JP7176373B2 - 光伝送システムおよび光伝送システムの故障診断方法 - Google Patents

光伝送システムおよび光伝送システムの故障診断方法 Download PDF

Info

Publication number
JP7176373B2
JP7176373B2 JP2018221023A JP2018221023A JP7176373B2 JP 7176373 B2 JP7176373 B2 JP 7176373B2 JP 2018221023 A JP2018221023 A JP 2018221023A JP 2018221023 A JP2018221023 A JP 2018221023A JP 7176373 B2 JP7176373 B2 JP 7176373B2
Authority
JP
Japan
Prior art keywords
time
series data
optical
nodes
signal quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018221023A
Other languages
English (en)
Other versions
JP2020088628A (ja
Inventor
光貴 河原
利幸 岡
剛志 関
登志彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018221023A priority Critical patent/JP7176373B2/ja
Priority to US17/295,533 priority patent/US11528080B2/en
Priority to PCT/JP2019/044972 priority patent/WO2020110787A1/ja
Publication of JP2020088628A publication Critical patent/JP2020088628A/ja
Application granted granted Critical
Publication of JP7176373B2 publication Critical patent/JP7176373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

本発明は、自身の故障を診断する光伝送システム、および光伝送システムの故障診断方法に関する。
光伝送システムは、複数のノードがリンクによって相互に接続された光伝送レイヤを備える。この光伝送レイヤでは、光物理特性、および、アナログ制御特性が複雑に相互作用し、故障(異常)位置特定や原因特定が困難な故障(異常)が発生する。
具体的にいうと、光ファイバの非線形の特性により、波長チャネル間で相互作用が発生する。また波長選択スイッチ(WSS:Wavelength selective switch)や光増幅器は、全波長チャネルの信号品質を均一化するレベル/利得制御を行うため、波長チャネル間で相互作用が発生する。よって、所定の波長チャネルの異常が他の波長チャネルにおける信号品質に波及し、故障(異常)や性能劣化の位置特定や原因特定が困難となる。光物理特性、および、アナログ制御特性に起因する故障(異常)や性能劣化の位置特定や原因特定を容易に実現するには、光物理特性・アナログ制御特性の監視箇所の増加、監視する性能情報の種類の増加、および、性能情報の時系列データにおける時間分解能の向上などの対策が必要となる。
非特許文献1には、光パフォーマンスモニタリングに関する現在および将来の技術が記載されている。
Zhenhua Dong, Faisal Nadeem Khan, Qi Sui, Kangping Zhong, Chao Lu, and Alan Pak Tao Lau,"Optical Performance Monitoring: A Review of Current and Future Technologies",JOURNAL OF LIGHTWAVE TECHNOLOGY,IEEE, JANUARY 15, 2016,VOL. 34,NO. 2
光伝送システムのネットワークコントローラは、トランスポンダや各種モニタリングデバイスからの性能情報の統計データを、所定のサンプリング間隔で収集する。例えば、サンプリング間隔は、ネットワークコントローラの処理の逼迫を回避するため、15分程度に制約される。このため、ネットワークコントローラは、このサンプリング間隔よりも短い応答を示す故障(異常)や性能劣化を検知することはできない。
このような短い応答を示す故障(異常)や性能劣化を検知するためにサンプリング間隔を短くすると、ネットワークコントローラの処理が逼迫すると共に、データ通信ネットワーク(DCN:Data Communication Network)の輻輳を招くおそれがある。
一方、従来のネットワークコントローラが収集する性能情報には、光デバイスの入出力での光パワー、光パワーを制御するパラメータ値(例:波長選択スイッチの光減衰量やレーザバイアス電流など)、デバイス温度などがある。この場合、ネットワークコントローラは、光信号パワーにおける時間的変動とデバイス温度における時間的変動を示す故障(異常)や性能劣化しか検知できない。従って、光伝送システムにおいて、光物理特性・アナログ制御特性に起因して発生する故障のうち殆どは、故障位置の特定や原因の特定が困難となる。
そこで、本発明は、光伝送システムにおいて、ネットワークコントローラ側の処理の逼迫やデータ通信ネットワークの輻輳を回避しつつ、故障の位置と原因とを特定することを課題とする。
前記した課題を解決するため、請求項1に記載の発明では、光伝送路によって相互に接続された複数のノードと、複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、を備え、前記判定手段は、前記信号品質の劣化を検知すると、検知したタイミングの前後の所定期間における光物理特性と前記信号品質との相関を判定することを特徴とする光伝送システムとした。
このようにすることで、本発明によれば、ネットワークコントローラ側の処理の逼迫やデータ通信ネットワークの輻輳を回避しつつ、故障の位置と原因とを特定することができる。更に本発明によれば、判定手段の計算量を抑制することができる。
請求項に記載の発明では、前記判定手段は、前記信号品質の劣化を検知したノードまたは構成部品を管理するノードコントーラである、ことを特徴とする請求項1に記載の光伝送システムとした。
このようにすることで、本発明によれば、各ノードコントローラを介して故障原因を診断するので、トランスポンダの性能によらず分散処理を行わせることができる。
請求項に記載の発明では、前記判定手段は、前記信号品質の劣化を検知したノードに設けられたトランスポンダである、ことを特徴とする請求項1に記載の光伝送システムとした。
このようにすることで、本発明によれば、ノードコントローラを設けることなく、トランスポンダに分散処理を行わせることができる。
請求項に記載の発明では、前記ノードを通過する各光パスを構成する光信号に付与する光減衰量の時系列データまたは光パワーの時系列データに基づき、前記ノードまたは前記構成部品における故障原因を診断する、ことを特徴とする請求項またはに記載の光伝送システムとした。
このようにすることで、本発明によれば、ノードを構成する部品の故障原因を診断することができる。
請求項に記載の発明では、光伝送路によって相互に接続された複数のノードと、複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、を備え、各前記ノードは、複数の周波数スロットの光信号を通過させる光クロスコネクトであり、前記ネットワークコントローラは、各光バスの終端にあたるノードを管理する前記判定手段から光物理特性の時系列データを収集して各光パス間の相関係数行列を計算し、相関係数が閾値を超える光パスの組合せに共通するノードのうち最も上流のものを、故障または性能劣化にかかる被疑箇所として特定する、ことを特徴とする光伝送システムとした。
このようにすることで、本発明によれば、光伝送システムは、故障または性能劣化にかかる被疑箇所のノードを機械的に判定できる。
請求項に記載の発明では、前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、ことを特徴とする請求項1ないしのうち何れか1項に記載の光伝送システムとした。
このようにすることで、本発明によれば、装置や光伝送路の故障を容易に判定することができる。
請求項7に記載の発明では、光伝送路によって相互に接続された複数のノードと、複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、を備え、前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、ことを特徴とする光伝送システムとした。
このようにすることで、本発明によれば、装置や光伝送路の故障を容易に判定することができる。
請求項8に記載の発明では、光伝送路によって相互に接続された複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知すると、検知したタイミングの前後の所定期間における光物理特性と前記信号品質との相関を判定し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定し、前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定する、ことを特徴とする故障診断方法とした。
このようにすることで、本発明によれば、ネットワークコントローラ側の処理の逼迫やデータ通信ネットワークの輻輳を回避しつつ、故障の位置と原因とを特定することができる。更に本発明によれば、判定手段の計算量を抑制することができる。
請求項9に記載の発明では、光伝送路によって相互に接続され、複数の周波数スロットの光信号を通過させる光クロスコネクトである複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定し、前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、各光バスの終端にあたるノードを管理する前記管理手段から前記劣化モードに該当する光物理特性の時系列データを収集して各光パス間の相関係数行列を計算し、相関係数が閾値を超える光パスの組合せに共通するノードのうち最も上流のものを、故障または性能劣化にかかる被疑箇所として特定し、故障または性能劣化が発生したノードまたは構成部品を特定する、ことを特徴とする故障診断方法とした。
このようにすることで、本発明によれば、光伝送システムは、故障または性能劣化にかかる被疑箇所のノードを機械的に判定できる。
請求項10に記載の発明では、光伝送路によって相互に接続された複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定し、前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定し、前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、ことを特徴とする故障診断方法とした。
このようにすることで、本発明によれば、装置や光伝送路の故障を容易に判定することができる。
本発明によれば、ネットワークコントローラ側の処理の逼迫やデータ通信ネットワークの輻輳を回避しつつ、故障の位置と原因とが特定可能となる。
第1の実施形態における光伝送システムの概念図である。 故障位置特定と故障原因特定のフローチャートである。 光伝送システムにて異常が発生していることを示す図である。 通常時のエラー訂正前ビットエラー率の時系列データとDSPモニタ特徴量の時系列データ、および、それらの相関係数の時系列データを示すグラフである。 異常時のエラー訂正前ビットエラー率の時系列データとDSPモニタ特徴量の時系列データ、および、それらの相関係数の時系列データを示すグラフである。 異常/変化検知処理を示すフローチャートである。 異常/変化検知の再帰処理を示すフローチャートである。 異常/変化を検知した場合の分析処理を示すフローチャートである。 多変量相関解析処理を示すフローチャートである。 故障モード特定処理を示すフローチャートである。 デジタル信号処理(DSP)チップがモニタする特徴量を示す図である。 ネットワークコントローラが、光伝送システムで発生した異常情報または劣化モードに関する情報を収集する動作を示す図である。 光パスの2次元マップである。 周波数スロット番号と、セクション番号およびOXC番号からなる2次元マップにマークを付与したことを示す図である。 被疑装置の内部の構成部品を示す図である。 被疑装置における各光パスの減衰量を示すグラフである。 被疑装置における各光パスの光パワーを示すグラフである。 第2の実施形態における光伝送システムの概念図である。
以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
図1は、第1の実施形態における光伝送システム1の概念図である。
光伝送システム1は、複数のノード4i~4kが、光伝送路である光ファイバ6によって相互に接続されて構成され、更にノードコントローラ3i~3kと、ネットワークコントローラ2とを備える。
トランスポンダ41i,41kは、各図において“TPD”と記載している。ノード4iが備えるトランスポンダ41iと、ノード4kが備えるトランスポンダ41kとは、光パス5によって通信可能に接続される。光パス5は、物理的な通信路である光ファイバ6とノード4jとを介して、トランスポンダ41iとトランスポンダ41kとを接続する論理的な通信路である。以下、ノード4i~4kなどを区別しないときには、単にノード4と記載する。トランスポンダ41i,41kなどを区別しないときには、単にトランスポンダ41と記載する。
ノードコントローラ3iは、トランスポンダ41iを制御し、かつこれを監視して信号品質の劣化をそれぞれ検知し、この信号品質と相関のある劣化モードをそれぞれ判定する。
ノードコントローラ3jは、ノード4jを制御し、かつこれを監視して信号品質の劣化をそれぞれ検知し、この信号品質と相関する劣化モードをそれぞれ判定する。
ノードコントローラ3kは、トランスポンダ41kを制御し、かつこれを監視して信号品質の劣化をそれぞれ検知し、この信号品質の時系列データと相関のある光物理特性を特定し、劣化モードをそれぞれ判定する。これらノードコントローラ3i~3kは、各ノード4i~4kにおける信号品質の劣化をそれぞれ検知し、信号品質の時系列データと相関のある光物理特性を特定し、劣化モードをそれぞれ判定する判定手段である。以下、各ノードコントローラ3i~3kなどを区別しないときには、単にノードコントローラ3と記載する。
ネットワークコントローラ2は、ノードコントローラ3i~3kとデータ通信ネットワークを介して接続される。ネットワークコントローラ2は、ノードコントローラ3i~3kを制御し、かつこれらを監視する。ネットワークコントローラ2は、ノードコントローラ3i~3kが前記信号品質の劣化を検知したノードおよび、劣化モード、複数の各ノード4から構成されるネットワークトポロジ、各ノード4間に設定される光パス5に基づき、故障(異常)または性能劣化が発生したノードまたは構成部品を特定する。端末21は、ネットワークコントローラ2に接続して、例えば故障位置や原因をユーザに報知する。
図2は、故障診断処理を示す概略のフローチャートである。
ステップS10~S12は、光パス5の終端に位置するノードコントローラ3が実行する処理である。光パス5の終端に位置するノードコントローラ3とはとは、図1においてはノードコントローラ3i,3kに相当する。
光パス5の終端に位置するノードコントローラ3は、監視対象のノード4のPre-FEC BER(Pre-Forward Error Correction Bit Error Rate)の時系列データに対する異常や変化を検知すると(S10)、Pre-FEC BERの時系列データとデジタル信号処理(DSP)でモニタする光物理特性に関するアナログ情報の時系列データとの相関解析に基づき、その劣化モードを特定する(S11)。以下、この光物理特性に関するアナログ情報のことを、DSP-based OPM(Digital Signal Processing based Optical Performance Monitoring)と記載する。ここでPre-FEC BERの時系列データに対する異常は、光パス5を流れる信号の品質が劣化していることを示している。
ノードコントローラ3は更に、特定した劣化モードをネットワークコントローラ2へ通知する(S12)。
ステップS13,S14は、この光伝送システム1を統括制御するネットワークコントローラ2が実行する処理である。
ネットワークコントローラ2は、光パス5の終端にあたる各ノードコントローラ3から劣化モードに該当するDSP-based OPMの時系列データを収集すると(S13)、ネットワークトポロジの情報や光パス経路や波長設定情報に基づき、故障または性能劣化が発生しているノード4または光ファイバ6の位置を特定する(S14)。
ステップS15は、故障が発生している箇所がノード4であった場合、そのノード4を管理するノードコントローラ3が実行する処理である。ノードコントローラ3は、ノード内のトポロジ情報やPM(Performance Monitoring)情報に基づいて故障を診断し、ノード内の故障構成部品および原因を特定する(S15)。
ステップS16は、ネットワークコントローラ2および端末21が実行する処理である。ネットワークコントローラ2は、ノードコントローラ3から特定した故障構成部品情報と原因情報とを収集し、故障構成部品と原因を端末21に報知させ(S16)、図2の処理を終了する。
以下、図3から図17を参照しつつ、光クロスコネクトが備える波長選択スイッチの出力異常により、対象チャネルおよび他チャネルの信号品質に影響が出た故障に対して、迅速な故障位置の特定と原因の特定を実現する具体的手段を説明する。
図3は、光伝送システム1Aにて異常が発生していることを示す図である。
この光伝送システム1Aは、光クロスコネクト4a~4hが、セクション6p~6vの光ファイバによって相互に接続され、ノードコントローラ3a~3hがこれら光クロスコネクト4a~4hに接続されて構成される。これらセクション6p~6vは、各ノードを相互に接続する光伝送路である。
光クロスコネクト4aは、トランスポンダ41a,41bを備え、セクション6pの光ファイバによって光クロスコネクト4cと相互に接続される。これら光クロスコネクト4aやトランスポンダ41a,41bは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3aは、光クロスコネクト4aやトランスポンダ41a,41bを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。
なお、ネットワークコントローラ2やノードコントローラ3aは、光クロスコネクト4aを"OXC-A”として識別し、セクション6pを“セクションP”として識別する。
光クロスコネクト4bは、トランスポンダ41cを備え、セクション6qの光ファイバによって光クロスコネクト4cと相互に接続される。これら光クロスコネクト4bやトランスポンダ41cは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3bは、光クロスコネクト4bやトランスポンダ41cを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。なお、ネットワークコントローラ2やノードコントローラ3bは、光クロスコネクト4bを"OXC-B”として識別し、セクション6qを“セクションQ”として識別する。
光クロスコネクト4cは、セクション6pの光ファイバによって光クロスコネクト4aと相互に接続され、セクション6qの光ファイバによって光クロスコネクト4bと相互に接続される。
光クロスコネクト4cは更に、セクション6rの光ファイバによって光クロスコネクト4dと相互に接続され、セクション6sの光ファイバによって光クロスコネクト4gと相互に接続される。光クロスコネクト4dは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3dは、光クロスコネクト4dを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。なお、ネットワークコントローラ2やノードコントローラ3cは、光クロスコネクト4cを"OXC-C”として識別し、セクション6rを“セクションR”として識別し、セクション6sを“セクションS”として識別する。
光クロスコネクト4dは、セクション6uの光ファイバによって光クロスコネクト4eと相互に接続され、セクション6vの光ファイバによって光クロスコネクト4fと相互に接続される。
なお、ネットワークコントローラ2やノードコントローラ3dは、光クロスコネクト4dを"OXC-D”として識別する。更にネットワークコントローラ2やノードコントローラ3dは、セクション6uを“セクションU”として識別し、セクション6vを“セクションV”として識別する。
光クロスコネクト4eは、トランスポンダ41dを備え、セクション6uの光ファイバによって光クロスコネクト4dと相互に接続される。これら光クロスコネクト4eやトランスポンダ41dは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3eは、光クロスコネクト4eやトランスポンダ41dを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。
なお、ネットワークコントローラ2やノードコントローラ3eは、光クロスコネクト4eを"OXC-E”として識別する。更にネットワークコントローラ2やノードコントローラ3eは、セクション6uを“セクションU”として識別する。
光クロスコネクト4fは、トランスポンダ41e,41fを備え、セクション6vの光ファイバによって光クロスコネクト4dと相互に接続される。これら光クロスコネクト4fやトランスポンダ41e,41fは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3fは、光クロスコネクト4fやトランスポンダ41e,41fを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。
なお、ネットワークコントローラ2やノードコントローラ3fは、光クロスコネクト4fを"OXC-F”として識別する。更にネットワークコントローラ2やノードコントローラ3fは、セクション6vを“セクションV”として識別する。
光クロスコネクト4gは、トランスポンダ41gを備え、セクション6sの光ファイバによって光クロスコネクト4cと相互に接続される。これら光クロスコネクト4gやトランスポンダ41gは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3gは、光クロスコネクト4gやトランスポンダ41gを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。
なお、ネットワークコントローラ2やノードコントローラ3gは、光クロスコネクト4gを"OXC-G”として識別する。更にネットワークコントローラ2やノードコントローラ3gは、セクション6sを“セクションS”として識別する。
光クロスコネクト4hは、トランスポンダ41hを備え、セクション6tの光ファイバによって光クロスコネクト4dと相互に接続される。これら光クロスコネクト4hやトランスポンダ41hは、ノード4を構成するハードウェアである。第1の実施形態のノードコントローラ3hは、光クロスコネクト4hやトランスポンダ41hを制御するソフトウエアを実行するため、信号品質とDSP-based OPMとの相関係数の時系列データを監視し、劣化モードを判定する機能を実現する演算リソースを備えたサーバである。
なお、ネットワークコントローラ2やノードコントローラ3hは、光クロスコネクト4hを"OXC-H”として識別する。更にネットワークコントローラ2やノードコントローラ3hは、セクション6tを“セクションT”として識別する。
光パス5-1は、光伝送システム1Aの一端から他端までを繋ぐ論理的な通信路であり、光クロスコネクト4aのトランスポンダ41aで終端され、更に光クロスコネクト4dのトランスポンダ41dで終端される。光パス5-1は、光クロスコネクト4aから、セクション6pと光クロスコネクト4cとセクション6rを介して光クロスコネクト4dに繋がり、更にセクション6uを介して光クロスコネクト4dに繋がる。
光パス5-2は、光伝送システム1Aの一端から他端までを繋ぐ論理的な通信路であり、光クロスコネクト4bのトランスポンダ41cで終端され、更に光クロスコネクト4fのトランスポンダ41eで終端される。光パス5-2は、光クロスコネクト4bから、セクション6qと光クロスコネクト4cとセクション6rを介して光クロスコネクト4dに繋がり、更にセクション6vを介して光クロスコネクト4fに繋がる。
光パス5-1と光パス5-2とは、異なる波長チャネルの通信路であり、光クロスコネクト4cとセクション6rと光クロスコネクト4dを共用している。
光パス5-3は、光伝送システム1Aの一端から他端までを繋ぐ論理的な通信路であり、光クロスコネクト4aのトランスポンダ41bで終端され、更に光クロスコネクト4gのトランスポンダ41gで終端される。光パス5-3は、光クロスコネクト4aから、セクション6pと光クロスコネクト4cとセクション6sを介して、その先の光クロスコネクト4gのトランスポンダ41に繋がる。
光パス5-1と光パス5-3とは、異なる波長チャネルの通信路であり、光クロスコネクト4aとセクション6pと光クロスコネクト4cを共用している。光パス5-2と光パス5-3とは、異なる波長チャネルの通信路であり、光クロスコネクト4cを共用している。
光パス5-4は、光伝送システム1Aの一端から他端までを繋ぐ論理的な通信路であり、光クロスコネクト4fのトランスポンダ41fで終端され、更に、光クロスコネクト4hのトランスポンダ41hで終端される。光パス5-4は、光クロスコネクト4fから、セクション6vと光クロスコネクト4dとセクション6tを介して、その先の光クロスコネクト4hのトランスポンダ41hに繋がる。
光パス5-1と光パス5-4とは、異なる波長チャネルの通信路であり、光クロスコネクト4dを共用している。光パス5-2と光パス5-4とは、異なる波長チャネルの通信路であり、光クロスコネクト4dとセクション6vと光クロスコネクト4fを共用している。
なお、ネットワークコントローラ2やノードコントローラ3(図1参照)は、光パス5-1を“光パス#1”として認識し、光パス5-2を“光パス#2”として認識し、光パス5-3を“光パス#3”として認識し、光パス5-4を“光パス#4”として認識する。
図3に示すように、光クロスコネクト4cが備える波長選択スイッチの出力パワー異常が発生すると、光パス5-1に対する波長選択スイッチの設定が異常となる。すると、該当する光パス5-1のファイバ入力パワーが増加し、Self Phase Modulation(自己位相変調)による非線形効果の影響が大きくなる。同時に、同一のセクション6rを通過し、かつ、隣接する波長の光パス5-2は、Cross Phase Modulation(相互位相変調)による非線形効果の影響が大きくなる。これにより、光パス5-1と光パス5-2の終端で、それぞれ信号品質の劣化が発生する。
このような信号品質の劣化を検知し、かつ信号品質の劣化モードを特定するため、各光パス5-1~5-4の終点となるトランスポンダ41を監視するノードコントローラ3は、Pre-FEC BERの時系列データと各種DSP-based OPMの時系列データとの相関係数を監視する。そして、相関係数の大きいDSP-based OPMを抽出して劣化モードを特定する。これらの監視処理は、トランスポンダ41を監視するノードコントローラ3の内部で行われる。これにより、ネットワークコントローラ2側の負荷を下げ、データ通信ネットワークの輻輳を回避することができる。
図4は、通常時のエラー訂正前のビットエラー率の時系列データとDSP-based OPMの時系列データ、および、それらの相関係数の時系列データを示すグラフである。
これらグラフのうち左側の3個は、何れもPre-FEC BERの時系列データであり、中間の3個は、各種DSP-based OPMの時系列データである。これらグラフのうち右側の3個は、各行の右側グラフに示したPre-FEC BERの時系列データと、中間グラフに示した各種DSP-based OPMの時系列データとの相関係数を示している。
1行目には、Pre-FEC BERの時系列データとACF(Auto Correlation Function:自己相関関数)の時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定値のまま変動していない。ACFの時系列データも同様に所定値のまま変動していない。よって、これらの相関係数の時系列データも1のまま変動しない。
2行目には、Pre-FEC BERの時系列データとOSNR(Optical Signal to Noise Ratio)の時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定値のまま変動していない。OSNRの時系列データも同様に所定値のまま変動していない。よって、これらの相関係数の時系列データも1のまま変動しない。
3行目には、Pre-FEC BERの時系列データとSpectrum Symmetry(スペクトル対称性)の時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定値のまま変動していない。Spectrum Symmetryの時系列データも同様に所定値のまま変動していない。よって、これらの相関係数の時系列データも1のまま変動しない。
図5は、異常時のエラー訂正前のビットエラー率の時系列データとDSP-based OPMの時系列データ、および、それらの相関係数の時系列データを示すグラフである。
1行目には、Pre-FEC BERの時系列データとACFの時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定タイミングで増加しており、信号品質が劣化していることを示している。ACFの時系列データも、この所定タイミングで増加している。よって、これらの相関係数の時系列データも1のまま変動しない。
2行目には、Pre-FEC BERの時系列データとOSNRの時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定タイミングで増加しており、信号品質が劣化していることを示している。OSNRの時系列データは、所定値のまま変動していない。よって、これらの相関係数の時系列データは、所定タイミングの後、1から次第に減少する。
3行目には、Pre-FEC BERの時系列データとSpectrum Symmetryの時系列データと、これらの相関を演算した結果である相関係数の時系列データとが示されている。Pre-FEC BERの時系列データは、所定タイミングで増加しており、信号品質が劣化していることを示している。Spectrum Symmetryの時系列データは、所定値のまま変動していない。よって、これらの相関係数の時系列データは所定タイミングの後、1から次第に減少する。
ここでは、各種DSP-based OPMの時系列データのうち、異常発生前後においてPre-FEC BERの時系列データとの相関を有しているのは、ACFの時系列データである。よって、故障要因と故障箇所は、ACFの増加に係るものであると特定できる。
図6と図7は、異常/変化検知処理を示すフローチャートである。
異常/変化検知処理には様々なアルゴリズムがあるが、ここでは古典的な変化点アルゴリズムである累積和法を記載する。なお、その他のアルゴリズムを適用してもよい。
最初、ノードコントローラ3(図1参照)は、系列全体を処理対象の区間として設定し(S20)、設定した区間に対する累積和法処理を行う(S21)。この累積和法処理は、図7に示される再帰処理である。
図7に示すように、ノードコントローラ3は、処理対象である区間内の平均値(標本平均)を計算する(S30)。ノードコントローラ3は、各点について平均値と差を求める、平均値との差の累積和を計算する(S31)。その後、ノードコントローラ3は、累積和の絶対値の最大と、所定値(閾値)とを比較する(S32)。ノードコントローラ3は、累積和の絶対値の最大が所定値以下ならば(No)、この検知処理を終了する。ノードコントローラ3は、累積和の絶対値の最大が所定値を超えていたならば(Yes)、ステップS33の処理に進む。
ステップS33において、ノードコントローラ3は、累積和の絶対値が最大になる点(タイミング)を新たな変化点とする。
ステップS34において、ノードコントローラ3は、処理対象である区間のうち、ステップS33で検知した変化点によって区切られた前半を新たな区間として、この累積和法処理を再帰的に呼び出す。
ステップS35において、ノードコントローラ3は、処理対象である区間のうち、ステップS33で検知した変化点によって区切られた後半を新たな区間として、この累積和法処理を再帰的に呼び出したのち、図7の処理を終了する。
図8は、異常/変化を検知した場合の分析処理を示すフローチャートである。
ノードコントローラ3は、各種DSP-based OPMの時系列データにおいて、検知時間の前後Nサンプルにおける対数変化率(1つ前のサンプルとの差分)を計算し(S40)、多変量相関解析処理(図9参照)を呼び出す(S41)。
その後、ノードコントローラ3は、Pre-FEC BERに対して、有意かつ相関の高い(相関係数の絶対値が基準値以上となる)DSP-based OPMを抽出する(S42)。この抽出処理は、前記した図5と図6で説明した動作である。これにより、ノードコントローラ3は、劣化モードを判定したのち、図8の処理を終了する。
図9は、多変量相関解析処理を示すフローチャートである。
ステップS50~S54において、ノードコントローラ3は、各種DSP-based OPMの時系列データの対数変化率について、各処理を繰り返す。
ステップS51において、ノードコントローラ3は、Pre-FEC BERの時系列データに対する当該DSP-based OPMの時系列データの対数変化率との相関係数行列を計算する。
ステップS52において、ノードコントローラ3は、Pre-FEC BERの時系列データに対する当該DSP-based OPMの時系列データの対数変化率との相関のp値を計算する。このp値を有意水準αと比較することにより、相関が有意かどうかを判断することができる。例えば、有意水準αが0.05の場合、実際には相関が存在しないにもかかわらず相関が存在すると結論付けるリスクが5%あることを示す。
ステップS53において、ノードコントローラ3は、Pre-FEC BER時系列データに対する当該DSP-based OPMの時系列データの偏相関係数行列を計算する。この偏相関係数行列を参照することにより、第三の変数の影響により疑似相関・疑似無相関になることを回避することができる。
ステップS54において、ノードコントローラ3は、何れかのDSP-based OPMの時系列データについて処理していなかったならば、ステップS50に戻る。ノードコントローラ3は、全てのDSP-based OPMの時系列データについて処理したならば、図9の処理を終了する。
ノードコントローラ3は、変化を検知した場合に限り、検知の前後の時間幅の時系列データを利用して相関係数を算出するので、検知の処理負荷を抑制することができる。
図10は、故障位置特定処理を示すフローチャートである。
図1に示したように、ネットワークコントローラ2は、光パス終端にあたるノードを管理する各ノードコントローラから劣化モードに該当するDSP-based OPMの時系列データを収集する(S13)。その後、ネットワークコントローラ2は、各光パス間の相関係数行列を計算し(S60)、相関係数が閾値を超えているか否かを判定する(S61)。相関係数行列の計算例を図13に示す。各セルの数値は、セルの数値は、劣化モードに係るDSP-based OPMの時系列データの、当該行および当該列の光パス間における相関を示している。例えば、閾値を0.8と設定する場合は、光パス#2と光パス#3の相関係数が閾値を超えていると判定される。相関係数が閾値を超えていないならば、図10に記載の処理を終了する。
次にネットワークコントローラ2は、セクション・装置情報と周波数スロット番号の2次元マップ上に、相関係数が閾値を超えたと判定された複数の光パスの組合せが設定されている周波数スロット番号、セクション番号およびOXC番号の該当セルにマークを付与する(S62)。2次元マップの例を図14に示す。図14において光パス#2は周波数スロット番号#3に該当し、光パス#3は周波数スロット番号#4に該当すると想定している。ステップS62において、ネットワークコントローラ2は、光パス#2および光パス#3が設定されているセクション番号とOXC番号の該当セルにマーク(この例では“〇”)を付与する。
更にネットワークコントローラ2は、相関係数が閾値を超えた複数の光パスの組合せで共通するセクション番号またはOXC番号のうち、最も上流側に位置するセクションまたはOXCを故障箇所として特定し(S63)、図10の処理を終了する。
図14の場合、光パス#2と光パス#3で共通するセクション番号はR、OXC番号はC、D、Fである。これらのうち、最も上流側に位置するのはOXC-Cであるため、ネットワークコントローラ2は、OXC-Cを被疑箇所として特定する。これにより、どのセクションやどのノードで不具合が発生しているかを容易に判定可能である。
図11は、各種DSP-based OPMを示す図である。
各種DSP-based OPMは、伝送路特性と装置・デバイス特性とトランスポンダ特性に大別される。これを図の「大分類」の項目に記載している。
「大分類」の項目の右側は、各特性に属する小分類を示している。伝送路特性には、波長分散と偏波モード分散とSOP(偏波状態:State Of Polarization)の3個の小分類が属している。波長分散は、波長分散補償量としてモニタされる。偏波モード分散は、偏波モード分散補償量としてモニタされる。SOP(偏波状態:State Of Polarization)変動は、2行2列のMulti-Input Multi-Outputの係数行列に基づき算出されるストークスベクトルによりモニタされる。
装置・デバイス特性には、OSNR(Optical Signal to Noise Ratio:光信号対雑音比)、PDL(Polarization Dependent Loss:偏波依存損失)、反射光を含むクロストーク、ファイバ非線形効果、ISI(Inter-Symbol Interference:符号間干渉)の小分類が属している。OSNRは、Error Vector Magnitude(EVM:エラー・ベクトル振幅)としてモニタされる。PDL(偏波依存損失)は、X/Y間のOSNR差分としてモニタされる。反射光を含むクロストークとISIは、FIR(Finite Impulse Response)フィルタのTap値(係数)としてモニタされる。ファイバ非線形効果は、シンボル間のAuto Correlation Function(自己相関関数)としてモニタされる。
トランスポンダ特性には、コンスタレーション歪みと光源周波数とSpectrum Symmetryの3個の小分類が属している。コンスタレーション歪みは、コンスタレーションの幾何学的形状に基づく指標値としてモニタされる。光源周波数は、周波数オフセット量としてモニタされる。Spectrum Symmetryは、スペクトル対称性に基づく指標値としてモニタされる。
図12は、ネットワークコントローラ2が、光伝送システム1Aで発生した異常情報を収集する動作を示す図である。この図12は、図3に示した光伝送システム1Aに対してネットワークコントローラ2とその動作を追記している。
光パス終端となる光クロスコネクト4eを監視するノードコントローラ3eは、劣化モードに係わるDSP-based OPMの時系列データをトランスポンダ41dから抽出して、ネットワークコントローラ2に転送する。光パス終端となる光クロスコネクト4fを監視するノードコントローラ3fは、劣化モードに係わるDSP-based OPMの時系列データをトランスポンダ41e,41fから抽出して、ネットワークコントローラ2に転送する。
更に光クロスコネクト4gから外部に接続されるトランスポンダ41gを監視するノードコントローラ3gも同様に、劣化モードに係わるDSP-based OPMの時系列データを抽出して、ネットワークコントローラ2に転送する。
ネットワークコントローラ2は、自身が管理している、セクション情報、パス経路情報、使用周波数情報と、各ノードコントローラから収集したDSP-based OPMの時系列データに基づき、大きい相関を示したパスが共用するセクション、および、占有する周波数スロット位置を判定する。これにより、ネットワークコントローラ2は、光クロスコネクト4cでのパワー設定異常によりセクション6rでのファイバ非線形効果による影響が変化したと特定できる。
以下、ネットワークコントローラ2が何れかのノードで不具合が発生していることを判定した場合、故障診断によりノード内の故障構成部品および原因特定について図15から図17により説明する。
図15は、ノード4の内部の構成部品を示す図である。
ノード4は、前段アンプ71および光検出器(PD:Photo Detector)70と、カプラ(CPL:Coupler)72および波長選択スイッチ73と、後段アンプ76および光検出器77と、選択器(SEL:Selector)74と、光チャネルモニタ(OCM:Optical Channel Monitor)75などの構成部品を備えている。
前段アンプ71の入力側には、光検出器70が接続される。この前段アンプ71の出力側は、カプラ72および波長選択スイッチ73を介して、後段アンプ76の入力側に接続される。選択器74は、前段アンプ71の出力と、カプラ72の出力と、波長選択スイッチ73の出力のうち何れかを選択して光チャネルモニタ75に出力するものである。
後段アンプ76の出力側は、光検出器77が接続される。
ノードコントローラ3は、該当ノードからのみPM情報の取得を実施する。これは、従来のように全てのノードのPM情報をネットワークコントローラ2が収集する方法とは異なる。この方法により、ネットワークコントローラ2側の負荷やデータ通信ネットワークの輻輳を回避でき、PM情報の時系列データの取得におけるサンプリング間隔を小さくすることができる。
ノードコントローラ3は、光検出器70,77から光パワーを取得する。ノードコントローラ3は、前段アンプ71や後段アンプ76から温度やレーザバイアス電流値を取得する。ノードコントローラ3は、光チャネルモニタ75からチャネル単位の光パワーを取得し、波長選択スイッチ73から温度や光減衰量を取得する。
図16は、被疑装置における各光パスの光減衰量を示すグラフである。
今回想定するケースでは、所定タイミングにおいて、波長選択スイッチ73の光パス#1の減衰量が異常値になっている。
図17は、被疑装置における各光パスの光パワーを示すグラフである。
今回想定するケースでは、上記した所定タイミングにおいて、光チャネルモニタ75でのチャネル単位の光パス#1のパワーも異常値になっている。これら図17や図18を参照することで、ノードコントローラ3は、光クロスコネクト4c内の波長選択スイッチのパッケージ(構成部品)に異常があることを判定できる。更にネットワークコントローラ2ではなく、各ノードコントローラ3が故障判定することにより、データ分解能を向上させ、かつネットワークコントローラ2の処理の逼迫を回避することができる。
図18は、第2の実施形態における光伝送システム1Bの概念図である。
光伝送システム1は、複数のノード4i~4kが、光伝送路である光ファイバ6によって相互に接続されて構成され、更にネットワークコントローラ2とを備える。
ノード4iが備えるトランスポンダ41iと、ノード4kが備えるトランスポンダ41kとは、光パス5によって通信可能に接続される。光パス5は、物理的な通信路である光ファイバ6とノード4jとを介して、トランスポンダ41iとトランスポンダ41kとを接続する論理的な通信路である。
トランスポンダ41i,41kは、内部にデジタル信号処理(DSP)のチップが含まれており、その余剰リソースを活用して、相関係数の時系列データを監視し故障モードを特定する機能を実現する。トランスポンダ41i,41kは、ノードを監視するコントローラ機能を具現化するプログラムを実行することで、自身を監視して信号品質の劣化をそれぞれ検知し、この信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する。ノード4jは、自身を監視して信号品質の劣化をそれぞれ検知し、この信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する。これらトランスポンダ41i,41kやノード4jは、信号品質の劣化をそれぞれ検知し、この信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する判定手段として機能する。
ネットワークコントローラ2は、トランスポンダ41i,41kやノード4jとデータ通信ネットワークを介して接続される。ネットワークコントローラ2は、トランスポンダ41i,41kやノード4jを制御し、かつこれらを監視する。ネットワークコントローラ2は、トランスポンダ41i,41kやノード4jが信号品質の劣化を検知したノードおよび、劣化モード、各ノードのトポロジ、各ノード4間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定する。端末21は、ネットワークコントローラ2に接続して、例えば故障位置や原因をユーザに報知する。
第2の実施形態によれば、ハードウェアとしてのノードコントローラを設けることなく、各トランスポンダ41や各ノード4に、ノードコントローラ機能を具現化するプログラムを実行させることで、自律的に信号品質の劣化を検知させることができる。
(変形例)
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で、変更実施が可能であり、例えば、次の(a)~(c)のようなものがある。
(a) 光伝送システムのトポロジは、図3や図12に示したものに限定されない。
(b) 光パスを流れる信号の品質劣化を検知する方法は、Pre-FEC BERの時系列データに対する異常を検知することに限定されず、信号品質をデジタルで測定して異常を検知するものであればよい。
(c) ノードコントローラが検知する特徴量は、実施形態で列挙したものに限定されず、ノード(装置)や光伝送路の故障と相関性を有するものであればよい。
1,1A 光伝送システム
2 ネットワークコントローラ
21 端末
3,3i~3k ノードコントローラ
4,4i~4k ノード
4a~4f 光クロスコネクト
41,41a~41k トランスポンダ
5,5-1~5-4 光パス
6 光ファイバ
6p~6v セクション (光伝送路)

Claims (10)

  1. 光伝送路によって相互に接続された複数のノードと、
    複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、
    前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、
    を備え
    前記判定手段は、前記信号品質の劣化を検知すると、検知したタイミングの前後の所定期間における光物理特性と前記信号品質との相関を判定する、
    ことを特徴とする光伝送システム。
  2. 前記判定手段は、前記信号品質の劣化を検知したノードまたは構成部品を管理するノードコントーラである、
    ことを特徴とする請求項1に記載の光伝送システム。
  3. 前記判定手段は、前記信号品質の劣化を検知したノードに設けられたトランスポンダである、
    ことを特徴とする請求項1に記載の光伝送システム。
  4. 前記ノードを通過する各光パスを構成する光信号に付与する光減衰量の時系列データまたは光パワーの時系列データに基づき、前記ノードまたは前記構成部品における故障原因を診断する、
    ことを特徴とする請求項またはに記載の光伝送システム。
  5. 光伝送路によって相互に接続された複数のノードと、
    複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、
    前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、
    を備え
    各前記ノードは、複数の周波数スロットの光信号を通過させる光クロスコネクトであり、
    前記ネットワークコントローラは、各光バスの終端にあたるノードを管理する前記判定手段から前記劣化モードに該当する光物理特性の時系列データを収集して各光パス間の相関係数行列を計算し、相関係数が閾値を超える光パスの組合せに共通するノードのうち最も上流のものを、故障または性能劣化にかかる被疑箇所として特定する、
    ことを特徴とする光伝送システム。
  6. 前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、
    ことを特徴とする請求項1ないしのうち何れか1項に記載の光伝送システム。
  7. 光伝送路によって相互に接続された複数のノードと、
    複数の各前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定する複数の判定手段と、
    前記判定手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定するネットワークコントローラと、
    を備え
    前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、
    ことを特徴とする光伝送システム。
  8. 光伝送路によって相互に接続された複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、
    前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知すると、検知したタイミングの前後の所定期間における光物理特性と前記信号品質との相関を判定し
    前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、
    劣化モードをそれぞれ判定し、
    前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定する、
    ことを特徴とする故障診断方法。
  9. 光伝送路によって相互に接続され、複数の周波数スロットの光信号を通過させる光クロスコネクトである複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、
    前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定し、
    前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、各光バスの終端にあたるノードを管理する前記管理手段から前記劣化モードに該当する光物理特性の時系列データを収集して各光パス間の相関係数行列を計算し、
    相関係数が閾値を超える光パスの組合せに共通するノードのうち最も上流のものを、故障または性能劣化にかかる被疑箇所として特定し、
    故障または性能劣化が発生したノードまたは構成部品を特定する、
    ことを特徴とする故障診断方法。
  10. 光伝送路によって相互に接続された複数のノード、各前記ノードをそれぞれ管理する管理手段、前記管理手段を統括管理するネットワークコントローラを含む光伝送システムが実行する故障診断方法であって、
    前記管理手段は、前記ノードにおける信号品質の劣化をそれぞれ検知し、前記信号品質の時系列データと相関のある光物理特性の時系列データを特定し、劣化モードをそれぞれ判定し、
    前記ネットワークコントローラは、前記管理手段が前記信号品質の劣化を検知したノードおよび、前記劣化モード、複数の各前記ノードから構成されるネットワークトポロジ、各前記ノード間に設定される光パスの情報に基づき、故障または性能劣化が発生したノードまたは構成部品を特定し、
    前記信号品質の時系列データと相関のある光物理特性の時系列データは、波長分散補償量の時系列データ、偏波モード分散補償量の時系列データ、SOP(State Of Polarization)の時系列データ、信号対ノイズ比の時系列データ、偏波依存損失の時系列データ、クロストークの時系列データ、ファイバ非線形効果の時系列データ、符号間干渉の時系列データ、コンスタレーション歪みの時系列データ、光源周波数の時系列データ、スペクトル対称性の時系列データうち何れかを少なくとも含む、
    ことを特徴とする故障診断方法。
JP2018221023A 2018-11-27 2018-11-27 光伝送システムおよび光伝送システムの故障診断方法 Active JP7176373B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018221023A JP7176373B2 (ja) 2018-11-27 2018-11-27 光伝送システムおよび光伝送システムの故障診断方法
US17/295,533 US11528080B2 (en) 2018-11-27 2019-11-15 Optical transmission system and failure diagnosis method for optical transmission system
PCT/JP2019/044972 WO2020110787A1 (ja) 2018-11-27 2019-11-15 光伝送システムおよび光伝送システムの故障診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221023A JP7176373B2 (ja) 2018-11-27 2018-11-27 光伝送システムおよび光伝送システムの故障診断方法

Publications (2)

Publication Number Publication Date
JP2020088628A JP2020088628A (ja) 2020-06-04
JP7176373B2 true JP7176373B2 (ja) 2022-11-22

Family

ID=70852991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221023A Active JP7176373B2 (ja) 2018-11-27 2018-11-27 光伝送システムおよび光伝送システムの故障診断方法

Country Status (3)

Country Link
US (1) US11528080B2 (ja)
JP (1) JP7176373B2 (ja)
WO (1) WO2020110787A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010171B2 (ja) * 2018-08-10 2022-01-26 日本電信電話株式会社 保守管理システムおよびデータ処理方法
US20230254611A1 (en) * 2020-07-06 2023-08-10 Nippon Telegraph And Telephone Corporation Optical node device, optical transport network system, optical path trace method and program
US11742978B2 (en) 2020-12-25 2023-08-29 Fujitsu Limited Optical network device and method for monitoring transmission line
WO2023226477A1 (zh) * 2022-05-26 2023-11-30 华为技术有限公司 一种光模块、电子设备、通信系统及相关处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204856A1 (en) 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Survivable Hybrid Optical/Electrical Data Center Networks Using Loss of Light Detection
US20180220210A1 (en) 2017-02-02 2018-08-02 Infinera Corporation Multi-layer mechanisms to optimize optical transport network margin allocation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7870440B2 (en) * 2008-03-14 2011-01-11 Oracle America, Inc. Method and apparatus for detecting multiple anomalies in a cluster of components
EP2854306B1 (en) * 2013-09-25 2020-01-01 Alcatel Lucent Optical receiver and method of operating an optical receiver
WO2019125801A1 (en) * 2017-12-19 2019-06-27 Exxonmobil Research And Engineering Company Data analysis platform
US10621141B2 (en) * 2018-01-31 2020-04-14 Oracle International Corporation Multivariate memory vectorization technique to facilitate intelligent caching in time-series databases
US10496084B2 (en) * 2018-04-06 2019-12-03 Oracle International Corporation Dequantizing low-resolution IoT signals to produce high-accuracy prognostic indicators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204856A1 (en) 2015-01-08 2016-07-14 Nec Laboratories America, Inc. Survivable Hybrid Optical/Electrical Data Center Networks Using Loss of Light Detection
US20180220210A1 (en) 2017-02-02 2018-08-02 Infinera Corporation Multi-layer mechanisms to optimize optical transport network margin allocation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG, Zhenhua et al.,Optical Performance Monitoring: A Review of Current and Future Technologies,Journal of Lightwave Technology,米国,IEEE,2016年01月15日,Vol.34, Issue.2,pp.525-543

Also Published As

Publication number Publication date
US11528080B2 (en) 2022-12-13
US20220021449A1 (en) 2022-01-20
WO2020110787A1 (ja) 2020-06-04
JP2020088628A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
JP7176373B2 (ja) 光伝送システムおよび光伝送システムの故障診断方法
US20210058154A1 (en) Method for monitoring an optical communications system
US6952529B1 (en) System and method for monitoring OSNR in an optical network
JP5277528B2 (ja) 監視システム、光伝送装置、光伝送システム及び監視レベル設定方法
US9008508B2 (en) Method and device for detecting inband optical signal to noise ratio
US20040120706A1 (en) Fault isolation in agile transparent networks
EP2163009A1 (en) Optical link quality monitoring in a computer network
JP2014517624A (ja) 光ネットワーク通信システムのための障害検出器
US20040161234A1 (en) Apparatus, method and program for controlling optical power
Wang et al. A review of machine learning-based failure management in optical networks
US8254788B2 (en) High speed in-service optical network testing
US20020141009A1 (en) Performance monitoring for multi-port optical devices and systems
US7327954B2 (en) Optical signaling to share active channel information
JP2008521304A (ja) 光信号の監視装置及び方法
US7315370B2 (en) Flash optical performance monitor
US20080075457A1 (en) Methods and systems for optical performance monitoring
Sartzetakis et al. On reducing optical monitoring uncertainties and localizing soft failures
US9008509B2 (en) Measurement of optical performance for passive WDM systems
JP2009296336A (ja) 光受信装置、遠隔監視装置および遠隔監視プログラム
US6580498B1 (en) Optical return loss detector for optical transmission systems
WO2023162187A1 (ja) 光伝送システムおよび故障箇所特定方法
Díaz-Montiel et al. Real-Time Control Plane Operations for gOSNR QoT Estimation through OSNR Monitoring
EP2237453B1 (en) Method and equipment for managing optical channel monitoring in an optical network
KR101024213B1 (ko) 폐루프를 이용한 자가진단 기능이 구비된 광송수신 모듈 및자가진단 방법
Jedidi et al. Hardware-based monitoring method for all-optical components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7176373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150