cutting edge Since the chips cut by the minor cutting edge are sent from the cutting edge side thinning surface (rake surface) to the flank side thinning surface side and then discharged into the groove, the main cutting edge It is believed that the blade can not be processed as well as cut chips.

特許文献1〜4ではドリルの回転軸(中心)に関して点対称位置で対になるシンニング面を互いにオーバーラップするように形成することで、シンニング部の容積を拡大し、切り屑の排出性を高めているが、シンニング面自体が全体として連続した曲面をなしていないため、切り屑はシンニング部内で円滑に生成されにくいと想像される。   In patent documents 1 to 4, the thinning surfaces which are paired at point symmetrical positions with respect to the rotation axis (center) of the drill are formed so as to overlap each other, thereby expanding the volume of the thinning portion and enhancing the chip dischargeability. However, since the thinning surface itself does not form a continuous curved surface as a whole, it is imagined that chips are difficult to be generated smoothly in the thinning portion.

特許文献5では切れ刃(シンニング刃5)のすくい面8とは別に切れ刃側シンニング面(第1のシンニング面6)を形成し、切れ刃すくい面8と切れ刃側シンニング面6との交差部を凹曲面に形成することで、すくい面8と切れ刃側シンニング面6との間の連続性を確保している(請求項2、図4−(b))。   In Patent Document 5, the cutting edge side thinning surface (first thinning surface 6) is formed separately from the rake surface 8 of the cutting edge (thinning blade 5), and the intersection of the cutting edge rake surface 8 and the cutting edge side thinning surface 6 By forming the portion in a concave surface, continuity between the rake surface 8 and the cutting edge side thinning surface 6 is secured (claim 2, FIG. 4- (b)).

特開2003−266225号公報(請求項1、段落0012、0014、0017、図2)JP, 2003-266225, A (claim 1, paragraphs 0012, 0014, 0017, FIG. 2) 特開2009−18360号公報(段落0012、0017、0024、図3)JP, 2009-18360, A (paragraph 0012, 0017, 0024, FIG. 3) 特開2008−296313号公報(請求項1、段落0023、図3、図6)JP, 2008-296313, A (claim 1, paragraph 0023, FIG. 3, FIG. 6) 特開2008−213121号公報(段落0018、図3)JP 2008-213121 A (paragraph 0018, FIG. 3) 特開2001−79707号公報(請求項2、段落0010〜0018、図2、図4)Unexamined-Japanese-Patent No. 2001-79707 (Claim 2, paragraphs 0010-0018, FIG. 2, FIG. 4)

しかしながら、前記のように副切れ刃が切削した切り屑は副切れ刃のすくい面となる切れ刃側シンニング面に沿って成長しようとすることから、切れ刃側シンニング面と逃げ面側シンニング面との交差部を含め、両シンニング面の全体が曲面として連続していなければ、不連続となる境界線から切り屑に抵抗が作用することが想定されるため、切り屑の成長が阻害される可能性がある。   However, since the chips cut by the minor cutting edge try to grow along the cutting edge side thinning surface which is the rake face of the minor cutting edge as described above, the cutting edge side thinning surface and the flank surface thinning surface If the whole of both thinning surfaces is not continuous as a curved surface, including the intersection of the two, it is assumed that the resistance acts on the chips from the discontinuous boundaries, which may inhibit the growth of the chips. There is sex.

本発明は上記背景より、シンニング部内での切り屑の生成と成長を促し、切り屑の分断や詰まりが生じにくい形態のドリルを提案するものである。   From the above background, the present invention proposes a drill in a form that promotes the generation and growth of chips in the thinning section and is less likely to cause division and clogging of chips.

請求項1に記載の発明のドリルは、シャンク部の軸方向先端部側に、複数枚の切れ刃と、周方向に隣接する前記切れ刃間に溝を有する刃部を備え、前記切れ刃が半径方向外周側の主切れ刃とこの主切れ刃に連続し、前記主切れ刃の半径方向中心側に位置する副切れ刃からなり、前記各切れ刃の逃げ面の回転方向後方側に前記溝に面するシンニング部が形成されたドリルであり、
前記シンニング部が前記逃げ面の回転方向後方側に形成される前方側シンニング面と、前記副切れ刃の回転方向前方側に形成され、前記副切れ刃のすくい面を兼ねる後方側シンニング面から構成され、
前記後方側シンニング面と前記前方側シンニング面がそれぞれ曲面を形成しながら、前記後方側シンニング面から前記前方側シンニング面へかけて連続した曲面を形成し、この前記前方側シンニング面が前記刃部の外周面にまで連続し
前記後方側シンニング面と前記前方側シンニング面が、前記副切れ刃の長さ方向に前記副切れ刃の区間に相当する幅を有したまま、半径方向外周側まで帯状に連続し、前記後方側シンニング面及び前記前方側シンニング面と前記逃げ面との境界線が半径方向外周側まで前記シンニング部側が凹の曲線を描いていることを特徴とする。
The drill of the invention according to claim 1 comprises a plurality of cutting edges and a cutting edge having a groove between the cutting edges adjacent in the circumferential direction on the axial direction tip end side of the shank portion, the cutting edge being a cutting edge It consists of a main cutting edge on the outer peripheral side in the radial direction and a sub cutting edge located on the radial center side of the main cutting edge following the main cutting edge, and the groove on the rear side in the rotational direction of the flank of each cutting edge A drill with a thinning section facing the
The thinning portion is configured by a front side thinning surface formed on the rotational direction rear side of the flank surface, and a rear side thinning surface formed on the rotational direction front side of the sub cutting edge and also serving as a rake surface of the sub cutting edge. And
The back side thinning surface and the front side thinning surface respectively form a curved surface, and the back side thinning surface forms a continuous curved surface from the back side thinning surface to the front side thinning surface, and the front side thinning surface is the blade portion Continue to the outer peripheral surface of the
The rear side thinning surface and the front side thinning surface continue in a band shape to the radially outer peripheral side while having a width corresponding to a section of the sub cutting edge in the length direction of the sub cutting edge, the rear side It is characterized in that the thinning surface and the boundary line between the front side thinning surface and the flank surface draw a concave curve to the outer peripheral side in the radial direction .

切れ刃は図1に示すように半径方向外周側に位置し、溝5に面する主切れ刃51と、主切れ刃51に連続し、主切れ刃51の半径方向中心側に位置する副切れ刃52とに区分される。「半径方向」とは、ドリル1の回転軸(中心)Oに直交する断面上、ドリル1の回転軸Oを通る直線(直径)の方向を言う。シンニング部30は前方側シンニング面31と後方側シンニング面32から構成され、前方側シンニング面31は逃げ面100の回転方向後方側の端縁(逃げ面側境界線Q)から回転方向後方側に形成される。「回転方向」とは、図1に矢印Rで示すドリル1の回転する向きを言い、ドリル1の外周面が進む側を前方側、反対側を後方側と言う。   The cutting edge is located radially outward as shown in FIG. 1 and is a main cutting edge 51 facing the groove 5 and the main cutting edge 51, and a secondary cutting edge located on the radial center side of the main cutting edge 51. It is divided into blades 52. The “radial direction” refers to the direction of a straight line (diameter) passing through the rotation axis O of the drill 1 on a cross section orthogonal to the rotation axis (center) O of the drill 1. The thinning portion 30 comprises a front side thinning surface 31 and a rear side thinning surface 32. The front side thinning surface 31 is on the rear side in the rotational direction from the edge on the rear side in the rotational direction of the flank 100 (space side boundary line Q). It is formed. The “rotational direction” refers to the rotational direction of the drill 1 indicated by the arrow R in FIG. 1. The side on which the outer peripheral surface of the drill 1 advances is referred to as the front side, and the opposite side is referred to as the rear side.

後方側シンニング面32は副切れ刃52のすくい面を兼ねるため、副切れ刃52の区間から回転方向前方側に形成されて前方側シンニング面31に連続する。この後方側シンニング面32と前方側シンニング面31がそれぞれ曲面をなしながら、後方側シンニング面32から前方側シンニング面31へかけて連続した曲面を形成する。後方側シンニング面32と前方側シンニング面31との間には明確な境界線はない。   The rear side thinning surface 32 is formed on the front side in the rotational direction from the section of the sub cutting edge 52 so as to serve as the rake surface of the sub cutting edge 52 and continues to the front side thinning surface 31. The rear side thinning surface 32 and the front side thinning surface 31 form curved surfaces continuous from the rear side thinning surface 32 to the front side thinning surface 31 while forming the curved surfaces. There is no clear boundary between the rear side thinning surface 32 and the front side thinning surface 31.

後方側シンニング面32と前方側シンニング面31が形成する連続した曲面は、例えばドリル1の刃部2側からシャンク部3側へかけ、回転方向前方側から後方側へ向かって傾斜した直線(母線)が半径方向中心側から半径方向外周側へ向かい、ある曲線に沿って平行移動して描く曲面であり、曲率が連続的に変化する曲面である(請求項2)。但し、段差のない連続した曲面であれば、曲面の形態は問われない。母線が移動する曲線は例えばクロソイド曲線のように曲率が連続して変化する曲線であり(請求項3)、その場合の曲率(曲率半径)は半径方向中心側から半径方向外周側へかけて次第に小さく(大きく)なり、母線は「曲率が連続的に変化する曲面」を描く。クロソイド曲線は直線を含み得る(直線から曲線に移行し得る)ため、母線がクロソイド曲線に沿って移動したときにできる曲面である後方側シンニング面32と前方側シンニング面31には平面(平坦面)が含まれることもある。   A continuous curved surface formed by the rear side thinning surface 32 and the front side thinning surface 31 is, for example, a straight line inclined from the blade portion 2 side of the drill 1 to the shank portion 3 side and inclined from the front side to the rear side in the rotational direction ) Is a curved surface drawn from the radial center side toward the radially outer peripheral side and moved in parallel along a certain curve, and is a curved surface whose curvature changes continuously (claim 2). However, the form of the curved surface does not matter as long as it is a continuous curved surface without steps. The curve on which the generatrix moves is, for example, a curve whose curvature changes continuously as in the case of a clothoid curve (claim 3), and the curvature (curvature radius) in that case is gradually increasing from the radial center side to the radial outer side It becomes smaller (larger) and the generatrix draws a "curved surface whose curvature changes continuously". Since the clothoid curve may include a straight line (it may be transitioned from a straight line to a curve), the rear side thinning surface 32 and the front side thinning surface 31 which are curved surfaces generated when the generatrix moves along the clothoid curve are flat (flat surface May be included.

図2には曲面を描く母線が移動する曲線を破線で示しており、この曲線は後方側シンニング面32から前方側シンニング面31にかけての領域を例えば図4にz−z線で示す、後方側シンニング面32から前方側シンニング面31へかけ、先端部側からシャンク部3側へ向かって傾斜した平面で切断したときに表れる切断線を示している。図5は後方側シンニング面32から前方側シンニング面31にかけての領域を図2のy−y線を通る切断面で切断したときの断面を概略的に示し、図6は回転軸Oに直交する、図4にx−x線で示す切断面で切断したときの切断面を示している。   In FIG. 2, a curved line on which a generating line describing a curved surface moves is indicated by a broken line, and this curve is a rear side indicated by an area from the rear side thinning surface 32 to the front side thinning surface 31 by z-z line in FIG. A cutting line that appears when cutting from a thinning surface 32 to the front side thinning surface 31 and cutting with a plane inclined from the tip side toward the shank 3 is shown. 5 schematically shows a cross section when the region from the rear side thinning surface 32 to the front side thinning surface 31 is cut by a cutting plane passing through the yy line of FIG. 2 and FIG. 6 is orthogonal to the rotation axis O FIG. 4 shows a cut surface when cut by a cut surface indicated by the line x-x.

後方側シンニング面32と前方側シンニング面31のそれぞれが曲面をなし、且つ後方側シンニング面32から前方側シンニング面31へかけて連続した曲面を形成することで、後方側シンニング面32の副切れ刃52側の端縁から前方側シンニング面31の端縁である外周面(2番取り面12)までの領域は段差がない連続した曲面になる。この結果、副切れ刃52が切削して形成した切り屑は副切れ刃52のすくい面である後方側シンニング面32に沿って回転しながら成長し、ドリルの回転に伴って前方側シンニング面31側へ送り込まれ、そのまま溝5へ排出されようとするため、切り屑が溝5に到達するまでの間にシンニング部30内では分断されにくくなり、シンニング部30内での詰まりが生じにくくなる。   Each of the rear side thinning surface 32 and the front side thinning surface 31 has a curved surface, and a continuous curved surface extending from the rear side thinning surface 32 to the front side thinning surface 31 forms a sub-cut of the rear side thinning surface 32. A region from the edge on the blade 52 side to the outer peripheral surface (the second chamfered surface 12) which is the edge of the front side thinning surface 31 is a continuous curved surface without a step. As a result, the chips formed by cutting by the minor cutting edge 52 grow while rotating along the rear side thinning surface 32 which is the rake face of the minor cutting edge 52, and along with the rotation of the drill, the anterior side thinning surface 31 Since it is sent to the side and is intended to be discharged to the groove 5 as it is, it becomes difficult to be divided in the thinning portion 30 until the chips reach the groove 5, and clogging in the thinning portion 30 becomes difficult to occur.

特に後方側シンニング面32の副切れ刃52側の端縁から前方側シンニング面31の端縁までの領域が、曲率が連続的に変化する曲面を形成する場合(請求項2、3)には、曲面が不連続である場合に生じる突起になり得る不連続な境界線がなく、切り屑が成長する過程でシンニング面32、31から分断する力を受けにくくなるため、切り屑の成長と溝5への排出が円滑に生じ易くなる。図2に破線で示すように曲面の曲率が半径方向中心側から半径方向外周側へかけて次第に小さくなる場合(請求項3)には、切り屑がカールして成長するときに、シンニング面32、31が次第に増大する切り屑の外形寸法に対応した案内面になるため、切り屑の成長がより促されることになる。   In particular, when the area from the end edge of the rear side thinning surface 32 on the side of the sub cutting edge 52 to the end edge of the front side thinning surface 31 forms a curved surface with continuously changing curvature (claims 2 and 3) Since there is no discontinuous boundary line which may become a projection which is generated when the curved surface is discontinuous, and it becomes difficult to receive a force to separate from the thinning surfaces 32 and 31 in the process of chip growth, chip growth and grooves Discharge to 5 is likely to occur smoothly. As shown by the broken line in FIG. 2, when the curvature of the curved surface gradually decreases from the radial center toward the outer peripheral side in the radial direction (claim 3), when the chips curl and grow, the thinning surface 32 , 31 become the guide surface corresponding to the chip dimensions which gradually increase, so that the chip growth is more promoted.

切れ刃50の内、主切れ刃51が切削した切り屑と、副切れ刃52が切削した切り屑を分割させて生成させることは、切れ刃50の回転方向前方側にホーニング面15を形成し、このホーニング面15の回転方向前方側の、主切れ刃51と副切れ刃52の境界位置に、この境界位置以外の前記主切れ刃51と前記副切れ刃52より回転方向前方側に突出する突出部15aを形成することで確実になる(請求項4)。突出部15aの溝5側(回転方向前方側)の先端V1は図2、図3に示すようにホーニング面15と後方側シンニング面32との間のシンニング面側境界線W1と、ホーニング面15と溝5との間の溝側境界線W2と、後方側シンニング面32と溝5との間の外周側境界線W3とが交わる点に該当する。 In the cutting edge 50, the chip produced by cutting the main cutting edge 51 and the chip produced by cutting the secondary cutting edge 52 are divided to form the honing surface 15 on the front side in the rotational direction of the cutting edge 50. At a boundary position between the main cutting edge 51 and the sub cutting edge 52 on the front side of the honing surface 15 in the rotational direction, it protrudes forward in the rotational direction from the main cutting edge 51 and the sub cutting edge 52 other than the boundary position. It becomes reliable by forming the protrusion 15a (claim 4). The tip V1 of the groove 5 side (the front side in the rotational direction) of the projecting portion 15a is the thinning surface side boundary line W1 between the honing surface 15 and the rear side thinning surface 32 as shown in FIG. 2 and FIG. This corresponds to a point where the groove side boundary line W2 between the groove 5 and the groove 5 and the outer peripheral side boundary line W3 between the rear side thinning surface 32 and the groove 5 intersect.

切れ刃50に形成されるホーニング面15の回転方向前方側の、主切れ刃51と副切れ刃52の境界位置に、回転方向前方側に突出する突出部15aが形成されることで、切れ刃50が被削材を切削するときに突出部15aの先端が切り屑を主切れ刃51側と副切れ刃52側とに切り離す(分離させる)働きをするため、切れ刃50が被削材の切削を開始するときから、切り屑を主切れ刃51が生成する切り屑と副切れ刃52が生成する切り屑とに分割させることが可能になる。   A cutting edge is formed by forming a projecting portion 15a projecting to the front side in the rotational direction at the boundary position between the main cutting edge 51 and the sub cutting edge 52 on the front side in the rotational direction of the honing surface 15 formed on the cutting edge 50 Since the tip of the projecting portion 15a separates the chips into the main cutting edge 51 and the sub cutting edge 52 when the cutting material 50 cuts the material, the cutting edge 50 is a material to be cut. From the start of cutting, it is possible to divide the chips into chips generated by the main cutting edge 51 and chips generated by the secondary cutting edge 52.

主切れ刃51が生成する切り屑と副切れ刃52が生成する切り屑が互いに分割されることで、主切れ刃51が生成する切り屑を溝5内で成長させながら溝5から排出する一方、副切れ刃52が生成する切り屑を前方側シンニング面31へ送り込みながら成長させた後に、溝5へ排出することが可能になる。切り屑の生成当初から切り屑が分割されることで、切れ刃50が生成する切り屑が分割されない場合との対比では、溝5内へ直接、処理される切り屑とシンニング部30内を経由してから溝5へ処理される切り屑とに分割されて排出されるため、シンニング部30内、あるいは溝5内で切り屑が詰まる可能性が低下し、切り屑の排出性が向上する。   While the chips generated by the main cutting edge 51 and the chips generated by the sub cutting edge 52 are separated from each other, the chips generated by the main cutting edge 51 are discharged from the groove 5 while being grown in the groove 5 After the chips generated by the secondary cutting edge 52 are grown while being fed to the front side thinning surface 31, they can be discharged into the groove 5. In contrast to the case where the chips generated by the cutting edge 50 are not divided because the chips are divided from the beginning of the generation of the chips, the chips to be processed directly into the groove 5 are passed through the inside of the chips and the thinning portion 30. Then, since it is divided and discharged into the chips to be processed into the grooves 5, the possibility of the chips being clogged in the thinning portion 30 or in the grooves 5 is reduced, and the discharge performance of the chips is improved.

特に図2、図3に示すように突出部15aの回転方向前方側の先端V1から後方側シンニング面32と溝5との間の外周側境界線W3がシャンク部3側へ向かって連続し、外周側境界線W3が凸の稜線をなしている場合(請求項5)には、先端V1から外周側境界線W3にかけての区間が切り屑を半径方向外周側と中心側に分断させる刃の役目を果たすため、切れ刃50が生成する切り屑を主切れ刃51側と副切れ刃52側とに分割させる効果が高まり、切り屑の分割による排出効果が向上する。   Particularly, as shown in FIG. 2 and FIG. 3, an outer peripheral side boundary line W3 between the rear side thinning surface 32 and the groove 5 continues from the tip V1 on the front side in the rotational direction of the projection 15a toward the shank 3 side, In the case where the outer peripheral side boundary line W3 forms a convex ridge line (claim 5), the section from the tip V1 to the outer peripheral side boundary line W3 serves as a blade that divides chips into the radially outer peripheral side and the central side Therefore, the effect of dividing the chips generated by the cutting blade 50 into the main cutting edge 51 and the sub cutting edge 52 is enhanced, and the discharge effect by the division of the chips is improved.

副切れ刃のすくい面を兼ねる後方側シンニング面とその回転方向前方側の前方側シンニング面のそれぞれが曲面をなし、後方側シンニング面から前方側シンニング面へかけて連続した曲面を形成し、後方側シンニング面の副切れ刃側の端縁から前方側シンニング面の端縁である外周面(2番取り面)までの領域を段差がない連続した曲面にするため、副切れ刃が切削して形成した切り屑を後方側シンニング面に沿って成長させ、そのまま溝へ排出することができる。この結果、切り屑がシンニング部内で分断しにくくし、シンニング部内で詰まりにくくすることができる。   Each of the rear side thinning surface that doubles as the rake surface of the minor cutting edge and the front side thinning surface on the front side in the rotational direction form a curved surface, forming a continuous curved surface from the rear side thinning surface to the front side thinning surface, In order to make the area from the edge on the minor cutting edge side of the side thinning surface to the outer peripheral surface (No. 2 chamfered surface) which is the edge of the front side thinning surface to be a continuous curved surface without steps, the minor cutting edge is cut The formed chips can be grown along the rear side thinning surface and discharged directly into the groove. As a result, it is possible to make it difficult for the chips to be separated in the thinning portion and to prevent clogging in the thinning portion.

特に後方側シンニング面の副切れ刃側の端縁から前方側シンニング面の端縁までの領域が、曲率が連続的に変化する曲面を形成する場合には、切り屑が成長する過程でシンニング面から分断する力を受けにくくすることができるため、切り屑の成長と溝への排出を円滑に生じ易くすることができる。   In particular, when the area from the edge on the minor cutting edge side of the rear side thinning surface to the end edge of the front side thinning surface forms a curved surface in which the curvature changes continuously, the thinning surface in the process of chip growth Since it can be made hard to receive the force which divides from, it can be made easy to produce the growth of a chip, and discharge | emission to a groove | channel smoothly.

刃部をドリルの軸方向に見たときの、切れ刃とシンニング部の様子を示した端面図である。It is an end elevation showing the state of the cutting edge and the thinning portion when the blade portion is viewed in the axial direction of the drill. ドリルの軸方向に対して傾斜した角度で図1に示す刃部を見た様子を示した端面図である。It is the end elevation which showed a mode that the blade part shown in FIG. 1 was seen at the angle inclined with respect to the axial direction of a drill. 図2の副切れ刃部分の拡大図である。It is an enlarged view of the minor cutting edge part of FIG. 図1のa−a線の矢視図である。It is an arrow line view of the aa line | wire of FIG. 図2のy−y線の断面の概略図である。It is the schematic of the cross section of the yy line of FIG. 図4のx−x線の断面図である。It is sectional drawing of the xx line of FIG. ドリルの全体を示した側面図である。It is a side view showing the whole of a drill.

図1は図7に示すようにシャンク部3の軸方向先端部側に、複数枚の切れ刃50と、周方向に隣接する切れ刃50、50間に切り屑排出用の溝5を有する刃部2を備え、各切れ刃50の逃げ面100の回転方向後方側に溝5に面するシンニング部30が形成されたドリル1の刃部2の端面を示す。刃部2の先端部である刃先部4はドリル1の回転方向に均等に形成される複数の逃げ面100からなり、各逃げ面100の回転方向前方側に切れ刃50が形成され、回転方向後方側にシンニング部30が形成される。切れ刃50は半径方向外周側の主切れ刃51と、主切れ刃51に連続し、主切れ刃51の半径方向中心側に位置する副切れ刃52からなる。図面では切れ刃50が2枚の場合の例を示しているが、切れ刃50は3枚以上の場合もある。   FIG. 1 shows a blade having a plurality of cutting edges 50 and a groove 5 for discharging chips between cutting edges 50 adjacent to each other in the circumferential direction on the tip end side in the axial direction of the shank portion 3 as shown in FIG. The end surface of the blade portion 2 of the drill 1 is provided with the portion 2, and the thinning portion 30 facing the groove 5 on the rear side in the rotational direction of the flank 100 of each cutting edge 50 is shown. The blade edge 4 which is the tip of the blade 2 is composed of a plurality of flanks 100 equally formed in the rotational direction of the drill 1, and a cutting edge 50 is formed on the forward side of each flank 100 in the rotational direction. A thinning portion 30 is formed on the rear side. The cutting edge 50 includes a main cutting edge 51 on the outer peripheral side in the radial direction, and a sub cutting edge 52 which is continuous with the main cutting edge 51 and located on the center side in the radial direction of the main cutting edge 51. The drawing shows an example in which the number of cutting edges 50 is two, but the number of cutting edges 50 may be three or more.

溝5のねじれ角は20〜40度程度に設定される。ねじれ角が20度より小さければ切り屑が切削穴を通じて上昇しにくく、40度より大きければ溝5の研削量(容積)が大きくなるためにドリル1の剛性が低下し、折損し易くなることによる。   The twist angle of the groove 5 is set to about 20 to 40 degrees. If the twist angle is smaller than 20 degrees, chips are difficult to ascend through the cutting holes, and if larger than 40 degrees, the amount of grinding (volume) of the groove 5 becomes large and the rigidity of the drill 1 decreases and it becomes easy to break. .

シンニング部30は逃げ面100の回転方向後方側に形成される前方側シンニング面31と、副切れ刃52の回転方向前方側に形成され、副切れ刃52のすくい面を兼ねる後方側シンニング面32から構成される。後方側シンニング面32と前方側シンニング面31は図5、図6に示すようにそれぞれ曲面を形成しながら、後方側シンニング面32から前方側シンニング面31へかけて連続した曲面を形成する。「連続した曲面」とは、後方側シンニング面32の曲面と前方側シンニング面31の曲面との間に曲率が不連続になる曲面を挟まないことであり、後方側シンニング面32と前方側シンニング面31との間に明確な境界線が表れないことを言う。   The thinning portion 30 is formed on the front side thinning surface 31 formed on the rotational direction rear side of the flank 100 and the rear side thinning surface 32 formed on the rotational direction front side of the minor cutting edge 52 and also serving as a rake surface of the minor cutting edge 52. It consists of The rear side thinning surface 32 and the front side thinning surface 31 form curved surfaces extending from the rear side thinning surface 32 to the front side thinning surface 31 while forming the curved surfaces as shown in FIGS. 5 and 6 respectively. The “continuous curved surface” means that a curved surface having a discontinuous curvature is not sandwiched between the curved surface of the rear side thinning surface 32 and the curved surface of the front side thinning surface 31, and the rear side thinning surface 32 and the front side thinning It says that a clear border line does not appear between the faces 31.

図5は図2において副切れ刃52と前方側シンニング面31をy−y線で示す方向の切断面で切断したときのドリル1の断面の概略を、図6は図4においてx−x線で示す、回転軸Oに直交する方向の切断面で切断したときのドリル1の断面を示す。図2におけるy−y線は回転軸Oに直交等、交差する方向を指しているが、実際には回転軸Oに平行な方向の切断面で切断した断面をy−y線の方向に見たときの断面を示している。よって図5はドリル1を立てたときの鉛直断面(回転軸Oに平行な断面)を、図6は水平断面(回転軸Oに垂直な断面)を表している。図5、図6から、いずれの断面で見ても後方側シンニング面32と前方側シンニング面31がそれぞれ曲面を形成しながら、連続した曲面を形成していることが分かる。図4中、後方側シンニング面32と前方側シンニング面31との間にある破線は後述のシンニング面側境界線W1から外周側境界線W3にかけて後方側シンニング面32と前方側シンニング面31との境界を便宜的(仮想的)に示した境界線であるが、後方側シンニング面32から前方側シンニング面31に移行する区間は連続した曲面を形成しているため、実際にはこの境界線は見えない。   5 schematically shows the cross section of the drill 1 when the minor cutting edge 52 and the front side thinning surface 31 in FIG. 2 are cut along the direction of the line yy, and FIG. The cross section of the drill 1 when it cut | disconnects by the cut surface of the direction orthogonal to the rotating shaft O shown by these is shown. The yy line in FIG. 2 points in a direction that intersects with the rotational axis O, such as perpendicular to the rotational axis O. However, in reality, a cross section cut in a direction parallel to the rotational axis O is viewed in the direction of the yy line. Shows the cross section of the Therefore, FIG. 5 shows a vertical cross section (cross section parallel to the rotation axis O) when the drill 1 is erected, and FIG. 6 shows a horizontal cross section (cross section perpendicular to the rotation axis O). From FIG. 5 and FIG. 6, it can be seen that the rear side thinning surface 32 and the front side thinning surface 31 form a continuous curved surface while forming the curved surface in any cross section. In FIG. 4, the broken line between the rear side thinning surface 32 and the front side thinning surface 31 extends from the thinning surface side boundary line W1 to the outer peripheral side boundary line W3 to be described later between the rear side thinning surface 32 and the front side thinning surface 31. Although the boundary is shown as a boundary for convenience (virtual), since the section transitioning from the rear side thinning surface 32 to the front side thinning surface 31 forms a continuous curved surface, this boundary line is actually a boundary surface. can not see.

両シンニング面32、31の連続した曲面は具体的には、刃部2側からシャンク部3側へかけ、回転方向前方側から後方側へ向かって傾斜した母線(直線)が半径方向中心側から半径方向外周側へ向かい、例えば図2に破線で示すような、曲率が連続的に変化した曲線に沿って平行移動して描く曲面になっている。この連続した曲面は接線曲面や双曲放物面等になるが、一部に平面が含まれることもある。   Specifically, the continuous curved surfaces of both thinning surfaces 32 and 31 extend from the blade portion 2 side to the shank portion 3 side, and the generatrix (line) inclined from the front side in the rotational direction to the rear side from the radial center side It is a curved surface which moves in parallel along a curved line whose curvature changes continuously, for example, as shown by a broken line in FIG. Although this continuous curved surface is a tangent curved surface, a hyperbolic paraboloid, etc., a plane may be included in part.

逃げ面100は切れ刃50の回転方向後方側に向かって切れ刃50に連続する2番面10と、2番面10の後方側に連続し、2番面10の逃げ角より大きい逃げ角を持つ3番面11からなり、3番面11の回転方向後方側に逃げ面側境界線Qを境界として前方側シンニング面31が形成される。後方側シンニング面32は切れ刃50の内、副切れ刃52の回転方向前方側に形成され、前方側シンニング面31に連続する。逃げ面100の内、刃先部4の端面から見たときの面積が大きい3番面11の領域内にオイルホール9の端部の開口が位置している。   The flank 100 is continuous with the No. 2 face 10 continuous with the cutting edge 50 toward the rear side in the rotational direction of the cutting edge 50, and backward with the No. 2 face 10, and a relief angle larger than the relief angle of the No. 2 face 10 The front side thinning surface 31 is formed on the rear side in the rotational direction of the third surface 11 with the flank surface boundary line Q as a boundary. The rear side thinning surface 32 is formed on the front side in the rotational direction of the minor cutting edge 52 among the cutting edges 50 and is continuous with the front side thinning surface 31. The opening of the end of the oil hole 9 is located in the area of the third surface 11 having a large area when viewed from the end face of the cutting edge 4 among the flank 100.

オイルホール9の穴径は刃径Dの15〜20%が適切である。穴径が刃径Dの15%未満であればクーラントの流量が十分に供給されずに安定した切削が困難になり、20%を越えればドリル1の断面積が減少するためにドリル1の剛性が低下することによる。   The diameter of the oil hole 9 is suitably 15 to 20% of the blade diameter D. If the hole diameter is less than 15% of the blade diameter D, the coolant flow rate is not sufficiently supplied, making stable cutting difficult, and if it exceeds 20%, the cross-sectional area of the drill 1 decreases and the rigidity of the drill 1 Due to

図1では2番面10と3番面11との境界を境界線Pで示し、3番面11と前方側シンニング面31との境界を逃げ面側境界線Qで、2番面10と前方側シンニング面31との境界を中心側境界線Sでそれぞれ示している。また逃げ面側境界線Qの半径方向外周側の端点をT2、半径方向中心側の端点をT1で示し、中心側境界線Sの副切れ刃52との境界点をU1で、副切れ刃52と主切れ刃51との境界点をU2で示している。図1ではまた、ドリル1の回転軸(中心)をOで示すが、切れ刃50が2枚の場合、切れ刃50と逃げ面100はドリル1の中心Oに関して点対称に形成され、中心Oを挟んだ副切れ刃52、52間にチゼルエッジ13が形成される。   In FIG. 1, the boundary between the second surface 10 and the third surface 11 is indicated by the boundary line P, and the boundary between the third surface 11 and the front side thinning surface 31 is indicated by the flank side boundary line Q, and the second surface 10 and the front The boundary with the side thinning surface 31 is shown by the center side boundary line S, respectively. The end on the radially outer side of the flank side boundary line Q is denoted by T2, the end on the radial center side by T1, the boundary point of the center side boundary line S with the minor cutting edge 52 is U1, the minor cutting edge 52 The boundary point between the and the main cutting edge 51 is indicated by U2. Also in FIG. 1, the rotation axis (center) of the drill 1 is indicated by O, but in the case of two cutting edges 50, the cutting edge 50 and the flank 100 are formed point-symmetrically with respect to the center O of the drill 1, The chisel edge 13 is formed between the minor cutting edges 52, 52 sandwiching the two.

切れ刃50は前記のように半径方向外周側に位置し、溝5側を向く主切れ刃51と、その半径方向中心側に位置し、逃げ面100(逃げ面側境界線Q)側を向く副切れ刃52とに区分されている。主切れ刃51の半径方向外周側はランド8に連続し、ランド8はドリル1外周面のマージン6、7に連続する。ドリル1外周面のマージン6、7から回転方向後方側の区間には切削時の摩擦低減のための2番取り面12が形成される。   As described above, the cutting edge 50 is located on the outer peripheral side in the radial direction, and the main cutting edge 51 facing the groove 5 side, and located on the central side in the radial direction thereof, faces the flank 100 (space side boundary line Q) side It is divided into an auxiliary cutting edge 52. The radially outer peripheral side of the main cutting edge 51 is continuous with the land 8, and the land 8 is continuous with the margins 6 and 7 of the outer peripheral surface of the drill 1. In a section on the rear side in the rotational direction from the margins 6 and 7 of the outer peripheral surface of the drill 1, a second chamfered surface 12 for reducing friction at the time of cutting is formed.

ランド幅は刃径Dの1〜25%程度、より好ましくは3〜20%程度に設定される。ランド幅が刃径Dの1%未満であれば穴内でのドリル1の安定性が低下し、切削中、穴内で案内されにくくなり、25%を越えると穴の内周面に接触する面積が増加し、摩擦抵抗が大きくなり過ぎることによる。   The land width is set to about 1 to 25%, preferably about 3 to 20%, of the blade diameter D. If the land width is less than 1% of the blade diameter D, the stability of the drill 1 in the hole decreases, and it becomes difficult to be guided in the hole during cutting, and if it exceeds 25%, the area contacting the inner circumferential surface of the hole is It is because it increases and the frictional resistance becomes too large.

心厚は刃径Dの10〜40%程度に設定される。心厚が刃径Dの10%未満であればドリル1の剛性が低下することで折損の可能性が高まり、40%を越えると溝5の容積が小さくなることで切り屑の排出性が低下することによる。心厚は刃部2の全長に亘って一定である場合と、刃先部4からシャンク部3へかけて次第に増大する場合がある。   The heart thickness is set to about 10 to 40% of the blade diameter D. If the core thickness is less than 10% of the blade diameter D, the rigidity of the drill 1 decreases and the possibility of breakage increases, and if it exceeds 40%, the volume of the groove 5 decreases and the chip dischargeability decreases. By doing. The heart thickness may be constant over the entire length of the blade 2 or may gradually increase from the cutting edge 4 to the shank 3.

刃部2には0.1/100〜0.4/100程度のバックテーパ(テーパ深さ/溝長)が付けられる。バックテーパが0.1/100より小さければマージン6、7が刃部2の全長に亘って穴の内壁に接触し易くなることで折損の可能性が高く、0.4/100より大きければマージン6、7による穴内での案内の効果が低下することでドリル1が振動し易くなり、折損し易くなることによる。   The blade portion 2 is provided with a back taper (taper depth / groove length) of about 0.1 / 100 to 0.4 / 100. If the back taper is smaller than 0.1 / 100, the margins 6 and 7 easily come into contact with the inner wall of the hole over the entire length of the blade 2, and the possibility of breakage is high, and if it is larger than 0.4 / 100 the margin This is because the drill 1 is easily vibrated and broken easily because the effect of guiding in the holes 6 and 7 is reduced.

主切れ刃51と副切れ刃52が異なる方向を向くことで、切れ刃50が生成する切り屑は主切れ刃51が生成する切り屑と副切れ刃52が生成する切り屑とに区分されるため、主切れ刃51が生成した切り屑は溝5内でカールしながら成長しようとし、副切れ刃52が生成した切り屑はシンニング面31に沿ってカールしながら成長しようとする。   The chips generated by the cutting edge 50 are divided into the chips generated by the main cutting edge 51 and the chips generated by the secondary cutting edge 52 when the main cutting edge 51 and the sub cutting edge 52 face in different directions. Therefore, the chips generated by the main cutting edge 51 try to grow while curling in the groove 5, and the chips generated by the secondary cutting edge 52 tend to grow while curling along the thinning surface 31.

ここで、後方側シンニング面32と前方側シンニング面31がそれぞれ曲面を形成しながら、後方側シンニング面32から前方側シンニング面31へかけて連続した曲面を形成することで、後方側シンニング面32から前方側シンニング面31へかけて不連続な境界線が存在しないため、成長過程にある切り屑がいずれかのシンニング面32、31から抵抗を受けにくい状態にあり、切り屑が破断する可能性が低下している。結果として副切れ刃52が切削した切り屑は前方側シンニング面31の半径方向外周側の端縁まで破断することなく成長し易く、そのまま溝5へ排出されようとする。   Here, the rear side thinning surface 32 and the front side thinning surface 31 form curved surfaces continuous from the rear side thinning surface 32 to the front side thinning surface 31 while forming the curved surfaces respectively. Since there is no discontinuous boundary from the side to the front side thinning surface 31, chips in the growth process are less likely to receive resistance from any of the thinning surfaces 32 and 31, and the chips may break. Is declining. As a result, the chips cut by the minor cutting edge 52 tend to grow without breaking up to the end edge on the outer peripheral side in the radial direction of the front side thinning surface 31, and try to be discharged into the groove 5 as it is.

また後方側シンニング面32から前方側シンニング面31へかけて連続した曲面の曲率が半径方向中心側から半径方向外周側へかけて次第に小さくなっている場合には、副切れ刃52が切削した切り屑がカールしながら円錐形状に成長するときに、次第に増大する切り屑の外径に曲面が適合するため、切り屑の成長が阻害されることがなくなっている。   When the curvature of the curved surface continued from the rear side thinning surface 32 to the front side thinning surface 31 gradually decreases from the radial center side to the radial outer peripheral side, the cutting by the minor cutting edge 52 When the chips grow into a conical shape while curling, the curved surface conforms to the gradually increasing outer diameter of the chips, so that the growth of the chips is not inhibited.

切れ刃50の回転方向前方側には、回転軸Oが紙面に垂直な状態にある図1の回転軸Oを傾斜させた状態を示す図2のように主切れ刃51と副切れ刃52に亘り、切れ刃50の欠けを防止するホーニング面15が形成される。ホーニング面15の回転方向前方側の境界線は副切れ刃52の区間のシンニング面側境界線W1と主切れ刃51の区間の溝側境界線W2とに区分される。図2は図1に示す回転軸Oのシャンク部3側を手前(視点)側へ傾斜させた状態を示す。図2には図4におけるz−z線の断面を取ったときに後方側シンニング面32から前方側シンニング面31にかけて表れる切断線を破線で示している。この破線は前記した母線が通る軌跡を示している。   On the front side in the rotational direction of the cutting edge 50, the main cutting edge 51 and the sub cutting edge 52 as shown in FIG. 2 showing a state in which the rotation axis O in FIG. The honing surface 15 is formed to prevent the chipping of the cutting edge 50. The boundary line on the front side in the rotational direction of the honing surface 15 is divided into the thinning surface side boundary line W1 of the section of the minor cutting edge 52 and the groove side boundary line W2 of the section of the major cutting edge 51. FIG. 2 shows a state in which the shank 3 side of the rotation axis O shown in FIG. 1 is inclined toward the front (viewpoint) side. In FIG. 2, a cutting line that appears from the rear side thinning surface 32 to the front side thinning surface 31 when the cross section of the z-z line in FIG. 4 is taken is indicated by a broken line. The broken line indicates a locus along which the generatrix passes.

シンニング面側境界線W1と溝側境界線W2の交点は図2、図3に示すようにシンニング面31側、もしくはシャンク部3側へ突出した突出部15aの先端V1になる。この突出部15aの先端V1からは、後方側シンニング面32と溝5との間の境界線である外周側境界線W3がシャンク部3側へ向かって連続する。この外周側境界線W3はシンニング部30と溝5との間の境界線でもあり、図2に示すようにヒール14にまで連続する。   The intersection point of the thinning surface side boundary line W1 and the groove side boundary line W2 is the tip end V1 of the protrusion 15a protruding toward the thinning surface 31 side or the shank portion 3 as shown in FIGS. An outer peripheral side boundary line W3 which is a boundary line between the rear side thinning surface 32 and the groove 5 continues from the tip end V1 of the projecting portion 15a toward the shank portion 3 side. The outer peripheral side boundary line W3 is also a boundary line between the thinning portion 30 and the groove 5, and continues to the heel 14 as shown in FIG.

図3に示すようにシンニング面側境界線W1と溝側境界線W2、及び外周側境界線W3は凸の稜線をなすが、特に外周側境界線W3が凸の稜線をなすことで、先端V1から外周側境界線W3にかけて連続した区間が、切れ刃50が生成した切り屑を半径方向外周側と中心側に分断させる刃として機能するため、切れ刃50が生成する切り屑を主切れ刃51側の切り屑と副切れ刃52側の切り屑とに分割させる効果を発揮する。   As shown in FIG. 3, the thinning surface side boundary line W1, the groove side boundary line W2, and the outer peripheral side boundary line W3 form a convex ridge line, but in particular, the outer peripheral side boundary line W3 forms a convex ridge line, the tip V1. The section continuous from the outer peripheral side boundary line W3 functions as a blade that divides the chips generated by the cutting edge 50 radially outward and the center side, so the chips generated by the cutting edge 50 are main cutting edges 51 The effect of dividing the side chips and the chips on the side of the auxiliary cutting edge 52 is exhibited.

先端V1を始点とする外周側境界線W3が切り屑を半径方向に分割させる刃として機能することで、主切れ刃51が切削した切り屑と副切れ刃52が切削した切り屑が切り屑の生成時から分割され、それぞれの切り屑が溝5の表面とシンニング面32、31に沿って成長し易くなる。ドリル1による被削材の切削開始時から主切れ刃51が生成した切り屑と副切れ刃52が生成した切り屑とに分割されることで、切り屑が分割されない場合のように、成長の状況に応じて溝5へ直接、排出されずにシンニング部30へ回り込み、切り屑がシンニング部30内に集中して停滞するようなことがないため、切り屑のシンニング部30での詰まりが生じにくくなる。   Since the outer peripheral side boundary line W3 starting from the tip V1 functions as a blade for dividing the chips in the radial direction, the chips cut by the main cutting edge 51 and the chips cut by the minor cutting edge 52 are chips. It is divided from the time of generation, and the chips tend to grow along the surface of the groove 5 and the thinning surfaces 32, 31. By dividing the chips generated by the main cutting edge 51 into the chips generated by the main cutting edge 51 and the chips generated by the sub cutting edge 52 from the start of cutting of the work material by the drill 1, the growth is not performed as in the case where the chips are not divided. Depending on the situation, it is not discharged directly into the groove 5 but it gets into the thinning part 30 and chips do not concentrate and stagnate in the thinning part 30, so that clogging of the thinning part 30 of chips occurs. It becomes difficult.

(実施例1)
以下、本発明の実施例のドリル1と、本発明の要件を備えない従来例のドリルを同一の条件下で穴あけ加工に使用した場合の対比を表1〜表3に示す。本発明の要件は「後方側シンニング面32と前方側シンニング面31がそれぞれ曲面を形成しながら、後方側シンニング面32から前方側シンニング面31へかけて連続した曲面を形成していること」である。実施例1以下では試料としてのドリルの製造むらを低減するために、本発明の要件を満たした一種類のドリルと従来例のドリルに付き、同一の5本の試料を用意し、5本の試料の平均を取って評価した。
Example 1
Tables 1 to 3 show the comparison between the drill 1 of the embodiment of the present invention and the drill of the conventional example not having the requirements of the present invention when used for drilling under the same conditions. The requirement of the present invention is that “the rear side thinning surface 32 and the front side thinning surface 31 form curved surfaces and the rear side thinning surface 32 forms a continuous curved surface from the rear side thinning surface 32”. is there. Example 1 In the following, in order to reduce manufacturing unevenness of the drill as a sample, the same five samples are prepared for one type of drill satisfying the requirements of the present invention and the drill of the conventional example. The samples were averaged for evaluation.

実施例1のドリルと従来例のドリルは共に、シャンク径及びドリル直径が6.0mm 、全長が250mm、溝長が199mmの寸法と、ピッチが3.2mm、穴径が0.7mmの一対のオイルホールを持ち、ねじれ角は30度で、厚さが3μmのTiSiNの硬質皮膜が施されている。   Both the drill of the first embodiment and the drill of the prior art have a shank diameter and a drill diameter of 6.0 mm, a total length of 250 mm, a groove length of 199 mm, and a pitch of 3.2 mm and a hole diameter of 0.7 mm. It has an oil hole, a twist angle of 30 degrees, and a hard coating of TiSiN with a thickness of 3 μm.

本発明のドリルの副切れ刃52のすくい面である後方側シンニング面32は前方側シンニング面31に連続する曲面であるのに対し、従来例のドリルの後方側シンニング面は平面である点で、従来のドリルと本発明のドリルは相違する。本発明のドリルと従来のドリルは後方側シンニング面32の形状が相違する点以外、同一の超硬合金を基材とした同一形状、同一寸法(同一諸元)の2枚刃である。   The rear side thinning surface 32, which is the rake surface of the minor cutting edge 52 of the drill of the present invention, is a curved surface continuous to the front side thinning surface 31, while the rear side thinning surface of the prior art drill is flat. Conventional drills and drills of the present invention are different. The drill of the present invention and the conventional drill have two blades of the same shape and the same size (same specifications) using the same cemented carbide as a base except that the shape of the rear side thinning surface 32 is different.

穴あけ加工は被削材としての、硬さ220HBの炭素鋼(S50C)に対し、オイルホールを通じた内部給油による湿式切削により、回転数3500回転/min、送り速度700mm/minのステップなし(ノンステップ加工)で、深さ180mmの穴をあけることを目標とした。1本のドリルでの加工はマージンが一定の逃げ面摩耗幅に到達することと、ドリルが折損することのいずれかがが起こった時点で終了し、加工が終了した穴の数をドリル寿命として評価した。マージンの逃げ面摩耗幅は0.4mmとし、5本の同一の試料に対して同一の穴あけ加工を実施した。結果を表1に示すが、平均穴数が200以上を良(○)、150〜200を可(△)、150以下を不可(×)と評価している。   No drilling is performed on the carbon steel (S50C) with hardness 220HB as the work material, by wet cutting with internal oil supply through oil holes, at a rotation speed of 3500 rpm and at a feed speed of 700 mm / min (non-step machining) The goal was to make a hole 180 mm in depth). Machining with a single drill ends when either the margin reaches a certain flank wear width or the drill breaks, and the number of holes finished is the drill life evaluated. The flank wear width of the margin was 0.4 mm, and the same drilling was performed on five identical samples. The results are shown in Table 1, and the average number of holes is evaluated as good (○), 200 to 150 (good), and 150 or less as poor (×).

表1中の「開き角θ」は図1に示すように副切れ刃52(直線U1U2)と、逃げ面側境界線Qの両端T1、T2を結ぶ直線とのなす角度であり、後方側シンニング面32の回転方向後方側側端縁と前方側シンニング面31の回転方向前方側端縁とのなす角度に対応する。この角度θが大きい程、後方側シンニング面32の端縁と前方側シンニング面31の端縁とのなす角度が大きく、両シンニング面32、31に挟まれた半径方向中心寄りの領域の容積が大きく、副切れ刃52が生成した切り屑の収容能力(排出能力)が高いことを意味する。但し、開き角θが大き過ぎれば、心厚等、ドリル1本体の径が小さくなることで、ドリル1の剛性が低下し、切削時に振動を生じ易くなるため、開き角θの大きさは切り屑の排出性と剛性確保の両面から制限を受ける。   “Open angle θ” in Table 1 is the angle between the minor cutting edge 52 (straight line U1U2) and the straight line connecting both ends T1 and T2 of the flank side boundary line Q as shown in FIG. It corresponds to the angle between the rotation direction rear side edge of the surface 32 and the rotation direction front side edge of the front side thinning surface 31. As the angle θ is larger, the angle between the edge of the rear side thinning surface 32 and the edge of the front side thinning surface 31 is larger, and the volume of the region near the radial center sandwiched by both thinning surfaces 32 and 31 is This means that the large capacity (discharge capacity) of the chips generated by the secondary cutting edge 52 is high. However, if the opening angle θ is too large, the rigidity of the drill 1 is reduced by decreasing the diameter of the drill 1 main body, such as the heart thickness, and vibration is easily generated at the time of cutting. Limited both in terms of waste dischargeability and rigidity.

表1より本発明例1は加工穴数(寿命)が200を超えているのに対し、従来例1は本発明例の半分強程度に留まっていることが分かる。両者は後方側シンニング面32が前方側シンニング面31に連続する曲面であるか、連続しない平面であるかの点と、開き角θの点で相違するだけであるから、本発明例1が前方側シンニング面31に連続する曲面の後方側シンニング面32を持ち、開き角θが鈍角であることの結果として、従来例1の2倍弱に近い穴あけ能力を持つと考えられる。   From Table 1, it can be seen that while the number of machined holes (lifetime) of the invention example 1 exceeds 200, the prior art example 1 is about half stronger than the invention example. Since both differ only in the point at which the rear side thinning surface 32 is a curved surface that is continuous with the front side thinning surface 31 or a non-continuous surface, and the opening angle θ, Example 1 of the present invention As a result of having the back side thinning surface 32 of a curved surface continuous to the side thinning surface 31 and having an open angle θ of an obtuse angle, it is considered to have a drilling ability close to less than twice that of the prior art example 1.

詳しくは、後方側シンニング面32の端縁と前方側シンニング面31の端縁とのなす角度が鈍角で、両面が連続した曲面を形成することで、切り屑の生成と成長が阻害されず、成長した後に円滑に溝5へ排出されていくためであると推測される。後方側シンニング面32と前方側シンニング面31が共に曲面であることで、両シンニング面32、31に挟まれた半径方向中心寄りの領域が曲面で構成された立体の空間になるため、円錐形状に生成される切り屑が収容され易くなっていると言える。   Specifically, the angle between the edge of the rear side thinning surface 32 and the edge of the front side thinning surface 31 is an obtuse angle, and the formation and growth of chips are not inhibited by forming a curved surface in which both surfaces are continuous, It is surmised that the reason is to be smoothly discharged into the groove 5 after growth. Since both the rear side thinning surface 32 and the front side thinning surface 31 are curved surfaces, a region near the radial center sandwiched by both thinning surfaces 32 and 31 becomes a three-dimensional space formed by the curved surfaces, so that the conical shape is formed. It can be said that the chips generated in the housing are easily accommodated.

一方、従来例1では後方側シンニング面32が平面であることで、両シンニング面32、31に挟まれた半径方向中心寄りの領域が切り屑の収容に適しない形状の立体になるために、切り屑の生成が阻害され易く、切り屑が詰まりを起こし易くなっていると言える。また後方側シンニング面32と前方側シンニング面31とのなす角度が鋭角であることで、両シンニング面32、31が構成する空間の容積が小さくなっていることも切り屑の生成を阻害した理由であると考えられる。   On the other hand, in the first prior art, since the rear side thinning surface 32 is a flat surface, the region near the radial center sandwiched between both thinning surfaces 32 and 31 becomes a solid having a shape not suitable for containing chips. It can be said that the generation of chips is easily inhibited and the chips are easily clogged. In addition, the reason why the volume of the space formed by both the thinning surfaces 32 and 31 is also reduced because the angle between the rear side thinning surface 32 and the front side thinning surface 31 is an acute angle, which also inhibits the generation of chips. It is considered to be.

(実施例2)
実施例1の結果を受け、前記開き角θを110度に一定にしたまま、ドリル1を軸方向に見たときの、後方側シンニング面32から前方側シンニング面31へ移行する区間(U1〜T1)の曲率と、前方側シンニング面31の区間(T1〜T2)の曲率の比率を変化させた本発明例と従来例のドリルに対して実施例1と同様の寿命を比較する試験を実施した。本発明例としてU1〜T1間の曲率:T1〜T2間の曲率の比率を3:1、4.5:1、5.5:1、6:1の4種類の試料2〜5を用意し、従来例としては2.5:1、6.5:1の2種類の試料2、3を用意した。本発明例と従来例のドリルの諸元は実施例1と同じであり、穴あけ加工の要領も同じである。
(Example 2)
Based on the result of Example 1, a section (U1 to U1 in which the rear side thinning surface 32 is shifted to the front side thinning surface 31 when the drill 1 is viewed in the axial direction while keeping the opening angle θ constant at 110 degrees A test was conducted to compare the life of the drill of the present invention example and the conventional example in which the ratio of the curvature of T1) and the curvature of the section (T1 to T2) of the front side thinning surface 31 was changed. did. As an example of the present invention, four types of samples 2 to 5 are prepared: curvature ratio between U1 to T1: curvature ratio between T1 to T2 of 3: 1, 4.5: 1, 5.5: 1, 6: 1 As a conventional example, two types of samples 2 and 3 of 2.5: 1 and 6.5: 1 were prepared. The specifications of the drill of the present invention example and the prior art example are the same as those of the first embodiment, and the drilling procedure is also the same.




表2より従来例2、3では平均寿命が150穴を下回るのに対し、本発明例2〜5では180穴を上回り、特に本発明例2、3では250穴を超え、従来例2の2倍弱程度の寿命を得、本発明例4でも従来例2の1.6倍の寿命を得ていることが分かる。従来例2、3は後方側シンニング面32が平面であり、前方側シンニング面31に連続した曲面を形成していない点で本発明例2〜5と相違しているため、この点に起因する、上記した寿命への影響はあると考えられる。   According to Table 2, the average life is less than 150 holes in the prior art examples 2 and 3 while it exceeds 180 holes in the invention examples 2 to 5, and in particular, exceeds 250 holes in the invention examples 2 and 3, 2 of the prior art example 2 It can be seen that the life of about twice as large is obtained, and the life of the invention example 4 is 1.6 times that of the prior art example 2 as well. Conventional Examples 2 and 3 are different from the invention examples 2 to 5 in that the rear side thinning surface 32 is a flat surface and the curved surface continuous to the front side thinning surface 31 is not formed. , It is thought that there is an impact on the life mentioned above.

そこで、本発明例2〜5の結果に着目すれば、U1〜T1間の曲率:T1〜T2間の曲率の比率(U1〜T1間の曲率/T1〜T2間の曲率)は3〜5.5:1(3〜5.5)程度の範囲にあることが最も適切であり、特に3〜4.5程度の範囲がより好ましく、この比率が3未満と6より大きい範囲では切削能力が低下する傾向を示すと言える。すなわち、T1〜T2間の曲率に対してU1〜T1間の曲率が小さくても、大き過ぎても切り屑の収容能力が低下し、T1〜T2間の曲率に対するU1〜T1間の曲率の比率には切り屑の生成と成長を阻害しない適切な範囲があり、その範囲が3〜5.5程度であることが言える。   Then, focusing on the results of Invention Examples 2 to 5, the curvature ratio between U1 and T1: the curvature ratio between T1 and T2 (curvature between U1 and T1 / curvature between T1 and T2) is 3 to 5. The range of about 5: 1 (3 to 5.5) is most appropriate, and in particular, the range of about 3 to 4.5 is more preferable, and when this ratio is less than 3 and more than 6, the cutting ability is reduced Show a tendency to That is, even if the curvature between U1 and T1 is smaller than the curvature between T1 and T2, the chip capacity decreases even if it is too large, and the ratio of the curvature between U1 and T1 to the curvature between T1 and T2 There is an appropriate range that does not inhibit chip formation and growth, and it can be said that the range is about 3 to 5.5.

T1〜T2間の曲率に対するU1〜T1間の曲率の比率が3未満であれば(U1〜T1間の曲率が小さければ)、副切れ刃52のすくい面である後方側シンニング面32が副切れ刃52の下方に深く入り込む形になることで、副切れ刃52の刃先強度が低下し、チッピングを生じ易いと考えられる。一方、比率が6を超えると(U1〜T1間の曲率が大きければ)、後方側シンニング面32と前方側シンニング面31との間の領域の容積が減少することで、切り屑の成長が阻害され易く、詰まりを生じ易くなると考えられる。   If the ratio of curvature between U1 and T1 to the curvature between T1 and T2 is less than 3 (if the curvature between U1 and T1 is small), the rear side thinning surface 32, which is the rake surface of the minor cutting edge 52, is minor cutting It is considered that the cutting edge strength of the sub cutting edge 52 is reduced by being deeply in the lower part of the blade 52, and chipping tends to occur. On the other hand, if the ratio exceeds 6 (if the curvature between U1 and T1 is large), the volume of the region between the rear side thinning surface 32 and the front side thinning surface 31 decreases, which inhibits the growth of chips. It is considered that it is easy to cause clogging.

(実施例3)
実施例1、2の結果を受け、U1〜T1間の曲率:T1〜T2間の曲率の比率(U1〜T1間の曲率/T1〜T2間の曲率)を3:1(3)に一定にしたまま、前記開き角θを変化させた本発明例と従来例のドリルに対して実施例1と同様の試験を実施した。本発明例として開き角θを120度から90度までの4種類の試料6〜9を用意し、従来例として130度と80度の2種類の試料4、5を用意した。本発明例と従来例のドリルの諸元は実施例1と同じであり、穴あけ加工の要領も同じである。
(Example 3)
Based on the results of Examples 1 and 2, the curvature ratio between U1 and T1: The curvature ratio between T1 and T2 (curvature between U1 and T1 / curvature between T1 and T2) is fixed to 3: 1 (3). In the same manner, the same test as in Example 1 was performed on the drill of the present invention example and the conventional example in which the opening angle θ was changed. In the example of the present invention, four types of samples 6 to 9 having an opening angle θ of 120 to 90 degrees are prepared, and as the conventional example, two types of samples 4 and 5 of 130 degrees and 80 degrees are prepared. The specifications of the drill of the present invention example and the prior art example are the same as those of the first embodiment, and the drilling procedure is also the same.




表3より従来例4、5では平均寿命が150穴を下回るのに対し、本発明例6〜9では160穴を上回り、特に本発明例7、8では210穴を超え、従来例4、5より高い寿命を得ていることが分かる。本発明例7の寿命は従来例4の2倍を超えている。従来例2、3も後方側シンニング面32が前方側シンニング面31に連続した曲面を形成していない点で本発明例6〜9と相違しているため、この点に起因する寿命への影響は表れていると考えられる。   According to Table 3, while the average life is less than 150 holes in the conventional examples 4 and 5, in the invention examples 6 to 9, it exceeds 160 holes, and particularly in the invention examples 7 and 8, it exceeds 210 holes. It can be seen that it has a higher lifetime. The life of Inventive Example 7 is more than twice that of Conventional Example 4. Conventional Examples 2 and 3 also differ from Invention Examples 6 to 9 in that the rear side thinning surface 32 does not form a curved surface continuous with the front side thinning surface 31, and therefore, the influence on the life due to this point Is considered to be appearing.

そこで、本発明例6〜9の結果に着目すれば、2枚刃の場合、開き角θは100〜110度程度の範囲内にあることが適切であり、この範囲外では切削能力が低下する傾向を示すと言える。すなわち、開き角θは90度未満でも、110度を超えても切り屑の収容能力が低下し、これらの数値の範囲内が良好で、110度前後が最もよい数値であることが言える。   Therefore, focusing on the results of the invention examples 6 to 9, in the case of a two-edged blade, it is appropriate that the opening angle θ be in the range of about 100 to 110 degrees, and the cutting ability is reduced outside this range. It can be said that it shows a tendency. That is, even if the opening angle θ is less than 90 degrees or exceeds 110 degrees, the chip capacity decreases, and it can be said that the range of these numerical values is good, and around 110 degrees is the best numerical value.

開き角θは90度未満では後方側シンニング面32と前方側シンニング面31との間の領域の容積が減少することで、切り屑の成長が阻害され易く、詰まりを生じ易くなり、110度を超えると、シンニング部30の容積が大きくなることで、ドリル自体の剛性が低下気味になり、ドリルの寿命に影響したものと考えられる。従来例4は開き角θが大きいことで、ドリルの剛性低下を招き、従来例5は開き角θが小さいことで、後方側シンニング面32と前方側シンニング面31との間の領域の容積が減少し、切り屑が詰まり易くなっていることが寿命に影響していると考えられる。   If the opening angle θ is less than 90 degrees, the volume of the region between the rear side thinning surface 32 and the front side thinning surface 31 decreases, so chip growth tends to be inhibited and clogging tends to occur, and 110 degrees If it exceeds, the rigidity of the drill itself tends to decrease due to an increase in the volume of the thinning portion 30, which is considered to have affected the life of the drill. Conventional Example 4 has a large opening angle θ, leading to a decrease in drill rigidity, and Conventional Example 5 has a small opening angle θ, so the volume of the region between the rear side thinning surface 32 and the front side thinning surface 31 is It is considered that the decrease and the chip being clogged easily affect the life.

1……ドリル、
2……刃部、3……シャンク部、4……刃先部、
5……溝、
6、7……マージン、8……ランド、9……オイルホール、
100……逃げ面、10……2番面、11……3番面、12……2番取り面、
13……チゼルエッジ、14……ヒール、
15……ホーニング面、15a……突出部、
30……シンニング部、31……前方側シンニング面、32……後方側シンニング面(副切れ刃のすくい面)、
50……切れ刃、51……切れ刃、52……切れ刃
O……回転軸、
P……2番面と3番面との境界線、Q……逃げ面側境界線(3番面と前方側シンニング面との境界線)、
R……回転方向、S……中心側境界線(2番面と前方側シンニング面との境界線)、
T1……境界線Qと境界線Sとの交点、T2……境界線Qのドリル外周側端点、
U1……境界線Sと副切れ刃との交点、U2……副切れ刃と主切れ刃との交点、
V1……溝と後方側シンニング面とホーニング面との交点、
W1……シンニング面側境界線、W2……溝側境界線、W3……外周側境界線、
θ……副切れ刃と境界線Qの両端T1、T2を結ぶ直線とのなす角度。
1 ...... drill,
2 刃 blade portion 3 シ ャ ン ク shank portion 4 刃 先 blade edge portion
5 ...... groove,
6, 7 ...... margin, 8 ラ ン ド land, 9 ホ ー ル oil hole,
100: flank, 10: second side, 11: third side, 12: second side,
13: Chisel edge, 14: Heel,
15 ...... honing surface, 15a ...... projecting portion,
30: Thinning part, 31: Front side thinning surface, 32: Rear side thinning surface (rake surface of minor cutting edge),
50: cutting edge, 51: main cutting edge, 52: secondary cutting edge ,
O ...... Rotation axis,
P: A boundary line between the second and third surfaces, Q: A flank side boundary line (a boundary line between the third surface and the front side thinning surface),
R: Direction of rotation, S: Center side boundary line (boundary line between the second surface and the front side thinning surface),
T1 ··· Intersection of boundary line Q and boundary line S, T2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · drill outer end point of the boundary line Q,
U1: Intersection point of boundary line S and minor cutting edge, U2: Intersection point of minor cutting edge and major cutting edge,
V1 ... intersection point of groove and rear side thinning surface and honing surface,
W1: Thinning surface side boundary line, W2: Groove side boundary line, W3: Outer peripheral side boundary line,
θ: The angle between the minor cutting edge and the straight line connecting both ends T1 and T2 of the boundary line Q.

Claims (5)

シャンク部の軸方向先端部側に、複数枚の切れ刃と、周方向に隣接する前記切れ刃間に溝を有する刃部を備え、前記切れ刃が半径方向外周側の主切れ刃とこの主切れ刃に連続し、前記主切れ刃の半径方向中心側に位置する副切れ刃からなり、前記各切れ刃の逃げ面の回転方向後方側に前記溝に面するシンニング部が形成されたドリルであり、
前記シンニング部は前記逃げ面の回転方向後方側に形成される前方側シンニング面と、前記副切れ刃の回転方向前方側に形成され、前記副切れ刃のすくい面を兼ねる後方側シンニング面から構成され、
前記後方側シンニング面と前記前方側シンニング面がそれぞれ曲面を形成しながら、前記後方側シンニング面から前記前方側シンニング面へかけて連続した曲面を形成し、この前記前方側シンニング面は前記刃部の外周面にまで連続し
前記後方側シンニング面と前記前方側シンニング面が、前記副切れ刃の長さ方向に前記副切れ刃の区間に相当する幅を有したまま、半径方向外周側まで帯状に連続し、前記後方側シンニング面及び前記前方側シンニング面と前記逃げ面との境界線が半径方向外周側まで前記シンニング部側が凹の曲線を描いていることを特徴とするドリル。
A plurality of cutting edges and a cutting edge having a groove between the cutting edges adjacent to each other in the circumferential direction on the tip end side in the axial direction of the shank portion, the cutting edge being a main cutting edge on the radially outer peripheral side and this main cutting edge It is continuous with a cutting edge, consists of a sub-cutting edge located on the radial center side of the main cutting edge, and a drill having a thinning portion facing the groove on the rear side in the rotational direction of the flank of each cutting edge Yes,
The thinning portion includes a front side thinning surface formed on the rear side in the rotational direction of the flank surface, and a rear side thinning surface formed on the front side in the rotational direction of the sub cutting edge and serving as a rake surface of the sub cutting edge. And
The back side thinning surface and the front side thinning surface respectively form a curved surface, and the back side thinning surface forms a continuous curved surface from the back side thinning surface to the front side thinning surface, and the front side thinning surface is the blade portion Continue to the outer peripheral surface of the
The rear side thinning surface and the front side thinning surface continue in a band shape to the radially outer peripheral side while having a width corresponding to a section of the sub cutting edge in the length direction of the sub cutting edge, the rear side A drilling characterized in that the thinning surface and the boundary line between the front side thinning surface and the flank face draw a concave curve to the outer peripheral side in the radial direction .
前記連続した曲面は前記刃部側から前記シャンク部側へかけ、回転方向前方側から後方側へ向かって傾斜した母線が半径方向中心側から半径方向外周側へ向かい、曲線に沿って平行移動して描く曲面であり、曲率が連続的に変化していることを特徴とする請求項1に記載のドリル。   The continuous curved surface runs from the blade side to the shank side, and a generatrix inclined from the rotational direction front side to the rear side moves from the radial center side to the radial outer peripheral side, and moves parallel along a curve The drill according to claim 1, wherein the drill is a curved surface drawn with a continuously changing curvature. 前記曲率は半径方向中心側から半径方向外周側へかけて次第に小さくなっていることを特徴とする請求項2に記載のドリル。   The drill according to claim 2, wherein the curvature gradually decreases from the radial center side toward the radial outer peripheral side. 前記切れ刃の回転方向前方側にホーニング面が形成され、このホーニング面の回転方向前方側の、前記主切れ刃と前記副切れ刃の境界位置に、この境界位置以外の前記主切れ刃と前記副切れ刃より回転方向前方側に突出する突出部が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載のドリル。 A honing surface is formed on the front side in the rotational direction of the cutting edge, and on the front side in the rotational direction of the honing surface, at the boundary position between the main cutting edge and the sub cutting edge, the main cutting edge and the other than the boundary position The drill according to any one of claims 1 to 3, characterized in that a projecting portion is formed to project forward in the rotational direction from the auxiliary cutting edge . 前記突出部の回転方向前方側の先端から前記後方側シンニング面と前記溝との間の外周側境界線が前記シャンク部側へ向かって連続し、この外周側境界線は凸の稜線をなしていることを特徴とする請求項4に記載のドリル。   An outer peripheral side boundary line between the rear side thinning surface and the groove continues from the tip on the front side in the rotational direction of the protrusion toward the shank portion, and the outer peripheral side boundary line forms a convex ridge line The drill according to claim 4, characterized in that:
JP2014005578A 2014-01-16 2014-01-16 drill Active JP6519971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014005578A JP6519971B2 (en) 2014-01-16 2014-01-16 drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014005578A JP6519971B2 (en) 2014-01-16 2014-01-16 drill

Publications (2)

Publication Number Publication Date
JP2015131384A JP2015131384A (en) 2015-07-23
JP6519971B2 true JP6519971B2 (en) 2019-05-29

Family

ID=53899060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014005578A Active JP6519971B2 (en) 2014-01-16 2014-01-16 drill

Country Status (1)

Country Link
JP (1) JP6519971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021785A1 (en) * 2017-07-27 2019-01-31 住友電工ハードメタル株式会社 Drill
US11865626B2 (en) 2019-08-30 2024-01-09 Osg Corporation Drill
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414089A (en) * 1977-07-05 1979-02-01 Caterpillar Mitsubishi Ltd Drill with chip breaker for high hardness
JPS5880114U (en) * 1981-11-26 1983-05-31 三菱マテリアル株式会社 double-blade drilling tool
JPH0632250Y2 (en) * 1988-11-02 1994-08-24 三菱マテリアル株式会社 Drill
JPH04315512A (en) * 1991-04-11 1992-11-06 Sumitomo Electric Ind Ltd Drill
JPH10315021A (en) * 1997-05-16 1998-12-02 Kobe Steel Ltd Drill
JP2001079707A (en) * 1999-09-13 2001-03-27 Toshiba Tungaloy Co Ltd Twist drill
JP2001105220A (en) * 1999-10-04 2001-04-17 Toshiba Tungaloy Co Ltd Twist drill
JP2004261930A (en) * 2003-03-03 2004-09-24 Mitsubishi Materials Corp Drill
JP2005144630A (en) * 2003-11-18 2005-06-09 Osg Corp R-thinning drill
SE536296C2 (en) * 2011-02-08 2013-08-06 Sandvik Intellectual Property Drill with chip channels designed for improved chip evacuation
JP5051801B2 (en) * 2011-03-03 2012-10-17 株式会社ビック・ツール drill
JP6268716B2 (en) * 2013-02-28 2018-01-31 三菱マテリアル株式会社 drill

Also Published As

Publication number Publication date
JP2015131384A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6086173B2 (en) drill
JP6421792B2 (en) Drill and drill head
JP5406721B2 (en) Bit for drill tool
JP4973259B2 (en) Cutting insert and insert detachable rolling tool
US9168601B2 (en) Multi-flute reamer and cutting insert therefor
JP2010194712A (en) Drill tool for making hole in metal workpiece
JPWO2009142323A1 (en) Drill, cutting insert and method of manufacturing workpiece
WO2019176452A1 (en) Drill
JP2017202541A (en) Drill reamer
JP6519971B2 (en) drill
JP2016078209A (en) drill
JP5441615B2 (en) Cutting insert, cutting tool, and method of manufacturing workpiece
JP2016064477A (en) drill
JP6255925B2 (en) drill
JP2003136319A (en) Cutting edge tip replacing type twist drill
JP5151592B2 (en) Christmas cutter
JP2019202378A (en) End mill
JP6753174B2 (en) Drill
JP4449355B2 (en) Drill
KR20150121645A (en) A Asymmetrical Drill
JP2005169600A (en) Drill
JP2004216468A (en) Twist drill
JP2005169528A (en) Drill
JP2012161862A (en) Reamer
JP2011125941A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6519971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350