JP7176413B2 - High tenacity fine polyester multifilament - Google Patents

High tenacity fine polyester multifilament Download PDF

Info

Publication number
JP7176413B2
JP7176413B2 JP2018566459A JP2018566459A JP7176413B2 JP 7176413 B2 JP7176413 B2 JP 7176413B2 JP 2018566459 A JP2018566459 A JP 2018566459A JP 2018566459 A JP2018566459 A JP 2018566459A JP 7176413 B2 JP7176413 B2 JP 7176413B2
Authority
JP
Japan
Prior art keywords
yarn
polyester
polyester multifilament
weaving
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018566459A
Other languages
Japanese (ja)
Other versions
JPWO2019107111A1 (en
Inventor
勇将 小野
亮太 鈴木
稔 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2019107111A1 publication Critical patent/JPWO2019107111A1/en
Application granted granted Critical
Publication of JP7176413B2 publication Critical patent/JP7176413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は製織性、耐摩耗性に優れ、特にスポーツおよびアウトドア向け衣料用途に好適な高密度薄地織物に用いることができる高強力細繊度マルチフィラメントに関する。 The present invention relates to a high-strength, fine-denier multifilament that is excellent in weavability and abrasion resistance, and that can be used in high-density thin fabrics that are particularly suitable for sports and outdoor clothing applications.

これまでにスポーツ衣料、エアバッグなどの用途を中心に、ポリエステルやナイロンをはじめとする合成繊維マルチフィラメントを用いた高密度織物が数多く提案されているが、用途の高度化に伴い、軽量化つまり薄地化、またこれに伴う高強度化した織物が求められている。特にスポーツおよびアウトドア向け衣料においては、激しい動きに対する耐久性向上の要求が高まっており、織物の耐摩耗性向上が求められている。 Many proposals have been made for high-density fabrics using synthetic fiber multifilament, such as polyester and nylon, mainly for applications such as sportswear and airbags. There is a demand for woven fabrics that are thinner and, accordingly, have higher strength. Particularly in sports and outdoor clothing, there is an increasing demand for improved durability against strenuous movement, and improved abrasion resistance of textiles is demanded.

特許文献1では、ポリエチレンテレフタレートの固有粘度を0.70~1.20とすることで高強力化し、全酸化チタン粒子数の60%以上が一次粒子径0.1~0.6μmである酸化チタンを0.3~0.8重量(wt)%含有させることで製織性を向上させた単成分ポリエステルマルチフィラメントの織物が提案されている。 In Patent Document 1, the intrinsic viscosity of polyethylene terephthalate is set to 0.70 to 1.20 to increase the strength, and 60% or more of the total number of titanium oxide particles has a primary particle diameter of 0.1 to 0.6 μm. A single-component polyester multifilament fabric having improved weaving properties by containing 0.3 to 0.8% by weight (wt) of is proposed.

また薄地化のためには、糸の総繊度を小さくする必要があり、必然的に糸の構成フィラメント数が少なくなるために、交絡(インターレース)が入りにくくなり、収束性が悪いという課題がある。収束性が悪いと、製造工程の工程通過性が悪化し、整経・製織時の取り扱いも困難になる。また収束性が不十分であるためにフィラメント割れ(単糸ばらけ)が起こり、製織時の経糸の捌きが悪くなり、経糸切れが生じやすくなる。経糸切れは単に停台するだけではなく、経糸を再度繋いで復帰させるためには多大な労力が必要となり、生産性も大幅に低下してしまうことが課題となる。また織物品位についても、フィラメント割れはスジ状の欠点となる。特許文献2では、収束性に優れたポリアミドマルチフィラメントを提供するため、総繊度が6~18dtexと細繊度にも関わらず、単糸繊度を0.8dtex以下と細繊度化して交絡を入りやすくすることで交絡度を25以上とすることが提案されている。 In order to make the fabric thinner, it is necessary to reduce the total fineness of the yarn, which inevitably reduces the number of filaments that make up the yarn. . If the convergence is poor, the process passability of the manufacturing process is deteriorated, and the handling during warping and weaving becomes difficult. In addition, since the convergence is insufficient, filament splitting (single yarn separation) occurs, and the handling of warp yarns during weaving becomes poor, and warp yarn breakage is likely to occur. Warp breakage not only causes the machine to stop, but also requires a great deal of labor to reconnect and restore the warp yarns, resulting in a significant drop in productivity. Also, filament cracking causes streak-like defects in fabric quality. In Patent Document 2, in order to provide a polyamide multifilament with excellent convergence, despite the fineness of the total fineness of 6 to 18 dtex, the single filament fineness is made finer to 0.8 dtex or less to facilitate entanglement. It is proposed that the degree of entanglement should be 25 or more.

特許文献3では、モノフィラメントにおいて、芯鞘型複合糸とし、芯成分に用いるポリエステルの極限粘度を0.70以上とすることで高強力化し、鞘成分に用いるポリエステルの極限粘度を芯成分より0.15~0.30低くすることによりスカムが抑制(耐摩耗性向上)されたスクリーン紗用ポリエステルモノフィラメントが提案されている。 In Patent Document 3, the core-sheath type composite yarn is used as the monofilament, and the intrinsic viscosity of the polyester used as the core component is set to 0.70 or more to increase the strength, and the intrinsic viscosity of the polyester used as the sheath component is set to 0.70% lower than that of the core component. A polyester monofilament for screen gauze is proposed in which scum is suppressed (abrasion resistance is improved) by lowering it by 15 to 0.30.

特開2009-074213(段落番号[0008]~[0009])JP 2009-074213 (paragraph number [0008] to [0009]) 特開2009-013511(段落番号[0008]~[0009])JP 2009-013511 (paragraph number [0008] to [0009]) 特開2003-213528(段落番号[0013]~[0014])JP 2003-213528 (paragraph number [0013] to [0014])

しかしながら、特許文献1の単成分ポリエステルでは、耐摩耗性に課題があり、高度化用途の耐久性要求に応えることができない。 However, the single-component polyester of Patent Document 1 has a problem with wear resistance and cannot meet the durability requirements for advanced applications.

特許文献2では、確かに交絡度を大きくし収束性を上げることにより、製織性は大幅に改善するが、単糸繊度が小さいと、製織時に経糸および緯糸の糸切れ、毛羽発生が問題となる。 In Patent Document 2, it is true that weaving performance is greatly improved by increasing the degree of entanglement and convergence. .

特許文献3では、モノフィラメントは高密度織物とすることが難しく、単糸繊度が高いために生地の剛性が高くなり、衣料用途には不適である。また芯鞘型複合糸の技術を細繊度マルチフィラメントに展開する場合、芯鞘型複合糸は単糸繊度を小さくすると、鞘割れが生じることや鞘部が薄くなり過ぎて十分な耐摩耗性が得られないことなどが課題であった。一方、単糸繊度を大きくすると、フィラメント数が少なくなるために、交絡が入りにくくなり、収束性が悪くなり、製織性および織物品位の悪化が課題となる。 In Patent Document 3, the monofilament is difficult to form into a high-density fabric, and the high single filament fineness increases the rigidity of the fabric, making it unsuitable for clothing applications. In addition, when the core-sheath type composite yarn technology is applied to fine multifilament, if the single filament fineness of the core-sheath type composite yarn is reduced, the sheath will crack and the sheath will become too thin, resulting in insufficient abrasion resistance. The problem was that it was not possible to obtain On the other hand, when the single yarn fineness is increased, the number of filaments is decreased, so entanglement is difficult to occur, convergence is deteriorated, and weaving performance and fabric quality are deteriorated.

すなわち、従来の技術では、高度化用途に求められる耐久性と製織性、織物品位を兼ね備えた薄地織物用ポリエステルマルチフィラメントを得ることは困難であり、高強力かつ優れた耐摩耗性と収束性を持つ細繊度ポリエステルマルチフィラメントの開発が期待されている。 In other words, with conventional technology, it is difficult to obtain polyester multifilament for thin fabrics that has the durability, weaving properties, and fabric quality required for advanced applications. The development of polyester multifilament with fineness is expected.

本発明は、かかる従来技術の課題を解決し、優れた耐久性および製織性、織物品位を兼ね備えたスポーツおよびアウトドア向け衣料用途に好適な高密度薄地織物を得ることを目的に、高強力かつ優れた耐摩耗性と収束性を持つ細繊度ポリエステルマルチフィラメントを提供する。 The present invention solves the problems of the prior art, and provides a high-strength and excellent high-strength thin fabric suitable for sports and outdoor clothing applications that has excellent durability, weaveability, and fabric quality. To provide a fine polyester multifilament with excellent abrasion resistance and convergence.

本発明は、下記のポリエステルマルチフィラメントとすることで目的を達成できる。 The object of the present invention can be achieved by providing the following polyester multifilament.

芯成分の高粘度ポリエステルと、鞘成分の低粘度ポリエステルが芯鞘型に複合された単糸を複数収束したポリエステルマルチフィラメントであって、芯成分と鞘成分の固有粘度差が0.20~1.00であり、総繊度4~30dtex、単糸繊度1.0~5.0dtex、破断強度5.0~9.0cN/dtex、破断伸度12~45%、交絡度2.0~15.0個/mであり、フィラメント数が3~15であることを特徴とするポリエステルマルチフィラメントである。 A polyester multifilament in which a plurality of single yarns in which a high-viscosity polyester core component and a low-viscosity polyester sheath component are combined in a core-sheath type are bundled, and the intrinsic viscosity difference between the core component and the sheath component is 0.20 to 1. 00, total fineness 4-30 dtex, single filament fineness 1.0-5.0 dtex, breaking strength 5.0-9.0 cN/dtex, breaking elongation 12-45%, entanglement degree 2.0-15. It is a polyester multifilament characterized by having 0 pieces/m and having 3 to 15 filaments.

さらに、芯成分の高粘度ポリエステルの固有粘度が0.70~1.50、鞘成分の低粘度ポリエステルの固有粘度が0.40~0.70であることを特徴とするポリエステルマルチフィラメントである。 Further, the polyester multifilament is characterized in that the high-viscosity polyester core component has an intrinsic viscosity of 0.70 to 1.50, and the low-viscosity polyester sheath component has an intrinsic viscosity of 0.40 to 0.70.

本発明のポリエステルマルチフィラメントは、高強力かつ優れた耐摩耗性と収束性を持ち、優れた耐久性および製織性、織物品位を兼ね備えたスポーツおよびアウトドア向け衣料用途に好適な高密度薄地織物を得ることができる。 The polyester multifilament of the present invention has high tenacity, excellent wear resistance and convergence, and provides a high-density thin fabric suitable for sports and outdoor clothing applications, which has excellent durability, weavability, and fabric quality. be able to.

本発明のポリエステルマルチフィラメントについて説明する。 The polyester multifilament of the present invention will be explained.

本発明のポリエステルマルチフィラメントは、単糸の横断面において芯成分が鞘成分により覆われ、芯成分が表面に露出していないように配置された芯鞘型複合繊維からなる。一般的に、ポリエステル繊維を高強度化するためには、原糸の製造過程において高延伸倍率で延伸を行い、高配向、高結晶化すればいいことがわかっているが、高密度薄地織物の製織では、総繊度が小さく高密度に織るために、経糸は筬により、強い負荷で多くの擦過を受けてしまい、単糸切れによる毛羽が発生するという課題がある。また高度化用途に用いられる薄地織物は、摩擦に対する耐久性が求められており、原糸の耐摩耗性向上が重要な課題である。 The polyester multifilament of the present invention comprises core-sheath type conjugate fibers arranged such that the core component is covered with the sheath component in the cross section of the single yarn and the core component is not exposed on the surface. In general, in order to increase the strength of polyester fiber, it is known that it should be drawn at a high draw ratio in the manufacturing process of the raw yarn to achieve high orientation and high crystallinity. In weaving, since the total fineness is small and the warp is woven at a high density, the warp receives a large amount of rubbing from the reed under a strong load, and there is a problem that fluff is generated due to single yarn breakage. In addition, thin woven fabrics used for sophisticated applications are required to have durability against friction, and improvement of the abrasion resistance of raw yarn is an important issue.

本発明のポリエステルマルチフィラメントは、優れた耐摩耗性を得るという観点から鞘成分に用いるポリエステルの固有粘度を芯成分ポリエステルの固有粘度より低くする必要があり、その差を0.20~1.00にすることが好ましい。固有粘度の差を0.20以上とすることで鞘成分のポリエステル、つまりポリエステルマルチフィラメントの繊維表面の配向度および結晶化度を抑えることができ、良好な耐摩耗性を得ることができる。また、溶融紡糸の口金吐出孔内壁面における剪断応力を鞘成分が担うため、芯成分が受ける剪断力は小さくなり、芯成分は分子鎖配向度が低く、かつ均一な状態で紡出されるため、最終的に得られるポリエステルマルチフィラメントの強度が向上する。一方、ポリエステルマルチフィラメントが高強度を有するためには鞘成分の配向も適度に必要となるため、固有粘度の差が1.00より大きいと満足する原糸強度が得られない。さらに好ましいポリエステルの固有粘度の差は0.30~0.70である。 In the polyester multifilament of the present invention, from the viewpoint of obtaining excellent wear resistance, the intrinsic viscosity of the polyester used for the sheath component must be lower than the intrinsic viscosity of the polyester core component, and the difference between them must be 0.20 to 1.00. It is preferable to By setting the difference in intrinsic viscosity to 0.20 or more, it is possible to suppress the degree of orientation and degree of crystallinity of the fiber surface of the polyester of the sheath component, that is, the polyester multifilament, and to obtain good abrasion resistance. In addition, since the sheath component bears the shearing stress on the inner wall surface of the spinneret discharge hole of melt spinning, the shearing force that the core component receives is reduced, and the core component has a low degree of molecular chain orientation and is spun in a uniform state. The strength of the finally obtained polyester multifilament is improved. On the other hand, in order for the polyester multifilament to have high strength, the orientation of the sheath component is also required to be moderate. More preferably, the difference in intrinsic viscosity of the polyester is from 0.30 to 0.70.

本発明のポリエステルマルチフィラメントに用いる芯成分の高粘度ポリエステルの固有粘度は、0.70~1.50の範囲であることが好ましい。固有粘度を0.70以上とすることにより、十分な強度と伸度を兼ね備えたポリエステルマルチフィラメントを製造することが可能となる。より好ましい固有粘度は0.80以上である。また、固有粘度の上限は溶融押出し等の成形の容易さの点から1.50以下が好ましく、さらに製造コストや製造工程での熱や剪断力によって生じる分子鎖切断による分子量低下、溶融流動の安定性を考慮すると、より好ましくは1.20以下である。 The intrinsic viscosity of the high-viscosity polyester core component used in the polyester multifilament of the present invention is preferably in the range of 0.70 to 1.50. By setting the intrinsic viscosity to 0.70 or more, it becomes possible to produce a polyester multifilament having both sufficient strength and elongation. A more preferable intrinsic viscosity is 0.80 or more. In addition, the upper limit of the intrinsic viscosity is preferably 1.50 or less from the viewpoint of ease of molding such as melt extrusion, further reducing the molecular weight due to molecular chain scission caused by heat and shear force in the manufacturing process and the manufacturing cost, and stabilizing the melt flow. Considering the nature, it is more preferably 1.20 or less.

一方、鞘成分の低粘度ポリエステルの固有粘度は、0.40以上にすることにより安定した製糸性が得られる。より好ましい固有粘度は0.50以上である。また、良好な耐摩耗性を得るためには、0.70以下とすることが好ましい。 On the other hand, by setting the intrinsic viscosity of the low-viscosity polyester of the sheath component to 0.40 or more, stable spinning properties can be obtained. A more preferable intrinsic viscosity is 0.50 or more. Moreover, in order to obtain good wear resistance, it is preferably 0.70 or less.

本発明のポリエステルマルチフィラメントのポリエステルとしては、ポリエチレンテレフタレート(以下、PETと称する)を主成分とするポリエステルが用いられる。 As the polyester of the polyester multifilament of the present invention, polyester containing polyethylene terephthalate (hereinafter referred to as PET) as a main component is used.

本発明で用いるPETとしては、テレフタル酸を主たる酸成分としエチレングリコールを主たるグリコール成分とする、90モル%以上がエチレンテレフタレートの繰り返し単位からなるポリエステルを用いることができる。ただし、10モル%未満の割合で他のエステル結合を形成可能な共重合成分を含むものであっても良い。このような共重合成分としては、例えば、酸性分として、イソフタル酸、フタル酸、ジブロモテレフタル酸、ナフタリンジカルボン酸、オクトエトキシ安息香酸のような二官能性芳香族カルボン酸、セバシン酸、シュウ酸、アジピン酸、ダイマ酸のような二官能性脂肪族カルボン酸、シクロヘキサンジカルボン酸などのジカルボンサン類が挙げられ、また、グリコール成分としては、例えば、エチレングリコール、ジエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ビスフェノールAや、シクロヘキサンジメタノール、ポリエチレングリコールやポリプロピレングリコールなどのポリオキシアルキレングリコールなどを挙げることができるが、これらに限られるものではない。 As the PET used in the present invention, a polyester containing terephthalic acid as a main acid component and ethylene glycol as a main glycol component and having 90 mol % or more of repeating units of ethylene terephthalate can be used. However, it may contain other copolymer components capable of forming an ester bond at a ratio of less than 10 mol %. Such copolymer components include, for example, acidic components such as isophthalic acid, phthalic acid, dibromoterephthalic acid, naphthalenedicarboxylic acid, bifunctional aromatic carboxylic acids such as octoethoxybenzoic acid, sebacic acid, oxalic acid, Bifunctional aliphatic carboxylic acids such as adipic acid and dymic acid, and dicarboxylic acids such as cyclohexanedicarboxylic acid, and glycol components such as ethylene glycol, diethylene glycol, propanediol, butanediol, neopentyl Glycols, bisphenol A, cyclohexanedimethanol, and polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol may be mentioned, but are not limited to these.

また、艶消剤として二酸化チタン、滑剤としてシリカやアルミナの微粒子、抗酸化剤としてヒンダードフェノール誘導体、さらには難燃剤、帯電防止剤、紫外線吸収剤および着色顔料等を必要に応じてPETに添加することができる。 In addition, titanium dioxide as a matting agent, fine particles of silica and alumina as a lubricant, hindered phenol derivatives as an antioxidant, flame retardants, antistatic agents, ultraviolet absorbers and coloring pigments are added to PET as necessary. can do.

また、芯成分のPETはポリエステルマルチフィラメントの強度を主に担うため、通常ポリエステル繊維に添加される酸化チタンに代表される無機粒子の添加物は0.5wt%以下であることが好ましい。一方、鞘成分のPETはポリエステルマルチフィラメントの耐摩耗性を主として担うため酸化チタンに代表される無機粒子を0.1wt%~0.5wt%程度添加させることが好ましい。 In addition, since the core component PET is mainly responsible for the strength of the polyester multifilament, it is preferable that the amount of the additive of inorganic particles typified by titanium oxide, which is usually added to polyester fibers, is 0.5 wt % or less. On the other hand, since the sheath component PET is mainly responsible for the wear resistance of the polyester multifilament, it is preferable to add about 0.1 wt % to 0.5 wt % of inorganic particles represented by titanium oxide.

次に、本発明のポリエステルマルチフィラメントの横断面形状について説明する。 Next, the cross-sectional shape of the polyester multifilament of the present invention will be described.

本発明のポリエステルマルチフィラメントは、先に述べたように、単糸の横断面において芯成分が鞘成分により覆われ、芯成分が表面に露出していないように配置された芯鞘型複合ポリエステルマルチフィラメントである。ここで芯鞘型とは芯成分が鞘成分により完全に覆われていれば良く、必ずしも同心円状に配置されている必要はない。なお、断面形状については丸、扁平、三角、四角、五角など幾つもの形状があるが、安定した製糸性および高次加工性を得やすいという点や、織物の高密度化のためには丸断面が好ましい。 As described above, the polyester multifilament of the present invention is a core-sheath type composite polyester multifilament in which the core component is covered with the sheath component in the cross section of the single yarn and the core component is not exposed on the surface. filament. Here, the core-sheath type means that the core component is completely covered with the sheath component, and does not necessarily need to be arranged concentrically. Regarding the cross-sectional shape, there are many shapes such as round, flat, triangular, square, and pentagonal. is preferred.

本発明においては、芯成分、鞘成分ともにポリエステルであるため、ポリエステル/ナイロン複合糸に度々発生するような複合界面での剥離という現象は起きにくい。しかしながら鞘成分による耐摩耗性向上効果と芯成分による高強度化を両立するという点で、芯成分:鞘成分の複合比は60:40~95:5の範囲とすることが好ましく、より好ましい複合比は、70:30~90:10の範囲である。 In the present invention, since both the core component and the sheath component are polyester, the phenomenon of peeling at the composite interface, which frequently occurs in polyester/nylon composite yarns, is less likely to occur. However, in order to achieve both the wear resistance improvement effect of the sheath component and the strength enhancement of the core component, the composite ratio of the core component:the sheath component is preferably in the range of 60:40 to 95:5, and is more preferable. The ratio ranges from 70:30 to 90:10.

ここで、本発明で定義する複合比とは、ポリエステルマルチフィラメントの単糸の横断面写真において単糸を構成する2種のポリエステルの横断面積比率である。 Here, the composite ratio defined in the present invention is the cross-sectional area ratio of two kinds of polyesters constituting a single yarn in a cross-sectional photograph of a polyester multifilament single yarn.

本発明のポリエステルマルチフィラメントは、総繊度が4~30dtexであることが必要である。4dtex以上とすることで安定的に製糸、製織することが可能となり、30dtex以下とすることで目的の高密度薄地織物とすることができる。好ましい総繊度の範囲は8~25dtexである。 The polyester multifilament of the present invention must have a total fineness of 4 to 30 dtex. When the density is 4 dtex or more, stable spinning and weaving are possible. A preferred total fineness range is 8 to 25 dtex.

また、本発明のポリエステルマルチフィラメントは、単糸繊度が1.0~5.0dtexであることが必要である。単糸繊度を1.0dtex未満とすると、目的の芯鞘断面の形成が困難になり、鞘割れを生じたり、鞘成分の厚みが薄くなり、耐摩耗性が不十分となる傾向がある。また製糸性や製織性等の工程通過性も悪化する傾向がある。また、5.0dtex以下とすることで、交絡を付与しやすくなり、収束性が向上し、工程通過性および製織性の向上効果が得られる。また得られた織物は緻密性を保ちつつ、硬くなりすぎず良好な風合いを有する。好ましい単糸繊度の範囲は1.5~3.0dtexである。上記のような単糸繊度を達成するためには、ポリエステルマルチフィラメントの製造方法において、吐出量および紡糸口金を適宜変更すればよい。 Further, the polyester multifilament of the present invention must have a single filament fineness of 1.0 to 5.0 dtex. If the single filament fineness is less than 1.0 dtex, it becomes difficult to form the desired core-sheath cross section, which tends to cause sheath cracking, reduce the thickness of the sheath component, and result in insufficient abrasion resistance. In addition, there is a tendency for process passability such as spinning property and weaving property to deteriorate. In addition, by making it 5.0 dtex or less, it becomes easy to impart entanglement, convergence is improved, and the effect of improving process passability and weaving property is obtained. In addition, the resulting woven fabric maintains its denseness, does not become too hard, and has a good feel. A preferable single yarn fineness range is 1.5 to 3.0 dtex. In order to achieve the single filament fineness as described above, the discharge rate and the spinneret may be appropriately changed in the polyester multifilament production method.

さらに、本発明のポリエステルマルチフィラメントは、フィラメント数が3~15であることが必要である。フィラメント数を3以上することで交絡が入りやすくなる。またフィラメント数が増えると、製織時の筬やガイド等との接触を各単糸に分散することができるため、単糸にかかる摩擦の負荷を低減でき、原糸の耐摩耗性や織物の耐久性を大幅に向上する。フィラメント数の上限は、総繊度や単糸繊度によるが、15以下とする。 Furthermore, the polyester multifilament of the present invention must have 3 to 15 filaments. By setting the number of filaments to 3 or more, entanglement is likely to occur. In addition, when the number of filaments increases, the contact with reeds and guides during weaving can be distributed to each single yarn, so the friction load applied to the single yarn can be reduced, and the abrasion resistance of the raw yarn and the durability of the fabric can be improved. significantly improve performance. The upper limit of the number of filaments is 15 or less, depending on the total fineness and single filament fineness.

本発明のポリエステルマルチフィラメントは、優れた製織性および織物品位を得るために、収束性を高める必要がある。収束性が不十分である場合、フィラメント割れ(単糸ばらけ)が起こり、製織時の経糸の捌きが悪くなり、経糸切れが生じやすくなる。また織物品位についても、フィラメント割れはスジ状の織物欠点となる。 The polyester multifilament of the present invention should have increased convergence in order to obtain excellent weavability and fabric quality. If the convergence is insufficient, filament splitting (single yarn separation) occurs, and warp handling becomes poor during weaving, and warp breakage is likely to occur. In terms of fabric quality, filament cracking causes streak-like fabric defects.

本発明のポリエステルマルチフィラメントは、1mあたりの交絡数を表す交絡度が2.0~15.0個/mであることが必要である。交絡度2.0個/m未満になると経糸切れ等の製織性が悪化する傾向がある。得られた織物は、フィラメント割れによるスジ状の織物欠点が見られ、織物品位に劣る傾向がある。交絡度を2.0個/m以上とすることで優れた製織性および織物品位が得られる。一方で、交絡度が高すぎると、拘束点が多くなりすぎてしまい、前述した、製織時の筬やガイド等との接触を各単糸に分散し、単糸にかかる摩擦の負荷を低減するという効果が下がり、原糸の耐摩耗性や織物の耐久性が劣る傾向があるため、交絡度を15.0個/m以下とする必要がある。さらには、より交絡度を大きくするためには交絡付与工程での負荷が高くなり、糸切れが多発し生産性が悪化する場合がある。より好ましい交絡度の範囲は4.0~10.0個/mである。 The polyester multifilament of the present invention needs to have a degree of entanglement representing the number of entanglements per m of 2.0 to 15.0/m. If the degree of entanglement is less than 2.0 pieces/m, there is a tendency that weaving properties such as warp breakage deteriorate. The obtained fabric has streak-like fabric defects due to filament splitting, and tends to be inferior in fabric quality. When the degree of entanglement is 2.0 pieces/m or more, excellent weavability and fabric quality can be obtained. On the other hand, if the degree of entanglement is too high, there will be too many restraint points, and the above-mentioned contact with the reed, guide, etc. during weaving will be distributed to each single yarn, and the frictional load applied to the single yarn will be reduced. The effect of entanglement is reduced, and the wear resistance of the raw yarn and the durability of the woven fabric tend to be inferior. Furthermore, in order to increase the degree of entanglement, the load in the entanglement process is increased, and yarn breakage often occurs, which may deteriorate productivity. A more preferable range of entanglement degree is 4.0 to 10.0 pieces/m.

本発明のポリエステルマルチフィラメントは、破断強度を5.0cN/dtex以上とすることで、薄地織物としても十分な機械的特性を得ることができる。より好ましくは6.0cN/dtex以上である。また耐摩耗性の観点から配向や結晶化度を抑える必要があるため、9.0cN/dtex以下であり、より好ましくは8.0cN/dtex以下である。 The polyester multifilament of the present invention has a breaking strength of 5.0 cN/dtex or more, so that sufficient mechanical properties can be obtained even as a thin woven fabric. More preferably, it is 6.0 cN/dtex or more. Also, from the viewpoint of abrasion resistance, it is necessary to suppress orientation and crystallinity, so it is 9.0 cN/dtex or less, more preferably 8.0 cN/dtex or less.

また、本発明のポリエステルマルチフィラメントは、破断伸度を12%以上とすることで製織時の糸切れや毛羽発生を抑制することができ、取り扱い性にも優れ、45%以下とすることで、目的の破断強度が得られる。より好ましい破断伸度の範囲は17~35%である。 In addition, the polyester multifilament of the present invention has a breaking elongation of 12% or more, so that it can suppress yarn breakage and fluffing during weaving, and is excellent in handleability. Target breaking strength is obtained. A more preferable breaking elongation range is 17 to 35%.

さらに、本発明のポリエステルマルチフィラメントの5%伸長時の強度(5%Mo)および10%伸長時の強度(10%Mo)は、織物の寸法安定性の観点から、5%Moは3.5cN/dtex以上が好ましく、3.8cN/dtex以上がより好ましい。10%Moは4.0cN/dtex以上が好ましく、4.5cN/dtex以上がより好ましい。また、耐摩耗性の観点から配向や結晶化度を抑えるため、5%Moは6.0cN/dtex以下が好ましく、5.0cN/dtex以下がより好ましい。10%Moは8.0cN/dtex以下が好ましく、7.0cN/dtex以下がより好ましい。 Furthermore, the strength at 5% elongation (5% Mo) and the strength at 10% elongation (10% Mo) of the polyester multifilament of the present invention are 3.5 cN at 5% Mo from the viewpoint of the dimensional stability of the fabric. /dtex or more is preferable, and 3.8 cN/dtex or more is more preferable. 10% Mo is preferably 4.0 cN/dtex or more, more preferably 4.5 cN/dtex or more. In addition, 5% Mo is preferably 6.0 cN/dtex or less, more preferably 5.0 cN/dtex or less, in order to suppress orientation and crystallinity from the viewpoint of wear resistance. 10% Mo is preferably 8.0 cN/dtex or less, more preferably 7.0 cN/dtex or less.

次いで、本発明のポリエステルマルチフィラメントの好ましい製造方法について説明する。 Next, a preferred method for producing the polyester multifilament of the present invention will be described.

本発明のポリエステルマルチフィラメントの製造方法の特徴は、交絡を付与する位置を延伸後とすることである。未延伸糸の段階で交絡を付与した場合、本発明のマルチフィラメントの総繊度および単糸繊度、フィラメント数の範囲では、交絡を入れるのが困難である。そこで延伸後の単糸繊度が小さくなった段階で交絡を付与することで、目的の交絡度を達成することが可能となる。 A feature of the method for producing the polyester multifilament of the present invention is that the entanglement is performed after the drawing. When entangling is imparted at the undrawn yarn stage, it is difficult to entangle within the ranges of the total fineness, single filament fineness, and filament number of the multifilament of the present invention. Therefore, it is possible to achieve the desired degree of entanglement by applying entanglement at the stage when the single yarn fineness after drawing becomes small.

また本発明のポリエステルマルチフィラメントの交絡付与方法は、公知の交絡ノズルを用いることができる。交絡の圧空圧は0.10~0.40MPaとすることが好ましい。0.10MPa未満では十分な交絡をいれることは難しく、0.40MPaを超えると糸切れが多発し生産性が悪くなる。より好ましくは0.15~0.30MPaである。 A known entangling nozzle can be used in the method for imparting entanglement to the polyester multifilament of the present invention. The pneumatic pressure for entangling is preferably 0.10 to 0.40 MPa. If the tension is less than 0.10 MPa, it is difficult to achieve sufficient entanglement. More preferably, it is 0.15 to 0.30 MPa.

本発明のポリエステルマルチフィラメントの紡糸方法は、特に限定するものではなく、公知の技術に準じることができる。例えば、芯成分である高粘度PETと鞘成分である低粘度PETをそれぞれ溶融押出し、複合紡糸機を用い、所定の複合パックに送り、パック内で両ポリマーを濾過した後、紡糸口金で芯鞘型に貼り合わせて複合紡糸し、紡糸口金から吐出した糸条を引き取り、未延伸糸を得る。この未延伸糸は一旦巻き取ってから、延伸機にて延伸する2工程法でもよいし、未延伸糸を一旦巻き取ることなく、引き続き延伸を行う1工程法でもよいが、後述する交絡付与において、糸速度が速いと交絡が入りにくくなるため、2工程法のほうがより好ましい。 The method for spinning the polyester multifilament of the present invention is not particularly limited, and can be based on known techniques. For example, high-viscosity PET as a core component and low-viscosity PET as a sheath component are respectively melt extruded, sent to a predetermined composite pack using a composite spinning machine, both polymers are filtered in the pack, and then the core and sheath are passed through a spinneret. The fibers are bonded to a mold and subjected to conjugate spinning, and the yarn ejected from the spinneret is taken off to obtain an undrawn yarn. This undrawn yarn may be wound once and then drawn by a drawing machine, or may be a one-step method in which drawing is continued without once winding the undrawn yarn. The two-step method is more preferable because entanglement becomes difficult to occur when the yarn speed is high.

本発明のポリエステルマルチフィラメントの延伸方法は、特に限定するものではなく、公知の技術に準じることができる。例えば、第1ホットロールと第2ホットロール間で1段加熱延伸熱する方法、第1ホットロールと非加熱ロール、およびそのロール間のホットプレートで1段加熱延伸する方法、第1ホットロールと第2ホットロール間で1段目の加熱延伸、第2ホットロールと第3ホットロール間で2段目の加熱延伸をする方法などから好適に選択することができる。特に高強度を達成するためには未延伸糸を高倍率延伸することが必要となるが、1段延伸にて行うと、延伸張力が増大するため、糸斑が増大したり、糸切れが多発したりする等の問題が発生するため、2段以上の延伸とすることが好ましい。 The method for drawing the polyester multifilament of the present invention is not particularly limited, and can be based on known techniques. For example, a method of heating and drawing in one stage between the first hot roll and the second hot roll, a method of heating and drawing in one stage with the first hot roll and unheated rolls, and a hot plate between the rolls, and the first hot roll and The method can be preferably selected from a method of performing the first-stage heat drawing between the second hot rolls, a method of performing the second-stage heat drawing between the second hot rolls and the third hot rolls, and the like. In order to achieve a particularly high strength, it is necessary to draw the undrawn yarn at a high magnification. It is preferable to draw the film in two or more steps because problems such as sagging occur.

また、本発明のポリエステルマルチフィラメントの延伸の温度は、1段延伸の場合、第1ホットロールは、通常、芯成分の高粘度PETのガラス転移温度+10~30℃とし、第2ホットロールまたはホットプレートは、130~230℃の範囲とするのが好ましい。130℃以上とすることにより、配向を制御し、繊維の結晶化を促進し、高強度化する。一方、230℃以下の場合はホットロールまたはホットプレートでの融着を防止し、製糸性が良好となる。多段延伸の場合、第1ホットロールは、芯成分の高粘度PETのガラス転移温度+10~30℃とし、第2ホットロール以降は徐々に温度を増加していくことが好ましく、最終ホットロールは、100~230℃の範囲とするのが好ましい。 In the case of one-stage drawing, the temperature for drawing the polyester multifilament of the present invention is usually the glass transition temperature of the high-viscosity PET core component + 10 to 30 ° C. with the first hot roll, and the second hot roll or hot roll. The plate is preferably in the range of 130-230°C. By setting the temperature to 130° C. or higher, the orientation is controlled, the crystallization of the fiber is promoted, and the strength is increased. On the other hand, when the temperature is 230° C. or lower, the fusion on the hot roll or hot plate is prevented, and the spinning property is improved. In the case of multi-stage stretching, the first hot roll is set to the glass transition temperature of the high-viscosity PET core component +10 to 30° C., and the temperature of the second and subsequent hot rolls is preferably gradually increased. A temperature range of 100 to 230° C. is preferred.

さらに、本発明のポリエステルマルチフィラメントの延伸倍率は、トータルで3.0~7.0倍とすることが好ましい。より好ましくは3.5~6.0倍、さらに好ましくは3.8~5.0倍である。 Furthermore, the draw ratio of the polyester multifilament of the present invention is preferably 3.0 to 7.0 times in total. More preferably 3.5 to 6.0 times, still more preferably 3.8 to 5.0 times.

以下、本発明のポリエステルマルチフィラメントについて実施例をもって具体的に説明する。実施例の測定値は、次の方法で測定した。 Hereinafter, the polyester multifilament of the present invention will be specifically described with reference to examples. The measured values in the examples were measured by the following methods.

(1)固有粘度(IV)
η/ηで定義される相対粘度:ηrは、25℃の温度の純度98%以上のo-クロロフェノール(以下、OCPと略記する)10mL中に試料ポリマーを0.8g溶かしポリマー溶液とし、25℃の温度にてオストワルド粘度計を用いて次の数式より求めた。ηrより、固有粘度(IV)を次の数式より算出した。
ηr=η/η=(t×d)/(t×d
固有粘度(IV)=0.0242ηr+0.2634
ここで、η:ポリマー溶液の粘度 η:OCPの粘度 t:溶液の落下時間(秒) d:溶液の密度(g/cm) t:OCPの落下時間(秒) d:OCPの密度(g/cm) 。
(1) Intrinsic viscosity (IV)
Relative viscosity defined by η/η 0 : ηr is obtained by dissolving 0.8 g of a sample polymer in 10 mL of o-chlorophenol (hereinafter abbreviated as OCP) having a purity of 98% or more at a temperature of 25° C. to obtain a polymer solution. It was obtained from the following formula using an Ostwald viscometer at a temperature of 25°C. From ηr, the intrinsic viscosity (IV) was calculated from the following formula.
ηr=η/η 0 =(t×d)/(t 0 ×d 0 )
Intrinsic viscosity (IV) = 0.0242ηr + 0.2634
Here, η: viscosity of polymer solution η 0 : viscosity of OCP t: drop time of solution (seconds) d: density of solution (g/cm 3 ) t 0 : drop time of OCP (seconds) d 0 : OCP Density (g/cm 3 ).

(2)総繊度(dtex)
糸条を500mかせ取り、かせの質量(g)に20を乗じた値を繊度とした。
(2) Total fineness (dtex)
A skein of 500 m of yarn was taken, and the value obtained by multiplying the mass (g) of the skein by 20 was taken as the fineness.

(3)破断強度(cN/dtex)および破断伸度(%)、5%伸長時の強度(モジュラス)(cN/dtex)および10%伸長時の強度(モジュラス)(cN/dtex)
JIS L1013(1999)に従い、オリエンテック製テンシロンUCT-100を用いて測定した。
(3) Breaking strength (cN/dtex) and breaking elongation (%), strength (modulus) at 5% elongation (cN/dtex) and strength (modulus) at 10% elongation (cN/dtex)
It was measured using Orientec Tensilon UCT-100 according to JIS L1013 (1999).

(4)交絡度(個/m)
糸条を水上に浮かべ、1mあたりの収束点の個数を測定し、交絡度とした。測定は10回行い、平均値を算出した。
(4) Degree of entanglement (pieces/m)
The yarn was floated on water, and the number of convergence points per 1 m was measured to obtain the degree of entanglement. The measurement was performed 10 times and the average value was calculated.

(5)原糸耐摩耗性
糸条に0.9g/dtexの糸張力を掛け、筬(材質:SK材、幅7mm×長さ50mm×厚み50μm)の平面部を接触角20°になるように押し付け、ストローク長30mm、速度670回/分で10分間、往復運動を与えた。処理後の糸条をマイクロスコープで拡大観察し、毛羽やフィブリル化(表面削れ)が見られない場合をA、見られた場合をCとした。
(5) Abrasion resistance of raw yarn A yarn tension of 0.9 g/dtex is applied to the yarn, and the flat part of the reed (material: SK material, width 7 mm × length 50 mm × thickness 50 μm) is adjusted so that the contact angle is 20°. and reciprocated at a stroke length of 30 mm and a speed of 670 times/min for 10 minutes. The yarn after the treatment was observed under an enlarged microscope, and A was given when no fluff or fibrillation (surface scraping) was observed, and C was given when observed.

(6)製織性評価、製織品位
ウォータージェットルーム織機にて、使用するフィラメントの総繊度により調整し、目付けが30~35g/mの範囲となるように製織した。製織性は100mあたりに糸切れ等で停台した回数が、3回未満はS、3回以上10回未満はA、10回以上はCとして評価した。製織品位は、毛羽やフィラメント割れのような欠点の総数をカウントし、100mあたりに3個未満はS、3個以上10個未満はA、10個以上はCとして評価した。
(6) Evaluation of Weaving Performance and Weaving Quality Weaving was carried out with a water jet loom so that the basis weight was in the range of 30 to 35 g/m 2 by adjusting the total fineness of the filaments used. The weaving performance was evaluated as S when the number of times the fabric stopped due to yarn breakage or the like per 100 m was less than 3 times, A when 3 times or more and less than 10 times, and C when 10 times or more. The weaving quality counted the total number of defects such as fuzz and filament cracks, and was evaluated as S when less than 3 per 100 m, A when 3 or more and less than 10, and C when 10 or more.

(7)布帛耐摩耗性
布帛耐摩耗性はJIS L1096(2010)に従い、E法(マーチンデール法)に準拠して実施した。試験条件は、ポリエステル製の標準摩擦布を用い、押圧荷重は9kPaで実施した。判定は、毛羽が発生するまでの摩耗回数とし、5,000回以上はA、3,000回以上5,000回未満はB、3,000回未満はCとした。
(7) Fabric Abrasion Resistance Fabric abrasion resistance was measured according to E method (Martindale method) according to JIS L1096 (2010). As for the test conditions, a standard friction cloth made of polyester was used, and the pressing load was 9 kPa. The evaluation was based on the number of times of abrasion until fluff was generated.

実施例および比較例の製造方法については、表1~3に示す製造条件にて、公知の技術に準じて、ポリエステルフィラメントを得た。 Regarding the production methods of Examples and Comparative Examples, polyester filaments were obtained according to known techniques under the production conditions shown in Tables 1 to 3.

[実施例1]
芯成分として固有粘度0.80のPET、鞘成分として固有粘度0.50のPETを、エクストルーダー型押出機を用いて295℃の温度で溶融後、ポリマー温度290℃で、複合比が芯成分:鞘成分=80:20となるようにポンプ計量を行い、芯鞘型となるような孔数5個の公知の複合口金に流入させた。口金から吐出された糸条は、紡糸速度1,200m/分で一旦巻き取った後、公知の延伸装置にて、90℃に加熱された第1ホットロールと130℃に加熱された第2ホットロール間で延伸倍率4.2倍で延伸し、熱セットを行った。得られた延伸糸は、最終ロールと巻取機の間に設置した交絡ノズルにて、交絡圧0.23MPaで交絡を付与した後、800m/分で巻き取った。製糸性は特に問題はなく、総繊度12.0dtex、単糸繊度2.4dtex、破断強度6.5cN/dtex、破断伸度17.7%、交絡度5.8個/mのポリエステルマルチフィラメントを得た。このポリエステルマルチフィラメントの原糸耐摩耗性は良好であった。その他の原糸物性は表1に示す通りであった。
[Example 1]
PET with an intrinsic viscosity of 0.80 as a core component and PET with an intrinsic viscosity of 0.50 as a sheath component are melted at a temperature of 295 ° C. using an extruder type extruder, and the polymer temperature is 290 ° C. The composite ratio is the core component. : Sheath component = 80:20 was measured by the pump and flowed into a known composite spinneret having 5 holes to form a core-sheath type. The yarn extruded from the spinneret is once wound at a spinning speed of 1,200 m/min, and then passed through a first hot roll heated to 90°C and a second hot roll heated to 130°C in a known drawing device. It was stretched between rolls at a draw ratio of 4.2 times and heat set. The obtained drawn yarn was entangled at an entangling pressure of 0.23 MPa by an entangling nozzle installed between the final roll and the winding machine, and then wound at 800 m/min. There is no particular problem with the spinnability, and a polyester multifilament with a total fineness of 12.0 dtex, a single filament fineness of 2.4 dtex, a breaking strength of 6.5 cN/dtex, a breaking elongation of 17.7%, and a degree of entanglement of 5.8 pieces/m is used. Obtained. The yarn abrasion resistance of this polyester multifilament was good. Other raw yarn physical properties were as shown in Table 1.

このポリエステルマルチフィラメントを用いて、ウォータージェットルーム織機にて、目付けが30g/mになるように製織を行った。100mの製織で糸切れは1回もなく、非常に良好な製織性であった。得られた布帛に毛羽等の欠点もなく、非常に良好な製織品位であった。また布帛耐摩耗性は、摩耗回数6,000回でも毛羽の発生がなく、良好であった。Using this polyester multifilament, weaving was performed with a water jet loom so that the basis weight was 30 g/m 2 . There was no yarn breakage in the weaving of 100m, and the weaving performance was very good. The resulting fabric had no defects such as fluff and was of very good weaving quality. The abrasion resistance of the fabric was good, with no fluff even after 6,000 abrasions.

[実施例2~3]
延伸倍率をそれぞれ、3.9倍、3.6倍にした以外は、実施例1と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表1に示す通りであった。実施例2、3のいずれも、100mの製織で糸切れは1回もなく、非常に良好な製織性であった。得られた布帛に毛羽等の欠点もなく、非常に良好な製織品位であった。また布帛耐摩耗性は、摩耗回数6,000回でも毛羽の発生がなく、良好であった。
[Examples 2-3]
Polyester multifilaments were obtained in the same manner as in Example 1, except that the draw ratios were 3.9 times and 3.6 times, respectively. The physical properties of the obtained polyester multifilament yarn were as shown in Table 1. In both Examples 2 and 3, there was no thread breakage in the weaving of 100 m, and the weavability was very good. The resulting fabric had no defects such as fluff and was of very good weaving quality. The abrasion resistance of the fabric was good, with no fluff even after 6,000 abrasions.

[実施例4~5]、[比較例1~2]
交絡圧を0.08~0.42MPaの範囲で変更した以外は、実施例1と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表1に示す通りであった。実施例4は交絡度が9.9個/mとなり、原糸耐摩耗性、製織性、製織品位、布帛耐摩耗性は実施例1と同様に良好な結果が得られた。実施例5は交絡度が4.2個/mとなり、収束性が実施例1に若干劣るため、100mの製織で糸切れが3回となったが、良好な製織性であった。得られた布帛には毛羽はなかったが、フィラメント割れの欠点が見られ、実施例1には若干劣るものとなった。比較例1は交絡圧が高く、交絡付与位置での糸揺れが大きくなり、糸切れが発生した。交絡度は15.3個/mと高くなり、原糸耐摩耗性は毛羽が発生しやすく、実施例1に劣っていた。製織での糸切れは6回であり、製織品位は毛羽があり、実施例1に劣っていた。また布帛耐摩耗性は、摩耗回数3,500回でも毛羽の発生があった。比較例2は交絡圧が低く、交絡度は1.7個/mとなり、交絡を十分にいれることができなかった。製織では経糸切れが多発し、数m毎に停台が発生した。製織品位はフィラメント割れが多く、スジ状の欠点が多数見られた。
[Examples 4-5], [Comparative Examples 1-2]
A polyester multifilament was obtained in the same manner as in Example 1, except that the entangling pressure was changed in the range of 0.08 to 0.42 MPa. The physical properties of the obtained polyester multifilament yarn were as shown in Table 1. In Example 4, the degree of entanglement was 9.9 pieces/m, and good results similar to those in Example 1 were obtained in terms of yarn abrasion resistance, weaving performance, weaving quality, and fabric abrasion resistance. In Example 5, the degree of entanglement was 4.2 pieces/m, and convergence was slightly inferior to that in Example 1. Therefore, yarn breakage occurred 3 times in the weaving of 100 m, but the weaving performance was good. Although the resulting fabric had no fluff, it had the defect of filament cracking and was slightly inferior to that of Example 1. In Comparative Example 1, the entangling pressure was high, the yarn swayed at the entangling position, and yarn breakage occurred. The degree of entanglement was as high as 15.3 pieces/m, and the abrasion resistance of the raw yarn was inferior to that of Example 1 because fluff was easily generated. Yarn breakage occurred 6 times during weaving, and the weaving quality was inferior to that of Example 1 with fluff. As for the abrasion resistance of the fabric, fluff was generated even after 3,500 abrasions. In Comparative Example 2, the entangling pressure was low, the entangling degree was 1.7 pieces/m, and the entangling could not be sufficiently introduced. During weaving, warp breakage occurred frequently, and machine stops occurred every several meters. As for the weaving quality, there were many filament cracks and many streak-like defects were observed.

Figure 0007176413000001
Figure 0007176413000001

[比較例3]
交絡付与位置を紡糸の巻き取り前とした以外は、実施例1と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表2に示す通りであった。交絡度は0.8個/mとなり、交絡を十分にいれることができなかった。製織では経糸切れが多発し、数m毎に停台が発生した。製織品位はフィラメント割れが多く、スジ状の欠点が多数見られた。
[Comparative Example 3]
A polyester multifilament was obtained in the same manner as in Example 1, except that the entanglement position was set before winding the yarn. The physical properties of the obtained polyester multifilament yarn were as shown in Table 2. The degree of entanglement was 0.8 pieces/m, and the entanglement was not sufficient. During weaving, warp breakage occurred frequently, and machine stops occurred every several meters. As for the weaving quality, there were many filament cracks and many streak-like defects were observed.

[実施例6~8]、[比較例4~5]
吐出量および口金の孔数を調整し、総繊度および単糸繊度、フィラメント数を変更した以外は、実施例2と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表2に示す通りであった。実施例6~8は、実施例2と同等の原糸物性および製織性、製織品位、布帛耐摩耗性となった。比較例4は単糸繊度が5.6dtexと大きいため、交絡度が1.2個/mとなり、交絡を十分にいれることができなかった。製織では経糸切れが多発し、数m毎に停台が発生した。製織品位はフィラメント割れが多く、スジ状の欠点が多数見られた。また得られた布帛はごわごわした風合いとなった。比較例5は紡糸での単糸切れが多く、延伸でも単糸巻き付きが多発した。得られたポリエステルマルチフィラメントは単糸繊度が0.8dtexと小さいため、交絡度は18.8個/mと高くなった。原糸摩耗試験後のポリエステルマルチフィラメントは、多くの毛羽が発生しており、耐摩耗性に劣っていた。また得られたポリエステルマルチフィラメントを製織したが、経糸切れが多発し、まったく製織することができなかった。
[Examples 6-8], [Comparative Examples 4-5]
A polyester multifilament was obtained in the same manner as in Example 2, except that the discharge rate and the number of holes in the spinneret were adjusted, and the total fineness, the single filament fineness, and the number of filaments were changed. The physical properties of the obtained polyester multifilament yarn were as shown in Table 2. Examples 6 to 8 had the same raw yarn physical properties, weaving properties, weaving quality, and fabric abrasion resistance as those of Example 2. In Comparative Example 4, the single filament fineness was as large as 5.6 dtex, so the degree of entanglement was 1.2 pieces/m, and entanglement could not be achieved sufficiently. During weaving, warp breakage occurred frequently, and machine stops occurred every several meters. As for the weaving quality, there were many filament cracks and many streak-like defects were observed. Further, the resulting fabric had a stiff texture. In Comparative Example 5, there were many single yarn breakages during spinning, and many single yarn windings occurred during drawing. Since the obtained polyester multifilament had a small single filament fineness of 0.8 dtex, the degree of entanglement was as high as 18.8 pieces/m. The polyester multifilament after the yarn abrasion test had a lot of fluff and was inferior in abrasion resistance. Moreover, when the obtained polyester multifilament was woven, the warp broke frequently, and the weaving could not be performed at all.

[比較例6]
口金の孔数を1として吐出量を変更し、交絡ノズルを使用しないこと以外は、実施例1と同様にして、ポリエステルモノフィラメントを得た。得られたポリエステルモノフィラメントの原糸物性は表2に示す通りであった。得られたポリエステルモノフィラメントは、ウォータージェットルーム織機では経糸、緯糸とも糸切れが多発し、まったく製織することができなかった。
[Comparative Example 6]
A polyester monofilament was obtained in the same manner as in Example 1, except that the number of holes in the spinneret was changed to 1 and the discharge rate was changed, and the entangling nozzle was not used. The physical properties of the obtained polyester monofilament were as shown in Table 2. The resulting polyester monofilament could not be woven at all because of frequent breakage of both the warp and the weft on a water jet loom.

Figure 0007176413000002
Figure 0007176413000002

[実施例9]
芯成分に固有粘度1.00のPETを用い、紡糸速度を600m/分とした以外は、実施例1と同様にして、紡糸した。一旦巻き取った後、公知の延伸装置にて、90℃に加熱された第1、第2ホットロールと200℃に加熱された第3ホットロール間で、延伸倍率4.5倍で2段延伸し、熱セットを行った以外は実施例1と同様にして延伸し、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表3に示す通りであった。製織では100mで糸切れは1回もなく、非常に良好な製織性であった。得られた布帛に毛羽等の欠点もなく、非常に良好な製織品位であった。また布帛耐摩耗性は、摩耗回数6,000回でも毛羽の発生がなく、良好であった。
[Example 9]
Spinning was carried out in the same manner as in Example 1, except that PET having an intrinsic viscosity of 1.00 was used as the core component and the spinning speed was 600 m/min. After being wound once, it is stretched in two stages at a draw ratio of 4.5 times between the first and second hot rolls heated to 90°C and the third hot roll heated to 200°C in a known stretching device. Then, the polyester multifilament was obtained by stretching in the same manner as in Example 1 except that heat setting was performed. The physical properties of the obtained polyester multifilament yarn were as shown in Table 3. In the weaving, there was no yarn breakage at 100 m, and the weaving performance was very good. The resulting fabric had no defects such as fluff and was of very good weaving quality. The abrasion resistance of the fabric was good, with no fluff even after 6,000 abrasions.

[実施例10]
芯成分に固有粘度1.25のPETを用い、紡糸速度を500m/分、延伸倍率5.8倍とした以外は、実施例9と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表3に示す通りであった。原糸耐摩耗性では、毛羽やフィブリル化は見られなかったが、100mの製織では経糸切れが8回となった。また得られた布帛の品位は毛羽が見られ、実施例1には劣るものとなった。布帛耐摩耗性は、摩耗回数4,500回で毛羽が発生し、実施例1には劣るものとなった。
[Example 10]
A polyester multifilament was obtained in the same manner as in Example 9, except that PET having an intrinsic viscosity of 1.25 was used as the core component, the spinning speed was 500 m/min, and the draw ratio was 5.8 times. The physical properties of the obtained polyester multifilament yarn were as shown in Table 3. As for the abrasion resistance of the raw yarn, fluff and fibrillation were not observed, but warp breakage occurred 8 times in the weaving of 100m. The quality of the obtained fabric was inferior to that of Example 1 because fluff was observed. The abrasion resistance of the fabric was inferior to that of Example 1, with fluff occurring after 4,500 abrasions.

[比較例7]
単成分として固有粘度0.80のPETを用い、エクストルーダー型押出機を用いて295℃の温度で溶融後、ポリマー温度290℃で、孔数5個の公知の単成分口金に流入させた。口金から吐出された糸条は、紡糸速度800m/分で一旦巻き取った後、公知の延伸装置にて、90℃に加熱された第1ホットロールと130℃に加熱された第2ホットロール間で延伸倍率4.3倍で延伸し、熱セットを行った。得られた延伸糸は、最終ロールと巻取機の間に設置した交絡ノズルにて、交絡圧0.23MPaで交絡を付与した後、800m/分で巻き取った。得られたポリエステルマルチフィラメントの原糸物性は表3に示す通りであった。原糸耐摩耗性は毛羽が発生しやすく、実施例1に劣っていた。100mの製織で糸切れは1回もなく、非常に良好な製織性であったが、得られた布帛に毛羽があり、実施例1に劣るものとなった。また布帛耐摩耗性は、摩耗回数500回で毛羽の発生が見られ、実施例1に大きく劣るものとなった。
[Comparative Example 7]
PET having an intrinsic viscosity of 0.80 was used as a single component, melted at a temperature of 295°C using an extruder type extruder, and then flowed into a known single component die having 5 holes at a polymer temperature of 290°C. The yarn extruded from the spinneret is temporarily wound at a spinning speed of 800 m/min, and then passed between a first hot roll heated to 90°C and a second hot roll heated to 130°C by a known drawing device. The film was stretched at a draw ratio of 4.3 times and heat set. The obtained drawn yarn was entangled at an entangling pressure of 0.23 MPa by an entangling nozzle installed between the final roll and the winding machine, and then wound at 800 m/min. The physical properties of the obtained polyester multifilament yarn were as shown in Table 3. The abrasion resistance of the yarn was inferior to that of Example 1 because fluff was easily generated. There was no thread breakage in the weaving of 100 m, and the weaving performance was very good. As for the abrasion resistance of the fabric, fluffing was observed after 500 abrasions, and the abrasion resistance was greatly inferior to that of Example 1.

[実施例11]
芯成分として固有粘度0.80のPET、鞘成分として固有粘度0.50のPETを用いて、公知の直接紡糸延伸装置にて、紡糸・延伸を行った。エクストルーダー型押出機を用いて295℃の温度で溶融後、ポリマー温度290℃で、複合比が芯成分:鞘成分=80:20となるようにポンプ計量を行い、芯鞘型となるような孔数5個の公知の複合口金に流入させた。口金から吐出された糸条は、紡糸速度1,300m/分で引き取り、一旦巻き取ることなく、延伸倍率3.8倍で延伸し、熱セットを行った。得られた延伸糸は、最終ロールと巻取機の間に設置した交絡ノズルにて、交絡圧0.23MPaで交絡を付与した後、5,000m/分で巻き取った。製糸性は、交絡付与部分での糸切れが見られ、実施例1のような2工程法よりも劣る結果となった。得られたポリエステルマルチフィラメントの原糸物性は表3に示す通りであった。延伸後の交絡付与位置での単糸繊度は2.4dtexであり、実施例1と同等であるが、交絡ノズルを通過する時の速度が、5,000m/分と高速であるために、交絡度が2.8個/mと小さくなった。交絡度が実施例1に劣るため、収束性が悪く、100mの製織で糸切れが7回となった。得られた布帛には毛羽はなかったが、フィラメント割れの欠点が見られ、実施例1には若干劣るものとなった。
[Example 11]
Using PET with an intrinsic viscosity of 0.80 as a core component and PET with an intrinsic viscosity of 0.50 as a sheath component, spinning and drawing were performed with a known direct spinning and drawing apparatus. After melting at a temperature of 295°C using an extruder-type extruder, the polymer is pumped at a temperature of 290°C and metered so that the composite ratio is core component:sheath component = 80:20, so as to form a core-sheath type. It was made to flow into a known composite spinneret with 5 holes. The yarn extruded from the spinneret was taken up at a spinning speed of 1,300 m/min, stretched at a draw ratio of 3.8 times without being wound once, and heat-set. The obtained drawn yarn was entangled at an entangling pressure of 0.23 MPa by an entangling nozzle installed between the final roll and the winder, and then wound at 5,000 m/min. Yarn breakage was observed at the entangled portion, and the result was inferior to that of the two-step method as in Example 1. The physical properties of the obtained polyester multifilament yarn were as shown in Table 3. The single yarn fineness at the entangling position after stretching is 2.4 dtex, which is equivalent to Example 1, but the speed when passing through the entangling nozzle is as high as 5,000 m / The frequency became as small as 2.8 pieces/m. Since the degree of entanglement was inferior to that of Example 1, convergence was poor, and yarn breakage occurred 7 times during weaving of 100m. Although the resulting fabric had no fluff, it had the defect of filament cracking and was slightly inferior to that of Example 1.

[比較例8]
交絡付与位置を紡糸の引き取り前とした以外は、実施例11と同様にして、ポリエステルマルチフィラメントを得た。得られたポリエステルマルチフィラメントの原糸物性は表3に示す通りであった。交絡度は0.7個/mとなり、交絡を十分にいれることができなかった。製織では経糸切れが多発し、数m毎に停台が発生した。製織品位はフィラメント割れが多く、スジ状の欠点が多数見られた。
[Comparative Example 8]
A polyester multifilament was obtained in the same manner as in Example 11, except that the entanglement position was set before take-off of the spinning. The physical properties of the obtained polyester multifilament yarn were as shown in Table 3. The degree of entanglement was 0.7 pieces/m, and the entanglement could not be sufficiently included. During weaving, warp breakage occurred frequently, and machine stops occurred every several meters. As for the weaving quality, there were many filament cracks and many streak-like defects were observed.

Figure 0007176413000003
Figure 0007176413000003

Claims (2)

芯成分の高粘度ポリエステルと、鞘成分の低粘度ポリエステルが芯鞘型に複合された単糸を複数収束したポリエステルマルチフィラメントであって、芯成分と鞘成分の固有粘度差が0.20~1.00であり、総繊度4~30dtex、単糸繊度1.0~5.0dtex、破断強度5.0~9.0cN/dtex、破断伸度12~45%、交絡度2.0~15.0個/mであり、フィラメント数が3~15であるポリエステルマルチフィラメント A polyester multifilament in which a plurality of single yarns in which a high-viscosity polyester core component and a low-viscosity polyester sheath component are combined in a core-sheath type are bundled, and the intrinsic viscosity difference between the core component and the sheath component is 0.20 to 1. 00, total fineness 4-30 dtex, single filament fineness 1.0-5.0 dtex, breaking strength 5.0-9.0 cN/dtex, breaking elongation 12-45%, entanglement degree 2.0-15. Polyester multifilament with 0/m and 3 to 15 filaments 芯成分の高粘度ポリエステルの固有粘度が0.70~1.50、鞘成分の低粘度ポリエステルの固有粘度が0.40~0.70である請求項1記載のポリエステルマルチフィラメント The polyester multifilament according to claim 1, wherein the high-viscosity polyester core component has an intrinsic viscosity of 0.70 to 1.50, and the low-viscosity polyester sheath component has an intrinsic viscosity of 0.40 to 0.70.
JP2018566459A 2017-11-28 2018-11-09 High tenacity fine polyester multifilament Active JP7176413B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017227923 2017-11-28
JP2017227923 2017-11-28
PCT/JP2018/041591 WO2019107111A1 (en) 2017-11-28 2018-11-09 High-strength fine-denier polyester multifilament

Publications (2)

Publication Number Publication Date
JPWO2019107111A1 JPWO2019107111A1 (en) 2020-10-01
JP7176413B2 true JP7176413B2 (en) 2022-11-22

Family

ID=66664419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566459A Active JP7176413B2 (en) 2017-11-28 2018-11-09 High tenacity fine polyester multifilament

Country Status (8)

Country Link
US (1) US20200318260A1 (en)
EP (1) EP3719183B1 (en)
JP (1) JP7176413B2 (en)
KR (1) KR102584803B1 (en)
CN (1) CN111344442B (en)
CA (1) CA3083877A1 (en)
TW (1) TWI758566B (en)
WO (1) WO2019107111A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555185B2 (en) 1989-04-21 1996-11-20 帝人株式会社 Polyester fiber for warp of untwisted non-paste fabric
WO2002063080A1 (en) 2001-02-02 2002-08-15 Asahi Kasei Kabushiki Kaisha Complex fiber excellent in post-processability and method of producing the same
WO2003100145A1 (en) 2002-05-27 2003-12-04 Asahi Kasei Fibers Corporation Composite fiber and process for producing the same
JP2009007730A (en) 2007-05-29 2009-01-15 Toray Ind Inc Sheet-like article and production method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693476B2 (en) * 1997-10-22 2005-09-07 株式会社クラレ Entangled yarn suitable for the production of high resilience fabric
JP3778088B2 (en) 2002-01-21 2006-05-24 東レ株式会社 Core-sheath type composite polyester monofilament for screen bag and method for producing the same
CN100390341C (en) * 2004-12-29 2008-05-28 东丽纤维研究所(中国)有限公司 Composite processed filament and processing method thereof
JP2007154343A (en) * 2005-12-02 2007-06-21 Toray Ind Inc Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same
EP2037015B1 (en) * 2006-07-03 2010-08-18 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
JP4992577B2 (en) 2007-06-29 2012-08-08 東レ株式会社 Polyamide multifilament and woven fabric using the same
JP4872865B2 (en) 2007-09-25 2012-02-08 東レ株式会社 Multifilament and high density fabric
JP2009150011A (en) * 2007-12-20 2009-07-09 Teijin Fibers Ltd Polyester multifilament produced by using recycled raw material
JP5487629B2 (en) * 2009-02-03 2014-05-07 東レ株式会社 Polyester monofilament and method for producing the same
JP2012012748A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Ultra fine combined filament yarn and fabric having antistaticity
JP6582433B2 (en) * 2015-02-20 2019-10-02 東洋紡株式会社 Multifilament

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555185B2 (en) 1989-04-21 1996-11-20 帝人株式会社 Polyester fiber for warp of untwisted non-paste fabric
WO2002063080A1 (en) 2001-02-02 2002-08-15 Asahi Kasei Kabushiki Kaisha Complex fiber excellent in post-processability and method of producing the same
WO2003100145A1 (en) 2002-05-27 2003-12-04 Asahi Kasei Fibers Corporation Composite fiber and process for producing the same
JP2009007730A (en) 2007-05-29 2009-01-15 Toray Ind Inc Sheet-like article and production method thereof

Also Published As

Publication number Publication date
US20200318260A1 (en) 2020-10-08
EP3719183A1 (en) 2020-10-07
EP3719183B1 (en) 2024-08-14
KR102584803B1 (en) 2023-10-05
KR20200088288A (en) 2020-07-22
EP3719183A4 (en) 2021-08-11
WO2019107111A1 (en) 2019-06-06
TW201925557A (en) 2019-07-01
CN111344442A (en) 2020-06-26
CN111344442B (en) 2022-07-12
JPWO2019107111A1 (en) 2020-10-01
CA3083877A1 (en) 2019-06-06
TWI758566B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
CN102308033B (en) Polyster monofilament and process for producing polyster monofilament
CN110268109B (en) Heat-bondable core-sheath composite fiber and warp-knitted fabric
JP5045846B2 (en) Polyester monofilament package
JP5141415B2 (en) Polyester crimped multifilament and method for producing the same
WO2016052269A1 (en) Polyester filament package
JP3580796B2 (en) Polytrimethylene terephthalate variant yarn
JP2007308821A (en) Woven fabric for polishing fabric, method for producing the same, and magnetic disk-polishing fabric
JP2009150022A (en) Sheath-core conjugate fiber and fiber fabric thereof
JP5662643B2 (en) Abrasion resistant polyester fiber and method for producing the same
JP7176413B2 (en) High tenacity fine polyester multifilament
JP2019203215A (en) Polyester filament package and manufacturing method
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP7354588B2 (en) polyester multifilament
JP2021161559A (en) Polyester conjugate fiber
JP4830480B2 (en) Polyester woven and knitted fabric for fused net reinforcement
JPS6228436A (en) Base cloth for adhesive tape excellent in tearing property
JP4326456B2 (en) Polyester ultrafine fiber and method for producing the same
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP5065769B2 (en) Woven fabric for abrasive cloth, method for producing the same, and abrasive cloth
JP2009242952A (en) Polyester multifilament, method for producing the same, and base fabric for adhesive layer
JP5882435B2 (en) Abrasion resistant polyester fiber and method for producing the same
CN116490649A (en) Sea-island composite polyester fiber
JP2008291387A (en) Bag fabric using polyester hollow yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R151 Written notification of patent or utility model registration

Ref document number: 7176413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151