WO2016052269A1 - Polyester filament package - Google Patents

Polyester filament package Download PDF

Info

Publication number
WO2016052269A1
WO2016052269A1 PCT/JP2015/076714 JP2015076714W WO2016052269A1 WO 2016052269 A1 WO2016052269 A1 WO 2016052269A1 JP 2015076714 W JP2015076714 W JP 2015076714W WO 2016052269 A1 WO2016052269 A1 WO 2016052269A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
yarn
polyester
dtex
winding
Prior art date
Application number
PCT/JP2015/076714
Other languages
French (fr)
Japanese (ja)
Inventor
西村將生
内山翔一朗
吉宮隆之
佐藤瑛久
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2016052269A1 publication Critical patent/WO2016052269A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the present invention relates to a polyester filament package.
  • the present invention relates to a high-quality polyester filament package that has fineness, high strength, excellent uniformity, excellent suppression of sink marks, etc., and can be suitably used for screens for high-precision printing.
  • mesh fabrics made of natural fibers such as silk and inorganic fibers such as stainless steel have been widely used as screen rivets.
  • synthetic fiber meshes excellent in flexibility, durability, and cost competitiveness have been used favorably.
  • monofilaments made of polyester are widely used because they are suitable for screen use such as excellent dimensional stability.
  • Screen printing is used, for example, for application of electrode paste to a front electrode substrate and a rear electrode substrate constituting a plasma display (hereinafter referred to as PDP), high-precision printing of a design object by computer graphics, electronic circuit printing, and the like.
  • PDP plasma display
  • high-precision printing of a design object by computer graphics, electronic circuit printing, and the like In such applications, high printing accuracy in a wide range is required. Therefore, it is important that the screen ridges used have dimensional stability that can withstand high tension folds, and have a uniform and high mesh number.
  • the screen screen to be used is required to have a high quality with no defects over a wide range of several meters or more.
  • the polyester monofilament used for realizing the above-mentioned required performance has a fineness and high strength.
  • mechanical distortion that is, stress is generated and accumulated in the fiber due to a sudden structural change. This mechanical distortion decreases with time. This is called stress relaxation.
  • stress relaxation When a fiber obtained by high-stretch drawing is wound as a package, this stress relaxation does not progress uniformly throughout the package. A portion where stress relaxation has not progressed appears as a streak-like gloss abnormality. This gloss abnormality is called sink.
  • filters that require a filtration function as the main application other than the screen for monofilaments.
  • a filter for engine oil and a filter that is indispensable for cleaning water are examples.
  • the use in clothing is mentioned as a use in a multifilament. Of course, other uses can also be applied without problems.
  • the sink marks of the package are more likely to occur as the stress relaxation becomes non-uniform, and the degree thereof is stronger. For this reason, it is very important to improve the uniformity of stress relaxation in the longitudinal direction of the fiber, or to reduce the stress relaxation itself to a level where there is no actual harm.
  • Various techniques have been proposed in response to such demands.
  • the patent document relating to the composite monofilament discloses a technique for obtaining a high-quality screen wrinkle with fineness, high strength and high modulus (Patent Documents 1 and 2). These documents disclose controlling the heat-and-heat shrinkage stress difference in the longitudinal direction of the fiber with respect to pirn sinks.
  • Patent Document 3 discloses a technique for obtaining a high-strength, high-modulus polyester by winding with a taper angle on a bobbin by a spindle winding method using a direct spinning drawing method (Patent Document 3).
  • Patent Document 4 discloses a technique in which fiber crystallization is relaxed by multi-stage stretching of a polyester unstretched yarn, the generation of internal fiber strain is controlled, and panic marks are suppressed (Patent Document 4).
  • Patent Document 5 focuses on a polyester monofilament package, defines drum hardness, innermost layer winding width, winding thickness, and outermost layer twill angle, and does not generate excellent unwinding properties, thread drop, tarmi, and thread slippage. A technique for obtaining a package having good foam stability is disclosed (Patent Document 5).
  • polyester tellur filaments that can be suitably used for screens for high-precision printing and for uses other than screens.
  • Patent Document 4 The technique described in Patent Document 4 is based on a so-called two-step method in which each polyester is melt-spun at a temperature equal to or higher than the melting point, wound once at a low speed, and then heated and stretched. And it is the method of winding up in the shape of a pan using the draw twister which is a well-known drawing machine. In this draw twister, the winding tension increases due to the ironing of the traveler, and the degree of relaxation of the residual shrinkage stress of the yarn differs between the package end and the package center. For this reason, it is not possible to avoid panic marks (horizontal sink-like stripes having a gloss difference that appear in the horizontal direction with periodicity).
  • the technique described in Patent Document 5 defines the twill angle and the innermost layer winding width.
  • the problem of the present invention is to solve such conventional problems, fineness, high strength, excellent dimensional stability, and less occurrence of defects such as sink and halation, as well as uses other than screen wrinkles, It is to provide a polyester filament package that is also suitable for high performance screens.
  • the present invention has the following configuration.
  • (1) The peak period of wet heat shrinkage stress in the longitudinal direction of the fiber when the 5% modulus of the yarn wound on the winding tube having a hardness of 200 kgf / 100 mm or more and an outer diameter of 60 mm ⁇ or more is 2.0 cN / dtex or more
  • polyester filament package of the present invention has a high modulus and has excellent dimensional stability when used as a screen wrinkle, and is an excellent wrinkle free from package sink and halation. Needless to say, polyester filaments suitable for high performance screens with particularly demanding performance can be used for other applications such as filters and clothing.
  • the screen cage using the polyester filament package of the present invention is preferably used for applications that require higher mesh and more stringent quality requirements.
  • graphic design such as a compact disc label, high-precision printing such as an electronic circuit board, and the like.
  • polyester of the polyester filament package of the present invention a polyester mainly composed of polyethylene terephthalate (hereinafter referred to as PET) is used.
  • terephthalic acid is the main acid component
  • ethylene glycol is the main glycol component.
  • 90 mol% or more is composed of repeating units of ethylene terephthalate.
  • the PET used in the present invention can contain a copolymer component capable of forming other ester bonds at a ratio of 10 mol% or less.
  • the copolymer component include, as acid components, bifunctional aromatic carboxylic acids such as isophthalic acid, phthalic acid, dibromoterephthalic acid, naphthalenedicarboxylic acid, orthoethoxybenzoic acid, sebacic acid, oxalic acid, and adipic acid.
  • Difunctional aliphatic carboxylic acids such as dimer acid
  • dicarboxylic acids such as cyclohexanedicarboxylic acid
  • examples of the glycol component include ethylene glycol, diethylene glycol, propanediol, butanediol, neopentyl glycol, bisphenol A, and polyoxyalkylene glycols such as cyclohexanedimethanol, polyethylene glycol, and polypropylene glycol.
  • the polyester filament of the present invention may contain titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, and a hindered phenol derivative as an antioxidant. Furthermore, a flame retardant, an antistatic agent, an ultraviolet absorber, a color pigment, and the like can be added to the polyester filament.
  • the polyester filament of the present invention can be a composite fiber or a single fiber.
  • a core-sheath type composite polyester filament formed by combining polyethylene terephthalates having different intrinsic viscosities (hereinafter referred to as IV (Inherent Viscosity)) into a core-sheath type is preferable. This is because fiber properties and weaving properties can be easily achieved.
  • the core-sheath type refers to a fiber cross-sectional shape in which one polyester is completely covered with the other polyester.
  • the polyester on the fiber surface is the sheath component, and the polyester inside the fiber covered with the sheath component is the core component.
  • the irregular cross-section and the core component may be eccentric.
  • the core component and the sheath component are preferably arranged concentrically and have a round cross section for stable spinning and high-order processability.
  • the cross-sectional shape when the polyester filament of the present invention is composed of a single component may be an irregular cross-section such as a triangle, pentagon, octagon, star, flat, ellipse, etc. if necessary.
  • the cross-sectional shape is preferably a round cross-section for stable yarn production and high-order processability.
  • the fiber form of the polyester filament of the present invention is a core-sheath type composite fiber
  • PET having a high IV as a core component.
  • the IV of the core component PET is preferably 0.70 or more, more preferably 0.90 or more from the viewpoint of increasing the strength.
  • it is preferably 1.40 or less, more preferably 1.30 or less, from the viewpoint of the fluidity of the molten polymer in melt spinning.
  • the IV of the polyester used for the sheath component is preferably lower than the IV of the core component polyester.
  • the difference between the IV of the core component polyester and the IV of the sheath component polyester is preferably 0.20 to 1.00.
  • the IV of the low-viscosity polyester as the sheath component is preferably set to 0.40 or more, so that stable yarn forming properties can be obtained.
  • the more preferable IV of the low-viscosity polyester as the sheath component is 0.50 or more.
  • the IV of the low-viscosity polyester is preferably 0.70 or less.
  • the difference in IV between the polyester used for the sheath component and the core component polyester is preferably 0.20 or more.
  • the polyester of the sheath component that is, the degree of orientation and crystallinity of the polyester filament surface can be suppressed, and better scum resistance can be obtained. Since the shear stress on the inner wall surface of the discharge port of the melt spinning is concentrated on the sheath component, the shear stress applied to the core component is reduced. As a result, the core component has a low degree of molecular chain orientation and is spun in a uniform state, so that the strength of the finally obtained polyester filament is improved. Further, the difference in IV of the polyester is preferably 0.30 to 0.70.
  • the inorganic particles added to the core component PET of the polyester filament of the present invention is less than 0.5% by mass based on the total amount of the core component.
  • PET as a sheath component
  • the IV is preferably 0.7 or more, more preferably 0.9 or more, from the viewpoint of increasing the strength.
  • IV is preferably 1.4 or less, more preferably 1.3 or less.
  • the single fiber has lower strength and lower modulus than the composite fiber. Therefore, quality design that considers the use of the final product is required.
  • the core-sheath composite ratio when the polyester filament of the present invention is a composite fiber is preferably 70:30 to 90:10, more preferably 75:25 to 85:15 in terms of mass percentage. This is because, by setting the ratio of the core component to 70% or more, the necessary strength can be achieved even with fineness. In addition, by setting the ratio of the sheath component to 10% or more, the sheath component bears the shear stress on the inner wall surface of the die discharge hole of melt spinning, so that the shear force applied to the core component is reduced. As a result, the core component has a low degree of molecular chain orientation and is spun in a uniform state, so that the strength of the finally obtained polyester filament is improved.
  • the single yarn fineness of the polyester filament of the present invention is preferably 3 to 20 dtex.
  • the mesh lattice spacing per line is approximately 63 ⁇ m. Therefore, in order to maintain the opening per lattice necessary for printing, the single yarn fineness of the filament used is preferably 13 dtex or less, more preferably 10 dtex or less.
  • the polyester filament preferably has a single yarn fineness of at least 3 dtex or more, more preferably 4 dtex or more.
  • the breaking strength of the polyester filament of the present invention requires a high tension in proportion to the number of meshes when it is used for screen kneading. Therefore, the breaking strength of the polyester filament is preferably 5.0 cN / dtex or more. More preferably, it is 6.0 cN / dtex or more, More preferably, it is 7.5 cN / dtex or more.
  • Polyester filaments desirably have high strength, but a comprehensive balance with other physical properties and yarn-making properties is important.
  • a practical upper limit of the breaking strength of the polyester filament is approximately 9.0 cN / dtex. If it is this range, neither a physical-property value nor a spinning property will fall, and it is preferable.
  • the strength at 5% elongation of the polyester filament (hereinafter referred to as 5% modulus) is also an important index. .
  • the 5% modulus of the polyester filament of the present invention is 2.0 cN / dtex or more. In this case, the plate separation at the time of screen printing is good. More preferably, it is 3.0 cN / dtex or more.
  • the 5% modulus is a value linked to the breaking strength of the material to some extent. If the breaking strength of the material is high, the 5% modulus tends to be high, which is one of the physical property values showing a positive correlation. It is difficult to set the 5% modulus alone, and the overall balance is important as is the breaking strength.
  • the strength at 5% elongation of the polyester filament is preferably 7.0 cN / dtex or less.
  • the target filter and clothing can be obtained at 2.0 cN / dtex or more.
  • the polyester filament of the present invention preferably has a stress difference of 3.0 cN or less during wet heat shrinkage in the longitudinal direction of the fiber.
  • the difference in wet heat shrinkage stress in the longitudinal direction of the fiber is a device provided with a tensiometer at a site that applies wet heat between two pairs of rollers that travel at a speed of 10 m / min. The value obtained by dividing the difference between the maximum value and minimum value of the tension when the yarn length is continuously monitored by the single yarn fineness of the filament.
  • stress is generated inside the fiber due to an abrupt structural change when drawn at a high draw ratio.
  • the stress relaxation does not progress uniformly in the package, and the difference in the stress relaxation causes sink marks.
  • the state of stress relaxation can be confirmed by measuring the stress generated when the fiber is subjected to wet heat shrinkage.
  • the fact that the stress during wet heat shrinkage is different in the longitudinal direction of the fiber indicates that stress relaxation has progressed in a certain portion and stress relaxation has not progressed in a certain portion.
  • the occurrence of sink marks can be suppressed by setting the stress difference at the time of wet heat shrinkage in the fiber longitudinal direction to 3.0 cN / dtex or less.
  • this stress difference is 2.0 cN / dtex or less because a higher sink suppression effect can be obtained.
  • the target filter and clothing can be obtained at 3.0 cN / dtex or less.
  • the polyester filament package of the present invention has a peak period of wet heat shrinkage stress in the fiber longitudinal direction of 150 m or less.
  • the peak of the stress appears at the end surface portion that is the folded portion of the package, and corresponds to the yarn pitch between the end surfaces. At the same time, this value indicates the period of sink marks. If this period is 150 m or less, it will not be recognized as a defect of sink marks when the screen is made after weaving. Therefore, it is preferable that the peak period of the wet heat shrinkage stress in the fiber longitudinal direction of the filament package is 150 m or less because the sink defect is reduced and the actual harm is eliminated.
  • the sink mark of the package becomes a screen jar, it is not recognized as a defect and does not cause any actual damage, depending on the number of meshes of the screen jar.
  • the period is shorter as the mesh is higher, and the period is longer as the mesh is lower.
  • sink defects become obvious, and the screen flaw becomes defective.
  • the peak period is 100 m or less, sink marks are preferably reduced, and if the peak period is 50 m or less, sink defects are further reduced.
  • Polyester filaments require higher strength and higher modulus than ordinary fibers when used for screens. For this reason, the degree of orientation of the PET amorphous part is large, and stress relaxation is likely to occur after winding as a package. Due to this stress relaxation, the yarn contracts and tightening occurs toward the center of the package. This winding tightening does not progress uniformly in the whole package, and differs in the straight part and end face part of the package, that is, in the longitudinal direction of the yarn. When stress relaxation, that is, a difference in shrinkage stress occurs in the longitudinal direction of the yarn, it becomes a sink-like defect when it is made into a screen wrinkle, and becomes apparent.
  • the hardness of the wound tube of the present invention is 200 kgf / 100 mm or more. It is preferable that the winding tube has a hardness of 200 kgf / 100 mm or more because the difference in shrinkage stress between the innermost layers is reduced and sink marks are reduced. More preferably, it is 250 kgf / 100 mm or more, and most preferably 500 kgf / 100 mm or more.
  • the outer diameter of the wound tube of the present invention is 60 mm ⁇ or more.
  • the outer diameter of the winding tube is 60 mm ⁇ or more, a sufficient contact area is maintained between the spindle and the winding tube, and the adhesion of the winding tube is improved. As a result, there is no slip between the spindle and the winding tube, the traverse trajectory is correctly regulated, the occurrence of thread drop is small, and the package foam is not defective, which is preferable.
  • the upper limit of the outer diameter of the wound tube is preferably 160 mm ⁇ or less, and in this case, the hardness of the wound tube can be maintained at 200 kgf / 100 mm or more.
  • the manufacturing method of the polyester filament package of the present invention includes the following three steps.
  • a polyester polymer such as PET is melted, discharged from the die, cooled, and then drawn by a roller at a constant speed, a drawing step in which the drawn undrawn yarn is drawn and heat-treated, and a drawn yarn is wound into a package. It is a winding process to form.
  • a known melt spinning method may be employed in the spinning process. That is, the polyester melted by the extruder is supplied to the spinneret using a metering pump so as to obtain a desired single yarn fineness, and the yarn is discharged.
  • the melt spinning temperature is preferably 280 to 310 ° C. from the viewpoint of sufficiently melting the PET and suppressing thermal decomposition due to excessive heat application.
  • the core component (component A) and the sheath component (component B) are separately melted and measured using two extruders, and both components are formed using a known core-sheath composite die. It is made to discharge after compounding.
  • a heating cylinder may be used at a site until the discharged yarn is cooled.
  • the atmospheric temperature in the heating cylinder is preferably 200 to 330 ° C. If the temperature inside the heating cylinder is 200 ° C. or higher, the effect of the heating cylinder is sufficiently obtained. If the temperature inside the heating cylinder is 330 ° C. or less, unevenness in the diameter of the yarn in the longitudinal direction is suppressed.
  • cooling by chimney air for example, a method of spraying from a direction substantially perpendicular to the running direction of the yarn and from one direction, or a method of blowing from a direction substantially perpendicular to the running of the yarn and from the entire circumference can be used.
  • the composition of the spinning oil is preferably an oil containing 30% by mass or more of a fatty acid ester type smoothing agent from the viewpoint of improving smoothness and suppressing thread fluff during weaving. Further, the addition of about 0.1 to 5% by mass of polyether-modified silicone in the oil can further improve the smoothness.
  • the oil agent is mixed and emulsified with water, and applied to the yarn with an oiling guide or oiling roller. At this time, it is preferable that the amount of the oil agent attached to the drawn yarn is 0.1 to 2.0% by mass because the smoothness is good and the yarn dropping and breaking during the formation of the package are suppressed.
  • the lubricated yarn is preferably taken up by a take-up roller with a surface speed of 300 to 3000 m / min from the viewpoints of production efficiency, winding tension fluctuation suppressing effect, and orientation uniformity of the obtained yarn. It is manufactured by the direct spinning and drawing method (DSD method) which is continuously drawn and wound without being wound once.
  • DSD method direct spinning and drawing method
  • a hot roller that heats the yarn above the glass transition point, and a method that sequentially draws and stretches the hot roller that has a higher surface speed than the hot roller and that heats above the crystallization temperature.
  • a hot roller that heats the yarn above the glass transition point
  • a method that sequentially draws and stretches the hot roller that has a higher surface speed than the hot roller and that heats above the crystallization temperature.
  • the surface temperature of the final hot roller is preferably 120 ° C. or higher, more preferably 200 ° C. or higher, and the draw ratio is preferably 3 to 6 times.
  • the stretching uniformity is improved.
  • the first stage draw ratio is preferably 0.5 to 0.9 times the total draw ratio.
  • the speed difference between the final hot roller and the non-heated roller may be adjusted according to desired characteristics.
  • the speed of the non-heated roller with respect to the speed of the final hot roller is preferably -7 to + 2%.
  • the drawn filament is wound by the following winding method to obtain a desired package.
  • a winding method described in JP-A-2002-284447 can be cited.
  • the yarn winding machine reciprocates the yarn relatively in the bobbin axial direction by a traverse guide while continuously winding the yarn around a bobbin attached to the spindle.
  • the spindle side is left stationary and the yarn is reciprocated and traversed via a traverse guide (Claim 4), or the yarn supply position of the yarn is fixed and the spindle side is reciprocated and traversed ( Claim 5) is disclosed in JP-A No. 2002-284447.
  • the reciprocating width of the traverse is gradually decreased as the winding is increased so that a desired taper angle is obtained from the beginning of winding to the end of winding, thereby forming a package on the bobbin on the bobbin (paragraph [0015]).
  • the winding tension when winding the polyester filament is preferably 0.1 cN / dtex or more and 0.5 cN / dtex or less from the viewpoint of reducing the stress difference during wet heat shrinkage in the fiber longitudinal direction. .
  • the winding tension is more preferably 0.4 cN / dtex or less, and still more preferably 0.3 cN / dtex or less.
  • the wound form of the package is stable and the change in physical properties given to the yarn is small, which is preferable. More preferably, it is 0.3 cN / dtex or less, More preferably, it is 0.2 cN / dtex or less.
  • the pressure at which the touch roller presses the package surface during winding is preferably 15 gf / cm or less. If the surface pressure is 15 gf / cm or less, it is preferable that the yarn layer suffers little damage and does not promote the occurrence of yarn drop at the end face. More preferably, the surface pressure is 10 gf / cm or less.
  • the innermost layer winding width of the package is preferably 100 to 200 mm.
  • the package preferably has a traverse angle ⁇ t expressed by the following formula in a range of 0.1 to 1.5 °.
  • the twill angle is the winding angle of the yarn.
  • a package angle of 0.1 ° or more is preferable because the pitch of the package end faces, that is, the end face period in the fiber longitudinal direction of the yarn can be shortened.
  • the end face period By setting the end face period to 150 m or less, it is preferable to finely disperse the end face on the raw machine to reduce sink marks and improve the quality of the raw machine.
  • the twill angle is 1.5 ° or less, because the gradient of the unwinding tension does not increase and the package has a good unwinding property. More preferably, it is 0.3 to 1.3 °, and further preferably 0.5 to 1.0 °.
  • ⁇ t tan ⁇ 1 ⁇ W f / ((L / 2) 2 ⁇ W f 2 ) 1/2 ⁇ ⁇ t : Twill angle (°)
  • W f Outermost layer package winding width (m)
  • L Yarn length per traverse (m)
  • the material of the winding tube used for the package is preferably “paper” or “paper + aluminum” from the viewpoint of handling and cost, but the material is not particularly limited as long as the hardness of the winding tube can be maintained.
  • the end face period of the package becomes a sink mark on the living machine, and the conspicuous defect is manifested when the period becomes 5 mm or more. Therefore, it is preferable if this period can be shortened because it does not cause a defect on the living machine.
  • the period of 5 mm or more varies depending on the weaving density, but it is preferable that the end face pitch of the raw yarn is within 150 m because the weaving density of # 200 to 500 can be covered.
  • Intrinsic viscosity (IV) 0.8 g of a sample polymer was dissolved in 10 mL of ortho-chlorophenol having a purity of 98% or more at a temperature of 25 ° C., and a relative viscosity ⁇ r was determined by the following equation (1) using an Ostwald viscometer at a temperature of 25 ° C. Using this relative viscosity ⁇ r, the intrinsic viscosity (IV) was calculated by the following formula (2).
  • Tg Glass transition point A 10 mg powder of the polymer used was collected, and a peak associated with the glass transition developed in the temperature rising process while the temperature was raised at 16 ° C./min using a differential scanning calorimeter (Perkin Elmer: DSC-4 type) The glass transition temperature Tg (° C.) was determined by processing with a data processing system manufactured by PerkinElmer.
  • Winding tube hardness and outer diameter The winding tube hardness is a value measured by the following method. An annular test piece having a length of 50 mm or more is cut out from the sample winding tube, left to stand at 23 ⁇ 2 ° C. for 60 minutes or more, and then sandwiched between two flat plates, and “10 ⁇ 2 mm / min. The maximum strength when compressed to 1/2 of the outer diameter at a speed of “. The test temperature is 23 ⁇ 2 ° C. On the other hand, arbitrary 5 points
  • Example 1 PET containing 0.3% by mass of titanium oxide of IV 1.10 (Tg 80 ° C.) polymerized and chipped by a conventional method was melted at 295 ° C. by an extruder. The molten PET was passed through a pipe kept at 290 ° C. and then discharged from a known spinneret 1. The spinning process and the drawing process were based on the DSD method, and the apparatus shown in FIG. 1 was used.
  • the discharge yarn is positively kept warm by a heating body so that the ambient temperature is 290 ⁇ 10 ° C. for 100 mm downward from the die surface, and then air at 25 ° C. is supplied at 10 m / min by the yarn cooling air device 3.
  • the yarn was sprayed from one direction at the wind speed to cool and solidify.
  • the yarn after supplying an oil containing 40% by mass of a fatty acid ester-based smoothing agent and 1% by mass of a polyether-modified silicone is taken up by the take-up roller 5 as it is with a surface speed of 1300 m / min.
  • a first hot roller 7 having a surface speed of 1310 m / min and a surface temperature of 90 ° C.
  • a second hot roller 8 having a surface speed of 4000 m / min and a surface temperature of 90 ° C.
  • a third hot roller 9 having a surface speed of 4980 m / min and a surface temperature of 130 ° C.
  • the obtained polyester monofilament package had a single yarn fineness of 6 dtex, an end portion of the package having a taper shape, a winding width of the innermost layer of 200 mm, a taper angle of 26 °, and a winding amount of 1.0 kg. .
  • the yarn-making property was good without yarn breakage.
  • the first stage draw ratio was 3.1 times and the total draw ratio was 3.8 times.
  • the monofilament obtained had a fineness of 6 dtex, a breaking strength of 5.5 cN / dtex, and an oil adhesion amount of 0.3 mass. %Met.
  • the wet heat shrinkage stress difference between the straight part and the end face of the package is 1.1 cN / dtex, the peak period is 15 m, and this value is It coincided with the cycle of the package end face.
  • Example 2 PET of IV1.10 (Tg80 ° C.) polymerized and chipped by a conventional method was used as a core component, and PET containing IV0.50 (Tg78 ° C.) containing 0.3% by mass of titanium oxide was used as a sheath component.
  • the spinning process and the drawing process were based on the DSD method, and the apparatus shown in FIG. 1 was used.
  • the core component and the sheath component were each melted at 295 ° C. by individual extruders.
  • the melted PET is passed through a pipe kept at 290 ° C., and then discharged and measured from a known core-sheath type composite spinneret so that the core: sheath mass ratio is 80:20 and the fineness after stretching is 10 dtex.
  • the sheath type composite yarn was discharged.
  • the discharge yarn is positively kept warm by a heating body so that the ambient temperature is 290 ⁇ 10 ° C. for 100 mm downward from the base surface, and then air at 25 ° C. is blown at a wind speed of 10 m / min with a yarn cooling air device.
  • the yarn was sprayed from one direction to cool and solidify.
  • the core-sheath composite monofilament package was wound up according to Example 1 except that the first R speed was finely adjusted to 1210 m / min.
  • the first stage draw ratio was 3.3 times, the total draw ratio was 4.1 times, the fineness of the obtained core-sheath composite monofilament was 10 dtex, the breaking strength was 6.3 cN / dtex, and the oil adhesion amount was 0.3. 3%.
  • the wet heat shrinkage stress of the collected polyester monofilament package innermost layer in the longitudinal direction of the yarn was measured. As a result, the difference in shrinkage stress between the straight portion and the end face of the package was 1.2 cN / dtex, and the peak period was 14 m. This value was consistent with the period of the package end face.
  • Example 3 A polyester multifilament package was basically wound up in the same manner as in Example 1 except that the monofilament of Example 1 was an 8-filament (F) multifilament and the fineness was changed from 6T to 20T.
  • the total draw ratio at this time was 3.8 times, the fineness of the obtained multifilament was 20 dtex, the breaking strength was 5.5 cN / dtex, and the oil adhesion amount was 0.3% by mass.
  • the difference in shrinkage stress between the straight part and the end face of the package was 1.1 cN / dtex, and the peak period was 15 m. It coincided with the period of the end face.
  • Example 4 A polyester multifilament package was basically wound up according to Example 2 except that the core-sheath composite monofilament of Example 2 was a multifilament of 8 filaments (F) and the fineness was changed from 6 dtex to 20 dtex. The total draw ratio at this time was 4.1 times, the fineness of the obtained multifilament was 20 dtex, the breaking strength was 6.3 cN / dtex, and the oil adhesion amount was 0.3 mass%.
  • F 8 filaments
  • Example 5 A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 620 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks were not recognized in the weaving process, and it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 6 A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 300 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving of the screen basket, it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 7 A polyester monofilament package was obtained in the same manner as in Example 1 except that a wound tube having a wound tube hardness of 200 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 1 A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 180 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks became apparent and the quality of the fabric was rejected. Detailed results are shown in Table 1.
  • Example 8 A polyester monofilament package was obtained in the same manner as in Example 1 except that the spindle was changed and a wound tube having an outer diameter of 60 mm ⁇ was used. Since the outer diameter of the wound tube was 60 mm ⁇ , a sufficient contact area was maintained between the spindle and the wound tube, the adhesion was good, and no slip occurred between the spindle and the wound tube, and the traverse locus was properly regulated, and there was little occurrence of thread dropping, and a package with good foam was obtained. When the obtained polyester monofilament package was evaluated for weaving of the screen basket, it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 2 A polyester monofilament package was obtained in the same manner as in Example 1 except that the outer diameter of the wound tube was reduced to 55 mm ⁇ . The gripping force between the spindle and the winding tube was weak, and the traverse was out of the normal trajectory. Since the yarn breakage also occurred, the evaluation of the subsequent samples was canceled. Detailed results are shown in Table 1.
  • Example 9 Except for adjusting the speed difference between the non-heated rollers 10 and 11 to -5% with respect to the third hot roller 9 so that the 5% modulus and 10% modulus are 2.6 cN / dtex and 3.5 cN / dtex, respectively.
  • a polyester monofilament package was obtained in the same manner as in Example 1. There was no particular problem with the yarn-making property, and although the tension of the screen ridge was slightly low, the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 3 As in Example 9, the speed difference of the non-heated roller is forced to ⁇ 10% with respect to the third hot roller 9 so that the 5% modulus and 10% modulus are 1.8 cN / dtex and 2.8 cN / dtex, respectively. Brought down. When the obtained sample was used for a screen basket, the tension after tension during the production of the screen basket was insufficient, and the fabric quality was not acceptable. Detailed results are shown in Table 1.
  • Example 10 A polyester monofilament package was obtained in the same manner as in Example 1 except that the single yarn fineness was changed to 3 dtex. Compared with Example 1, thread breakage tended to increase. In addition, as a result of the weaving evaluation, weft barely maintained the weft transportability and the fabric quality was acceptable. Detailed results are shown in Table 1.
  • Example 11 A polyester monofilament package was obtained in the same manner as in Example 2 except that the breaking strength was changed to 9 cN / dtex. Although the yarn breakage tended to increase as compared with Example 1 due to stretching at a high magnification, it was within the acceptable level. Evaluation of weaving of screen cocoon When weaving evaluation of screen cocoon was conducted, it was confirmed that the quality of the fabric was acceptable. Detailed results are shown in Table 2.
  • Example 12 A winding test of the polyester monofilament package was performed in the same manner as in Example 2 except that the conditions were changed so that the breaking strength was 10 cN / dtex. Although the yarn breakage was somewhat frequent, the fabric quality was confirmed to be acceptable. Detailed results are shown in Table 2.
  • Example 13 A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension was changed to 0.5 cN / dtex. When weaving evaluation of the screen koji was performed, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the quality of the fabric was acceptable. Detailed results are shown in Table 2.
  • Example 14 A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension in Example 13 was further increased to 0.6 cN / dtex. Compared to Example 13, weaving steps and sink marks became more prominent, but the fabric quality was acceptable. Detailed results are shown in Table 2.
  • Example 15 A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension variation was changed to 0.4 cN / dtex.
  • weaving evaluation of the screen koji was performed, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  • Example 16 A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension fluctuation in Example 15 was further increased and changed to 0.5 cN / dtex. Compared to Example 15, weaving steps and sink marks became more prominent, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  • Example 17 A polyester monofilament package was obtained in the same manner as in Example 1 except that the surface pressure was changed to 15 gf / cm. Although slight thread dropping occurred, it was at a level that could be unraveled. When weaving evaluation of the screen wrinkles was continued, weaving steps and sink marks were slightly noticeable compared to Example 1, but the fabric quality was acceptable. It was. Detailed results are shown in Table 2.
  • Example 18 A polyester monofilament package was obtained in the same manner as in Example 1 except that the surface pressure in Example 17 was further increased to 20 gf / cm. Although thread dropping, weaving steps, and sink marks became more prominent than Example 17, the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  • Example 19 A polyester monofilament package was obtained in the same manner as in Example 1 except that the wet heat shrinkage stress difference was changed to 3.0 cN / dtex. When weaving evaluation of the screen koji was performed, the difference in wet heat shrinkage stress was 3.0 cN / dtex, so that sink marks and weaving steps were generated, but it was barely acceptable. Detailed results are shown in Table 2.
  • Example 20 A polyester monofilament package was obtained in the same manner as in Example 1 except that the wet heat shrinkage stress difference was changed to 4.0 cN / dtex. When weaving evaluation and printing evaluation were conducted on the screen, slight sinking was noticeable, but it was barely acceptable. Detailed results are shown in Table 2.
  • Example 21 A polyester monofilament package was obtained in the same manner as in Example 1 except that the twill angle of the package was changed and the peak period of wet heat shrinkage stress was increased to 60 m. When weaving evaluation of the screen wrinkle was performed, the peak period of the wet heat shrinkage stress was 60 m, so the defect of sink marks was acceptable. Detailed results are shown in Table 2.
  • Example 22 A polyester monofilament package was obtained in the same manner as in Example 1 except that the twill angle of the package was changed and the peak period of wet heat shrinkage stress was increased to 150 m. When weaving evaluation of the screen koji was performed, the peak period of the wet heat shrinkage stress was 150 m, so the defect of sink marks was acceptable. Detailed results are shown in Table 2.
  • Example 4 A polyester monofilament package was obtained in the same manner as in Example 22 except that the peak period of the wet heat shrinkage stress was increased to 170 m. When weaving evaluation of the screen wrinkle was performed, the peak period of wet heat shrinkage stress was as long as 170 m, sink marks became apparent, and the quality of the fabric was rejected. Detailed results are shown in Table 2.
  • Example 23 A polyester monofilament package was obtained according to Example 1 except that the innermost layer winding width was changed to 220 mm. When the yarn from the package was unwound, the unwinding tension varied greatly between the front and back of the package, and the driving tension during weaving varied, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  • the fiber surface and the internal fiber structure are excellent in control and uniformity, and high-quality that does not cause quality problems such as sink marks and halation.
  • a fine filament high-strength filament can be obtained.
  • Such a filament can be suitably used for filters and clothing, and has very high industrial utility value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention provides a polyester filament package which has few defects such as sink marks and has a high fineness, high strength, and excellent dimensional stability. This polyester filament package is a package obtained by winding filaments of a polyester comprising a polyene terephthalate as the main constituent component. In the polyester filament package, the filaments wound on a mandrel having a hardness of 200 kgf/100 mm or greater and an outer diameter of 60 mmφ or larger have a 5% modulus of 2.0 cN/dtex or higher, and the filaments, in an examination for wet-heat shrinkage stress in the longitudinal direction, have a peak cycle of 150 m or less.

Description

ポリエステルフィラメントパッケージPolyester filament package
 本発明は、ポリエステルフィラメントパッケージに関するものである。 The present invention relates to a polyester filament package.
 さらに詳しくは、細繊度で高強力、均一性に優れ、ヒケなどの抑制効果に優れ、高精密印刷向けスクリーン紗用にも好適に用いることが可能な高品質なポリエステルフィラメントパッケージに関するものである。 More specifically, the present invention relates to a high-quality polyester filament package that has fineness, high strength, excellent uniformity, excellent suppression of sink marks, etc., and can be suitably used for screens for high-precision printing.
 従来、スクリーン紗としては、シルクなどの天然繊維やステンレスなどの無機繊維からなるメッシュ織物が広く使用されてきた。近年は、柔軟性や耐久性、コスト競争力に優れた合繊メッシュが好んで使用されている。中でもポリエステルからなるモノフィラメントは寸法安定性に優れるなどスクリーン紗用途に好適であるため広く利用されている。 Conventionally, mesh fabrics made of natural fibers such as silk and inorganic fibers such as stainless steel have been widely used as screen rivets. In recent years, synthetic fiber meshes excellent in flexibility, durability, and cost competitiveness have been used favorably. Among them, monofilaments made of polyester are widely used because they are suitable for screen use such as excellent dimensional stability.
 スクリーン印刷は、例えばプラズマディスプレイ(以下、PDPと称する)を構成する前面電極基板、背面電極基板への電極ペースト塗布やコンピュータグラフィックによるデザイン物の高精密印刷や、電子回路印刷などに用いられる。こうした用途では、広い範囲での高い印刷精度が要求される。従って、使用するスクリーン紗は、高張力の紗張りに耐えうる寸法安定性を持ち、均一かつ高いメッシュ数であることが重要である。さらに、PDPの大画面化などに伴い、使用するスクリーン紗も数m以上の広い範囲にかけて欠点がない、高品位のものであることが要求される。 Screen printing is used, for example, for application of electrode paste to a front electrode substrate and a rear electrode substrate constituting a plasma display (hereinafter referred to as PDP), high-precision printing of a design object by computer graphics, electronic circuit printing, and the like. In such applications, high printing accuracy in a wide range is required. Therefore, it is important that the screen ridges used have dimensional stability that can withstand high tension folds, and have a uniform and high mesh number. Furthermore, with the increase in the screen size of PDPs and the like, the screen screen to be used is required to have a high quality with no defects over a wide range of several meters or more.
 上述の要求性能を実現するために使用するポリエステルモノフィラメントは、細繊度かつ高強度であることが不可欠である。ポリエステル繊維を高強度、高モジュラス化するためには、原糸の製造工程において高倍率で延伸を行い、高配向、高結晶化する必要がある。
しかし、高倍率延伸を実施すると、急激な構造変化により、繊維内部に力学的な歪み、すなわち応力が発生し蓄積される。この力学的な歪みは時間とともに減少していく。これを応力緩和という。高倍率延伸で得られた繊維をパッケージとして巻き取った際には、この応力緩和はパッケージ全体に均一に進まない。そして、応力緩和の進んでいない部分は筋状の光沢異常となって現れてくる。この光沢異常をヒケと称している。
It is essential that the polyester monofilament used for realizing the above-mentioned required performance has a fineness and high strength. In order to increase the strength and modulus of the polyester fiber, it is necessary to draw the polyester fiber at a high magnification in the production process of the raw yarn to achieve high orientation and high crystallization.
However, when high-strength stretching is performed, mechanical distortion, that is, stress is generated and accumulated in the fiber due to a sudden structural change. This mechanical distortion decreases with time. This is called stress relaxation. When a fiber obtained by high-stretch drawing is wound as a package, this stress relaxation does not progress uniformly throughout the package. A portion where stress relaxation has not progressed appears as a streak-like gloss abnormality. This gloss abnormality is called sink.
 一方、モノフィラメントにおけるスクリーン紗以外の主な用途としては、濾過機能を必要とするフィルターがある。例えばエンジンオイルのフィルター、水の清浄に欠かせないフィルターが挙げられる。また、マルチフィラメントにおける用途としては、衣料用途が挙げられる。もちろん他の用途も問題なく適用が可能である。 On the other hand, there are filters that require a filtration function as the main application other than the screen for monofilaments. For example, a filter for engine oil and a filter that is indispensable for cleaning water. Moreover, the use in clothing is mentioned as a use in a multifilament. Of course, other uses can also be applied without problems.
 現在、スクリーン紗は、製織後、乳剤を塗布して、それを感光、硬化させることにより、電子回路を写し取るという工程を経て印刷用に使用される。このため、乳剤を感光、硬化させる際に、照射光のハレーションが発生すると、印刷精度が低下する。印刷精度の低下を防止するため、製織後淡色系染料にて染色することでハレーションの発生を軽減させている。しかし、前述のヒケの部分は染色後においても筋状の異常部分として残存する。そのため、ヒケの部分はスクリーン紗の品位を低下させ、正常部分との光沢差が発生させ、乳剤感光時に感光斑などを発生させる原因となる。その結果、印刷精度が低下し、ハイメッシュ化による高精度印刷には適さない低品位のスクリーン紗となる。 Currently, screen weaves are used for printing after weaving, applying an emulsion, exposing and curing the emulsion, and copying the electronic circuit. For this reason, when the emulsion sensitizes and hardens, if the halation of the irradiation light occurs, the printing accuracy decreases. In order to prevent a decrease in printing accuracy, the occurrence of halation is reduced by dyeing with a light-colored dye after weaving. However, the above-mentioned sink part remains as a streaky abnormal part even after staining. For this reason, the sunken portion deteriorates the quality of the screen wrinkles, causes a difference in gloss from the normal portion, and causes a photosensitive spot or the like when the emulsion is exposed. As a result, the printing accuracy is lowered, resulting in a low-quality screen wrinkle that is not suitable for high-precision printing by high meshing.
 一般に、高精密なスクリーン印刷になるほど使用するスクリーン紗のメッシュ数が増加する。そのため、スクリーン紗には細繊度、高強度のモノフィラメントを使用しなければならない。特に#400以上のハイメッシュスクリーン紗では、ヒケなどによる欠点がないことに加え、使用するすべての繊維の繊度や強度、さらには繊維の構造が均一にそろっていることが重要となる。なぜなら、印刷精度の高度化に伴い、紗張り張力も上がるため、スクリーン紗を形成するすべての繊維の物性を一定にする必要が生じるからである。そして、すべての繊維の物性を一定にすることにより、スクリーン紗の開口が均一になり、初めて高精密印刷が可能になる。 Generally speaking, the higher the precision of screen printing, the greater the number of screen meshes used. For this reason, monofilaments with fineness and high strength must be used for the screen. In particular, in a # 400 or higher high mesh screen wrinkle, it is important that the fineness and strength of all the fibers used, as well as the structure of the fibers are uniform, in addition to the absence of defects due to sink marks. This is because, as the printing accuracy increases, the tension of the tension increases, so that it is necessary to make the physical properties of all the fibers forming the screen defects constant. And by making the physical properties of all the fibers constant, the openings of the screen are made uniform and high-precision printing is possible for the first time.
 そしてパッケージのヒケは応力緩和が不均一であるほど発生しやすく、その程度も強いことが知られている。このため、繊維長手方向の応力緩和の均一性の向上、もしくは応力緩和そのものを実害のないレベルまで軽減させることが、非常に重要となるのである。
かかる要求に対して従来さまざまな技術が提案されている。例えば、複合モノフィラメントに関する特許文献には、細繊度・高強度・高モジュラスで高品位のスクリーン紗を得る技術が開示されている(特許文献1、2)。これらの文献には、パーンヒケに関して、繊維長手方向の湿熱収縮応力差を制御することが開示されている。特許文献3には、直接紡糸延伸法によるスピンドル巻き上げ方式で、ボビン上にテーパー角を付けて巻き上げ、高強度、高モジュラスのポリエステルを得る技術が開示されている(特許文献3)。特許文献4には、ポリエステル未延伸糸を多段延伸により繊維結晶化を緩和して、繊維内部歪の発生をコントロールし、パーンヒケを抑制する技術が開示されている(特許文献4)。特許文献5には、ポリエステルモノフィラメントのパッケージに着目し、ドラム硬度、最内層巻幅、巻厚、最外層の綾角を規定し、優れた解舒性、糸落ち、タルミ、糸滑りが発生しないフォームの安定性が良好なパッケージを得る技術が開示されている(特許文献5)。
It is known that the sink marks of the package are more likely to occur as the stress relaxation becomes non-uniform, and the degree thereof is stronger. For this reason, it is very important to improve the uniformity of stress relaxation in the longitudinal direction of the fiber, or to reduce the stress relaxation itself to a level where there is no actual harm.
Various techniques have been proposed in response to such demands. For example, the patent document relating to the composite monofilament discloses a technique for obtaining a high-quality screen wrinkle with fineness, high strength and high modulus (Patent Documents 1 and 2). These documents disclose controlling the heat-and-heat shrinkage stress difference in the longitudinal direction of the fiber with respect to pirn sinks. Patent Document 3 discloses a technique for obtaining a high-strength, high-modulus polyester by winding with a taper angle on a bobbin by a spindle winding method using a direct spinning drawing method (Patent Document 3). Patent Document 4 discloses a technique in which fiber crystallization is relaxed by multi-stage stretching of a polyester unstretched yarn, the generation of internal fiber strain is controlled, and panic marks are suppressed (Patent Document 4). Patent Document 5 focuses on a polyester monofilament package, defines drum hardness, innermost layer winding width, winding thickness, and outermost layer twill angle, and does not generate excellent unwinding properties, thread drop, tarmi, and thread slippage. A technique for obtaining a package having good foam stability is disclosed (Patent Document 5).
 以上の特許文献のとおり、ポリエステルモノフィラメントの高強度化、高品質化、パッケージの高度化を目指した発明が数多く提案されている。しかし、高精密印刷可能なハイメッシュスクリーン紗を安定して得るために、繊維表面および内部の繊維構造の制御と均一性に優れ、ヒケ、ハレーションなどの品質問題の発生しない高品位な細繊度高強度フィラメントは未だ得られていない。そこで、高精密印刷向けスクリーン紗用、およびスクリーン紗以外の用途にも好適に用いられるポリエステルテルフィラメントが待ち望まれていた。 As described above, many inventions have been proposed that aim to increase the strength, quality, and sophistication of polyester monofilaments. However, in order to stably obtain a high-mesh screen wrinkle capable of high-precision printing, it has excellent control and uniformity of the fiber surface and internal fiber structure, and high-quality fineness that does not cause quality problems such as sink marks and halation. A strength filament has not yet been obtained. Therefore, there has been a long-awaited demand for polyester tellur filaments that can be suitably used for screens for high-precision printing and for uses other than screens.
国際公開2010/090108号公報International Publication No. 2010/090108 特開2013-249143号公報JP 2013-249143 A 特開2004-225224号公報JP 2004-225224 A 特開2001-355123号公報JP 2001-355123 A 特開平08-199424号公報Japanese Patent Laid-Open No. 08-199424
 本発明は、上記の各特許文献に記載の問題、すなわち、特許文献1、2に記載の方法は、巻取方式がスピンドル方式でボビン巻きのため綾角が大きく取れない。そのために張力変動が大きくなり安定巻取が困難で、ヒケに関しても端面部の微分散が不十分であることが判明した。特許文献3記載の技術も、ボビン巻きのパッケージのため、ストレート部と端面との応力緩和の違いにより発生するヒケの微分散がなされていない。そのため、この技術では、品質的に十分とはいえなかった。特許文献4記載の技術は、各ポリエステルを融点以上の温度で溶融紡糸し、これを一旦低速で巻き取った後、加熱延伸を行う、いわゆる2工程法によるものである。そして、公知の延伸機であるドローツイスターを用いてパーン状に巻き取る方法である。このドローツイスターでは、トラベラーのしごきによって巻取張力が高くなり、パッケージ端部とパッケージ中央で糸条の残留収縮応力の緩和の度合いが異なる。このためにパーンヒケ(横方向に周期性をもって現れた、光沢差のある横ヒケ状の縞)を回避することはできない。特許文献5記載の技術は、綾角、最内層巻幅を規定している。しかし、パッケージの糸落ち防止、解舒性改善が主目的で、ヒケに関する改善検討、繊維の内部構造、物性に関しては未解決であった。
本発明の課題は、このような従来の問題を解決し、細繊度、高強力で、寸法安定性に優れ、かつヒケやハレーション等欠点の発生が少なく、スクリーン紗以外の用途は勿論のこと、高性能スクリーン紗用にも好適なポリエステルフィラメントパッケージを提供することである。
In the present invention, the problem described in each of the above-mentioned patent documents, that is, the methods described in Patent Documents 1 and 2, cannot be taken large because the winding method is a spindle method and bobbin winding. For this reason, it was found that the tension fluctuation was large and stable winding was difficult, and the fine dispersion of the end face portion was insufficient even with respect to sink marks. Since the technique described in Patent Document 3 is also a bobbin-wrapped package, there is no fine dispersion of sink marks generated due to a difference in stress relaxation between the straight portion and the end surface. For this reason, this technology has not been sufficient in terms of quality. The technique described in Patent Document 4 is based on a so-called two-step method in which each polyester is melt-spun at a temperature equal to or higher than the melting point, wound once at a low speed, and then heated and stretched. And it is the method of winding up in the shape of a pan using the draw twister which is a well-known drawing machine. In this draw twister, the winding tension increases due to the ironing of the traveler, and the degree of relaxation of the residual shrinkage stress of the yarn differs between the package end and the package center. For this reason, it is not possible to avoid panic marks (horizontal sink-like stripes having a gloss difference that appear in the horizontal direction with periodicity). The technique described in Patent Document 5 defines the twill angle and the innermost layer winding width. However, the main objectives were to prevent the package from dropping off and to improve the unwinding property, and there were unresolved studies on the improvement of sink marks, the internal structure and physical properties of the fibers.
The problem of the present invention is to solve such conventional problems, fineness, high strength, excellent dimensional stability, and less occurrence of defects such as sink and halation, as well as uses other than screen wrinkles, It is to provide a polyester filament package that is also suitable for high performance screens.
 本発明は、上記課題を解決するために、以下の構成を有する。
(1) 硬度が200kgf/100mm以上で外径が60mmΦ以上の巻管に巻き取られた糸条の5%モジュラスが2.0cN/dtex以上であって、繊維長手方向の湿熱収縮応力のピーク周期が150m以下であることを特徴とするポリエステルフィラメントパッケージ。
(2) 巻き取られた糸条の単糸繊度が3~20dtexであることを特徴とする(1)記載のポリエステルフィラメントパッケージ。
(3) 巻き取られた糸条の破断強度が5.0~9.0cN/dtexであることを特徴とする(1)または(2)記載のポリエステルフィラメントパッケージ。
(4) 巻き取られた糸条の繊維長手方向の湿熱収縮応力差が3.0cN/dtex以下であることを特徴とする(1)~(3)のいずれかに記載のポリエステルフィラメントパッケージ。
In order to solve the above problems, the present invention has the following configuration.
(1) The peak period of wet heat shrinkage stress in the longitudinal direction of the fiber when the 5% modulus of the yarn wound on the winding tube having a hardness of 200 kgf / 100 mm or more and an outer diameter of 60 mmΦ or more is 2.0 cN / dtex or more A polyester filament package having a length of 150 m or less.
(2) The polyester filament package according to (1), wherein the wound yarn has a single yarn fineness of 3 to 20 dtex.
(3) The polyester filament package according to (1) or (2), wherein the wound yarn has a breaking strength of 5.0 to 9.0 cN / dtex.
(4) The polyester filament package according to any one of (1) to (3), wherein a wet heat shrinkage difference in the longitudinal direction of the wound yarn is 3.0 cN / dtex or less.
 本発明のポリエステルフィラメントパッケージは、高モジュラスで、スクリーン紗として使用した場合、優れた寸法安定性を持ち、パッケージヒケ、ハレーション等のない優れた紗となる。当然ながら、要求性能の特に厳しい高性能スクリーン紗に好適なポリエステルフィラメントは、他の用途、例えば、フィルター、衣料用にも好適に用いることができるのはいうまでもない。 The polyester filament package of the present invention has a high modulus and has excellent dimensional stability when used as a screen wrinkle, and is an excellent wrinkle free from package sink and halation. Needless to say, polyester filaments suitable for high performance screens with particularly demanding performance can be used for other applications such as filters and clothing.
 本発明のポリエステルフィラメントパッケージを使用したスクリーン紗は、よりハイメッシュでスクリーン紗の品位要求が厳しい用途に好ましく用いられる。例えば、コンパクトディスクのレーベルなどのグラフィックデザインや、電子基盤回路などの高精密印刷等である。 The screen cage using the polyester filament package of the present invention is preferably used for applications that require higher mesh and more stringent quality requirements. For example, graphic design such as a compact disc label, high-precision printing such as an electronic circuit board, and the like.
本発明の一実施形態を示す紡糸延伸設備の概略図である。It is the schematic of the spinning | drawing extending | stretching installation which shows one Embodiment of this invention. 2工程法における紡糸設備の概略図である。It is the schematic of the spinning equipment in a 2 process method. 2工程法における延伸設備の概略図である。It is the schematic of the extending | stretching installation in a 2 process method.
 以下、本発明を詳細に説明する。
本発明のポリエステルフィラメントパッケージのポリエステルは、ポリエチレンテレフタレート(以下、PETと称する)を主成分とするポリエステルが用いられる。
Hereinafter, the present invention will be described in detail.
As the polyester of the polyester filament package of the present invention, a polyester mainly composed of polyethylene terephthalate (hereinafter referred to as PET) is used.
 本発明で用いるPETとしては、テレフタル酸を主たる酸成分とし、エチレングリコールを主たるグリコール成分とする。このポリエステルは、90モル%以上がエチレンテレフタレートの繰り返し単位からなる。本発明で用いるPETは、10モル%以下の割合で、他のエステル結合を形成可能な共重合成分を含むことができる。
共重合成分としては、例えば、酸成分として、イソフタル酸、フタル酸、ジブロモテレフタル酸、ナフタレンジカルボン酸、オルトエトキシ安息香酸のような二官能性芳香族カルボン酸や、セバシン酸、シュウ酸、アジピン酸、ダイマー酸のような二官能性脂肪族カルボン酸、そしてシクロヘキサンジカルボン酸などのジカルボン酸類が挙げられる。また、グリコール成分としては、例えば、エチレングリコール、ジエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ビスフェノールAや、シクロヘキサンジメタノール、ポリエチレングリコールやポリプロピレングリコールなどのポリオキシアルキレングリコールなどを挙げることができる。
As PET used in the present invention, terephthalic acid is the main acid component, and ethylene glycol is the main glycol component. In this polyester, 90 mol% or more is composed of repeating units of ethylene terephthalate. The PET used in the present invention can contain a copolymer component capable of forming other ester bonds at a ratio of 10 mol% or less.
Examples of the copolymer component include, as acid components, bifunctional aromatic carboxylic acids such as isophthalic acid, phthalic acid, dibromoterephthalic acid, naphthalenedicarboxylic acid, orthoethoxybenzoic acid, sebacic acid, oxalic acid, and adipic acid. , Difunctional aliphatic carboxylic acids such as dimer acid, and dicarboxylic acids such as cyclohexanedicarboxylic acid. Examples of the glycol component include ethylene glycol, diethylene glycol, propanediol, butanediol, neopentyl glycol, bisphenol A, and polyoxyalkylene glycols such as cyclohexanedimethanol, polyethylene glycol, and polypropylene glycol.
 本発明のポリエステルフィラメントには、必要に応じて、艶消剤として二酸化チタン、滑剤としてシリカやアルミナの微粒子、抗酸化剤としてヒンダードフェノール誘導体を添加することができる。さらには、難燃剤、帯電防止剤、紫外線吸収剤および着色顔料等もポリエステルフィラメントに添加することができる。 If necessary, the polyester filament of the present invention may contain titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, and a hindered phenol derivative as an antioxidant. Furthermore, a flame retardant, an antistatic agent, an ultraviolet absorber, a color pigment, and the like can be added to the polyester filament.
 本発明のポリエステルフィラメントとしては、複合繊維でも単独繊維でも使用できる。複合繊維の場合には、固有粘度(以下、IV(Inherent Viscosity)と称する)の異なるポリエチレンテレフタレートを芯鞘型に複合してなる芯鞘型複合ポリエステルフィラメントとすることが好ましい。繊維物性、製織性を容易に両立できるからである。また芯鞘型とは、一方のポリエステルが他方のポリエステルによって完全に覆われた繊維断面形状をいう。繊維表面のポリエステルを鞘成分、鞘成分に覆われた繊維内部のポリエステルを芯成分とする。断面形状については必要により、異形断面や芯成分が偏心していてもかまわない。安定した製糸性、高次加工性のため、芯成分と鞘成分は同芯円状に配置し、丸断面であることが好ましい。 The polyester filament of the present invention can be a composite fiber or a single fiber. In the case of a composite fiber, a core-sheath type composite polyester filament formed by combining polyethylene terephthalates having different intrinsic viscosities (hereinafter referred to as IV (Inherent Viscosity)) into a core-sheath type is preferable. This is because fiber properties and weaving properties can be easily achieved. The core-sheath type refers to a fiber cross-sectional shape in which one polyester is completely covered with the other polyester. The polyester on the fiber surface is the sheath component, and the polyester inside the fiber covered with the sheath component is the core component. Regarding the cross-sectional shape, if necessary, the irregular cross-section and the core component may be eccentric. The core component and the sheath component are preferably arranged concentrically and have a round cross section for stable spinning and high-order processability.
 本発明のポリエステルフィラメントが単独成分からなる場合の断面形状は、必要により三角、五角、八角、星型、扁平、楕円等の異型断面でもかまわない。しかし、安定した製糸性、高次加工性のため、断面形状は丸断面であることが好ましい。 The cross-sectional shape when the polyester filament of the present invention is composed of a single component may be an irregular cross-section such as a triangle, pentagon, octagon, star, flat, ellipse, etc. if necessary. However, the cross-sectional shape is preferably a round cross-section for stable yarn production and high-order processability.
 本発明のポリエステルフィラメントの繊維形態が芯鞘型複合繊維の場合には、IVの高いPETを芯成分とすることが好ましい。繊維内部は配向度が高く、結晶化も促進するので、スクリーン紗用フィラメントとして必要な高い強度を付与することができるからである。芯成分PETのIVは、高強度化という観点から0.70以上が好ましく、更に好ましくは0.90以上である。一方、溶融紡糸における溶融ポリマの流動性という観点から1.40以下が好ましく、更に好ましくは1.30以下である。 When the fiber form of the polyester filament of the present invention is a core-sheath type composite fiber, it is preferable to use PET having a high IV as a core component. This is because the inside of the fiber has a high degree of orientation and promotes crystallization, so that the high strength necessary for a filament for screen wrinkles can be imparted. The IV of the core component PET is preferably 0.70 or more, more preferably 0.90 or more from the viewpoint of increasing the strength. On the other hand, it is preferably 1.40 or less, more preferably 1.30 or less, from the viewpoint of the fluidity of the molten polymer in melt spinning.
 一方、鞘成分に関しては、良好な耐スカム性を得るという観点から、鞘成分に用いるポリエステルのIVを芯成分ポリエステルのIVより低くすることが好ましい。芯成分のポリエステルのIVと鞘成分ポリエステルのIVの差は0.20~1.00が好ましい。具体的には、鞘成分の低粘度ポリエステルのIVは、好ましくは、0.40以上にすることにより安定した製糸性が得られる。鞘成分の低粘度ポリエステルのより好ましいIVは、0.50以上である。また、良好な耐摩耗性、すなわち耐スカム性を得るためには、低粘度ポリエステルのIVは、好ましくは、0.70以下である。 On the other hand, regarding the sheath component, from the viewpoint of obtaining good scum resistance, the IV of the polyester used for the sheath component is preferably lower than the IV of the core component polyester. The difference between the IV of the core component polyester and the IV of the sheath component polyester is preferably 0.20 to 1.00. Specifically, the IV of the low-viscosity polyester as the sheath component is preferably set to 0.40 or more, so that stable yarn forming properties can be obtained. The more preferable IV of the low-viscosity polyester as the sheath component is 0.50 or more. Further, in order to obtain good abrasion resistance, that is, scum resistance, the IV of the low-viscosity polyester is preferably 0.70 or less.
 スクリーン紗の製造工程は高密度の織物を高速で製織するため、極めて多数回、筬などの強い摩擦にさらされることとなる。フィラメント表面の結晶化の進行と相まって、フィラメント表面の一部が削り取られ、ヒゲ状あるいは粉状のかす、いわゆるスカムが発生する場合がある。スカムは量的に少量であっても織機に飛散し、その一部はスクリーン紗の中に織り込まれる危険性がある。従って、スカムが発生しないほうが好ましい。 In the manufacturing process of screen cocoons, high-density woven fabrics are woven at high speed, so that they are exposed to strong friction such as cocoons very many times. In combination with the progress of crystallization of the filament surface, a part of the filament surface may be scraped off, and a so-called scum may be generated in the shape of beard or powder. Even if the amount of scum is small, it will be scattered on the loom, and some of the scum may be woven into the screen cage. Therefore, it is preferable that no scum is generated.
 本発明のポリエステルフィラメントは、鞘成分に用いるポリエステルと、芯成分ポリエステルのIVの差を、0.20以上とすることが好ましい。これにより、鞘成分のポリエステル、すなわちポリエステルフィラメント表面の配向度および結晶化度を抑えることができ、より良好な耐スカム性を得ることができる。溶融紡糸の口金吐出孔内壁面における剪断応力は鞘成分に集中するため、芯成分が受ける剪断応力は小さくなる。その結果、芯成分は分子鎖配向度が低く、かつ均一な状態で紡出されるため、最終的に得られるポリエステルフィラメントの強度が向上する。さらに好ましいポリエステルのIVの差は0.30~0.70である。 In the polyester filament of the present invention, the difference in IV between the polyester used for the sheath component and the core component polyester is preferably 0.20 or more. Thereby, the polyester of the sheath component, that is, the degree of orientation and crystallinity of the polyester filament surface can be suppressed, and better scum resistance can be obtained. Since the shear stress on the inner wall surface of the discharge port of the melt spinning is concentrated on the sheath component, the shear stress applied to the core component is reduced. As a result, the core component has a low degree of molecular chain orientation and is spun in a uniform state, so that the strength of the finally obtained polyester filament is improved. Further, the difference in IV of the polyester is preferably 0.30 to 0.70.
 本発明のポリエステルフィラメントの芯成分のPETに添加される無機粒子は、芯成分全量に対して0.5質量%未満であることが好ましい。一方、鞘成分のPETは、ポリエステルフィラメントの耐摩耗性を向上させるため、無機粒子を鞘成分全量に対して0.1~0.5質量%程度添加させることが好ましい。 It is preferable that the inorganic particles added to the core component PET of the polyester filament of the present invention is less than 0.5% by mass based on the total amount of the core component. On the other hand, in the case of PET as a sheath component, it is preferable to add about 0.1 to 0.5% by mass of inorganic particles with respect to the total amount of the sheath component in order to improve the abrasion resistance of the polyester filament.
 本発明のポリエステルフィラメントが単独繊維の場合のIVは、高強度化という観点から0.7以上が好ましく、更に好ましくは0.9以上である。一方、溶融紡糸における溶融ポリマの流動性という観点からは、IVは1.4以下が好ましく、更に好ましくは1.3以下である。単独繊維は、耐スカム性を考慮すると、複合繊維よりも強度は低くなり、モジュラスも低めとなる。そのため、最終製品の用途を考慮した品質設計が必要となる。そして、ポリエステルフィラメントの耐摩耗性を向上させるため、無機粒子をPET全量に対して0.1~0.5質量%程度添加させることが好ましい。 When the polyester filament of the present invention is a single fiber, the IV is preferably 0.7 or more, more preferably 0.9 or more, from the viewpoint of increasing the strength. On the other hand, from the viewpoint of the fluidity of the molten polymer in melt spinning, IV is preferably 1.4 or less, more preferably 1.3 or less. In consideration of scum resistance, the single fiber has lower strength and lower modulus than the composite fiber. Therefore, quality design that considers the use of the final product is required. In order to improve the abrasion resistance of the polyester filament, it is preferable to add about 0.1 to 0.5% by mass of inorganic particles with respect to the total amount of PET.
 本発明のポリエステルフィラメントが複合繊維の時の芯鞘複合比は、質量パーセント比で70:30~90:10が好ましく、より好ましくは75:25~85:15である。芯成分の割合を70%以上とすることで、細繊度であっても必要な強度が達成可能となるからである。また鞘成分の割合を10%以上とすることで、溶融紡糸の口金吐出孔内壁面における剪断応力を鞘成分が担うため、芯成分が受ける剪断力は小さくなるためである。その結果、芯成分は分子鎖配向度が低く、かつ均一な状態で紡出されるため、最終的に得られるポリエステルフィラメントの強度が向上することになる。 The core-sheath composite ratio when the polyester filament of the present invention is a composite fiber is preferably 70:30 to 90:10, more preferably 75:25 to 85:15 in terms of mass percentage. This is because, by setting the ratio of the core component to 70% or more, the necessary strength can be achieved even with fineness. In addition, by setting the ratio of the sheath component to 10% or more, the sheath component bears the shear stress on the inner wall surface of the die discharge hole of melt spinning, so that the shear force applied to the core component is reduced. As a result, the core component has a low degree of molecular chain orientation and is spun in a uniform state, so that the strength of the finally obtained polyester filament is improved.
 本発明のポリエステルフィラメントの単糸繊度は3~20dtexが好ましい。高性能スクリーン紗に用いる場合、例えば、精密印刷に適した#400以上のハイメッシュスクリーン紗では、1本あたりのメッシュ格子間隔はおよそ63μmである。従って、印刷に必要な1格子あたりの開口を維持するためには、使用するフィラメントの単糸繊度は13dtex以下が好ましく、より好ましくは10dtex以下である。 The single yarn fineness of the polyester filament of the present invention is preferably 3 to 20 dtex. When used for high performance screens, for example, in a # 400 or higher high mesh screen suitable for precision printing, the mesh lattice spacing per line is approximately 63 μm. Therefore, in order to maintain the opening per lattice necessary for printing, the single yarn fineness of the filament used is preferably 13 dtex or less, more preferably 10 dtex or less.
 一方、フィルター用途、衣料用途の場合には20dtex以下であれば目標とするフィルター、衣料が得られる。 On the other hand, in the case of filter use and clothing use, if it is 20 dtex or less, the target filter and clothing can be obtained.
 そして、製織性、特に経糸飛送性を維持するため、ポリエステルフィラメントは少なくとも3dtex以上の単糸繊度が好ましく、4dtex以上であることがより好ましい。 In order to maintain the weaving property, particularly the warp feeding property, the polyester filament preferably has a single yarn fineness of at least 3 dtex or more, more preferably 4 dtex or more.
 本発明のポリエステルフィラメントの破断強度は、スクリーン紗用途に用いた場合にはメッシュ数に比例して高い紗張り張力が必要となる。従って、ポリエステルフィラメントの破断強度は5.0cN/dtex以上が好ましい。より好ましくは6.0cN/dtex以上、さらに好ましくは7.5cN/dtex以上である。 The breaking strength of the polyester filament of the present invention requires a high tension in proportion to the number of meshes when it is used for screen kneading. Therefore, the breaking strength of the polyester filament is preferably 5.0 cN / dtex or more. More preferably, it is 6.0 cN / dtex or more, More preferably, it is 7.5 cN / dtex or more.
 ポリエステルフィラメントは高強度であることが望ましいが、他の物性値、製糸性との総合的なバランスが重要である。現実的なポリエステルフィラメントの破断強度の上限は、概ね9.0cN/dtex程度である。この範囲であれば、他の物性値、製糸性とも低下することがなく好ましい。 Polyester filaments desirably have high strength, but a comprehensive balance with other physical properties and yarn-making properties is important. A practical upper limit of the breaking strength of the polyester filament is approximately 9.0 cN / dtex. If it is this range, neither a physical-property value nor a spinning property will fall, and it is preferable.
 スクリーン紗製造時の紗張り後の張力やスクリーン印刷時の版離れ性を良好にするためには、ポリエステルフィラメントの5%伸長時の強度(以下、5%モジュラスと称する)も大切な指標である。本発明のポリエステルフィラメントの5%モジュラスは、2.0cN/dtex以上である。この場合にスクリーン印刷時の版離れ性が良好となる。より好ましくは3.0cN/dtex以上である。5%モジュラスは、ある程度は材料の破断強度に連動した値となる。材料の破断強度が高ければ5%モジュラスも高くなる傾向にあり、正の相関関係を示す物性値の一つである。5%モジュラスも単独で設定するのは難しく、破断強度と同様、総合的なバランスが重要である。ポリエステルフィラメントの5%伸長時の強度は、7.0cN/dtex以下が好ましい範囲である。 In order to improve the tension after tensioning at the time of screen cocoon manufacture and the release property at the time of screen printing, the strength at 5% elongation of the polyester filament (hereinafter referred to as 5% modulus) is also an important index. . The 5% modulus of the polyester filament of the present invention is 2.0 cN / dtex or more. In this case, the plate separation at the time of screen printing is good. More preferably, it is 3.0 cN / dtex or more. The 5% modulus is a value linked to the breaking strength of the material to some extent. If the breaking strength of the material is high, the 5% modulus tends to be high, which is one of the physical property values showing a positive correlation. It is difficult to set the 5% modulus alone, and the overall balance is important as is the breaking strength. The strength at 5% elongation of the polyester filament is preferably 7.0 cN / dtex or less.
 一方、フィルター用途、衣料用途の場合には2.0cN/dtex以上であれば目標とするフィルター、衣料が得られる。 On the other hand, in the case of filter use and clothing use, the target filter and clothing can be obtained at 2.0 cN / dtex or more.
 本発明のポリエステルフィラメントは、繊維長手方向における湿熱収縮時の応力差が3.0cN以下であることが好ましい。ここで、繊維長手方向の湿熱収縮応力差とは、10m/分の速度で走行する2対のローラ間に湿熱を付与する部位に張力計を設けた装置で、パッケージのトラバース1往復分以上の糸長を連続的にモニターした際の張力の最大値と最小値の差をフィラメントの単糸繊度で除した値を指す。 The polyester filament of the present invention preferably has a stress difference of 3.0 cN or less during wet heat shrinkage in the longitudinal direction of the fiber. Here, the difference in wet heat shrinkage stress in the longitudinal direction of the fiber is a device provided with a tensiometer at a site that applies wet heat between two pairs of rollers that travel at a speed of 10 m / min. The value obtained by dividing the difference between the maximum value and minimum value of the tension when the yarn length is continuously monitored by the single yarn fineness of the filament.
 本発明において要求される高強度、高モジュラスのスクリーン紗用ポリエステルフィラメントを得るために、高延伸倍率で延伸すると、急激な構造変化によって繊維内部に応力が発生する。そして、その応力の緩和はパッケージにおいては均一に進まず、その応力緩和の差がヒケの原因となる。応力緩和の状態は、繊維を湿熱収縮させた際に発生する応力を測定することで確認できる。湿熱収縮時の応力が繊維長手方向で差異が認められるということは、ある部分は応力緩和が進んでおり、ある部分は応力緩和が進んでいないことを示している。繊維長手方向での湿熱収縮時の応力差を3.0cN/dtex以下とすることでヒケの発生を抑制することができる。その結果、本発明の目的とする優れた寸法安定性を有し、かつヒケなどの品位の問題もなく、高品位で精密印刷に好適なスクリーン紗用原糸を得ることが可能となる。さらにこの応力差を2.0cN/dtex以下とすると、より高いヒケ抑制効果を得ることができるため好ましい。 In order to obtain a high strength and high modulus polyester filament for screen wrinkles required in the present invention, stress is generated inside the fiber due to an abrupt structural change when drawn at a high draw ratio. The stress relaxation does not progress uniformly in the package, and the difference in the stress relaxation causes sink marks. The state of stress relaxation can be confirmed by measuring the stress generated when the fiber is subjected to wet heat shrinkage. The fact that the stress during wet heat shrinkage is different in the longitudinal direction of the fiber indicates that stress relaxation has progressed in a certain portion and stress relaxation has not progressed in a certain portion. The occurrence of sink marks can be suppressed by setting the stress difference at the time of wet heat shrinkage in the fiber longitudinal direction to 3.0 cN / dtex or less. As a result, it is possible to obtain a high-quality screen wrinkle yarn suitable for precision printing, which has excellent dimensional stability as an object of the present invention and has no problem of quality such as sink marks. Furthermore, it is preferable that this stress difference is 2.0 cN / dtex or less because a higher sink suppression effect can be obtained.
 一方、フィルター用途、衣料用途の場合には3.0cN/dtex以下であれば目標とするフィルター、衣料が得られる。 On the other hand, in the case of filter use and clothing use, the target filter and clothing can be obtained at 3.0 cN / dtex or less.
 本発明のポリエステルフィラメントパッケージは、繊維長手方向の湿熱収縮応力のピーク周期が150m以下である。応力のピークはパッケージの折り返し部分である端面部で現れ、端面間の糸ピッチに相当する。この値は同時に、ヒケの周期を示しており、この周期が150m以下であれば、製織後スクリーン紗とした際にヒケの欠点として認知されることもなくなる。このことから、フィラメントパッケージの繊維長手方向の湿熱収縮応力のピーク周期を150m以下とすることで、ヒケ欠点は軽減されて実害がなくなるので好ましい。 The polyester filament package of the present invention has a peak period of wet heat shrinkage stress in the fiber longitudinal direction of 150 m or less. The peak of the stress appears at the end surface portion that is the folded portion of the package, and corresponds to the yarn pitch between the end surfaces. At the same time, this value indicates the period of sink marks. If this period is 150 m or less, it will not be recognized as a defect of sink marks when the screen is made after weaving. Therefore, it is preferable that the peak period of the wet heat shrinkage stress in the fiber longitudinal direction of the filament package is 150 m or less because the sink defect is reduced and the actual harm is eliminated.
 本発明者らの実験によると、パッケージのヒケがスクリーン紗とした際に欠点として認知されず実害がなくなるのはスクリーン紗のメッシュ数により異なる。高メッシュの織物ほどその周期は短くなり、低メッシュ織物ほどその周期は長くなる。しかしながら、ピーク周期が150mを越えた場合にはヒケ欠点が顕在化し、スクリーン紗は不良品となる。一方、ピーク周期が100m以下であれば、よりヒケ欠点が軽減されるので好ましく、ピーク周期が50m以下であれば、さらにヒケ欠点が軽減されるので好ましい。ヒケのピーク周期を制御する方法については、後述の製造方法の段落で詳細に記載する。 According to the experiments by the present inventors, when the sink mark of the package becomes a screen jar, it is not recognized as a defect and does not cause any actual damage, depending on the number of meshes of the screen jar. The period is shorter as the mesh is higher, and the period is longer as the mesh is lower. However, when the peak period exceeds 150 m, sink defects become obvious, and the screen flaw becomes defective. On the other hand, if the peak period is 100 m or less, sink marks are preferably reduced, and if the peak period is 50 m or less, sink defects are further reduced. A method for controlling the peak period of sink marks will be described in detail in the paragraph of the manufacturing method described later.
 ポリエステルフィラメントはスクリーン紗用とした場合、通常の繊維よりも高強度でハイモジュラスが要求される。このため、PET非晶部の配向度が大きく、パッケージとして巻取後に応力緩和が発生しやすい。この応力緩和によって糸が収縮し、パッケージの中心に向かって巻締まりが発生する。この巻締まりはパッケージ全体では均一に進まず、パッケージのストレート部と端面部、すなわち糸条の長手方向では異なってくる。この糸条の長手方向に応力緩和、すなわち収縮応力の差異が生じると、スクリーン紗とした場合にヒケ状の欠点となり顕在化する。 Polyester filaments require higher strength and higher modulus than ordinary fibers when used for screens. For this reason, the degree of orientation of the PET amorphous part is large, and stress relaxation is likely to occur after winding as a package. Due to this stress relaxation, the yarn contracts and tightening occurs toward the center of the package. This winding tightening does not progress uniformly in the whole package, and differs in the straight part and end face part of the package, that is, in the longitudinal direction of the yarn. When stress relaxation, that is, a difference in shrinkage stress occurs in the longitudinal direction of the yarn, it becomes a sink-like defect when it is made into a screen wrinkle, and becomes apparent.
 パッケージ最内層の糸条は、そのすぐ内層側に巻管が存在するため、糸の収縮が阻害される。その結果、パッケージの中で最も繊維長手方向の収縮応力変動が大きくなる。このため、巻管硬度が柔らかいと糸の応力緩和により巻締まりが強く発生する。この巻締まりはパッケージのストレート部と端面部では均一とはならず、この収縮応力差のためにパッケージの内層ではヒケ状の欠点が生じるのである。 ∙ Since the thread in the innermost layer of the package has a wound tube immediately on the inner layer side, the shrinkage of the yarn is hindered. As a result, the variation in shrinkage stress in the fiber longitudinal direction is the largest in the package. For this reason, when the winding tube hardness is soft, winding tightening is strongly generated due to relaxation of the stress of the yarn. This winding tightening is not uniform between the straight portion and the end surface portion of the package, and this shrinkage stress difference causes a sink-like defect in the inner layer of the package.
 フィルター用途、衣料用途の場合でも、パッケージ最内層での収縮応力差によるヒケの問題は程度の差こそあれ共通する問題である。パッケージのストレート部と端面部では収縮応力差によるヒケが顕在化しやすい。 Even in the case of filter applications and clothing applications, the problem of sink marks due to the difference in shrinkage stress in the innermost layer of the package is a common problem to some extent. Sinks due to the difference in shrinkage stress are likely to appear in the straight part and end face part of the package.
 本発明の巻管の硬度は、200kgf/100mm以上である。巻管の硬度が200kgf/100mm以上であると、最内層の収縮応力差が小さくなり、ヒケが軽減されるので好ましい。さらに好ましくは250kgf/100mm以上、最も好ましくは500kgf/100mm以上である。 The hardness of the wound tube of the present invention is 200 kgf / 100 mm or more. It is preferable that the winding tube has a hardness of 200 kgf / 100 mm or more because the difference in shrinkage stress between the innermost layers is reduced and sink marks are reduced. More preferably, it is 250 kgf / 100 mm or more, and most preferably 500 kgf / 100 mm or more.
 本発明の巻管の外径は60mmΦ以上である。巻管の外径が60mmΦ以上であると、スピンドルと巻管との間で十分な接触面積が保て、巻管の密着性が良好となる。その結果、スピンドルと巻管との間に滑りが生じることもなく、トラバース軌跡が正しく規制され、糸落ちの発生も少なく、パッケージフォームが不良とならないため好ましい。巻管の外径の上限は160mmΦ以下であることが好ましく、この場合に巻管の硬度を200kgf/100mm以上に保つことができる。 The outer diameter of the wound tube of the present invention is 60 mmΦ or more. When the outer diameter of the winding tube is 60 mmΦ or more, a sufficient contact area is maintained between the spindle and the winding tube, and the adhesion of the winding tube is improved. As a result, there is no slip between the spindle and the winding tube, the traverse trajectory is correctly regulated, the occurrence of thread drop is small, and the package foam is not defective, which is preferable. The upper limit of the outer diameter of the wound tube is preferably 160 mmΦ or less, and in this case, the hardness of the wound tube can be maintained at 200 kgf / 100 mm or more.
 次に、本発明のポリエステルフィラメントパッケージの好ましい製造方法を説明する。    Next, a preferred method for producing the polyester filament package of the present invention will be described. *
 本発明のポリエステルフィラメントパッケージの製造方法は、次の3つの工程からなる。PET等のポリエステルポリマを溶融し、口金から吐出、冷却した後、一定速度のローラーで引き取る紡糸工程、引き取られた未延伸糸を延伸・熱処理する延伸工程、および延伸された糸条を巻き取りパッケージ形成する巻取工程である。 The manufacturing method of the polyester filament package of the present invention includes the following three steps. A polyester polymer such as PET is melted, discharged from the die, cooled, and then drawn by a roller at a constant speed, a drawing step in which the drawn undrawn yarn is drawn and heat-treated, and a drawn yarn is wound into a package. It is a winding process to form.
 紡糸工程は、公知の溶融紡糸方法を採用してもよい。すなわち、押出機によって溶融させたポリエステルを所望の単糸繊度となるように計量ポンプを用いて紡糸口金に供給し、糸条を吐出させる。溶融紡糸温度は、ポリエステルがPETの場合、PETを十分に溶融させ、かつ過度の熱付与による熱分解を抑制するという観点から、280~310℃とすることが好ましい。 A known melt spinning method may be employed in the spinning process. That is, the polyester melted by the extruder is supplied to the spinneret using a metering pump so as to obtain a desired single yarn fineness, and the yarn is discharged. When the polyester is PET, the melt spinning temperature is preferably 280 to 310 ° C. from the viewpoint of sufficiently melting the PET and suppressing thermal decomposition due to excessive heat application.
 芯鞘型等の複合繊維とする場合は、2台の押出機を用いて芯成分(A成分)と鞘成分(B成分)を別々に溶融、計量し、公知の芯鞘複合口金により両成分を複合させた後に吐出させる。糸条の配向抑制と配向均一化を目的とし、吐出された糸条が冷却されるまでの部位に加熱筒を用いてもよい。加熱筒を使用する場合は、加熱筒内雰囲気温度は200~330℃とすることが好ましい。加熱筒内雰囲気温度が200℃以上であれば加熱筒の効果が十分得られる。加熱筒内雰囲気温度が330℃以下であれば糸長手方向の繊径ムラが抑制される。 When a core-sheath type composite fiber is used, the core component (component A) and the sheath component (component B) are separately melted and measured using two extruders, and both components are formed using a known core-sheath composite die. It is made to discharge after compounding. For the purpose of suppressing the alignment of the yarn and making the alignment uniform, a heating cylinder may be used at a site until the discharged yarn is cooled. When a heating cylinder is used, the atmospheric temperature in the heating cylinder is preferably 200 to 330 ° C. If the temperature inside the heating cylinder is 200 ° C. or higher, the effect of the heating cylinder is sufficiently obtained. If the temperature inside the heating cylinder is 330 ° C. or less, unevenness in the diameter of the yarn in the longitudinal direction is suppressed.
 また、冷却方式は、チムニーエアーによる冷却を採用することが好ましい。チムニーエアーによる冷却は、例えば、糸条の走行方向に対して略直角方向かつ一方向から吹き付ける方式や、糸条の走行と略直角方向かつ全周方向から吹き付ける方式を用いることができる。 Moreover, it is preferable to employ cooling by chimney air as the cooling method. For the cooling with chimney air, for example, a method of spraying from a direction substantially perpendicular to the running direction of the yarn and from one direction, or a method of blowing from a direction substantially perpendicular to the running of the yarn and from the entire circumference can be used.
 冷却した糸条をローラーで引き取る前に、紡糸油剤を付与することが好ましい。紡糸油剤の組成は、平滑性を向上させ、製織時のスレ毛羽を抑制する観点から、脂肪酸エステル系平滑剤を30質量%以上含有する油剤を用いることが好ましい。また、油剤中にポリエーテル変性シリコーンを0.1~5質量%程度添加すると、さらに平滑性を向上させることができる。 It is preferable to apply a spinning oil before taking out the cooled yarn with a roller. The composition of the spinning oil is preferably an oil containing 30% by mass or more of a fatty acid ester type smoothing agent from the viewpoint of improving smoothness and suppressing thread fluff during weaving. Further, the addition of about 0.1 to 5% by mass of polyether-modified silicone in the oil can further improve the smoothness.
 油剤は、水と混合・エマルション化し、給油ガイドやオイリングローラーによって糸条に付与する。その際、延伸糸に対し油剤付着量が0.1~2.0質量%とすれば、平滑性が良好で、かつ、パッケージ形成の際の糸落ちと崩れが抑制されるため好ましい。 The oil agent is mixed and emulsified with water, and applied to the yarn with an oiling guide or oiling roller. At this time, it is preferable that the amount of the oil agent attached to the drawn yarn is 0.1 to 2.0% by mass because the smoothness is good and the yarn dropping and breaking during the formation of the package are suppressed.
 給油された糸条は、生産効率や巻取張力変動抑制効果、得られる糸条の配向均一性の観点から、好ましくは表面速度300~3000m/分の引取りローラーで引取られる。一旦巻取ることなく、連続して延伸し巻き取る直接紡糸延伸法(DSD法)により製造される。 The lubricated yarn is preferably taken up by a take-up roller with a surface speed of 300 to 3000 m / min from the viewpoints of production efficiency, winding tension fluctuation suppressing effect, and orientation uniformity of the obtained yarn. It is manufactured by the direct spinning and drawing method (DSD method) which is continuously drawn and wound without being wound once.
 延伸工程では、均一延伸を目的に、糸条をガラス転移点以上に加熱するホットローラーと、このホットローラーよりも表面速度が速く、結晶化温度以上に加熱するホットローラーに順次引き回し延伸を施す方法が好ましく用いられる。ホットローラーの温度や延伸倍率は、目標とする物性によって選択すればよい。例えば、高強度でハイモジュラスを求める場合、最終ホットローラーの表面温度を好ましくは120℃以上、さらに好ましくは200℃以上とし、延伸倍率を3~6倍とすることが好ましい。 In the stretching process, for the purpose of uniform stretching, a hot roller that heats the yarn above the glass transition point, and a method that sequentially draws and stretches the hot roller that has a higher surface speed than the hot roller and that heats above the crystallization temperature. Is preferably used. What is necessary is just to select the temperature and draw ratio of a hot roller according to the target physical property. For example, when high modulus and high modulus are desired, the surface temperature of the final hot roller is preferably 120 ° C. or higher, more preferably 200 ° C. or higher, and the draw ratio is preferably 3 to 6 times.
 また、そのホットローラー間に、さらに別のホットローラーを設置し、いわゆる多段延伸とすれば、延伸均一性が向上する。多段延伸の場合、1段目の延伸倍率は、好ましくは総延伸倍率の0.5~0.9倍とする。また、最終ホットローラーから巻き取り部の間に非加熱ローラーを設けてもよい。最終ホットローラーよりも非加熱ローラーの速度が速い場合、得られるフィラメントのモジュラスは高くなる。その結果、スクリーン紗用途の場合には印刷精度の向上が期待できる。最終ホットローラーよりも非加熱ローラーの速度が遅い場合、得られるフィラメントのモジュラスは低下する。そして、湿熱収縮時の応力差が低減し、また製織時のスレ毛羽が発生しにくくなる。最終ホットローラーと非加熱ローラーとの速度差は、所望の特性に応じて調整すればよい。最終ホットローラーの速度に対し非加熱ローラーの速度は、好ましくは-7~+2%である。 In addition, if another hot roller is installed between the hot rollers, and so-called multistage stretching is performed, the stretching uniformity is improved. In the case of multistage stretching, the first stage draw ratio is preferably 0.5 to 0.9 times the total draw ratio. Moreover, you may provide a non-heating roller between the last hot roller and a winding-up part. If the speed of the unheated roller is faster than the final hot roller, the resulting filament has a higher modulus. As a result, improvement in printing accuracy can be expected in the case of screen use. If the speed of the non-heated roller is slower than the final hot roller, the resulting filament modulus decreases. And the stress difference at the time of wet heat shrinkage is reduced, and thread fluff at the time of weaving is less likely to occur. The speed difference between the final hot roller and the non-heated roller may be adjusted according to desired characteristics. The speed of the non-heated roller with respect to the speed of the final hot roller is preferably -7 to + 2%.
 巻取工程では、延伸されたフィラメントを、以下の巻き取り方法で巻き取り、所望のパッケージを得る。まず、パッケージ端面をテーパー形状とする手法としては、例えば、特開2002-284447号に記載の巻取方法が挙げられる。この糸条巻取機は、スピンドルに装着したボビンに連続的に糸条を巻き取りながら、この糸条をトラバースガイドによってボビン軸方向に相対的に往復トラバースさせる(請求項1)。その際、スピンドル側を静置し、糸条をトラバースガイドを介して往復トラバースさせる方法(請求項4)や、糸条の給糸位置を固定し、スピンドル側を往復トラバースさせるようにする方法(請求項5)が、特開2002-284447号に開示されている。いずれも、巻き始めから巻き終わりにかけて所望のテーパー角になるように、巻太るに従いトラバースの往復幅を漸減させ、ボビン上にパーン上のパッケージを形成する(段落[0015])。 In the winding process, the drawn filament is wound by the following winding method to obtain a desired package. First, as a method for forming the package end surface into a tapered shape, for example, a winding method described in JP-A-2002-284447 can be cited. The yarn winding machine reciprocates the yarn relatively in the bobbin axial direction by a traverse guide while continuously winding the yarn around a bobbin attached to the spindle. At that time, the spindle side is left stationary and the yarn is reciprocated and traversed via a traverse guide (Claim 4), or the yarn supply position of the yarn is fixed and the spindle side is reciprocated and traversed ( Claim 5) is disclosed in JP-A No. 2002-284447. In either case, the reciprocating width of the traverse is gradually decreased as the winding is increased so that a desired taper angle is obtained from the beginning of winding to the end of winding, thereby forming a package on the bobbin on the bobbin (paragraph [0015]).
 本発明において、ポリエステルフィラメントを巻き取る際の巻取張力は、繊維長手方向における湿熱収縮時の応力差を低減させる観点で、0.1cN/dtex以上、0.5cN/dtex以下であることが好ましい。これは、前述のとおり、本発明で用いられるポリエステルフィラメントは、通常の繊維よりも巻き取り後に応力緩和(収縮)が発生し易いため、巻き取り張力が高いと、応力差も大きくなるためである。巻き取り張力は、より好ましくは0.4cN/dtex以下、さらに好ましくは0.3cN/dtex以下である。 In the present invention, the winding tension when winding the polyester filament is preferably 0.1 cN / dtex or more and 0.5 cN / dtex or less from the viewpoint of reducing the stress difference during wet heat shrinkage in the fiber longitudinal direction. . This is because, as described above, the polyester filament used in the present invention is more likely to undergo stress relaxation (shrinkage) after winding than normal fibers, and therefore, when the winding tension is high, the stress difference also increases. . The winding tension is more preferably 0.4 cN / dtex or less, and still more preferably 0.3 cN / dtex or less.
 パッケージを巻き取る際の巻き取り張力変動は、少なければ少ないほど好ましい。0.4cN/dtex以下であれば、パッケージの巻きフォームが安定し、糸条に与える物性の変化が少ないので好ましい。より好ましくは0.3cN/dtex以下、さらに好ましくは0.2cN/dtex以下である。 ) The smaller the winding tension variation when winding the package, the better. If it is 0.4 cN / dtex or less, the wound form of the package is stable and the change in physical properties given to the yarn is small, which is preferable. More preferably, it is 0.3 cN / dtex or less, More preferably, it is 0.2 cN / dtex or less.
 また、巻き取り中にタッチローラーがパッケージ表面を押圧する圧力、いわゆる面圧は15gf/cm以下とすることが好ましい。面圧が15gf/cm以下であれば、糸層の受けるダメージは少なく、かつ端面での糸落ちの発生を助長することもなく好ましい。さらに好ましくは、面圧が10gf/cm以下である。 Further, the pressure at which the touch roller presses the package surface during winding, that is, the so-called surface pressure is preferably 15 gf / cm or less. If the surface pressure is 15 gf / cm or less, it is preferable that the yarn layer suffers little damage and does not promote the occurrence of yarn drop at the end face. More preferably, the surface pressure is 10 gf / cm or less.
 パッケージの最内層巻幅は100~200mmが好ましい。パッケージの巻幅が小さいほど解舒中の手前と奥の解舒張力差が小さくなるため、パッケージの最内層巻幅は200mm以下が好ましい。また、パッケージ当りの巻量を大きくする観点から、最内層巻幅は100mm以上とすることが好ましい。より好ましくは140~180mm、さらに好ましくは150~170mmである。 The innermost layer winding width of the package is preferably 100 to 200 mm. The smaller the winding width of the package, the smaller the unwinding tension difference between the front side and the back side during unwinding. Therefore, the innermost layer winding width of the package is preferably 200 mm or less. Further, from the viewpoint of increasing the winding amount per package, the innermost layer winding width is preferably 100 mm or more. More preferably, it is 140 to 180 mm, and still more preferably 150 to 170 mm.
 パッケージは、以下の式で表される綾角θtが0.1~1.5°の範囲であることが好ましい。ここで、綾角とは、糸の巻き取り角度のことである。パッケージの綾角を0.1°以上とするとパッケージ端面のピッチ、すなわち糸条の繊維長手方向の端面周期を短くできるので好ましい。端面周期を150m以下とすることで、生機上の端面部を微分散化することでヒケが軽減され、生機品位が向上するので好ましい。また、綾角を1.5°以下とすると、解舒張力変動の勾配が大きくならず、解舒性良好なパッケージとなるので好ましい。より好ましくは0.3~1.3°、さらに好ましくは0.5~1.0°である。 The package preferably has a traverse angle θ t expressed by the following formula in a range of 0.1 to 1.5 °. Here, the twill angle is the winding angle of the yarn. A package angle of 0.1 ° or more is preferable because the pitch of the package end faces, that is, the end face period in the fiber longitudinal direction of the yarn can be shortened. By setting the end face period to 150 m or less, it is preferable to finely disperse the end face on the raw machine to reduce sink marks and improve the quality of the raw machine. Further, it is preferable that the twill angle is 1.5 ° or less, because the gradient of the unwinding tension does not increase and the package has a good unwinding property. More preferably, it is 0.3 to 1.3 °, and further preferably 0.5 to 1.0 °.
 θ=tan-1{W/((L/2)-W 1/2
θ:綾角(°) W:最外層パッケージ巻幅(m) L:1トラバース当たりの糸長(m)
 パッケージに用いる巻管の材質は「紙」製、もしくは「紙+アルミ」製が取り扱い性、コスト面から好ましいが、巻管の硬度を維持できれば材質は特に限定されない。
θ t = tan −1 {W f / ((L / 2) 2 −W f 2 ) 1/2 }
θ t : Twill angle (°) W f : Outermost layer package winding width (m) L: Yarn length per traverse (m)
The material of the winding tube used for the package is preferably “paper” or “paper + aluminum” from the viewpoint of handling and cost, but the material is not particularly limited as long as the hardness of the winding tube can be maintained.
 パッケージの端面周期が生機上でヒケとなり欠点として目立つのは、5mm以上の周期となったときに顕在化する。従ってこの周期を短くできれば生機上で欠点とはならないため好ましい。この5mm以上の周期は織り密度によって異なるが、原糸の端面ピッチが150m以内であれば#200~500の織り密度をカバーできるので好ましい。 パ ッ ケ ー ジ The end face period of the package becomes a sink mark on the living machine, and the conspicuous defect is manifested when the period becomes 5 mm or more. Therefore, it is preferable if this period can be shortened because it does not cause a defect on the living machine. The period of 5 mm or more varies depending on the weaving density, but it is preferable that the end face pitch of the raw yarn is within 150 m because the weaving density of # 200 to 500 can be covered.
 以下、実施例により詳細に説明する。なお、実施例中の評価は以下の方法に従った。 Hereinafter, the embodiment will be described in detail. The evaluation in the examples followed the following method.
 (1)固有粘度(IV)
 25℃の温度の純度98%以上のオルト-クロロフェノール10mL中に、試料ポリマーを0.8g溶かし、25℃の温度でオストワルド粘度計を用いて相対粘度ηrを次式(1)により求めた。この相対粘度ηrを用いて、次式(2)により固有粘度(IV)を算出した。
ηr=η/η0=(t×d)/(t0×d0) ・・・・・・(1)
固有粘度(IV)=0.0242ηr+0.2634 ・・・(2)
ここで、
・η:ポリマー溶液の粘度
・η0:オルト-クロロフェノールの粘度
・t:溶液の落下時間(秒)
・d:溶液の密度(g/cm
・t0:オルト-クロロフェノールの落下時間(秒)
・d0:オルト-クロロフェノールの密度(g/cm)。
(1) Intrinsic viscosity (IV)
0.8 g of a sample polymer was dissolved in 10 mL of ortho-chlorophenol having a purity of 98% or more at a temperature of 25 ° C., and a relative viscosity ηr was determined by the following equation (1) using an Ostwald viscometer at a temperature of 25 ° C. Using this relative viscosity ηr, the intrinsic viscosity (IV) was calculated by the following formula (2).
ηr = η / η0 = (t × d) / (t0 × d0) (1)
Intrinsic viscosity (IV) = 0.0242 ηr + 0.2634 (2)
here,
・ Η: Viscosity of polymer solution ・ η0: Viscosity of ortho-chlorophenol ・ t: Dropping time of solution (second)
D: Density of solution (g / cm 3 )
T0: Ortho-chlorophenol drop time (seconds)
D0: density of ortho-chlorophenol (g / cm 3 ).
 (2)ガラス転移点(Tg)
 使用ポリマの粉末10mgを採取し、示差走査熱量計(パーキンエルマー社:DSC-4型)を用いて、16℃/分で昇温しつつ、昇温過程で発現するガラス転移に伴うピークを、パーキンエルマー社のデータ処理システムで処理し、ガラス転移温度Tg(℃)を求めた。
(2) Glass transition point (Tg)
A 10 mg powder of the polymer used was collected, and a peak associated with the glass transition developed in the temperature rising process while the temperature was raised at 16 ° C./min using a differential scanning calorimeter (Perkin Elmer: DSC-4 type) The glass transition temperature Tg (° C.) was determined by processing with a data processing system manufactured by PerkinElmer.
 (3)単糸繊度
 糸条を500mかせ取り、かせの質量に20を乗じた値を繊度とし、その数値をフィラメント数で除した数値を単糸繊度とする。
(3) Single yarn fineness A value obtained by scraping a yarn 500 m and multiplying the mass of the skein by 20 is defined as fineness, and a value obtained by dividing the numerical value by the number of filaments is defined as single yarn fineness.
 (4)破断強度、伸度、5%モジュラス、10%モジュラス
 オリエンテックス社製テンシロン引張試験機を用い、初期試料長20cm、引張速度2cm/分にて5%伸長時の強度(5%モジュラス)、10%伸長時の強度(10%モジュラス)、破断した際の強度、伸度を測定し、それぞれ連続して5回測定した値の平均値を破断強度(cN/dtex)、伸度(%)、5%モジュラス(cN/dtex)、10%モジュラス(cN/dtex)とした。
(4) Tensile strength, elongation, 5% modulus, 10% modulus Strength at 5% elongation (5% modulus) at an initial sample length of 20 cm and a tensile speed of 2 cm / min using an orientex Tencilon tensile tester The strength at 10% elongation (10% modulus), the strength at break, and the elongation were measured, and the average of the values measured five times in succession was determined as the breaking strength (cN / dtex) and the elongation (% ) 5% modulus (cN / dtex), 10% modulus (cN / dtex).
 (5)繊維長手方向の湿熱収縮応力差およびピーク周期
 東レ(株)製フィラメントサーマルアナリシスシステム(略称:FTA-500)を用い、下記の測定条件にて測定を行い、熱収縮により繊維に発生する収縮応力を張力計で連続的に測定しチャート化した上で、最大応力と最小応力の差を読み取った。また、ピーク周期はチャート上の最大応力のピークから次の最大応力のピークまでの時間、あるいは最小応力のピークから次の最小応力のピークまでの時間を読み取り、測定時の糸速およびチャートスピードから算出した。
湿熱温度:100℃
給糸張力:19.6cN
測定糸長:400m
測定糸速:20m/分
チャートスピード:2cm/分。
(5) Wet heat shrinkage stress difference and peak period in the longitudinal direction of the fiber Using a filament thermal analysis system (abbreviation: FTA-500) manufactured by Toray Industries, Inc., measurement is performed under the following measurement conditions. The shrinkage stress was continuously measured with a tensiometer and charted, and the difference between the maximum stress and the minimum stress was read. The peak period is the time from the maximum stress peak on the chart to the next maximum stress peak, or the time from the minimum stress peak to the next minimum stress peak, and is calculated from the yarn speed at the time of measurement and the chart speed. Calculated.
Wet heat temperature: 100 ° C
Yarn feeding tension: 19.6 cN
Measuring thread length: 400m
Measurement yarn speed: 20 m / min Chart speed: 2 cm / min.
 (6)張力変動値
 インテック社製P/C対応型テンションメーターを用いて最終ローラー通過後20cmの位置において走行糸にかかる張力を1分間測定し、その間の最大値と最小値の差を求めた。
(6) Tension fluctuation value The tension applied to the running yarn was measured for 1 minute at a position 20 cm after passing through the final roller using a P / C compatible tension meter manufactured by Intec, and the difference between the maximum value and the minimum value was obtained. .
 (7)巻管の硬度と外径
 巻管の硬度とは次の方法で測定した値である。サンプル巻管から長さ50mm以上の環状試験片を切り取り、これを23±2℃で60分間以上自然放置後、2枚の平板間に挟み、管軸に直角の方向に「10±2mm/分」の速さで、外径の1/2になるまで圧縮した際の、最大強度を指す。試験温度は、23±2℃とする。一方、外径はノギスにて任意の5点を測定し、その平均値とした。
(7) Winding tube hardness and outer diameter The winding tube hardness is a value measured by the following method. An annular test piece having a length of 50 mm or more is cut out from the sample winding tube, left to stand at 23 ± 2 ° C. for 60 minutes or more, and then sandwiched between two flat plates, and “10 ± 2 mm / min. The maximum strength when compressed to 1/2 of the outer diameter at a speed of “. The test temperature is 23 ± 2 ° C. On the other hand, arbitrary 5 points | pieces were measured for the outer diameter with the caliper, and it was set as the average value.
 (8)製糸性評価
 紡糸48hrでの糸切れ発生回数で評価した。合格レベルは○以上である。
◎:糸切れ発生なし。
○:2回以下。
×:3回以上。
(8) Evaluation of yarn-making property Evaluation was made based on the number of yarn breakage occurrences during spinning for 48 hours. The passing level is ◯ or higher.
A: No thread breakage.
○: 2 times or less.
X: 3 times or more.
 (9)パッケージフォーム、糸落ち
 巻き上がったポリエステルフィラメントパッケージの型崩れ等のフォーム、および両端面を目視にて検査し、パッケージ当りの平均糸落ち数(N=10)を数えた。合格レベルは◎、○または△である。
◎:フォーム不良、糸落ちなし。
○:長さ1cm未満の軽微な糸落ち1~2箇所。
△:長さ1cm未満の軽微な糸落ち3~5箇所。
×:長さ1cm以上の糸落ちあり、もしくは長さ1cm未満の軽微な糸落ち6箇所以上。
(9) Package foam, thread drop Forms such as a deformed shape of the wound polyester filament package and both end faces were visually inspected, and the average number of thread drops per package (N = 10) was counted. The pass level is ◎, ○ or △.
(Double-circle): Foam defect and no thread drop.
○: Minor thread drop 1 to 2 places less than 1 cm in length.
Δ: Minor thread drop 3-5 places less than 1 cm in length
X: There are thread drops of 1 cm or more in length, or 6 or more light thread drops of less than 1 cm in length.
  (10)ヒケと織段
 スルーザ型織機により、織機の回転数120回転/分で、幅2.54m、全長30mの次の3種のメッシュ織物(スクリーン紗)を製作した。得られたスクリーン紗を検反し、目視でヒケと織段の評価(次の◎~×)を行った。合格レベルは◎、○または△である。
・繊度20dtex、25dtex:織密度250本/2.54cm
・繊度10dtex:織密度380本/2.54cm
・繊度6dtex:織密度420本/2.54cm
・繊度3dtex:織密度500本/2.54cm
◎:ヒケ・織段が全くない。
○:軽微なヒケ・織段があるが合格レベル。
△:やや強いヒケ・織段があるが合格レベル。
×:強いヒケ・織段が存在し不合格レベル。
(10) Sink and Weaving Step The following three types of mesh fabrics (screen wrinkles) having a width of 2.54 m and a total length of 30 m were manufactured with a through the loom at a rotation speed of the loom of 120 rpm. The screen scissors obtained were inspected, and the evaluation of the sink marks and the weaving steps (the following ◎ to ×) was performed visually. The pass level is ◎, ○ or △.
・ Fineness 20dtex, 25dtex: Weaving density 250 / 2.54cm
・ Fineness 10dtex: Weaving density 380 / 2.54cm
・ Fineness 6dtex: Weaving density 420 / 2.54cm
・ Fineness 3dtex: Weave density 500 / 2.54cm
A: There are no sink marks or weaves.
○: There is a slight sink or weave, but it is a pass level.
Δ: Slightly strong sink / weave, but acceptable level.
X: There is a strong sink or weave and it is a rejected level.
 (実施例1)
 常法によって重合およびチップ化したIV1.10(Tg80℃)の酸化チタン0.3質量%含有のPETを、エクストルーダーによって295℃で溶融させた。溶融PETは290℃に保温した配管内を通過させた後、公知の紡糸口金1から吐出させた。紡糸工程および延伸工程はDSD法によるもので、図1に示す装置を使用した。
(Example 1)
PET containing 0.3% by mass of titanium oxide of IV 1.10 (Tg 80 ° C.) polymerized and chipped by a conventional method was melted at 295 ° C. by an extruder. The molten PET was passed through a pipe kept at 290 ° C. and then discharged from a known spinneret 1. The spinning process and the drawing process were based on the DSD method, and the apparatus shown in FIG. 1 was used.
 吐出糸条は、口金面から下方に100mmの間、雰囲気温度を290±10℃となるように加熱体により積極保温した後、糸条冷却風装置3にて25℃のエアーを10m/分の風速で1方向から糸条に吹き付け、冷却固化せしめた。 The discharge yarn is positively kept warm by a heating body so that the ambient temperature is 290 ± 10 ° C. for 100 mm downward from the die surface, and then air at 25 ° C. is supplied at 10 m / min by the yarn cooling air device 3. The yarn was sprayed from one direction at the wind speed to cool and solidify.
 脂肪酸エステル系平滑剤を40質量%、ポリエーテル変性シリコーンを1質量%含有する油剤を給油後の糸条は、そのまま表面速度1300m/分の引取ローラー5で引き取った後、一旦巻き取ることなく、表面速度1310m/分、表面温度90℃の第1ホットローラー7、表面速度4000m/分、表面温度90℃の第2ホットローラー8、表面速度4980m/分、表面温度130℃の第3ホットローラー9、および最終ホットローラーである第3ホットローラー9に対して-0.6%の速度差をとった4950m/分の表面速度の非加熱ローラー(ゴデットローラー)10,11を介した後、巻取張力0.3cN/dtex、巻取張力変動0.2cN/dtex、面圧10kgf/cm、綾角0.8°、トラバース速度68m/分で制御された糸条巻取装置12を用いて、巻管硬度500kgf/100mm、巻管外径120mmΦのアルミ+紙外皮の巻管に巻き取った。得られたポリエステルモノフィラメントパッケージは、単糸繊度が6dtexで、パッケージの端部がテーパー形状であり、最内層の巻幅が200mm、そのテーパー角が26°で、巻量が1.0kgであった。製糸性は糸切れもなく良好であった。 The yarn after supplying an oil containing 40% by mass of a fatty acid ester-based smoothing agent and 1% by mass of a polyether-modified silicone is taken up by the take-up roller 5 as it is with a surface speed of 1300 m / min. A first hot roller 7 having a surface speed of 1310 m / min and a surface temperature of 90 ° C., a second hot roller 8 having a surface speed of 4000 m / min and a surface temperature of 90 ° C., a third hot roller 9 having a surface speed of 4980 m / min and a surface temperature of 130 ° C. And after passing through non-heated rollers (godet rollers) 10 and 11 having a surface speed of 4950 m / min, which takes a speed difference of -0.6% with respect to the third hot roller 9 as the final hot roller, Take-up tension 0.3 cN / dtex, take-up tension fluctuation 0.2 cN / dtex, surface pressure 10 kgf / cm, traverse angle 0.8 °, traverse speed 68 m / min Using the yarn winding device 12, which is your was wound bobbins hardness 500 kgf / 100 mm, the winding tube of aluminum + Kamigaihi the winding outer diameter 120 mm. The obtained polyester monofilament package had a single yarn fineness of 6 dtex, an end portion of the package having a taper shape, a winding width of the innermost layer of 200 mm, a taper angle of 26 °, and a winding amount of 1.0 kg. . The yarn-making property was good without yarn breakage.
 このときの1段目延伸倍率は3.1倍、総延伸倍率は3.8倍であり、得られたモノフィラメントの繊度は6dtex、破断強度5.5cN/dtex、油分付着量は0.3質量%であった。採取したポリエステルモノフィラメントパッケージの最内層部の糸条長手方向の湿熱収縮応力を測定した結果、パッケージのストレート部と端面の湿熱収縮応力差は1.1cN/dtex、ピーク周期は15mで、この値はパッケージ端面の周期と一致していた。 At this time, the first stage draw ratio was 3.1 times and the total draw ratio was 3.8 times. The monofilament obtained had a fineness of 6 dtex, a breaking strength of 5.5 cN / dtex, and an oil adhesion amount of 0.3 mass. %Met. As a result of measuring the wet heat shrinkage stress in the longitudinal direction of the yarn of the innermost layer part of the collected polyester monofilament package, the wet heat shrinkage stress difference between the straight part and the end face of the package is 1.1 cN / dtex, the peak period is 15 m, and this value is It coincided with the cycle of the package end face.
 同一条件で採取したポリエステルモノフィラメントパッケージサンプルを用いてスクリーン紗の製織評価を行ったところ、織段、ヒケは認められず、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。 When weaving evaluation of the screen wrinkles was performed using a polyester monofilament package sample collected under the same conditions, weaving steps and sink marks were not observed, and it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
 (実施例2)
 常法によって重合およびチップ化したIV1.10(Tg80℃)のPETを芯成分、IV0.50(Tg78℃)の酸化チタン0.3質量%含有のPETを鞘成分とした。紡糸工程および延伸工程はDSD法によるもので、図1に示す装置を使用した。芯成分、鞘成分をそれぞれ個別のエクストルーダーによって295℃で溶融させた。溶融PETは290℃に保温した配管内を通過させた後、公知の芯鞘型複合紡糸口金から芯:鞘の質量比率が80:20、延伸後の繊度が10dtexとなるよう吐出計量し、芯鞘型複合糸条を吐出させた。吐出糸条は口金面から下方に100mmの間、雰囲気温度を290±10℃となるように加熱体により積極保温した後、糸条冷却風装置にて25℃のエアーを10m/分の風速で1方向から糸条に吹き付け、冷却固化せしめた。
(Example 2)
PET of IV1.10 (Tg80 ° C.) polymerized and chipped by a conventional method was used as a core component, and PET containing IV0.50 (Tg78 ° C.) containing 0.3% by mass of titanium oxide was used as a sheath component. The spinning process and the drawing process were based on the DSD method, and the apparatus shown in FIG. 1 was used. The core component and the sheath component were each melted at 295 ° C. by individual extruders. The melted PET is passed through a pipe kept at 290 ° C., and then discharged and measured from a known core-sheath type composite spinneret so that the core: sheath mass ratio is 80:20 and the fineness after stretching is 10 dtex. The sheath type composite yarn was discharged. The discharge yarn is positively kept warm by a heating body so that the ambient temperature is 290 ± 10 ° C. for 100 mm downward from the base surface, and then air at 25 ° C. is blown at a wind speed of 10 m / min with a yarn cooling air device. The yarn was sprayed from one direction to cool and solidify.
 延伸工程は、第1R速度を1210m/分と微調整した以外は実施例1に準じて芯鞘複合モノフィラメントパッケージを巻き取った。 In the stretching step, the core-sheath composite monofilament package was wound up according to Example 1 except that the first R speed was finely adjusted to 1210 m / min.
 このときの1段目延伸倍率は3.3倍、総延伸倍率は4.1倍、得られた芯鞘複合モノフィラメントの繊度は10dtex、破断強度は6.3cN/dtex、油分付着量は0.3%であった。実施例1と同様に、採取したポリエステルモノフィラメントパッケージ最内層部の糸条長手方向の湿熱収縮応力を測定した結果、パッケージのストレート部と端面の収縮応力差は1.2cN/dtex、ピーク周期は14mで、この値はパッケージ端面の周期と一致していた。同一条件で採取した芯鞘複合ポリエステルモノフィラメントパッケージサンプルを用いてスクリーン紗の製織評価を行ったところ、製織工程では織段、ヒケは認められず、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。 At this time, the first stage draw ratio was 3.3 times, the total draw ratio was 4.1 times, the fineness of the obtained core-sheath composite monofilament was 10 dtex, the breaking strength was 6.3 cN / dtex, and the oil adhesion amount was 0.3. 3%. Similar to Example 1, the wet heat shrinkage stress of the collected polyester monofilament package innermost layer in the longitudinal direction of the yarn was measured. As a result, the difference in shrinkage stress between the straight portion and the end face of the package was 1.2 cN / dtex, and the peak period was 14 m. This value was consistent with the period of the package end face. When weaving evaluation of the screen wrinkle was performed using the core-sheath composite polyester monofilament package sample collected under the same conditions, weaving steps and sink marks were not recognized in the weaving process, and it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
 (実施例3)
 実施例1のモノフィラメントが8フィラメント(F)のマルチフィラメント、繊度を6Tから20Tに変更した以外は基本的に実施例1に準じてポリエステルマルチフィラメントパッケージを巻き取った。
(Example 3)
A polyester multifilament package was basically wound up in the same manner as in Example 1 except that the monofilament of Example 1 was an 8-filament (F) multifilament and the fineness was changed from 6T to 20T.
 このときの総延伸倍率は3.8倍、得られたマルチフィラメントの繊度は20dtex、破断強度5.5cN/dtex、油分付着量は0.3質量%であった。採取したポリエステルマルチフィラメントパッケージ最内層部の糸条長手方向の湿熱収縮応力を測定した結果、パッケージのストレート部と端面の収縮応力差は1.1cN/dtex、ピーク周期は15mで、この値はパッケージ端面の周期と一致していた。同一条件で採取したポリエステルモノフィラメントパッケージサンプルを用いてスクリーン紗の製織評価を行ったところ、製織工程では織段、ヒケは認められず、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。 The total draw ratio at this time was 3.8 times, the fineness of the obtained multifilament was 20 dtex, the breaking strength was 5.5 cN / dtex, and the oil adhesion amount was 0.3% by mass. As a result of measuring wet heat shrinkage stress in the longitudinal direction of the collected polyester multifilament package innermost layer, the difference in shrinkage stress between the straight part and the end face of the package was 1.1 cN / dtex, and the peak period was 15 m. It coincided with the period of the end face. When weaving evaluation of the screen wrinkle was performed using a polyester monofilament package sample collected under the same conditions, weaving steps and sink marks were not recognized in the weaving process, and it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  (実施例4)
 実施例2の芯鞘複合モノフィラメントが8フィラメント(F)のマルチフィラメント、繊度を6dtexから20dtexに変更した以外は基本的に実施例2に準じてポリエステルマルチフィラメントパッケージを巻き取った。このときの総延伸倍率は4.1倍、得られたマルチフィラメントの繊度は20dtex、破断強度は6.3cN/dtex、油分付着量は0.3質量%であった。採取したポリエステルマルチフィラメントパッケージ最内層部の糸条長手方向の湿熱収縮応力を測定した結果、パッケージのストレート部と端面の収縮応力差は1.2cN/dtex、ピーク周期は14mで、この値はパッケージ端面の周期と一致していた。同一条件で採取したポリエステルマルチフィラメントパッケージを緯糸に用いて通常の平織りで薄地の衣料用サンプルを作成し製織評価を行ったところ、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。
Example 4
A polyester multifilament package was basically wound up according to Example 2 except that the core-sheath composite monofilament of Example 2 was a multifilament of 8 filaments (F) and the fineness was changed from 6 dtex to 20 dtex. The total draw ratio at this time was 4.1 times, the fineness of the obtained multifilament was 20 dtex, the breaking strength was 6.3 cN / dtex, and the oil adhesion amount was 0.3 mass%. As a result of measuring the wet heat shrinkage stress in the longitudinal direction of the yarn collected at the innermost layer of the collected polyester multifilament package, the difference in shrinkage stress between the straight part and the end face of the package was 1.2 cN / dtex, and the peak period was 14 m. It coincided with the period of the end face. Using a polyester multifilament package collected under the same conditions as a weft, a thin plain fabric sample was prepared for weaving and evaluated for weaving. As a result, we confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  (実施例5)
 巻管硬度を620kgf/100mmとした巻管を用いた以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。得られたポリエステルモノフィラメントパッケージを、スクリーン紗の製織評価を行ったところ、製織工程では織段、ヒケは認められず、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。
(Example 5)
A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 620 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks were not recognized in the weaving process, and it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  (実施例6)
 巻管硬度を300kgf/100mmとした巻管を用いた以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。得られたポリエステルモノフィラメントパッケージを、スクリーン紗の製織評価を行ったところ、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。
(Example 6)
A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 300 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving of the screen basket, it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  (実施例7)
 巻管硬度を200kgf/100mmとした巻管を用いた以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。得られたポリエステルモノフィラメントパッケージを、スクリーン紗の製織評価を行ったところ、実施例1に比べ織段、ヒケがやや目立ったが、織物品位としては合格レベルであった。詳細結果を表1に示した。
(Example 7)
A polyester monofilament package was obtained in the same manner as in Example 1 except that a wound tube having a wound tube hardness of 200 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the fabric quality was acceptable. Detailed results are shown in Table 1.
  (比較例1)
 巻管硬度を180kgf/100mmとした巻管を用いた以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。得られたポリエステルモノフィラメントパッケージを、スクリーン紗の製織評価を行ったところ、織段、ヒケが顕在化し、織物品位は不合格であった。詳細結果を表1に示した。
(Comparative Example 1)
A polyester monofilament package was obtained in the same manner as in Example 1 except that a winding tube having a winding tube hardness of 180 kgf / 100 mm was used. When the obtained polyester monofilament package was evaluated for weaving the screen wrinkles, weaving steps and sink marks became apparent and the quality of the fabric was rejected. Detailed results are shown in Table 1.
  (実施例8)
 スピンドルを変更し、巻管外径を60mmΦとした巻管を用いた以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。巻管外径が60mmΦであったので、スピンドルと巻管との間で十分な接触面積が保て、密着性が良好となり、スピンドルと巻管との間に滑りが生じることもなく、トラバース軌跡が正しく規制され、糸落ちの発生も少なく、フォームの良好なパッケージが得られた。得られたポリエステルモノフィラメントパッケージを、スクリーン紗の製織評価を行ったところ、織物品位は合格レベルであることを確認した。詳細結果を表1に示した。
(Example 8)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the spindle was changed and a wound tube having an outer diameter of 60 mmΦ was used. Since the outer diameter of the wound tube was 60 mmΦ, a sufficient contact area was maintained between the spindle and the wound tube, the adhesion was good, and no slip occurred between the spindle and the wound tube, and the traverse locus Was properly regulated, and there was little occurrence of thread dropping, and a package with good foam was obtained. When the obtained polyester monofilament package was evaluated for weaving of the screen basket, it was confirmed that the fabric quality was acceptable. Detailed results are shown in Table 1.
  (比較例2)
 巻管外径を55mmΦと小さくした以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スピンドルと巻管との把持力が弱く、トラバースも正規の軌跡から外れ気味で糸落ちが多発した。糸切れも発生したのでそれ以降のサンプルの評価は取りやめた。詳細結果を表1に示した。
(Comparative Example 2)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the outer diameter of the wound tube was reduced to 55 mmΦ. The gripping force between the spindle and the winding tube was weak, and the traverse was out of the normal trajectory. Since the yarn breakage also occurred, the evaluation of the subsequent samples was canceled. Detailed results are shown in Table 1.
  (実施例9)
 5%モジュラス、10%モジュラスがそれぞれ2.6cN/dtex、3.5cN/dtexとなるように第3ホットローラー9に対し非加熱ローラー10,11の速度差を-5%に調整した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。製糸性は特に問題なく、スクリーン紗の紗張り張力がやや低いものの、織物品位は合格レベルであった。詳細結果を表1に示した。
Example 9
Except for adjusting the speed difference between the non-heated rollers 10 and 11 to -5% with respect to the third hot roller 9 so that the 5% modulus and 10% modulus are 2.6 cN / dtex and 3.5 cN / dtex, respectively. A polyester monofilament package was obtained in the same manner as in Example 1. There was no particular problem with the yarn-making property, and although the tension of the screen ridge was slightly low, the fabric quality was acceptable. Detailed results are shown in Table 1.
  (比較例3)
 実施例9と同様に5%モジュラス、10%モジュラスがそれぞれ1.8cN/dtex、2.8cN/dtexになるように第3ホットローラー9に対し非加熱ローラーの速度差を-10%に強制的にダウンさせた。得られたサンプルをスクリーン紗に供したところ、スクリーン紗製造時の紗張り後の張力が不足し、織物品位としても不合格であった。詳細結果を表1に示した。
(Comparative Example 3)
As in Example 9, the speed difference of the non-heated roller is forced to −10% with respect to the third hot roller 9 so that the 5% modulus and 10% modulus are 1.8 cN / dtex and 2.8 cN / dtex, respectively. Brought down. When the obtained sample was used for a screen basket, the tension after tension during the production of the screen basket was insufficient, and the fabric quality was not acceptable. Detailed results are shown in Table 1.
  (実施例10)
 単糸繊度を3dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。実施例1に比べ糸切れが増加傾向であった。また、製織評価を実施した結果、かろうじて緯糸飛送性の維持ができ、織物品位も合格レベルであった。詳細結果を表1に示した。
(Example 10)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the single yarn fineness was changed to 3 dtex. Compared with Example 1, thread breakage tended to increase. In addition, as a result of the weaving evaluation, weft barely maintained the weft transportability and the fabric quality was acceptable. Detailed results are shown in Table 1.
  (実施例11)
 破断強度を9cN/dtexに条件変更した以外は実施例2と同様の方法でポリエステルモノフィラメントパッケージを得た。高倍率での延伸のため、実施例1に比べ糸切れが増加傾向であったが合格レベルに収まった。スクリーン紗の製織評価スクリーン紗の製織評価を行ったところ、織物品位は合格レベルであることを確認した。詳細結果を表2に示した。
(Example 11)
A polyester monofilament package was obtained in the same manner as in Example 2 except that the breaking strength was changed to 9 cN / dtex. Although the yarn breakage tended to increase as compared with Example 1 due to stretching at a high magnification, it was within the acceptable level. Evaluation of weaving of screen cocoon When weaving evaluation of screen cocoon was conducted, it was confirmed that the quality of the fabric was acceptable. Detailed results are shown in Table 2.
  (実施例12)
 破断強度を10cN/dtexになるように条件変更した以外は実施例2と同様の方法でポリエステルモノフィラメントパッケージの巻き取りテストを行った。糸切れがやや多発傾向にあったが、織物品位は合格レベルであることを確認した。詳細結果を表2に示した。
Example 12
A winding test of the polyester monofilament package was performed in the same manner as in Example 2 except that the conditions were changed so that the breaking strength was 10 cN / dtex. Although the yarn breakage was somewhat frequent, the fabric quality was confirmed to be acceptable. Detailed results are shown in Table 2.
  (実施例13)
 巻取張力を0.5cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、実施例1に比べ織段、ヒケがやや目立ったが、織物品位は合格レベルであった。詳細結果を表2に示した。
(Example 13)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension was changed to 0.5 cN / dtex. When weaving evaluation of the screen koji was performed, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the quality of the fabric was acceptable. Detailed results are shown in Table 2.
  (実施例14)
 実施例13の巻取張力をさらにアップして0.6cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。実施例13に比べてさらに織段、ヒケが顕著になったが、織物品位は合格レベルであった。詳細結果を表2に示した。
(Example 14)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension in Example 13 was further increased to 0.6 cN / dtex. Compared to Example 13, weaving steps and sink marks became more prominent, but the fabric quality was acceptable. Detailed results are shown in Table 2.
  (実施例15)
 巻取張力変動を0.4cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、実施例1に比べ織段、ヒケがやや目立ったが、織物品位はかろうじて合格レベルであった。詳細結果を表2に示した。
(Example 15)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension variation was changed to 0.4 cN / dtex. When weaving evaluation of the screen koji was performed, weaving steps and sink marks were slightly noticeable as compared with Example 1, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  (実施例16)
 実施例15の巻取張力変動をさらにアップして0.5cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。実施例15に比べてさらに織段、ヒケが顕著になったが、織物品位はかろうじて合格レベルであった。詳細結果を表2に示した。
(Example 16)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the winding tension fluctuation in Example 15 was further increased and changed to 0.5 cN / dtex. Compared to Example 15, weaving steps and sink marks became more prominent, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  (実施例17)
 面圧を15gf/cmに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。軽微な糸落ちが発生したが解舒可能なレベルであり、続けてスクリーン紗の製織評価を行ったところ、実施例1に比べ織段、ヒケがやや目立ったが、織物品位は合格レベルであった。詳細結果を表2に示した。
(Example 17)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the surface pressure was changed to 15 gf / cm. Although slight thread dropping occurred, it was at a level that could be unraveled. When weaving evaluation of the screen wrinkles was continued, weaving steps and sink marks were slightly noticeable compared to Example 1, but the fabric quality was acceptable. It was. Detailed results are shown in Table 2.
  (実施例18)
 実施例17の面圧をさらにアップして20gf/cmに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。実施例17に比べてさらに糸落ち、織段、ヒケが顕著になったが、織物品位はかろうじて合格レベルであった。詳細結果を表2に示した。
(Example 18)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the surface pressure in Example 17 was further increased to 20 gf / cm. Although thread dropping, weaving steps, and sink marks became more prominent than Example 17, the fabric quality was barely acceptable. Detailed results are shown in Table 2.
 (実施例19)
 湿熱収縮応力差を3.0cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、湿熱収縮応力差が3.0cN/dtexだったのでヒケ、織段は発生しているものの、かろうじて合格レベルであった。詳細結果を表2に示した。
(Example 19)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the wet heat shrinkage stress difference was changed to 3.0 cN / dtex. When weaving evaluation of the screen koji was performed, the difference in wet heat shrinkage stress was 3.0 cN / dtex, so that sink marks and weaving steps were generated, but it was barely acceptable. Detailed results are shown in Table 2.
 (実施例20)
 湿熱収縮応力差を4.0cN/dtexに変更した以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価、印刷評価を行ったところ、ややヒケが顕著となったがかろうじて合格レベルであった。詳細結果を表2に示した。
(Example 20)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the wet heat shrinkage stress difference was changed to 4.0 cN / dtex. When weaving evaluation and printing evaluation were conducted on the screen, slight sinking was noticeable, but it was barely acceptable. Detailed results are shown in Table 2.
  (実施例21)
 パッケージの綾角を変更して湿熱収縮応力のピーク周期を60mに長くした以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、湿熱収縮応力のピーク周期が60mだったのでヒケの欠点は合格レベルであった。詳細結果を表2に示した。
(Example 21)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the twill angle of the package was changed and the peak period of wet heat shrinkage stress was increased to 60 m. When weaving evaluation of the screen wrinkle was performed, the peak period of the wet heat shrinkage stress was 60 m, so the defect of sink marks was acceptable. Detailed results are shown in Table 2.
  (実施例22)
 パッケージの綾角を変更して湿熱収縮応力のピーク周期を150mに長くした以外は実施例1と同様の方法でポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、湿熱収縮応力のピーク周期が150mだったのでヒケの欠点は合格レベルであった。詳細結果を表2に示した。
(Example 22)
A polyester monofilament package was obtained in the same manner as in Example 1 except that the twill angle of the package was changed and the peak period of wet heat shrinkage stress was increased to 150 m. When weaving evaluation of the screen koji was performed, the peak period of the wet heat shrinkage stress was 150 m, so the defect of sink marks was acceptable. Detailed results are shown in Table 2.
 (比較例4)
 実施例22と同様の方法で湿熱収縮応力のピーク周期を170mに長くした以外は実施例1に準じてポリエステルモノフィラメントパッケージを得た。スクリーン紗の製織評価を行ったところ、湿熱収縮応力のピーク周期が170mと長くなり、ヒケが顕在化し、織物品位は不合格であった。詳細結果を表2に示した。
(Comparative Example 4)
A polyester monofilament package was obtained in the same manner as in Example 22 except that the peak period of the wet heat shrinkage stress was increased to 170 m. When weaving evaluation of the screen wrinkle was performed, the peak period of wet heat shrinkage stress was as long as 170 m, sink marks became apparent, and the quality of the fabric was rejected. Detailed results are shown in Table 2.
  (実施例23)
 最内層巻幅を220mmと変更した以外は実施例1に準じてポリエステルモノフィラメントパッケージを得た。パッケージからの糸条を解舒時、パッケージ手前と奥側では解舒張力の変動が大きく製織時の打ち込み張力が変動したが、織物品位はかろうじて合格レベルであった。詳細結果を表2に示した。
(Example 23)
A polyester monofilament package was obtained according to Example 1 except that the innermost layer winding width was changed to 220 mm. When the yarn from the package was unwound, the unwinding tension varied greatly between the front and back of the package, and the driving tension during weaving varied, but the fabric quality was barely acceptable. Detailed results are shown in Table 2.
  (比較例5)
 糸条を給油後、未延伸糸の状態で一旦巻取り、これを通常の延伸機で所定の物性となるように2工程法にて延伸し、巻管硬度500kgf/100mm、巻管外径120mmΦのアルミ+紙外皮の巻管に巻き取っており、図2,3に示す装置を使用した。パッケージを評価した結果、湿熱収縮応力ピーク間が550mと長く、ヒケが顕在化し、織物品位は不合格であった。詳細結果を表2に示した。
(Comparative Example 5)
After supplying the yarn, it is wound once in the state of undrawn yarn, and this is drawn by a two-step method so as to have a predetermined physical property with a normal drawing machine, and the winding tube hardness is 500 kgf / 100 mm, and the winding tube outer diameter is 120 mmΦ. The apparatus shown in FIGS. 2 and 3 was used. As a result of evaluating the package, the interval between the wet heat shrinkage stress peaks was as long as 550 m, sink marks became apparent, and the fabric quality was unacceptable. Detailed results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば高精密印刷可能なハイメッシュスクリーン紗を安定して得るために、繊維表面および内部の繊維構造の制御と均一性に優れ、ヒケ、ハレーションなどの品質問題の発生しない高品位な細繊度高強度フィラメントを得ることができる。このようなフィラメントは、フィルター、衣料用にも好適に用いることができ、産業上の利用価値が極めて高いものである。 According to the present invention, in order to stably obtain a high-mesh screen wrinkle capable of high-precision printing, the fiber surface and the internal fiber structure are excellent in control and uniformity, and high-quality that does not cause quality problems such as sink marks and halation. A fine filament high-strength filament can be obtained. Such a filament can be suitably used for filters and clothing, and has very high industrial utility value.
 1:紡糸口金
 2:加熱体
 3:糸条冷却風装置
 4:給油ローラー
 5:第一ゴデットローラー
 6:温度調節保温容器
 7:第一ローラー
 8:第二ローラー
 9:最終ローラー
10:第二ゴデットローラー
11:第三ゴデットローラー
12:糸条巻取装置
13:紡糸口金
14:加熱体
15:糸条冷却風装置
16:給油ローラー
17:第一ゴデットローラー
18:第二ゴデットローラー
19:糸条巻取装置
20:未延伸糸
21:供給ローラー
22:第一ローラー
23:最終ローラー
24:温度調節保温容器
25:ゴデットローラー
26:糸条巻取装置
1: Spinneret 2: Heating body 3: Yarn cooling air device 4: Oil supply roller 5: First godet roller 6: Temperature-controlled warming container 7: First roller 8: Second roller 9: Final roller 10: Second Godet roller 11: Third godet roller 12: Yarn winding device 13: Spinneret 14: Heating body 15: Yarn cooling air device 16: Oil supply roller 17: First godet roller 18: Second godet roller 19: Yarn winding device 20: Undrawn yarn 21: Supply roller 22: First roller 23: Final roller 24: Temperature-controlled warming container 25: Godet roller 26: Yarn winding device

Claims (4)

  1.  硬度が200kgf/100mm以上で外径が60mmΦ以上の巻管に巻き取られた糸条の5%モジュラスが2.0cN/dtex以上であって、繊維長手方向の湿熱収縮応力のピーク周期が150m以下であることを特徴とするポリエステルフィラメントパッケージ。 The 5% modulus of a yarn wound around a winding tube having a hardness of 200 kgf / 100 mm or more and an outer diameter of 60 mmΦ or more is 2.0 cN / dtex or more, and the peak period of wet heat shrinkage stress in the fiber longitudinal direction is 150 m or less. Polyester filament package characterized by being.
  2.  巻き取られた糸条の単糸繊度が3~20dtexであることを特徴とする請求項1記載のポリエステルフィラメントパッケージ。 2. The polyester filament package according to claim 1, wherein the wound yarn has a single yarn fineness of 3 to 20 dtex.
  3.  巻き取られた糸条の破断強度が5.0~9.0cN/dtexであることを特徴とする請求項1または2記載のポリエステルフィラメントパッケージ。 3. The polyester filament package according to claim 1, wherein the wound yarn has a breaking strength of 5.0 to 9.0 cN / dtex.
  4.  巻き取られた糸条の繊維長手方向の湿熱収縮応力差が3.0cN/dtex以下であることを特徴とする請求項1~3のいずれかに記載のポリエステルフィラメントパッケージ。 The polyester filament package according to any one of claims 1 to 3, wherein a difference in wet heat shrinkage stress in the longitudinal direction of the wound yarn is 3.0 cN / dtex or less.
PCT/JP2015/076714 2014-09-30 2015-09-18 Polyester filament package WO2016052269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014201635 2014-09-30
JP2014-201635 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052269A1 true WO2016052269A1 (en) 2016-04-07

Family

ID=55630309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076714 WO2016052269A1 (en) 2014-09-30 2015-09-18 Polyester filament package

Country Status (3)

Country Link
JP (1) JP2016069789A (en)
TW (1) TW201619461A (en)
WO (1) WO2016052269A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044449A1 (en) * 2017-08-30 2019-03-07 東レ株式会社 Single component polyester monofilament for superfine high-mesh filter
CN110637113A (en) * 2017-04-27 2019-12-31 科思创有限公司 Structured filaments for 3-D printing
WO2022004225A1 (en) * 2020-06-30 2022-01-06 東レ株式会社 Polyester monofilament

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915045B1 (en) * 2017-04-21 2018-11-06 한국섬유개발연구원 Process Of Producing High Tenacity Polyester Having Triangular Cross-section For Air Ballon
JPWO2020067224A1 (en) * 2018-09-27 2021-08-30 東レ株式会社 Polyester monofilament for screen gauze and mesh fabric for direct digital plate making
KR20220158749A (en) * 2021-03-31 2022-12-01 케이비 세렌 가부시키가이샤 Polyphenylene sulfide monofilament, manufacturing method and fiber package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545846B2 (en) * 1985-01-17 1993-07-12 Gadelius Abb Kk
JP2013014859A (en) * 2011-07-05 2013-01-24 Toray Ind Inc Polyester monofilament for screen gauze

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545846B2 (en) * 1985-01-17 1993-07-12 Gadelius Abb Kk
JP2013014859A (en) * 2011-07-05 2013-01-24 Toray Ind Inc Polyester monofilament for screen gauze

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637113A (en) * 2017-04-27 2019-12-31 科思创有限公司 Structured filaments for 3-D printing
WO2019044449A1 (en) * 2017-08-30 2019-03-07 東レ株式会社 Single component polyester monofilament for superfine high-mesh filter
CN110770376A (en) * 2017-08-30 2020-02-07 东丽株式会社 Single-component polyester monofilament for high-precision high-mesh filter
JPWO2019044449A1 (en) * 2017-08-30 2020-08-06 東レ株式会社 Single component polyester monofilament for high definition high mesh filters
JP7298155B2 (en) 2017-08-30 2023-06-27 東レ株式会社 Single-component polyester monofilament for high-definition high-mesh filters
WO2022004225A1 (en) * 2020-06-30 2022-01-06 東レ株式会社 Polyester monofilament

Also Published As

Publication number Publication date
JP2016069789A (en) 2016-05-09
TW201619461A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016052269A1 (en) Polyester filament package
KR101610682B1 (en) Polyester monofilament and process for producing polyester monofilament
JP5045846B2 (en) Polyester monofilament package
WO2010035640A1 (en) Polyester monofilament, method for producing same, and method for producing screen gauze using same
WO2018147251A1 (en) Thermally adhesive sheath-core conjugate fiber and tricot fabric
JP2019203215A (en) Polyester filament package and manufacturing method
WO2020067224A1 (en) Polyester monofilament for screen cloth and woven mesh fabric for direct digital platemaking
JP4655967B2 (en) Method for producing polyester monofilament for screen bag and monofilament
JP4893179B2 (en) Method for producing polyester monofilament for screen bag and monofilament
JP2021155854A (en) Composite polyester monofilament package and method for producing the same
JP2008231590A (en) Method for producing polyester monofilament for screen gauze, and polyester monofilament for screen gauze
JP2021161559A (en) Polyester conjugate fiber
JP5633104B2 (en) Manufacturing method of fineness polyester monofilament
JP2013249143A (en) Polyester monofilament package
JP2013194330A (en) Method of producing polyester monofilament for screen gauze
JP2006169680A (en) Method for producing polyester monofilament for screen gauze and monofilament
JP2010077563A (en) Polyester monofilament
JP7176413B2 (en) High tenacity fine polyester multifilament
JP2010221486A (en) Screen gauze
JP2012211399A (en) Polyester monofilament
JP2020193411A (en) Polyester multifilament
JP2022135947A (en) composite polyester monofilament
JP2020143410A (en) Polyester monofilament
JP2014198918A (en) Polyester monofilament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845742

Country of ref document: EP

Kind code of ref document: A1