JP7181784B2 - モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置 - Google Patents

モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置 Download PDF

Info

Publication number
JP7181784B2
JP7181784B2 JP2018236337A JP2018236337A JP7181784B2 JP 7181784 B2 JP7181784 B2 JP 7181784B2 JP 2018236337 A JP2018236337 A JP 2018236337A JP 2018236337 A JP2018236337 A JP 2018236337A JP 7181784 B2 JP7181784 B2 JP 7181784B2
Authority
JP
Japan
Prior art keywords
pair
current
mirror
section
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018236337A
Other languages
English (en)
Other versions
JP2020098263A (ja
Inventor
アンドレアス デュランディ
ヘルムート テイチマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018236337A priority Critical patent/JP7181784B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to US17/414,462 priority patent/US20220075176A1/en
Priority to CN201980084844.XA priority patent/CN113196131B/zh
Priority to FI20215610A priority patent/FI20215610A1/en
Priority to DE112019006265.4T priority patent/DE112019006265T5/de
Priority to PCT/JP2019/035402 priority patent/WO2020129328A1/ja
Priority to TW108136011A priority patent/TWI810376B/zh
Publication of JP2020098263A publication Critical patent/JP2020098263A/ja
Application granted granted Critical
Publication of JP7181784B2 publication Critical patent/JP7181784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Description

本発明は、モニタ装置、光学フィルタシステム、モニタ方法及び電流発生装置に関する。
空隙を介して互いに向かい合う一対のミラー部と、空隙を介して互いに向かい合う一対の駆動電極と、を有し、駆動電極間の電位差に応じてミラー部間の距離が変化するファブリペロー干渉フィルタが知られている(例えば特許文献1参照)。
特開2015-004886号公報
上述したようなファブリペロー干渉フィルタにおいて一対のミラー部間の距離をモニタする方法として、次の方法が考えられる。高い周波数を有する交流電流を駆動電極間に印加し、当該交流電流の印加中に駆動電極間に発生する交流電圧を検出する。この交流電圧に基づいて駆動電極間の静電容量を算出することができ、当該静電容量に基づいてミラー部間の距離を算出することができる。しかし、ファブリペロー干渉フィルタでは駆動電極間に電流のリークが発生する場合があり、かかる場合にはミラー部間の距離を精度良くモニタすることができないおそれがある。
本発明は、ファブリペロー干渉フィルタのミラー部間の距離を精度良くモニタすることができるモニタ装置、光学フィルタシステム及びモニタ方法、並びにそのようなモニタ装置に好適に用いられ得る電流発生装置を提供することを目的とする。
本発明のモニタ装置は、空隙を介して互いに向かい合う一対のミラー部と、空隙を介して互いに向かい合う一対の駆動電極と、を有し、一対の駆動電極間に蓄えられる電荷に応じて一対のミラー部間の距離が変化するファブリペロー干渉フィルタと共に用いられるモニタ装置であって、一対のミラー部の共振周波数よりも高い周波数を有する交流電流を一対の駆動電極間に印加する電流印加部と、交流電流の印加中に一対の駆動電極間に発生する電圧の時間推移を検出する電圧検出部と、電圧検出部により検出された電圧の直流成分の評価に基づいて、電流印加部が一対の駆動電極間に印加する交流電流を制御する制御部と、電圧検出部により検出された電圧の交流成分に基づいて一対のミラー部間の距離をモニタするモニタ部と、を備える。
このモニタ装置では、交流電流の印加中に一対の駆動電極間に発生する電圧の時間推移が検出され、駆動電極間に印加する交流電流が、当該電圧の直流成分の評価に基づいて制御される。そして、検出された当該電圧の交流成分に基づいてミラー部間の距離がモニタされる。ミラー部間の距離、及び駆動電極間の電流のリーク量の双方は、検出された電圧の交流成分及び直流成分から取得され得る。したがって、このモニタ装置によれば、ファブリペロー干渉フィルタのミラー部間の距離を精度良くモニタすることができる。
本発明のモニタ装置では、制御部は、電圧検出部により検出される電圧の直流成分の時間変化に基づいて、電流印加部が一対の駆動電極間に印加する交流電流を制御してもよい。この場合、駆動電極間に印加する交流電流をより好適に調整することができ、ミラー部間の距離をより精度良くモニタすることができる。
本発明のモニタ装置では、制御部は、電圧検出部により検出される電圧の直流成分の大きさが一定に保たれるように、電流印加部が一対の駆動電極間に印加する交流電流を制御してもよい。この場合、駆動電極間に印加する交流電流をより一層好適に調整することができ、ミラー部間の距離をより一層精度良くモニタすることができる。
本発明のモニタ装置では、電流印加部は、互いに異なる向きの電流を一対の駆動電極間に印加する一対の電流源を有し、一対の電流源を交互に駆動させることにより交流電流を生成していてもよい。この場合、駆動電極間に交流電流を印加するための電流印加部をより好適に構成することができる。
本発明のモニタ装置では、制御部は、電圧検出部により検出された電圧の直流成分の評価に基づいて、一対の電流源の少なくとも一方が発生させるパルス状電流のデューティ比を変化させてもよい。この場合、駆動電極間に印加する交流電流をより一層好適に調整することができ、ミラー部間の距離をより一層精度良くモニタすることができる。
本発明のモニタ装置では、制御部は、電圧検出部により検出された電圧の直流成分の評価に基づいて、一対の電流源の少なくとも一方が発生させる電流の大きさを変化させてもよい。この場合、駆動電極間に印加する交流電流をより一層好適に調整することができ、ミラー部間の距離をより一層精度良くモニタすることができる。
本発明のモニタ装置では、電流印加部は、一対の電流源の一方と同一の向きの電流を一対のミラー部間に印加する調整用電流源を更に有し、制御部は、電圧検出部により検出された電圧の直流成分の評価に基づいて、調整用電流源が発生させる電流を制御してもよい。この場合、駆動電極間に印加する交流電流をより一層好適に調整することができ、ミラー部間の距離をより一層精度良くモニタすることができる。
本発明のモニタ装置では、一対の電流源の各々は、フォトダイオードと、フォトダイオードに入射する光を出力する光源と、を含んでいてもよい。この場合、駆動電極間に交流電流を印加するための電流印加部をより一層好適に構成することができる。
本発明のモニタ装置では、電流印加部は、反転入力端子が出力端子に接続されたオペアンプを更に有し、一対の電流源は、オペアンプの非反転入力端子及び出力端子に対して並列に接続されていてもよい。この場合、駆動電極間に交流電流を印加するための電流印加部をより一層好適に構成することができる。
本発明のモニタ装置では、制御部は、電圧検出部により検出された直流成分及び交流成分に基づいて、電流印加部が一対の駆動電極間に印加する交流電流を制御してもよい。この場合、駆動電極間に印加する交流電流をより一層好適に調整することができ、ミラー部間の距離をより一層精度良くモニタすることができる。
本発明の光学フィルタシステムは、上記モニタ装置と、モニタ装置により一対のミラー部間の距離がモニタされるファブリペロー干渉フィルタと、を備える。この光学フィルタシステムでは、上述した理由により、ファブリペロー干渉フィルタのミラー部間の距離を精度良くモニタすることができる。
本発明のモニタ方法は、空隙を介して互いに向かい合う一対のミラー部と、空隙を介して互いに向かい合う一対の駆動電極と、を有し、一対の駆動電極間に蓄えられる電荷に応じて一対のミラー部間の距離が変化するファブリペロー干渉フィルタについて、一対のミラー部間の距離をモニタするモニタ方法であって、一対のミラー部の共振周波数よりも高い周波数を有する交流電流を一対の駆動電極間に印加しているときに一対の駆動電極間に発生する電圧の時間推移を検出する電圧検出ステップと、電圧検出ステップにおいて検出された電圧の直流成分の評価に基づいて、電圧検出ステップにおいて一対の駆動電極間に印加する交流電流を制御する制御ステップと、電圧検出ステップにおいて検出された電圧の交流成分に基づいて一対のミラー部間の距離をモニタするモニタステップと、を備える。
このモニタ方法では、交流電流の印加中に一対の駆動電極間に発生する電圧の時間推移が検出され、駆動電極間に印加する交流電流が、当該電圧の直流成分の評価に基づいて制御される。そして、検出された当該電圧の交流成分に基づいてミラー部間の距離がモニタされる。ミラー部間の距離、及びミラー部間の電流のリーク量の双方は、検出された電圧の交流成分及び直流成分から取得され得る。したがって、このモニタ方法によれば、ファブリペロー干渉フィルタのミラー部間の距離を精度良くモニタすることができる。
本発明の電流発生装置は、反転入力端子が出力端子に接続されたオペアンプと、オペアンプの非反転入力端子及び出力端子に対して互いに反対の向きで並列に接続された一対のフォトダイオードと、一対のフォトダイオードに入射する光をそれぞれ出力する一対の光源と、を備える。この電流発生装置では、反転入力端子が出力端子に接続されたオペアンプの非反転入力端子及び出力端子に対して、一対のフォトダイオードが互いに反対の向きで並列に接続されている。これにより、一対のフォトダイオードがゼロバイアス状態とされている。この電流発生装置では、例えば、一対の光源を交互に駆動させて一対のフォトダイオードを交互に駆動させることにより、交流電流を生成することができる。また、一対の光源の一方を駆動させて一対のフォトダイオードの一方を駆動させることにより、直流電流を生成することもできる。この電流発生装置によれば、細かな電流制御が可能となる。この電流発生装置は、上述したようなモニタ装置において電流印加部として好適に用いられ得る。
本発明によれば、ファブリペロー干渉フィルタのミラー部間の距離を精度良くモニタすることができるモニタ装置、光学フィルタシステム及びモニタ方法、並びにそのようなモニタ装置に好適に用いられ得る電流発生装置を提供することができる。
実施形態に係る光学フィルタシステムの構成図である。 ファブリペロー干渉フィルタの断面図である。 (a)は、第1ミラー部と第2ミラー部との間に蓄えられた電荷と、第1ミラー部と第2ミラー部との間の距離との関係を例示するグラフであり、(b)は、第1ミラー部と第2ミラー部との間に蓄えられた電荷と、第1ミラー部と第2ミラー部との間の電圧との関係を例示するグラフである。 (a)~(f)は、実施形態のモニタ方法を説明するためのグラフである。 (a)~(f)は、実施形態のモニタ方法を説明するためのグラフである。 (a)~(f)は、第1変形例のモニタ方法を説明するためのグラフである。 第2変形例に係る光学フィルタシステムの構成図である。 (a)~(e)は、第2変形例のモニタ方法を説明するためのグラフである。
以下、本発明の一実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
図1に示されるように、光学フィルタシステム100は、ファブリペロー干渉フィルタ1と、ファブリペロー干渉フィルタ1を制御するコントローラ(モニタ装置)50と、を備えている。
[ファブリペロー干渉フィルタの構成]
図2に示されるように、ファブリペロー干渉フィルタ1は、基板11を備えている。基板11は、第1表面11aと、第1表面11aとは反対側の第2表面11bと、を有している。第1表面11a上には、反射防止層21、第1積層体22、中間層23及び第2積層体24が、この順序で積層されている。第1積層体22と第2積層体24との間には、枠状の中間層23によって空隙(エアギャップ)Sが画定されている。
第1表面11aに垂直な方向から見た場合(平面視)における各部の形状及び位置関係は、例えば次のとおりである。基板11の外縁は矩形状である。基板11の外縁及び第2積層体24の外縁は、互いに一致している。反射防止層21の外縁、第1積層体22の外縁及び中間層23の外縁は、互いに一致している。基板11は、中間層23の外縁よりも空隙Sの中心に対して外側に位置する外縁部11cを有している。外縁部11cは、枠状であり、第1表面11aに垂直な方向から見た場合に中間層23を囲んでいる。空隙Sは円形状である。
ファブリペロー干渉フィルタ1は、その中央部に画定された光透過領域1aにおいて、所定の波長を有する光を透過させる。光透過領域1aは、例えば円柱状の領域である。基板11は、例えば、シリコン、石英又はガラス等からなる。基板11がシリコンからなる場合、反射防止層21及び中間層23は、例えば、二酸化ケイ素からなる。
第1積層体22のうち光透過領域1aに対応する部分(平面視において空隙Sと重なる部分)は、第1ミラー部31として機能する。第1ミラー部31は、固定ミラーである。第1ミラー部31は、反射防止層21を介して第1表面11a上に配置されている。第1積層体22は、複数のポリシリコン層25と複数の窒化シリコン層26とが一層ずつ交互に積層されることにより構成されている。ファブリペロー干渉フィルタ1では、ポリシリコン層25a、窒化シリコン層26a、ポリシリコン層25b、窒化シリコン層26b及びポリシリコン層25cが、この順序で反射防止層21上に積層されている。第1ミラー部31を構成するポリシリコン層25及び窒化シリコン層26の各々の光学厚さは、中心透過波長の1/4の整数倍であることが好ましい。
第2積層体24のうち光透過領域1aに対応する部分(平面視において空隙Sと重なる部分)は、第2ミラー部32として機能する。第2ミラー部32は、可動ミラーである。第2ミラー部32は、第1ミラー部31に対して基板11とは反対側において空隙Sを介して第1ミラー部31と向かい合っている。第1ミラー部31と第2ミラー部32とが互いに向かい合う方向は、第1表面11aに垂直な方向に平行である。第2積層体24は、反射防止層21、第1積層体22及び中間層23を介して第1表面11a上に配置されている。第2積層体24は、複数のポリシリコン層27と複数の窒化シリコン層28とが一層ずつ交互に積層されることにより構成されている。ファブリペロー干渉フィルタ1では、ポリシリコン層27a、窒化シリコン層28a、ポリシリコン層27b、窒化シリコン層28b及びポリシリコン層27cが、この順序で中間層23上に積層されている。第2ミラー部32を構成するポリシリコン層27及び窒化シリコン層28の各々の光学厚さは、中心透過波長の1/4の整数倍であることが好ましい。
第2積層体24において空隙Sに対応する部分(平面視において空隙Sと重なる部分)には、複数の貫通孔24bが形成されている。これらの貫通孔は、第2積層体24の中間層23とは反対側の表面24aから空隙Sに至っている。これらの貫通孔は、第2ミラー部32の機能に実質的に影響を与えない程度に形成されている。これらの貫通孔は、エッチングにより中間層23の一部を除去して空隙Sを形成するために用いられてもよい。
第2積層体24は、第2ミラー部32に加えて、被覆部33と、周縁部34と、を更に有している。第2ミラー部32、被覆部33及び周縁部34は、互いに同じ積層構造の一部を有し且つ互いに連続するように、一体的に形成されている。被覆部33は、平面視において第2ミラー部32を囲んでいる。被覆部33は、中間層23の基板11とは反対側の表面23a及び側面23b、並びに第1積層体22の側面22a及び反射防止層21の側面21aを被覆しており、第1表面11aに至っている。
周縁部34は、平面視において被覆部33を囲んでいる。周縁部34は、外縁部11cにおける第1表面11a上に位置している。周縁部34の外縁は、平面視において基板11の外縁と一致している。周縁部34は、外縁部11cの外縁に沿って薄化されている。この例では、周縁部34は、第2積層体24を構成するポリシリコン層27及び窒化シリコン層28の一部が除去されていることにより薄化されている。周縁部34は、被覆部33に連続する非薄化部34aと、非薄化部34aを囲む薄化部34bと、を有している。薄化部34bにおいては、第1表面11a上に直接に設けられたポリシリコン層27a以外のポリシリコン層27及び窒化シリコン層28が除去されている。
第1ミラー部31には、平面視において光透過領域1aを囲むように形成された第1駆動電極12と、平面視において光透過領域1aと重なるように形成された補償電極13と、が設けられている。すなわち、この例では、第1駆動電極12及び補償電極13は、第1ミラー部31を構成している(第1ミラー部31、第1駆動電極12及び補償電極13は、互いに一体的に形成されている)。補償電極13の大きさは、光透過領域1aの全体を含む大きさであるが、光透過領域1aの大きさと略同一であってもよい。第1駆動電極12及び補償電極13は、不純物をドープしてポリシリコン層25cを低抵抗化することにより形成されている。第2ミラー部32には、空隙Sを介して第1駆動電極12及び補償電極13と向かい合う第2駆動電極14が形成されている。すなわち、この例では、第2駆動電極14は、第2ミラー部32を構成している(第2ミラー部32及び第2駆動電極14は、互いに一体的に形成されている)。第2駆動電極14は、不純物をドープしてポリシリコン層27aを低抵抗化することにより形成されている。
ファブリペロー干渉フィルタ1は、一対の端子15及び一対の端子16を更に備えている。一対の端子15は、光透過領域1aを挟んで互いに向かい合うように設けられている。各端子15は、第2積層体24の表面24aから第1積層体22に至る貫通孔内に配置されている。各端子15は、配線12aを介して第1駆動電極12と電気的に接続されている。端子15は、例えば、アルミニウム又はその合金等の金属膜によって形成されている。
一対の端子16は、光透過領域1aを挟んで互いに向かい合うように設けられている。各端子16は、第2積層体24の表面24aから第1積層体22に至る貫通孔内に配置されている。各端子16は、配線13aを介して補償電極13と電気的に接続されていると共に、配線14aを介して第2駆動電極14と電気的に接続されている。端子16は、例えば、アルミニウム又はその合金等の金属膜によって形成されている。一対の端子15が互いに向かい合う方向は、一対の端子16が互いに向かい合う方向と直交している。
第1積層体22の表面22bには、トレンチ17,18が設けられている。トレンチ17は、配線13aにおける端子16との接続部分を囲むように環状に延在している。トレンチ17は、第1駆動電極12と配線13aとを電気的に絶縁している。トレンチ18は、第1駆動電極12の内縁に沿って環状に延在している。トレンチ18は、第1駆動電極12と第1駆動電極12の内側の領域(補償電極13)とを電気的に絶縁している。各トレンチ17,18内の領域は、絶縁材料であってもよいし、空隙であってもよい。第2積層体24の表面24aには、トレンチ19が設けられている。トレンチ19は、端子15を囲むように環状に延在している。トレンチ19は、端子15と第2駆動電極14とを電気的に絶縁している。トレンチ17,18内の領域は、絶縁材料であってもよいし、空隙であってもよい。
基板11の第2表面11b上には、反射防止層41、第3積層体42、中間層43及び第4積層体44が、この順序で積層されている。反射防止層41及び中間層43は、それぞれ、反射防止層21及び中間層23と同様の構成を有している。第3積層体42及び第4積層体44は、それぞれ、基板11を基準として第1積層体22及び第2積層体24と対称の積層構造を有している。反射防止層41、第3積層体42、中間層43及び第4積層体44は、基板11の反りを抑制する機能を有している。
第3積層体42、中間層43及び第4積層体44には、平面視において光透過領域1aと重なるように開口40aが設けられている。開口40aは、光透過領域1aの大きさと略同一の径を有している。開口40aは、光出射側に開口している。開口40aの底面は、反射防止層41に至っている。
第4積層体44の光出射側の表面には、遮光層45が形成されている。遮光層45は、例えばアルミニウム又はその合金等の金属膜からなる。遮光層45の表面及び開口40aの内面には、保護層46が形成されている。保護層46は、第3積層体42、中間層43、第4積層体44及び遮光層45の外縁を被覆すると共に、外縁部11c上の反射防止層41を被覆している。保護層46は、例えば酸化アルミニウムからなる。
[コントローラの構成]
図1に示されるように、コントローラ50は、電流印加部(電流発生装置)60と、電圧検出部70と、制御部(モニタ部)80と、を備えている。図1では、ファブリペロー干渉フィルタ1が等価回路として示されている。等価回路としてのファブリペロー干渉フィルタ1は、可変キャパシタ2と、可変キャパシタ2に並列に接続された固定キャパシタ3、ダイオード4及び並列抵抗5と、可変キャパシタ2に直列に接続された直列抵抗6とにより表され得る。可変キャパシタ2は、第1ミラー部31と第2ミラー部32との間に蓄えられた静電容量に相当する。固定キャパシタ3は、ファブリペロー干渉フィルタ1の寄生容量に相当する。
電流印加部60は、一対の電流源61A及び61Bと、オペアンプ65と、を有している。電流源61Aは、フォトダイオード62Aと光源63Aとを有しており、電流源61Bは、フォトダイオード62Bと光源63Bとを有している。フォトダイオード62A,62Bは、互いに反対の向きで並列に接続されている。すなわち、フォトダイオード62Aのアノードとフォトダイオード62Bのカソードが接続され、フォトダイオード62Aのカソードとフォトダイオード62Bのアノードが接続されている。光源63Aはフォトダイオード62Aに入射する光を出力し、光源63Bはフォトダイオード62Bに入射する光を出力する。フォトダイオード62A,62Bは、低容量に構成されている。
フォトダイオード62A,62Bは、後述するように、ゼロバイアス状態とされている。フォトダイオード62A,62Bは、それぞれ、光源63A,63Bからの光が入射した場合にアノードからカソードに向かう電流を発生させる。フォトダイオード62Aが発生させる電流の向きは、フォトダイオード62Bが発生させる電流の向きと反対である。
オペアンプ65は、反転入力端子65a、非反転入力端子65b及び出力端子65cを有している。反転入力端子65aが出力端子65cに接続されており、非反転入力端子65b及び出力端子65cに対して一対の電流源61A,61Bが並列に接続されている。これにより、閉回路が構成されており、非反転入力端子65b側の電圧V1と出力端子65c側の電圧V2とが互いに等しく保たれ、一対の電流源61A,61Bがゼロバイアス状態とされている。オペアンプ65のフォワードゲインは例えば1であり、オペアンプ65は、高い入力抵抗、高い駆動電圧範囲(例えば±70V程度)及び高いスルーレート(例えば20V/μs程度)を有している。
電流印加部60は、ファブリペロー干渉フィルタ1に接続されており、第1ミラー部31と第2ミラー部32との間に印加する電流を発生させる電流発生装置として機能する。より具体的には、電流印加部60は、非反転入力端子65bとファブリペロー干渉フィルタ1とが同電位となるように、ファブリペロー干渉フィルタ1に接続されている。電流印加部60においては、光源63A、63Bの一方を駆動させてフォトダイオード62A,62Bの一方を駆動させることにより、ファブリペロー干渉フィルタ1に直流電流を印加することができる。また、光源63A、63Bを交互に駆動させてフォトダイオード62A,62Bを交互に駆動させることにより、ファブリペロー干渉フィルタ1に交流電流を印加することもできる。電流印加部により発生させられた電流は全て、ファブリペロー干渉フィルタ1に流れ込む。
電圧検出部70は、例えば高速な電圧計である。電圧検出部70は、出力端子65cと同電位となるように電流印加部60に接続されており、電圧V2を検出する。制御部80は、例えば、プロセッサ(CPU)、記録媒体であるRAM及びROMを含むコンピュータにより構成されている。制御部80は、電流印加部60の動作を制御する。より具体的には、制御部80は、光源63A,63Bの動作を制御し、ひいてはフォトダイオード62A,62Bの動作を制御する。制御部80は、後述するように、電圧検出部70の検出結果に基づいて、特に、電圧検出部70により検出される電圧の交流成分及び直流成分の時間推移に基づいて、第1ミラー部31と第2ミラー部32との間の距離をモニタするモニタ部としても機能する。
[ファブリペロー干渉フィルタの駆動方法]
ファブリペロー干渉フィルタ1の駆動時には、電流印加部60は、端子15,16を介して第1駆動電極12と第2駆動電極14との間(すなわち、第1ミラー部31と第2ミラー部32との間)に直流電流(駆動電流)を印加する。例えば、光源63Aが駆動されてフォトダイオード62Aが駆動することにより、第1駆動電極12と第2駆動電極14との間に結果の直流電流が印加される。これにより、第1駆動電極12と第2駆動電極14との間に電荷が蓄えられ、当該電荷に応じた静電気力が第1駆動電極12と第2駆動電極14との間に発生する。当該静電気力により、第2ミラー部32が、基板11に固定された第1ミラー部31側に引き付けられ、第1ミラー部31及び第2ミラー部32に作用するバネ力に抗しつつ、第1ミラー部31と第2ミラー部32との間の距離(以下、「ミラー間距離」とも記す)が調整される。このように、ファブリペロー干渉フィルタ1では、第1ミラー部31と第2ミラー部32との間(すなわち、第1駆動電極12と第2駆動電極14との間)に蓄えられる電荷量に応じてミラー間距離が変化する。第1ミラー部31及び第2ミラー部32は、移動可能であり、バネ力が付加されている。
ファブリペロー干渉フィルタ1を透過する光の波長は、光透過領域1aにおけるミラー間距離に依存する。したがって、第1駆動電極12と第2駆動電極14との間に印加する駆動電流を調整することで、透過する光の波長を適宜選択することができる。補償電極13は、第2駆動電極14と同電位である。したがって、補償電極13は、光透過領域1aにおいて第1ミラー部31及び第2ミラー部32を平坦に保つように機能する。
ファブリペロー干渉フィルタ1では、例えば、第1駆動電極12と第2駆動電極14との間に印加する駆動電流を変化させながら(すなわち、ミラー間距離を変化させながら)、ファブリペロー干渉フィルタ1の光透過領域1aを透過した光を光検出器によって検出することで、分光スペクトルを得ることができる。
制御部80は、例えば、第1ミラー部31と第2ミラー部32との間に蓄えられた電荷に基づいて、第1ミラー部31と第2ミラー部32との間に印加する駆動電流を制御する。制御部80は、例えば、電荷量を目標量として駆動電流を制御する。当該目標量は、ミラー間距離の目標値に応じて設定される。これにより、ミラー間距離が所望の距離に調整される。換言すれば、ミラー部距離は、第1ミラー部31と第2ミラー部32との間に蓄えられた電荷に応じて設定される。
図3(a)は、第1ミラー部31と第2ミラー部32との間(すなわち、第1駆動電極12と第2駆動電極14との間)に蓄えられた電荷と、ミラー間距離との関係を例示するグラフであり、図3(b)は、第1ミラー部31と第2ミラー部32との間に蓄えられた電荷と、第1ミラー部31と第2ミラー部32との間(すなわち、第1駆動電極12と第2駆動電極14との間)の電圧との関係を例示するグラフである。図3(b)の領域I,IIは、ファブリペロー干渉フィルタ1の動作領域を表している。蓄えられた電荷量は、可変キャパシタ2に関して電圧の最大値を有する。本実施形態におけるファブリペロー干渉フィルタ1の駆動方法では、電荷に基づく制御が用いられているため、ミラー間距離を広範囲で変化させることができる。
すなわち、例えば、第1ミラー部31と第2ミラー部32との間に印加される印加電圧によりミラー間距離を調整する場合、印加電圧を変化させることができる範囲は、図3(b)に示されるグラフにおける最大値Vmaxよりも左側の領域のみとなる。そのため、ミラー間距離を狭い範囲でしか変化させることができない。また、印加電圧が最大値Vmaxよりも僅かに大きくなった場合でも、引き込み現象が生じるおそれもある。この場合、可変キャパシタ2は図3(b)の高い電圧まで追従することができない。したがって、引き込み現象によって第2ミラー部32が第1ミラー部31に向かって引き込まれていく間、印加される制御電圧及び可変キャパシタの電圧は平衡状態にならず、可変キャパシタの電圧の範囲は図3(b)に示されるように最大値Vmaxにより制限されるため、固定キャパシタは留まることなく電荷により更に充電される。引き込み現象の間、可変キャパシタは充電され、第1ミラー部31及び第2ミラー部32が、機械的なバネでは補償できない、増加する引力を互いに及ぼし合い、第1ミラー部31及び第2ミラー部32同士が機械的に強固に接触することで、ファブリペロー干渉フィルタ1に損傷が引き起こされるおそれがある。これに対し、本実施形態におけるファブリペロー干渉フィルタ1の駆動方法によれば、電荷量に基づく制御が用いられているため、上述したような制約が無く、引き込み現象が回避され得ると共に、ミラー間距離を遙かに広範囲で変化させることができる。また、装置の動作信頼性を高めることができる。
[ミラー間距離のモニタ方法]
続いて、ファブリペロー干渉フィルタ1において実施されるミラー間距離のモニタ方法について説明する。当該モニタ方法は、例えば、ミラー間距離が所定の距離に調整された状態で実施される。
電流印加部60は、第1ミラー部31及び第2ミラー部32の共振周波数よりも高い周波数を有する交流電流を、端子15,16を介して第1駆動電極12と第2駆動電極14との間(すなわち、第1ミラー部31と第2ミラー部32との間)に印加する(電流印加ステップ)。例えば、光源63A,63Bが交互に駆動されてフォトダイオード62A,62Bが交互に駆動することにより、第1駆動電極12と第2駆動電極14との間に交流電流が印加される。
より具体的には、例えば、図4(a)及び図4(b)に示されるように、パルス状の電流を交互に発生させるようにフォトダイオード62A,62B(光源63A,63B)が制御される。当該電流のパルス幅は、例えば1μs程度である。これらのパルス状電流の足し合わせにより、図4(c)に示されるように、第1ミラー部31と第2ミラー部32との間に交流電流が印加される。これにより、図4(d)に示されるように、第1ミラー部31と第2ミラー部32との間に電圧が発生すると考えられる。電流の切替時に電圧値を測定することで、スロープS1及びS2が次のとおり規定され得る。
S1=ΔVa/(I1*Δt1)、及び、
S2=ΔVa/(I2*Δt2)。
これらのスロープS1及びS2は、ファブリペロー干渉フィルタ1の総容量に反比例する。
ここで、ファブリペロー干渉フィルタ1では、第1ミラー部31と第2ミラー部32との間に電流のリークが発生する場合がある。リーク電流が存在する場合、ファブリペロー干渉フィルタ1が図3(b)に示される領域Iにおいて動作しているとすると、第1ミラー部31と第2ミラー部32との間の電圧の直流成分は、例えば、図4(e)に示される場合のように時間の経過に従って所定量ずつ徐々に減少する。そのため、リーク電流が存在しない場合、第1ミラー部31と第2ミラー部32との間には、図4(d)に示されるような電圧が発生すると考えられるが、リーク電流が存在する場合、第1ミラー部31と第2ミラー部32との間の電圧の直流成分は、図4(f)に示されるように徐々に減少する。リーク電流を無視できる場合とは、上述した等価回路における並列抵抗5を十分に大きいとみなすことができる場合に相当し、リーク電流を無視できない場合とは、当該並列抵抗5を十分に大きいとみなすことができない場合に相当する。なお、ファブリペロー干渉フィルタ1が図3(b)に示される領域IIにおいて動作している場合、第1ミラー部31と第2ミラー部32との間の電圧の直流成分は、時間の経過に従って所定量ずつ徐々に増加し得る。
図4(f)に示される電圧Vaは、電圧検出部70により検出される(電圧検出ステップ)。より具体的には、電圧Vaは、交流電流の印加中に第1ミラー部31と第2ミラー部32との間に発生する電圧であり、電圧検出部70は、電圧Vaの直流成分C1及び交流成分C2を検出する。交流成分C2は、電圧Vaのうち周期的に変化する成分であり、直流成分C1は、電圧Vaのうち交流成分C2を除いた成分(平均値)である。リーク電流を無視できない場合、交流成分C2の波形は変化しない一方で、直流成分C1の大きさが時間の経過に従って所定量ずつ(一定の傾きで)徐々に減少する。
図4(f)に示される曲線は、抽出可能な更なる情報を含んでいる。電圧検出部70は、図4(f)に示されるサンプリング点の各々において、対応する電流値I1及びI2と共に期間Δt1及びΔt2を記録する。このとき、スロープS1及びS2が次のとおり規定され得る。
S1=ΔVa/(I1*Δt1)、及び、
S2=ΔVa/(I2*Δt2)。
リーク電流が無視できるほどわずかな場合、これらのスロープS1及びS2は、反対の符号で、同一の絶対値を有する。当該絶対値は、ファブリペロー干渉フィルタ1の総容量の逆数に関連し得る。リーク電流を無視できない場合、リーク電流はファブリペロー干渉フィルタ1の容量の充電を減少させる一方、放電を加速させるため、2つのスロープS1及びS2の絶対値は互いに異なっている。スロープS1及びS2の値の双方が測定されると、リーク電流は容易に算出され得る。したがって、ミラー間距離、及び第1ミラー部31と第2ミラー部32との間のリーク電流の双方は、電圧の交流成分及び直流成分の時間推移から取得され得る。リーク電流を補償するために第1ミラー部31と第2ミラー部32との間に印加される交流電流を調整すると共に交流電流の直流成分を用いることにより、第1ミラー部31と第2ミラー部32との間の距離が精度良くモニタされ得る。
制御部80は、電圧検出部70により検出された電圧の交流成分及び直流成分の時間推移に基づいて、電流印加部60が第1ミラー部31と第2ミラー部32との間に印加する交流電流を制御する(制御ステップ)。例えば、制御部80は、フォトダイオード62Aが発生させるパルス状電流のデューティ比を変化させる。この例では、制御部80は、図5(a)に示されるように、当該パルス状電流のパルス幅を増加させる。これにより、第1ミラー部31と第2ミラー部32との間には、図5(d)に示されるような電圧が発生する(図3(b)の領域Iの例)。その結果、図5(f)に示されるように、リーク電流の影響がキャンセルされ、電圧Vaの直流成分C1の大きさが一定に保たれる。増加したパルス幅は、例えば、電圧検出部70により検出された電圧の交流成分及び直流成分の時間変化(傾き)の評価に基づいて(上述のとおり、スロープS1及びS2により)、直流成分C1の大きさが一定に保たれるように、決定される。すなわち、この例では、制御部80は、電圧検出部70により検出される直流成分C1の大きさが一定に保たれるように、電圧検出部70により検出された電圧の交流成分及び直流成分の時間推移に基づいて、電流印加部60が第1ミラー部31と第2ミラー部32との間に印加する交流電流を制御する。
制御部80は、電圧検出部70により検出された電圧の交流成分及び直流成分の時間推移に基づいてミラー間距離をモニタする(モニタステップ)。より具体的には、例えば、制御部80は、電圧の交流成分及び直流成分の時間推移に基づいて(交流成分及び直流成分はそれぞれスロープS1及びS2の値に基づく)、第1ミラー部31と第2ミラー部32との間の静電容量を算出する。当該静電容量の逆数及びリーク電流は、これらのスロープS1及びS2、電流印加ステップにおいて第1ミラー部31と第2ミラー部32との間に印加される交流電流、並びに、交流成分C2及び交流電流の周波数に基づいて算出することができる。より具体的には、交流成分をV(t)、交流電流をI(t)と表すと、角周波数ωの関数としての複素インピーダンスZ(ω)がZ(ω)=V(ω)/I(ω)により得られ、静電容量CがC=(ω×|Z(ω)|)-1により得られる。また、一般的に、可変キャパシタ2の静電容量CはC=ε×A/d(εは誘電率、Aはキャパシタを形成する平板の表面積、dは平板間の距離)で表されるように、1/dに比例する値である。この関係から、制御部80は、得られた静電容量に基づいてミラー間距離を算出する。ミラー間距離は、必要に応じて、寄生容量(固定キャパシタ3)の影響を考慮して算出されてもよい。
[作用効果]
以上説明したモニタ装置(コントローラ50)では、交流電流の印加中に第1ミラー部31と第2ミラー部32との間に発生する電圧Vaの直流成分C1及び交流成分C2が経時的なサンプリングにより検出され、追加的にスロープS1及びS2が算出され、総容量及びリーク電流が算出され、第1ミラー部31と第2ミラー部32との間に印加する交流電流が、それらの評価されたパラメータに基づいて、ミラー間距離及び直流成分C1が一定になるように、制御される。そして、検出された交流成分C2もまた一定に保たれ、ミラー間距離が精度良くモニタされ得る。直流成分C1には第1ミラー部31と第2ミラー部32との間における電流のリーク量(第1ミラー部31と第2ミラー部32との間の絶縁性)に関する情報が含まれるため、直流成分C1を利用して第1ミラー部31と第2ミラー部32との間に印加する交流電流の直流成分を調整することで、ミラー間距離を精度良く制御及びモニタすることが可能となる。したがって、このモニタ装置によれば、ファブリペロー干渉フィルタ1のミラー間距離を精度良くモニタすることができる。
モニタ装置では、電圧検出部70により検出される直流成分C1の時間変化に基づいて、電流印加部60が第1ミラー部31と第2ミラー部32との間に印加する交流電流が制御される。これにより、第1ミラー部31と第2ミラー部32との間に印加する交流電流をより好適に調整することができ、ミラー間距離をより精度良くモニタすることができる。
モニタ装置では、電圧検出部70により検出される直流成分C1の大きさが一定に保たれるように、電流印加部60が第1ミラー部31と第2ミラー部32との間に印加する交流電流が制御される。これにより、第1ミラー部31と第2ミラー部32との間に印加する交流電流をより一層好適に調整することができ、ミラー間距離をより一層精度良くモニタすることができる。
モニタ装置では、電流印加部60が、互いに異なる向きの電流を第1ミラー部31と第2ミラー部32との間に印加する一対の電流源61A,61Bを有し、一対の電流源61A,61Bを交互に駆動させることにより交流電流を生成する。これにより、第1ミラー部31と第2ミラー部32との間に交流電流を印加するための電流印加部60をより好適に構成することができる。
モニタ装置では、電圧検出部70により検出された直流成分C1に基づいて、電流源61Aが発生させるパルス状電流のデューティ比が変化させられる。これにより、第1ミラー部31と第2ミラー部32との間に印加する交流電流をより一層好適に調整することができ、ミラー間距離をより一層精度良くモニタすることができる。すなわち、デューティ比の制御は時間に基づくため、高精度な制御を実現することができる。
モニタ装置では、電流源61Aがフォトダイオード62Aと光源63Aとを含んでおり、電流源61Bがフォトダイオード62Bと光源63Bとを含んでいる。これにより、第1ミラー部31と第2ミラー部32との間に交流電流を印加するための電流印加部60をより一層好適に構成することができる。すなわち、このように電流源61A,61Bを構成することにより、細かな電流制御が可能となる。
モニタ装置では、電流印加部60が、反転入力端子65aが出力端子65cに接続されたオペアンプ65を有し、一対の電流源61A,61Bが、オペアンプ65の非反転入力端子65b及び出力端子65cに対して並列に接続されている。これにより、第1ミラー部31と第2ミラー部32との間に交流電流を印加するための電流印加部60をより一層好適に構成することができる。
[変形例]
本発明は、上記実施形態に限られない。例えば、図6(a)~図6(f)に示される第1変形例のような制御が採用されてもよい。第1変形例では、制御部80は、電圧検出部70により検出された電圧の交流成分及び直流成分の時間推移に基づいて、電流源61Aが発生させるパルス状電流のデューティ比を変化させると共に、電流源61Aが発生させる電流の大きさを変化させる。この例では、電流源61Aが発生させる電流の大きさが、上記実施形態の場合と比べて大きい。このような第1変形例によっても、上記実施形態と同様に、印加される交流電流の直流成分に応じて経時的にミラー部の駆動電極を充電または放電することにより、ファブリペロー干渉フィルタ1のミラー間距離を精度良く制御することができる。また、第1ミラー部31と第2ミラー部32との間に印加する交流電流をより一層好適に調整することができ、ミラー間距離をより一層精度良く制御することができる。例えば、上記実施形態では、電圧Vaの振幅が1よりも小さくなるのに対して、第1変形例では、電圧Vaの振幅を1となるように調整することができる。すなわち、第1変形例によれば、電圧Vaの振幅を所望の値に調整することができる。なお、電流源61Aが発生させるパルス状電流のデューティ比は変化させられず、電流源61Aが発生させる電流の大きさのみが変化させられてもよい。電流源61A,61Bの少なくとも一方が発生させる電流の大きさが変化させられればよく、例えば、電流源61A,61Bの双方が発生させる電流の大きさが変化させられてもよい。上記実施形態及び第1変形例においては、電流源61A,61Bの少なくとも一方が発生させるパルス状電流のデューティ比が変化させられればよく、例えば、電流源61A,61Bの双方が発生させるパルス状電流のデューティ比が変化させられてもよい。
光学フィルタシステム100は、図7に示される第2変形例の光学フィルタシステム100Aのように構成されてもよい。光学フィルタシステム100Aの電流印加部60Aは、電流源61Aと同一の向きの電流を第1ミラー部31と第2ミラー部32との間に印加する電流源61C(調整用電流源)を有している。第2変形例では、制御部80は、電圧検出部70により検出された電圧の交流成分及び直流成分の時間推移に基づいて、電流源61Cが発生させる電流を制御する。例えば、制御部80は、図8(a)に示されるように、一定の電流I0を電流源61Cに発生させる。電流源61A,61Bは、図4(a)及び図4(b)に示されるように、互いに等幅のパルス状電流を交互に発生させる。これらの電流の足し合わせにより、図8(b)に示されるように、第1ミラー部31と第2ミラー部32との間に交流電流が印加される。このような制御によっても、図8(e)に示されるように、リーク電流の影響をキャンセルすることができ、その結果、直流成分C1の大きさが一定に保たれる。したがって、第2変形例によっても、上記実施形態と同様に、ファブリペロー干渉フィルタ1のミラー間距離を精度良くモニタ及び制御することができる。また、第1ミラー部31と第2ミラー部32との間に印加する交流電流をより一層好適に調整することができ、ミラー間距離をより一層精度良く制御することができる。例えば、第2変形例によれば、電圧Vaの振幅を所望の値に調整することができる。
上記実施形態では、電流印加部60が、第1ミラー部31と第2ミラー部32との間に直流電流を印加する直流電流印加部、及び、第1ミラー部31と第2ミラー部32との間に交流電流を印加する交流電流印加部の双方として機能したが、電流印加部60は、交流電流印加部のみとして用いられてもよい。この場合、光学フィルタシステム100は、第1ミラー部31と第2ミラー部32との間に直流電流を印加するための構成を電流印加部60とは別に備えてもよい。上記実施形態では、制御部80が、電流印加部60が第1ミラー部31と第2ミラー部32との間に印加する交流電流を制御する制御部、及び、電圧検出部70により検出された交流成分C2に基づいてミラー間距離をモニタするモニタ部の双方として機能したが、光学フィルタシステム100は、モニタ部として機能する構成(例えばコンピュータ)を制御部80とは別に備えてもよい。上記実施形態において、第1駆動電極12は第1ミラー部31を構成していなくてもよい。第1駆動電極12は、第1積層体22の表面22b上に配置された金属膜であってもよい。同様に、第2駆動電極14は第2ミラー部32を構成していなくてもよい。第2駆動電極14は、第2積層体24における表面22bと向かい合う表面上に配置された金属膜であってもよい。第1ミラー部31と第2ミラー部32との間に印加される交流電流の直流成分は、非ゼロ(ゼロ以以外)の値であってもよい。
100…光学フィルタシステム、1…ファブリペロー干渉フィルタ、12…第1駆動電極、14…第2駆動電極、31…第1ミラー部、32…第2ミラー部、50…コントローラ、60…電流印加部(電流発生装置)、61A,61B…電流源、61C…調整用電流源、62A,62B…フォトダイオード、63A,63B…光源、65…オペアンプ、65a…反転入力端子、65b…非反転入力端子、65c…出力端子、70…電圧検出部、80…制御部(モニタ部)、C1…直流成分、C2…交流成分、S…空隙。

Claims (12)

  1. 空隙を介して互いに向かい合う一対のミラー部と、前記空隙を介して互いに向かい合う一対の駆動電極と、を有し、前記一対の駆動電極間に蓄えられる電荷に応じて前記一対のミラー部間の距離が変化するファブリペロー干渉フィルタと共に用いられるモニタ装置であって、
    前記一対のミラー部の共振周波数よりも高い周波数を有する交流電流を前記一対の駆動電極間に印加する電流印加部と、
    前記交流電流の印加中に前記一対の駆動電極間に発生する電圧の時間推移を検出する電圧検出部と、
    前記電圧検出部により検出された前記電圧の直流成分の評価に基づいて、前記電流印加部が前記一対の駆動電極間に印加する前記交流電流を制御する制御部と、
    前記電圧検出部により検出された前記電圧の交流成分に基づいて前記一対のミラー部間の距離をモニタするモニタ部と、を備える、モニタ装置。
  2. 前記制御部は、前記電圧検出部により検出される前記電圧の前記直流成分の時間変化に基づいて、前記電流印加部が前記一対の駆動電極間に印加する前記交流電流を制御する、請求項1に記載のモニタ装置。
  3. 前記制御部は、前記電圧検出部により検出される前記電圧の前記直流成分の大きさが一定に保たれるように、前記電流印加部が前記一対の駆動電極間に印加する前記交流電流を制御する、請求項1又は2に記載のモニタ装置。
  4. 前記電流印加部は、互いに異なる向きの電流を前記一対の駆動電極間に印加する一対の電流源を有し、前記一対の電流源を交互に駆動させることにより前記交流電流を生成する、請求項1~3のいずれか一項に記載のモニタ装置。
  5. 前記制御部は、前記電圧検出部により検出された前記電圧の前記直流成分の評価に基づいて、前記一対の電流源の少なくとも一方が発生させるパルス状電流のデューティ比を変化させる、請求項4に記載のモニタ装置。
  6. 前記制御部は、前記電圧検出部により検出された前記電圧の前記直流成分の評価に基づいて、前記一対の電流源の少なくとも一方が発生させる電流の大きさを変化させる、請求項4又は5に記載のモニタ装置。
  7. 前記電流印加部は、前記一対の電流源の一方と同一の向きの電流を前記一対の駆動電極間に印加する調整用電流源を更に有し、
    前記制御部は、前記電圧検出部により検出された前記電圧の前記直流成分の評価に基づいて、前記調整用電流源が発生させる電流を制御する、請求項4~6のいずれか一項に記載のモニタ装置。
  8. 前記一対の電流源の各々は、フォトダイオードと、前記フォトダイオードに入射する光を出力する光源と、を含む、請求項4~7のいずれか一項に記載のモニタ装置。
  9. 前記電流印加部は、反転入力端子が出力端子に接続されたオペアンプを更に有し、
    前記一対の電流源は、前記オペアンプの非反転入力端子及び前記出力端子に対して並列に接続されている、請求項4~8のいずれか一項に記載のモニタ装置。
  10. 前記制御部は、前記電圧検出部により検出された前記電圧の前記直流成分及び前記交流成分に基づいて、前記電流印加部が前記一対の駆動電極間に印加する前記交流電流を制御する、請求項1~9のいずれか一項に記載のモニタ装置。
  11. 請求項1~10のいずれか一項に記載のモニタ装置と、
    前記モニタ装置により前記一対のミラー部間の距離がモニタされる前記ファブリペロー干渉フィルタと、を備える、光学フィルタシステム。
  12. 空隙を介して互いに向かい合う一対のミラー部と、前記空隙を介して互いに向かい合う一対の駆動電極と、を有し、前記一対の駆動電極間に蓄えられる電荷に応じて前記一対のミラー部間の距離が変化するファブリペロー干渉フィルタについて、前記一対のミラー部間の距離をモニタするモニタ方法であって、
    前記一対のミラー部の共振周波数よりも高い周波数を有する交流電流を前記一対の駆動電極間に印加しているときに前記一対の駆動電極間に発生する電圧の時間推移を検出する電圧検出ステップと、
    前記電圧検出ステップにおいて検出された前記電圧の直流成分の評価に基づいて、前記電圧検出ステップにおいて前記一対の駆動電極間に印加する前記交流電流を制御する制御ステップと、
    前記電圧検出ステップにおいて検出された前記電圧の交流成分に基づいて前記一対のミラー部間の距離をモニタするモニタステップと、を備える、モニタ方法。
JP2018236337A 2018-12-18 2018-12-18 モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置 Active JP7181784B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018236337A JP7181784B2 (ja) 2018-12-18 2018-12-18 モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置
CN201980084844.XA CN113196131B (zh) 2018-12-18 2019-09-09 监视装置、光学滤光器系统、监视方法、电流产生装置
FI20215610A FI20215610A1 (en) 2018-12-18 2019-09-09 Monitoring device, optical filter system, monitoring procedure and power generation device
DE112019006265.4T DE112019006265T5 (de) 2018-12-18 2019-09-09 Überwachungsvorrichtung, Optisches Filtersystem, Überwachungsverfahren undStromerzeugungsvorrichtung
US17/414,462 US20220075176A1 (en) 2018-12-18 2019-09-09 Monitoring device, optical filter system, monitoring method, and current generation device
PCT/JP2019/035402 WO2020129328A1 (ja) 2018-12-18 2019-09-09 モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置
TW108136011A TWI810376B (zh) 2018-12-18 2019-10-04 監測裝置、光學濾光器系統、監測方法、電流產生裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236337A JP7181784B2 (ja) 2018-12-18 2018-12-18 モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置

Publications (2)

Publication Number Publication Date
JP2020098263A JP2020098263A (ja) 2020-06-25
JP7181784B2 true JP7181784B2 (ja) 2022-12-01

Family

ID=71101092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236337A Active JP7181784B2 (ja) 2018-12-18 2018-12-18 モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置

Country Status (7)

Country Link
US (1) US20220075176A1 (ja)
JP (1) JP7181784B2 (ja)
CN (1) CN113196131B (ja)
DE (1) DE112019006265T5 (ja)
FI (1) FI20215610A1 (ja)
TW (1) TWI810376B (ja)
WO (1) WO2020129328A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153025A1 (en) 2005-12-29 2007-07-05 Mitchell Owen R Method, apparatus, and system for encoding and decoding a signal on a viewable portion of a video
JP2013238755A (ja) 2012-05-16 2013-11-28 Seiko Epson Corp 光学モジュール、電子機器、食物分析装置、分光カメラ、及び波長可変干渉フィルターの駆動方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014641A (ja) * 2001-07-04 2003-01-15 Yokogawa Electric Corp 赤外分析装置
KR100408346B1 (ko) * 2001-07-18 2003-12-06 엘지.필립스 엘시디 주식회사 반사투과형 액정표시장치용 어레이기판과 그 제조방법
JP3786106B2 (ja) * 2003-08-11 2006-06-14 セイコーエプソン株式会社 波長可変光フィルタ及びその製造方法
JP5348032B2 (ja) * 2010-03-16 2013-11-20 セイコーエプソン株式会社 光フィルター並びにそれを用いた分析機器及び光機器
JP6070435B2 (ja) 2013-06-21 2017-02-01 株式会社デンソー ファブリペローフィルタ、それを備えたファブリペロー干渉計、および、ファブリペローフィルタの製造方法
KR102273850B1 (ko) * 2013-10-31 2021-07-05 하마마츠 포토닉스 가부시키가이샤 광검출 장치
JP6356427B2 (ja) * 2014-02-13 2018-07-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
JP6671860B2 (ja) * 2015-04-28 2020-03-25 浜松ホトニクス株式会社 光検出装置
KR20180062463A (ko) * 2015-10-02 2018-06-08 하마마츠 포토닉스 가부시키가이샤 광 검출 장치
JP6862216B2 (ja) * 2017-02-28 2021-04-21 浜松ホトニクス株式会社 光検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153025A1 (en) 2005-12-29 2007-07-05 Mitchell Owen R Method, apparatus, and system for encoding and decoding a signal on a viewable portion of a video
JP2013238755A (ja) 2012-05-16 2013-11-28 Seiko Epson Corp 光学モジュール、電子機器、食物分析装置、分光カメラ、及び波長可変干渉フィルターの駆動方法

Also Published As

Publication number Publication date
CN113196131B (zh) 2023-02-03
TWI810376B (zh) 2023-08-01
JP2020098263A (ja) 2020-06-25
WO2020129328A1 (ja) 2020-06-25
TW202043715A (zh) 2020-12-01
FI20215610A1 (en) 2021-05-24
CN113196131A (zh) 2021-07-30
US20220075176A1 (en) 2022-03-10
DE112019006265T5 (de) 2021-09-16

Similar Documents

Publication Publication Date Title
CN105992964B (zh) 法布里-珀罗干涉滤光器
US6661562B2 (en) Optical modulator and method of manufacture thereof
EP3018521B1 (en) Fabry-perot interference filter
EP0973012A1 (en) Transducer
US10221061B2 (en) Optical module
JP6211315B2 (ja) ファブリペロー干渉フィルタ
US20130070247A1 (en) Spectroscopic measurement device, and spectroscopic measurement method
WO2018203495A1 (ja) 光計測制御プログラム、光計測システム及び光計測方法
JP7181784B2 (ja) モニタ装置、光学フィルタシステム、モニタ方法、電流発生装置
US20080012449A1 (en) Apparatus for driving actuator
TWI802760B (zh) 控制裝置、光學濾光器系統、控制方法
CN113167995B (zh) 光学滤光器装置及光学滤光器装置的控制方法
KR20200015754A (ko) 광학 필터 시스템
US11796391B2 (en) Light detection device
US7639020B2 (en) Potential sensor and image forming apparatus having potential sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221118

R150 Certificate of patent or registration of utility model

Ref document number: 7181784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150