JP2011125941A - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP2011125941A
JP2011125941A JP2009285004A JP2009285004A JP2011125941A JP 2011125941 A JP2011125941 A JP 2011125941A JP 2009285004 A JP2009285004 A JP 2009285004A JP 2009285004 A JP2009285004 A JP 2009285004A JP 2011125941 A JP2011125941 A JP 2011125941A
Authority
JP
Japan
Prior art keywords
groove
drill
sub
cutting edge
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009285004A
Other languages
Japanese (ja)
Inventor
Junichi Saito
淳一 斉藤
Koji Masamoto
浩司 柾本
Tomotaka Miyano
知貴 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009285004A priority Critical patent/JP2011125941A/en
Publication of JP2011125941A publication Critical patent/JP2011125941A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill preventing the chip discharging property from being impaired while sufficiently ensuring the strength and the rigidity of a drill body at a blade tip part even when the drill has a small diameter and a large ratio of L/D. <P>SOLUTION: Only one chip discharging groove 4 consisting of a main groove 7 and a sub groove 8 continuous to a forward side in the drill rotating direction extends from a fore end of the blade tip part 2 to its rear end side. A cutting blade 6 is formed on a cross-ridge part between a face to the forward side of the drill rotating direction 7 of the main groove 7 with a fore end flank 5. The sub groove 8 has the predetermined depth to the maximum outside diameter D of the blade tip part 2 formed by the cutting blade 6, and the main groove 7 has the depth larger than that of the sub groove 8 at the fore end flank 5. The groove depth is gradually smaller toward the rear end side of the blade tip part 2, and almost flat on the fore end side from the rear end of the sub groove 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被削材に穴明け加工を施すために用いられるドリルに係わり、特にプリント基板や、微少な金属部品、プラスチック等の被削材に小径深穴の穴部を穴明け加工するのに用いられる小径のドリルに関するものである。   The present invention relates to a drill used for drilling a work material, and in particular, drilling a hole portion of a small diameter deep hole in a work material such as a printed circuit board, a minute metal part, or plastic. The present invention relates to a small-diameter drill used in the above.

このような小径のドリルとして、例えば特許文献1には、切屑排出溝が1条のみであってドリル本体の回転軸線を含まないように形成されており、先端逃げ面における軸線方向の最も先端側に突出した最先端が1点で構成されているとともに、この最先端と上記軸線との距離を、刃先部の最大外径Dに対して(5/100)D以下としたドリルが提案されている。さらに、この特許文献1には、切屑排出溝のドリル回転方向前方側に連なり、刃先部の先端から後端側に向けて延びるとともに、その途中で切屑排出溝に切れ上がる副溝部を形成することも記載されており、このような副溝部を形成することで先端逃げ面を小さくして再研磨の際の手間や時間を減らすことが提案されている。   As such a small-diameter drill, for example, in Patent Document 1, there is only one chip discharge groove and it is formed so as not to include the rotation axis of the drill body, and the most distal side in the axial direction on the tip flank A drill has been proposed in which the leading edge projecting at a point is composed of one point, and the distance between the leading edge and the axis is less than (5/100) D with respect to the maximum outer diameter D of the cutting edge. Yes. Furthermore, in this patent document 1, it is connected to the drill rotation direction front side of a chip discharge groove, and while extending from the front-end | tip of a blade edge part toward a rear-end side, it is also possible to form the sub-groove part which cuts into a chip discharge groove in the middle. As described above, it has been proposed to reduce the labor and time during re-polishing by forming such a sub-groove portion to reduce the tip flank.

特開2004−82318号公報JP 2004-82318 A

ところが、この特許文献1に記載のドリルでは、切屑排出溝は、上述のようにドリル本体の軸線は含まないものの、そのドリル回転方向前方側を向く壁面と先端逃げ面との交差稜線部に穴明け加工を行うのに必要な長さの切刃を形成するために、ある程度の溝深さを要することになる。従って、そのような切屑排出溝がそのままの溝深さで刃先部の後端側に向けて延びて、例えばその溝長さすなわち刃先部の有効切刃長Lが上記最大外径Dに対してなす比L/Dが5以上となるようにされており、このため刃先部の後端側でドリル本体の強度や剛性を十分に確保することが困難となるおそれがあった。   However, in the drill described in Patent Document 1, although the chip discharge groove does not include the axis of the drill body as described above, a hole is formed in the intersecting ridge line portion between the wall surface facing the front side in the drill rotation direction and the tip flank surface. In order to form a cutting blade having a length necessary for performing the drilling process, a certain groove depth is required. Accordingly, such a chip discharge groove extends toward the rear end side of the blade edge portion with the groove depth as it is, and for example, the groove length, that is, the effective cutting edge length L of the blade edge portion is relative to the maximum outer diameter D. The ratio L / D to be made is set to 5 or more, which may make it difficult to sufficiently ensure the strength and rigidity of the drill body on the rear end side of the blade edge portion.

また、上記副溝部は、切屑排出溝と同様に刃先部の先端から後端側に向けてドリル回転方向後方側に捩れつつ延びていたものが、刃先部先端側のアンダーカットされた部分で捩れ角を急激に大きくすることにより、切屑排出溝のドリル回転方向後方側を向く壁面に切れ上がるようにされており、上述のように再研磨を容易にする効果はあっても、切屑排出性の向上に寄与することは少ない。むしろ、切屑排出溝の壁面に切れ上がる部分で副溝部の溝幅も急激に小さくなるため、例えば銅箔などが貼り着けられたプリント基板の穴明け加工において銅箔厚さが厚い場合などには、この銅箔の切屑による切屑詰まりの発生を避けることができないという問題もあった。   Further, like the chip discharge groove, the sub-groove portion extends while twisting toward the rear end side from the tip end of the blade tip portion in the direction of drill rotation, and is twisted at the undercut portion on the tip end side of the blade tip portion. By sharply increasing the angle, it is designed to cut up on the wall facing the rear side of the drill rotation direction of the chip discharge groove, and although it has the effect of facilitating re-polishing as described above, the chip discharge performance is improved. There is little to contribute to. Rather, because the groove width of the sub-groove portion suddenly decreases at the portion that cuts to the wall surface of the chip discharge groove, for example, when the copper foil thickness is thick in the drilling process of a printed circuit board to which copper foil or the like is attached, There also existed a problem that generation | occurrence | production of the chip clogging by the chip of this copper foil cannot be avoided.

本発明は、このような背景の下になされたもので、小径で、なおかつ上記比L/Dの大きなドリルにおいても、刃先部におけるドリル本体の強度や剛性を十分に確保しつつ、切屑排出性を損なうことがないドリルを提供することを目的としている。   The present invention has been made under such a background, and even in a drill having a small diameter and a large ratio L / D, while ensuring sufficient strength and rigidity of the drill body at the cutting edge portion, chip dischargeability is achieved. The purpose is to provide a drill that does not damage it.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるドリル本体先端側の刃先部の外周に、主溝と、この主溝のドリル回転方向前方側に連なる副溝とからなる1条のみの切屑排出溝が、上記刃先部の先端から後端側に向けて延びるように形成されていて、この切屑排出溝のうち上記主溝のドリル回転方向前方側を向く面と上記刃先部の先端逃げ面との交差稜線部に切刃が形成されており、この切刃がなす上記刃先部の最大外径に対して、上記副溝は、上記先端逃げ面から上記刃先部の後端側に向けて一定の溝深さとされる一方、上記主溝は、上記先端逃げ面では上記副溝の溝深さよりも深い溝深さとされるとともに、上記刃先部の後端側に向かうに従い溝深さが漸次浅くなって、上記副溝の後端よりも先端側で切れ上がっていることを特徴とする。   In order to solve the above-described problems and achieve such an object, the present invention provides a main groove on the outer periphery of the tip of the drill body rotated about the axis, and a front of the main groove in the drill rotation direction. A single chip discharge groove composed of a secondary groove on the side is formed so as to extend from the front end of the blade edge part toward the rear end side, and the drill rotation direction of the main groove in the chip discharge groove A cutting edge is formed at the intersecting ridge line portion between the surface facing the front side and the tip flank surface of the blade edge portion, and the sub-groove is formed on the tip edge with respect to the maximum outer diameter of the blade edge portion formed by the cutting blade. While the fixed groove depth is made from the flank face toward the rear end side of the cutting edge portion, the main groove has a groove depth deeper than the groove depth of the auxiliary groove at the tip flank face, and the cutting edge. The groove depth gradually becomes shallower toward the rear end side of the section, and the tip end is farther than the rear end of the sub-groove. Characterized in that it Kireaga' the side.

このように構成されたドリルにおいては、刃先部の外周に1条のみ形成される切屑排出溝のうち、主溝は、刃先部の先端逃げ面では副溝よりも溝深さが深くされており、そのドリル回転方向前方側を向く面と先端逃げ面との交差稜線部に、穴明け加工を行うのに必要な長さの切刃を形成することができる。その一方で、この主溝は、後端側に向かうに従い溝深さが漸次浅くなって、副溝の後端よりも先端側で外周側に切れ上がることになるため、これよりも刃先部の後端側ではドリル本体が径方向内周側に大きく切り欠かれるのを避けることができる。   In the drill configured as described above, among the chip discharge grooves formed only on the outer periphery of the cutting edge part, the main groove has a groove depth deeper than that of the auxiliary groove on the tip flank of the cutting edge part. A cutting blade having a length necessary for drilling can be formed at the intersecting ridge line portion of the surface facing the front side in the drill rotation direction and the tip flank. On the other hand, the groove depth of the main groove gradually becomes shallower toward the rear end side, and the main groove is cut to the outer peripheral side at the front end side than the rear end of the sub groove. On the end side, the drill body can be prevented from being greatly cut out on the radially inner peripheral side.

これに対して、副溝は、主溝のドリル回転方向前方側に連なって、刃先部の先端逃げ面から後端側に向けて主溝の切れ上がり部分を越えて後端側に延びており、従ってこの副溝の後端の位置により刃先部の有効切刃長Lが決定される。そして、こうして主溝の切れ上がり部分を越えた刃先部の後端側では、主溝がなくなっても、この副溝によって一定の溝深さを切屑排出溝に確保して切屑排出性を維持することができるとともに、ドリル本体の心厚も一定とすることができ、しかもこの心厚は、上述のように刃先部後端側でドリル本体が径方向内周側に大きく切り欠かれることがないために、大きな心厚とすることができて、これにより刃先部に高い強度と剛性を与えることが可能となる。   On the other hand, the secondary groove is connected to the front side of the main groove in the direction of drill rotation, and extends from the tip flank face of the blade edge part toward the rear end side, beyond the raised part of the main groove, to the rear end side. Therefore, the effective cutting edge length L of the cutting edge is determined by the position of the rear end of the sub-groove. And even if there is no main groove on the rear end side of the cutting edge part beyond the cut-off portion of the main groove in this way, a certain groove depth is secured in the chip discharge groove by this sub groove, and the chip discharge property is maintained. In addition, the core thickness of the drill body can be made constant, and the core thickness is not greatly cut out on the radially inner peripheral side on the rear end side of the cutting edge as described above. For this reason, a large core thickness can be obtained, which makes it possible to give high strength and rigidity to the cutting edge portion.

ここで、このような切屑排出溝を形成するのに、上記先端逃げ面から上記刃先部の後端側に向けて一定の溝幅で延びるように上記副溝を形成し、この副溝のドリル回転方向後方側の部分に上記主溝のドリル回転方向前方側の部分が重なるようにして、該主溝を上記先端逃げ面から副溝と並列に延びるように形成することにより、刃先部の先端逃げ面側では主溝の溝幅と副溝の溝幅の和から重なり合った部分を除いた幅の大きな溝幅を切屑排出溝に確保することができる一方、主溝が切れ上がる部分でも、主溝の溝幅は小さくなるのに対して重なり合った部分の副溝の溝幅は大きくなって上記一定の溝幅となるので、一層確実に切屑排出性の確保を図ることが可能となる。勿論、実際の切屑排出溝を形成する際には、主溝を形成してから、そのドリル回転方向側に重なるように副溝を並列に形成してもよい。   Here, in order to form such a chip discharge groove, the sub-groove is formed so as to extend with a constant groove width from the tip flank face toward the rear end side of the blade edge portion, and a drill for the sub-groove is formed. By forming the main groove so as to extend in parallel with the sub-groove from the tip flank so that the portion on the drill rotation direction front side of the main groove overlaps the portion on the rear side in the rotation direction, the tip of the cutting edge portion On the flank side, it is possible to secure a large groove width in the chip discharge groove excluding the overlapping part from the sum of the groove width of the main groove and the auxiliary groove, while the main groove can However, since the groove width of the overlapping sub-grooves is increased to the above-described constant groove width, it is possible to ensure the chip discharge property more reliably. Of course, when the actual chip discharge groove is formed, after forming the main groove, the sub-groove may be formed in parallel so as to overlap the drill rotation direction side.

なお、上記軸線方向における上記主溝の長さは上記副溝の長さの40〜90%の範囲とされるのが望ましく、これよりも主溝が長いと刃先部の後端側でドリル本体の強度や剛性を確保することが困難となるおそれがある一方、これよりも短いと主溝の溝深さが後端側に向かうに従い急激に浅くなって切屑排出性を損なうおそれが生じる。また、主溝が切れ上がるまでの上記刃先部の先端側において、上記副溝は、主溝の溝幅の中心から上記軸線回りにドリル回転方向前方側に向けて100〜200°の範囲にまで形成されているのが望ましく、これよりも副溝の形成される範囲が大きいと切屑排出溝全体の溝幅が大きくなりすぎて、この刃先部の先端側でドリル本体の強度や剛性が損なわれるおそれがあり、逆に副溝の形成される範囲がこれよりも小さいと切屑排出溝の断面積も小さくなって切屑排出性を維持することができなくなるおそれが生じる。   The length of the main groove in the axial direction is preferably in the range of 40 to 90% of the length of the sub-groove, and if the main groove is longer than this, the drill body on the rear end side of the cutting edge portion. On the other hand, if it is shorter than this, the depth of the main groove becomes shallower as it goes to the rear end side, which may impair chip discharge. Further, on the tip side of the cutting edge until the main groove is cut off, the sub-groove is formed in the range of 100 to 200 ° from the center of the groove width of the main groove toward the front side in the drill rotation direction around the axis. If the area where the sub-groove is formed is larger than this, the entire width of the chip discharge groove becomes too large, and the strength and rigidity of the drill body may be impaired on the tip side of the cutting edge. On the contrary, if the range in which the sub-groove is formed is smaller than this, the cross-sectional area of the chip discharge groove is also reduced, and there is a possibility that the chip discharge performance cannot be maintained.

以上説明したように、本発明によれば、良好な切屑排出性を維持しつつも、刃先部の後端側におけるドリル本体の強度や剛性を向上させることができ、例えば銅箔厚さの厚いプリント基板に小径で深い穴を穴明け加工するような場合でも、切屑詰まりを防いで折損等の発生を防止することが可能となる。   As described above, according to the present invention, it is possible to improve the strength and rigidity of the drill body on the rear end side of the blade edge part while maintaining good chip dischargeability, for example, a thick copper foil Even when a small hole with a small diameter is drilled on a printed circuit board, it is possible to prevent clogging and prevent breakage and the like.

本発明の一実施形態を示すドリル本体の刃先部の側面図である。It is a side view of the blade edge | tip part of the drill main body which shows one Embodiment of this invention. 図1に示す刃先部の模式的に示した側断面図である。It is the sectional side view which showed typically the blade edge | tip part shown in FIG. 図1におけるXX拡大断面図である。It is XX expanded sectional drawing in FIG. 図1におけるYY拡大断面図である。It is YY expanded sectional drawing in FIG. 図1におけるZZ拡大断面図である。It is ZZ expanded sectional drawing in FIG.

図1ないし図5は、本発明のドリルの一実施形態を示すものである。本実施形態において、ドリル本体1は、超硬合金等の硬質材料により軸線Oを中心とした概略多段円柱状をなし、図示されない後端側(図1および図2において右側)部分がシャンク部とされるとともに、このシャンク部の先端側(図1および図2において左側)には、シャンク部よりも小径の外形略長尺円柱状をなす刃先部2がテーパ部3を介して同軸かつ一体に形成されている。   1 to 5 show an embodiment of the drill of the present invention. In this embodiment, the drill body 1 is formed in a substantially multi-stage cylindrical shape centering on the axis O with a hard material such as cemented carbide, and a rear end side (right side in FIGS. 1 and 2) not shown is a shank portion. In addition, on the tip side of the shank portion (on the left side in FIGS. 1 and 2), a cutting edge portion 2 having a substantially long cylindrical shape having a smaller diameter than the shank portion is coaxially and integrally formed through a taper portion 3. Is formed.

このようなドリルは、上記シャンク部が工作機械の主軸に取り付けられて軸線O回りにドリル回転方向Tに回転されつつ該軸線O方向先端側に送り出されることにより、上記刃先部2によってプリント基板や、微少な金属部品、プラスチック等の被削材に小径で深い穴を穴明け加工する。このように小径深穴を形成することから、本実施形態のドリルは、例えば次述する刃先部2の最大外径Dが0.05〜0.5mm程度、刃先部2の有効切刃長(後述する溝長さL)が1.4〜7.0mm程度とされて、L/Dが5以上の範囲とされた極細の刃先部2を有するものとされる。   In such a drill, the shank portion is attached to the main shaft of the machine tool, and is rotated around the axis O in the drill rotation direction T and sent to the front end side in the axis O direction. Small holes and deep holes are drilled in work materials such as fine metal parts and plastics. Since the small-diameter deep hole is formed in this way, the drill of this embodiment has, for example, a maximum outer diameter D of the cutting edge portion 2 described below of about 0.05 to 0.5 mm and an effective cutting edge length of the cutting edge portion 2 ( The groove length L), which will be described later, is about 1.4 to 7.0 mm, and has an extremely fine blade edge portion 2 in which L / D is in the range of 5 or more.

この刃先部2の外周には、切屑排出溝4が1条のみ形成されている。この切屑排出溝4は、刃先部2の先端すなわちドリル本体1先端の先端逃げ面5に開口し、後端側に向けて軸線O回りにドリル回転方向Tの後方側に捩れつつ延びて、上記テーパ部3の僅かに先端側にまで達するように形成されており、この切屑排出溝4のドリル回転方向T前方側を向く面と上記先端逃げ面5との交差稜線部に、切刃6が形成されている。従って、本実施形態のドリルは、この切刃6も1つのみ形成された一枚刃のドリルとされ、この切刃6の外周端が軸線O回りになす円の直径が刃先部2の最大外径Dとされる。   Only one chip discharge groove 4 is formed on the outer periphery of the blade edge portion 2. This chip discharge groove 4 opens at the tip flank 5 of the tip of the cutting edge 2, that is, the tip of the drill body 1, and extends while twisting to the rear side in the drill rotation direction T around the axis O toward the rear end side. The cutting edge 6 is formed so as to reach the front end side slightly of the taper portion 3, and the cutting edge 6 is formed at the intersecting ridge line portion between the surface of the chip discharge groove 4 facing the front side of the drill rotation direction T and the front end relief surface 5. Is formed. Therefore, the drill of this embodiment is a single-blade drill in which only one cutting blade 6 is formed. The diameter of the circle formed by the outer peripheral end of the cutting blade 6 around the axis O is the maximum of the cutting edge portion 2. The outer diameter is D.

そして、この切屑排出溝4は、図3および図4に示すようにドリル回転方向Tの後方側に位置する主溝7と、この主溝7のドリル回転方向T前方側に連なるように形成された副溝8とから構成されている。このうち、副溝8は、上記刃先部2の最大外径Dに対して、すなわち軸線Oを中心とした最大外径Dの直径の仮想円筒面に対して、その溝深さ(上記仮想円筒面からの溝深さ)が、例えば最大外径Dの10〜40%の範囲のうちで一定となるようにされて、先端逃げ面5から上述のようにテーパ部3の僅かに先端側に至るように延び、その後端で刃先部2の外周面(二番取り面)に切れ上がるように形成されている。   3 and 4, the chip discharge groove 4 is formed so as to be continuous with the main groove 7 located on the rear side in the drill rotation direction T and on the front side in the drill rotation direction T of the main groove 7. And a secondary groove 8. Among these, the minor groove 8 has a groove depth (the virtual cylinder described above) with respect to the maximum outer diameter D of the cutting edge portion 2, that is, with respect to a virtual cylindrical surface having a diameter of the maximum outer diameter D around the axis O. (Groove depth from the surface) is made constant, for example, within a range of 10 to 40% of the maximum outer diameter D, and from the tip flank 5 slightly toward the tip side of the tapered portion 3 as described above. It extends so as to reach the outer peripheral surface (second surface) of the blade edge 2 at its rear end.

これに対して、主溝7は、先端逃げ面5に開口した部分では、上記最大外径Dに対する溝深さ(上記仮想円筒面からの溝深さ)が副溝8よりも深くされる一方、後端側に向かうに従い溝深さが漸次浅くなって、テーパ部3の僅かに先端側の副溝8の上記後端よりも刃先部2の先端側で外周側に切れ上がるように形成されている。従って、上記切刃6は、ドリル回転方向T後方側に位置するこの主溝7の底面7Aのうちドリル回転方向T前方側を向く面と上記先端逃げ面5との交差稜線部に形成されることになる。   On the other hand, in the main groove 7, the groove depth with respect to the maximum outer diameter D (groove depth from the virtual cylindrical surface) is deeper than the sub-groove 8 at the portion opened to the tip flank 5. The groove depth gradually decreases toward the rear end side, and is formed so as to be cut off to the outer peripheral side at the tip end side of the blade edge portion 2 rather than the rear end of the sub-groove 8 slightly at the tip end side of the taper portion 3. Yes. Therefore, the cutting edge 6 is formed at the intersection ridge line portion between the surface facing the front side of the drill rotation direction T and the tip flank 5 of the bottom surface 7A of the main groove 7 located on the rear side of the drill rotation direction T. It will be.

ここで、本実施形態ではこの主溝7は、図3および図4に示すように軸線Oに直交する断面においてその底面7A全体が凹円弧状をなすように形成されて、同断面においてこの凹円弧の中心とドリル本体1の軸線Oとを結ぶ直線Cに対して対称とされており、この直線Cが主溝7の溝幅の中心となる。そして、この主溝7は、この底面の断面がなす凹円弧の半径がその中心の軸線Oとの間隔は同じとしたまま、先端逃げ面5から刃先部2の後端側に向かうに従い一定の割合で小さくなるように形成されることにより、上記溝深さが漸次小さくなるようにされており、これに伴いその溝幅も後端側に向かうに従い上記直線Cを中心としたまま漸次小さくなる。   Here, in the present embodiment, the main groove 7 is formed so that the entire bottom surface 7A forms a concave arc shape in a cross section perpendicular to the axis O as shown in FIGS. It is symmetrical with respect to a straight line C connecting the center of the arc and the axis O of the drill body 1, and this straight line C is the center of the groove width of the main groove 7. The main groove 7 has a constant radius as the radius of the concave arc formed by the cross section of the bottom surface is the same as the distance from the axis O of the center of the main groove 7 from the tip flank 5 toward the rear end side of the cutting edge 2. The groove depth is gradually reduced by being formed so as to decrease in proportion, and accordingly, the groove width gradually decreases with the straight line C as the center as it goes to the rear end side. .

一方、副溝8は、本実施形態では主溝7とは逆に、その底面8Aが軸線Oに直交する断面において図3ないし図5に示すように軸線Oを中心とした凸円弧状をなしており、上記溝深さが一定であるため、この副溝8の底面8Aは刃先部2の全長に亙って、上記最大外径Dからこの副溝8の溝深さの2倍の長さを引いた直径を有する円筒面上に位置することになる。なお、この副溝8の溝幅は、主溝7が切れ上がる位置までは、この主溝7の溝幅が漸次小さくなるのとは逆に後端側に向かうに従い漸次大きくなり、主溝7が切れ上がった位置から後端側では一定の溝幅となるようにされている。   On the other hand, the sub-groove 8 has a convex arc shape centered on the axis O as shown in FIGS. 3 to 5 in a cross section in which the bottom surface 8A is orthogonal to the axis O, as opposed to the main groove 7 in this embodiment. Since the groove depth is constant, the bottom surface 8A of the secondary groove 8 is twice as long as the groove depth of the secondary groove 8 from the maximum outer diameter D over the entire length of the cutting edge portion 2. It will be located on a cylindrical surface having a diameter minus the thickness. In addition, the groove width of the sub-groove 8 gradually increases toward the rear end side as opposed to the groove width of the main groove 7 gradually decreasing until the position where the main groove 7 is cut off. A constant groove width is formed on the rear end side from the cut-out position.

このような主溝7と副溝8とからなる切屑排出溝4は、例えば刃先部2の外周に上述のような一定の溝深さと一定の溝幅の副溝8を軸線Oに対して一定の捩れ角で形成し、次いでこの副溝8のドリル回転方向T後方側に溝深さが漸次浅くなる主溝7を、そのドリル回転方向T前方側の部分が副溝8のドリル回転方向T後方側の部分と重なるようにして、先端逃げ面5から副溝8と並列に延びるように、すなわち主溝7が後端側に向かうに従いその溝幅の中心となる上記直線Cが副溝8の捩れ角と等しい捩れ角の軌跡をなして軸線Oに対して捩れるように形成することにより、得ることができる。勿論、主溝7を形成した後に副溝8を形成するようにしてもよく、可能であれば主溝7と副溝8とを同時に形成してこのような形状を有する切屑排出溝4を得るようにしてもよい。   The chip discharge groove 4 composed of the main groove 7 and the sub-groove 8 has, for example, the constant groove depth and the sub-groove 8 having the constant groove width as described above on the outer periphery of the blade edge portion 2 with respect to the axis O Next, the main groove 7 whose groove depth gradually decreases to the rear side of the drill rotation direction T of the sub-groove 8, and the portion in front of the drill rotation direction T is the drill rotation direction T of the sub-groove 8. The straight line C, which extends in parallel with the sub-groove 8 from the front flank 5 so as to overlap with the rear side portion, that is, the center C of the groove width becomes the sub-groove 8 as the main groove 7 moves toward the rear end side. It can be obtained by forming it so as to be twisted with respect to the axis O along a trajectory of a twist angle equal to the twist angle. Of course, the sub-groove 8 may be formed after the main groove 7 is formed. If possible, the main groove 7 and the sub-groove 8 are simultaneously formed to obtain the chip discharge groove 4 having such a shape. You may do it.

なお、本実施形態では、主溝7の溝幅の中心となる上記直線Cは、図3および図4に示すように軸線Oに直交する各断面において、この主溝7のドリル回転方向T前方側の部分と重なり合う副溝8のドリル回転方向T後方側の壁面8Bと一致するようにして、この副溝8の捩れ角と等しい捩れ角で後端側に向けて捩れる軌跡をなしている。従って、本実施形態における主溝7は、刃先部2の後端側に向けて溝深さが浅くなっていって、副溝8と重なり合った上記直線Cよりもドリル回転方向T前方側の部分がまずこの副溝8の底面8Aに切れ上がり、次いでこれよりも後端側で、上記直線Cのドリル回転方向T後方側の部分が刃先部2の外周面に切れ上がることになる。   In the present embodiment, the straight line C which is the center of the groove width of the main groove 7 is forward of the drill rotation direction T of the main groove 7 in each cross section orthogonal to the axis O as shown in FIGS. A trajectory of twisting toward the rear end side with a twist angle equal to the twist angle of the sub-groove 8 so as to coincide with the wall surface 8B on the rear side in the drill rotation direction T of the sub-groove 8 overlapping the side portion. . Accordingly, the main groove 7 in the present embodiment has a groove depth shallower toward the rear end side of the cutting edge portion 2, and is a portion on the front side in the drill rotation direction T with respect to the straight line C overlapping the sub groove 8. Is first cut to the bottom surface 8A of the sub-groove 8, and then the portion of the straight line C on the rear side in the drill rotation direction T is cut to the outer peripheral surface of the cutting edge portion 2 on the rear end side.

また、同じく軸線Oに直交する各断面において、副溝8は、主溝7の溝幅の中心となる上記直線Cから軸線O回りにドリル回転方向T前方側に向けて、該軸線Oに対する中心角αが100〜200°の範囲内となるように形成されていて、本実施形態ではこの中心角αは180°とされている。ここで、上述のように上記直線Cが副溝8のドリル回転方向T後方側の壁面8Bと一致していることから、本実施形態における副溝8は図5に示すようにこの中心角αと等しく軸線O回りに180°の範囲に形成されることになる。   Similarly, in each cross section orthogonal to the axis O, the sub-groove 8 is centered with respect to the axis O from the straight line C, which is the center of the groove width of the main groove 7, toward the front side of the drill rotation direction T around the axis O. The angle α is formed to be in the range of 100 to 200 °, and in the present embodiment, the central angle α is 180 °. Here, since the straight line C coincides with the wall surface 8B on the rear side in the drill rotation direction T of the sub-groove 8 as described above, the sub-groove 8 in the present embodiment has this central angle α as shown in FIG. Is formed in the range of 180 ° around the axis O.

さらに、図2に示すように軸線O方向において、刃先部2の最先端から副溝8が二番取り面に切れ上がるその後端までの副溝8の溝長さL、すなわち刃先部2の有効切刃長に対して、同じく刃先部2の最先端から主溝7が二番取り面に切れ上がるその後端までの主溝7の溝長さMは、40〜90%の範囲とされている。なお、この図2に示すように、本実施形態のドリルは刃先部2の先端部の外径に対して後端部の外径が段差部2Aを介して僅かに一段小さくなるようにされたアンダーカットタイプのドリルとされており、主溝7は上記段差部2Aよりも後端側で副溝8の底面8Aに切れ上がり、さらにこれよりも後端側で二番取り面に切れ上がるようにされている。   Further, as shown in FIG. 2, in the direction of the axis O, the groove length L of the auxiliary groove 8 from the foremost end of the cutting edge portion 2 to the rear end where the auxiliary groove 8 cuts to the second surface, that is, the effective cutting of the cutting edge portion 2 is performed. Similarly, the groove length M of the main groove 7 from the leading edge of the blade edge 2 to the rear end where the main groove 7 cuts to the second surface is set to a range of 40 to 90% with respect to the blade length. As shown in FIG. 2, the drill of this embodiment is configured such that the outer diameter of the rear end portion is slightly smaller than the outer diameter of the tip portion of the blade edge portion 2 through the step portion 2A. It is an undercut type drill, and the main groove 7 is cut to the bottom surface 8A of the sub-groove 8 on the rear end side with respect to the stepped portion 2A, and further cut to the second face on the rear end side. Has been.

このように構成されたドリルにおいては、まず刃先部2に形成される切屑排出溝4が1条のみであるので、この切屑排出溝4によりドリル本体1が切り欠かれる部分が少なく、心厚を大きくすることができて、刃先部2に高い強度と剛性を確保することができる。そして、さらに上記構成のドリルでは、この切屑排出溝4が主溝7と副溝8とから構成されていて、このうち副溝8は刃先部2の最大外径Dに対して一定の溝深さとされる一方、主溝7は先端逃げ面5で副溝8より深いものの、後端側に向けて漸次浅くなって副溝8の後端よりも先端側で切れ上がっているので、これよりも後端側ではドリル本体1が径方向内周側に切り欠かれる部分を一層小さくすることができて、心厚をより大きく確保し、強度と剛性の向上を図ることができる。   In the drill constructed as described above, first, the chip discharge groove 4 formed in the cutting edge portion 2 is only one, so that the portion where the drill body 1 is notched by the chip discharge groove 4 is small, and the core thickness is reduced. It can be enlarged, and high strength and rigidity can be secured in the blade edge portion 2. Further, in the drill having the above-described configuration, the chip discharge groove 4 is composed of a main groove 7 and a sub groove 8, and the sub groove 8 has a constant groove depth with respect to the maximum outer diameter D of the cutting edge portion 2. On the other hand, the main groove 7 is deeper at the front end flank 5 than the sub-groove 8, but gradually becomes shallower toward the rear end side and is cut off at the front end side than the rear end of the sub-groove 8. On the rear end side, the portion where the drill body 1 is notched to the radially inner peripheral side can be further reduced, and the core thickness can be further increased to improve the strength and rigidity.

その一方で、主溝7は先端逃げ面5において最も大きな溝深さとなるため、その底面7Aのうちドリル回転方向T前方側を向く面と先端逃げ面5との交差稜線部に、穴明け加工に必要な長さの切刃6を確実に形成することができる。そして、この切刃6によって生成された切屑は、こうして大きな溝深さとされた主溝7から徐々に溝深さが浅くなる後端側に送り出されるが、この主溝のドリル回転方向T前方側には副溝8が連なって連通させられており、これにより切屑排出溝4の断面積は十分に確保することができるので、良好な切屑排出性を維持することができる。   On the other hand, since the main groove 7 has the largest groove depth on the tip flank 5, drilling is performed on the cross ridge line portion between the surface facing the front side of the drill rotation direction T and the tip flank 5 of the bottom surface 7 </ b> A. Therefore, it is possible to reliably form the cutting blade 6 having a length necessary for the above. The chips generated by the cutting blade 6 are sent out from the main groove 7 having a large groove depth to the rear end side where the groove depth gradually decreases. The sub-grooves 8 are connected to each other, and the cross-sectional area of the chip discharge groove 4 can be sufficiently secured, so that good chip discharge performance can be maintained.

従って、上記構成のドリルによれば、このように良好な切屑排出性を維持しつつも、刃先部2の後端側におけるドリル本体1の強度や剛性を向上させることができるので、例えば上述のようなプリント基板への穴明け加工のうちでも厚さの厚い銅箔が貼られたプリント基板に小径深穴の穴部を形成するような場合に、刃先部2の上記比L/Dが大きくても、この銅箔の切屑による切屑詰まりが生じて抵抗が増大したり刃先部2に折損が生じたりするのを防いで、安定的かつ効率的な穴明け加工を行うことが可能となる。   Therefore, according to the drill having the above-described configuration, the strength and rigidity of the drill main body 1 on the rear end side of the blade edge portion 2 can be improved while maintaining such excellent chip dischargeability. The above ratio L / D of the blade edge portion 2 is large when a hole portion of a small diameter deep hole is formed in a printed circuit board on which a thick copper foil is pasted even in the drilling process to such a printed circuit board. However, it is possible to prevent the clogging of the copper foil due to the chips and increase the resistance or breakage of the cutting edge portion 2, thereby enabling stable and efficient drilling.

特に、本実施形態のドリルでは、この切屑排出溝4が、先端逃げ面5から刃先部2の後端側に向けて一定幅の副溝8を形成した後に、この副溝8のドリル回転方向T後方側の部分に主溝7のドリル回転方向T後方側の部分が重なるようにして、主溝7を副溝8と並列に形成したような形状とされているので、こうして主溝7と副溝8とが重なり合うことにより、主溝7の溝深さが浅くなって切れ上がる部分では逆に副溝8の溝幅は大きくなる。このため、こうして主溝7が切れ上がる部分でも、切屑排出性が著しく損なわれて切屑詰まりが生じたりするのを防ぐことができ、一層円滑で安定した穴明け加工を促すことが可能となる。   In particular, in the drill of the present embodiment, the chip discharge groove 4 forms a sub-groove 8 having a constant width from the tip flank 5 toward the rear end side of the blade edge portion 2, and then the drill rotation direction of the sub-groove 8. Since the main groove 7 is formed in parallel with the sub-groove 8 so that the portion on the rear side in the drill rotation direction T of the main groove 7 overlaps the portion on the rear side of the T, the main groove 7 By overlapping the sub-groove 8, the groove width of the sub-groove 8 is conversely increased at the portion where the groove depth of the main groove 7 becomes shallow and cuts. For this reason, even in the portion where the main groove 7 is cut off, it is possible to prevent the chip discharging performance from being significantly impaired and to cause chip clogging, and to promote more smooth and stable drilling.

また、本実施形態では、上記軸線O方向における主溝7の溝長さMが、副溝8の溝長さLすなわち切屑排出溝4の溝長さの40〜90%の範囲とされており、これによっても確実に切屑排出性を確保しつつ刃先部2の強度や剛性の向上を図ることができる。すなわち、この主溝7の溝長さMの割合がこの範囲を上回るほど大きいと、主溝7がより後端側まで延びることになってドリル本体1が切り欠かれ、刃先部2の強度や剛性を確実に確保することができなくなるおそれがあり、逆に上記範囲を下回りほど小さいと、主溝7の溝深さが後端側に向けて急激に浅くなることになって、副溝8が形成されていても切屑排出性が損なわれるおそれが生じる。   In the present embodiment, the groove length M of the main groove 7 in the axis O direction is in the range of 40 to 90% of the groove length L of the sub-groove 8, that is, the groove length of the chip discharge groove 4. This also makes it possible to improve the strength and rigidity of the blade edge portion 2 while ensuring the chip discharge performance. That is, if the ratio of the groove length M of the main groove 7 is larger than this range, the main groove 7 extends to the rear end side, the drill body 1 is cut away, and the strength of the cutting edge portion 2 is increased. If the rigidity is less than the above range, the groove depth of the main groove 7 is abruptly decreased toward the rear end side. Even if is formed, there is a possibility that the chip discharging property is impaired.

さらに、本実施形態では、主溝7が存在する刃先部2の先端側において、軸線Oに直交する断面におけるこの主溝7の溝幅の中心となる上記直線Cから、副溝8が、ドリル回転方向T前方側に向けて軸線Oを中心とした中心角αが100〜200°の範囲にまで形成されており、これによっても切屑排出性と刃先部2の強度や剛性の向上とをより確実に両立させることができる。すなわち、この中心角αが上記範囲を上回るほど大きく副溝8が形成されていると、主溝7とともに刃先部2の先端側の部分でドリル本体1が大きく切り欠かれることになって、被削材を切削するのに必要な強度や剛性を確保することができなくなるおそれがあり、逆に上記範囲よりも副溝8が形成される範囲が小さいと、良好な切屑排出性を得ることができなくなるおそれが生じる。   Further, in the present embodiment, on the tip side of the cutting edge portion 2 where the main groove 7 exists, the sub-groove 8 is a drill from the straight line C that is the center of the groove width of the main groove 7 in the cross section orthogonal to the axis O. The central angle α with the axis O as the center is formed in the range of 100 to 200 ° toward the front side in the rotation direction T, and this also improves the chip discharge performance and the strength and rigidity of the blade edge 2. It is possible to ensure both. That is, if the sub-groove 8 is formed so large that the central angle α exceeds the above range, the drill body 1 is largely cut off at the tip side of the cutting edge portion 2 together with the main groove 7, There is a possibility that the strength and rigidity necessary for cutting the cutting material cannot be ensured. On the contrary, if the range in which the auxiliary groove 8 is formed is smaller than the above range, good chip dischargeability can be obtained. There is a risk that it will not be possible.

さらにまた、本実施形態では、この副溝8の底面8Aが、軸線Oに直交する断面において該軸線Oを中心とした凸円弧をなすように、ドリル本体の周方向に湾曲する凸曲面状とされているので、特に主溝7が切れ上がった刃先部2の後端側で心厚をより大きく確保することができ、これによっても強度や剛性の向上に寄与することができる。また、これに対して主溝7は、その底面7Aが軸線Oに直交する断面において逆に軸線O側に凹む凹円弧をなすような凹曲面状とされており、例えば副溝8の底面8Aのように凸曲面状のものと比べて、断面積が同じならばより大きな溝深さを確保することができるので、切屑排出性を向上させることが可能となる。   Furthermore, in the present embodiment, the bottom surface 8A of the sub-groove 8 has a convex curved surface curved in the circumferential direction of the drill body so as to form a convex arc centered on the axis O in a cross section orthogonal to the axis O. As a result, a larger core thickness can be ensured particularly on the rear end side of the blade edge portion 2 where the main groove 7 is cut off, and this can also contribute to improvement in strength and rigidity. On the other hand, the main groove 7 has a concave curved surface in which the bottom surface 7A forms a concave arc that is recessed toward the axis O in the cross section orthogonal to the axis O, for example, the bottom surface 8A of the sub-groove 8 In this way, a larger groove depth can be ensured if the cross-sectional area is the same as in the case of a convex curved surface shape, so that it is possible to improve the chip dischargeability.

なお、本実施形態では、刃先部2の外径が後端側に向けて段差部2Aを介して一段小さくなるアンダーカットタイプのドリルに本発明を適用した場合について説明したが、この刃先部2の外径が後端側に向けて漸次小さくなるバックテーパタイプのドリルに本発明を適用することも可能であり、また刃先部2の外径が一定のストレートタイプのドリルにも適用可能である。これらいずれのタイプでも、副溝8はこの刃先部2の切刃6における最大外径Dに対して一定の溝深さとされていればよい。   In addition, although this embodiment demonstrated the case where this invention was applied to the undercut type drill in which the outer diameter of the blade edge | tip part 2 becomes smaller one step | paragraph through the level | step-difference part 2A toward the rear end side, this blade edge | tip part 2 was demonstrated. The present invention can be applied to a back taper type drill whose outer diameter gradually decreases toward the rear end side, and can also be applied to a straight type drill in which the outer diameter of the blade edge portion 2 is constant. In any of these types, the sub-groove 8 only needs to have a constant groove depth with respect to the maximum outer diameter D of the cutting edge 6 of the cutting edge portion 2.

1 ドリル本体
2 刃先部
4 切屑排出溝
5 先端逃げ面
6 切刃
7 主溝
8 副溝
O ドリル本体1の軸線
T ドリル回転方向
D 刃先部2の最大外径(切刃6の直径)
L 軸線O方向における副溝8の溝長さ(切屑排出溝4の溝長さ、刃先部2の有効切刃長)
M 軸線O方向における主溝7の溝長さ
C 軸線Oに直交する断面における主溝7の溝幅の中心となる直線
α 直線Cからドリル回転方向T前方側に向けて副溝8が形成される範囲の軸線Oを中心とした中心角
DESCRIPTION OF SYMBOLS 1 Drill main body 2 Cutting edge part 4 Chip discharge groove 5 Tip flank 6 Cutting edge 7 Main groove 8 Secondary groove O Axis line of drill main body T Drill rotation direction D Maximum outer diameter of cutting edge part 2 (diameter of cutting edge 6)
L Groove length of the auxiliary groove 8 in the axis O direction (the groove length of the chip discharge groove 4 and the effective cutting edge length of the cutting edge 2)
M Groove length of the main groove 7 in the direction of the axis O C A sub-groove 8 is formed from the straight line α which is the center of the groove width of the main groove 7 in the cross section perpendicular to the axis O toward the front side of the drill rotation direction T. Center angle around the axis O

Claims (4)

軸線回りに回転されるドリル本体先端側の刃先部の外周に、主溝と、この主溝のドリル回転方向前方側に連なる副溝とからなる1条のみの切屑排出溝が、上記刃先部の先端から後端側に向けて延びるように形成されていて、この切屑排出溝のうち上記主溝のドリル回転方向前方側を向く壁面と上記刃先部の先端逃げ面との交差稜線部に切刃が形成されており、この切刃がなす上記刃先部の最大外径に対して、上記副溝は、上記先端逃げ面から上記刃先部の後端側に向けて一定の溝深さとされる一方、上記主溝は、上記先端逃げ面では上記副溝の溝深さよりも深い溝深さとされるとともに、上記刃先部の後端側に向かうに従い溝深さが漸次浅くなって、上記副溝の後端よりも先端側で切れ上がっていることを特徴とするドリル。   On the outer periphery of the cutting edge portion on the tip end side of the drill body rotated about the axis, a single chip discharge groove consisting of a main groove and a secondary groove connected to the front side in the drill rotation direction of the main groove is the cutting edge portion of the cutting edge portion. The cutting edge is formed so as to extend from the front end toward the rear end side, and the cutting edge is formed on the intersecting ridge line portion between the wall surface facing the front side in the drill rotation direction of the main groove and the front end flank of the cutting edge portion. The sub-groove has a constant groove depth from the tip clearance surface toward the rear end side of the blade edge portion with respect to the maximum outer diameter of the blade edge portion formed by the cutting blade. The main groove has a groove depth deeper than the groove depth of the sub-groove on the tip flank, and the groove depth gradually becomes shallower toward the rear end side of the blade edge portion. A drill characterized by being cut off at the front end side of the rear end. 上記切屑排出溝は、上記先端逃げ面から上記刃先部の後端側に向けて一定の溝幅で延びるようにされた上記副溝のドリル回転方向後方側の部分に、上記主溝がそのドリル回転方向前方側の部分を重ねて上記先端逃げ面から該副溝と並列に延びるように形成されていることを特徴とする請求項1に記載のドリル。   The chip discharge groove is formed on a portion on the rear side in the drill rotation direction of the sub-groove that extends with a constant groove width from the tip flank to the rear end side of the cutting edge. The drill according to claim 1, wherein the drill is formed so as to extend in parallel with the sub-groove from the tip flank by overlapping portions on the front side in the rotation direction. 上記軸線方向における上記主溝の長さが上記副溝の長さの40〜90%の範囲とされていることを特徴とする請求項1または請求項2に記載のドリル。   The length of the said main groove in the said axial direction is made into the range of 40 to 90% of the length of the said subgroove, The drill of Claim 1 or Claim 2 characterized by the above-mentioned. 上記刃先部の先端側において、上記副溝は、上記主溝の溝幅の中心から上記軸線回りにドリル回転方向前方側に向けて100〜200°の範囲内に形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載のドリル。   The sub-groove is formed within a range of 100 to 200 ° from the center of the groove width of the main groove toward the front side in the drill rotation direction around the axis line on the tip side of the cutting edge portion. The drill according to any one of claims 1 to 3.
JP2009285004A 2009-12-16 2009-12-16 Drill Withdrawn JP2011125941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285004A JP2011125941A (en) 2009-12-16 2009-12-16 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285004A JP2011125941A (en) 2009-12-16 2009-12-16 Drill

Publications (1)

Publication Number Publication Date
JP2011125941A true JP2011125941A (en) 2011-06-30

Family

ID=44289103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285004A Withdrawn JP2011125941A (en) 2009-12-16 2009-12-16 Drill

Country Status (1)

Country Link
JP (1) JP2011125941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070139A (en) * 2019-11-01 2021-05-06 イビデン株式会社 Drill for glass fiber reinforced substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070139A (en) * 2019-11-01 2021-05-06 イビデン株式会社 Drill for glass fiber reinforced substrate
JP7257310B2 (en) 2019-11-01 2023-04-13 イビデン株式会社 Drill for glass fiber reinforced substrate

Similar Documents

Publication Publication Date Title
JP6086173B2 (en) drill
WO2010084805A1 (en) Radius end mill
WO2014175396A1 (en) Drill and method for manufacturing cut product using same
JP2010105093A (en) Ball end mill
JP2010505636A (en) Bit for drill tool
JP6359419B2 (en) drill
JPWO2021038841A1 (en) Drill
JP5800477B2 (en) drill
JP4699526B2 (en) Drill
JP2017124475A (en) drill
JP4714283B2 (en) Drilling tool
JP2009056534A (en) Drill for spot facing
KR101594659B1 (en) Drilling tool
JP2005305610A (en) Twist drill
JP2010162645A (en) Drill
JP2014161946A (en) Drilling machine
JP2017087406A (en) drill
JP2010162643A (en) Drill and grinding method of the drill
JP2011125941A (en) Drill
JP2005177891A (en) Drill
JP4449355B2 (en) Drill
JP5439821B2 (en) Drill and grinding method of the drill
JP2018111177A (en) Drill and drill head
JP2005022012A (en) Drill
JP2010221345A (en) Drill

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305