WO2023226477A1 - 一种光模块、电子设备、通信系统及相关处理方法 - Google Patents

一种光模块、电子设备、通信系统及相关处理方法 Download PDF

Info

Publication number
WO2023226477A1
WO2023226477A1 PCT/CN2023/075248 CN2023075248W WO2023226477A1 WO 2023226477 A1 WO2023226477 A1 WO 2023226477A1 CN 2023075248 W CN2023075248 W CN 2023075248W WO 2023226477 A1 WO2023226477 A1 WO 2023226477A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
sampling
optical
information
sampling parameter
Prior art date
Application number
PCT/CN2023/075248
Other languages
English (en)
French (fr)
Inventor
苏长征
毛保平
周兵
王栋
钟强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211131775.3A external-priority patent/CN117176247A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023226477A1 publication Critical patent/WO2023226477A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal

Definitions

  • the present application relates to the field of communication technology, and in particular to an optical module, electronic equipment, communication system and related processing methods.
  • Optical path failure is a common failure phenomenon in optical fiber networks.
  • the causes of failure can include power failure, line failure, module failure, equipment failure, etc. These optical path failures will cause optical path interruption (for example, the device cannot receive light) or optical path degradation (for example, the optical power received by the device is low), thus affecting network service quality.
  • optical path faults occur, how to quickly and accurately identify and delimit these fault points is of great significance for reducing the mean time to recovery (MTTR) of network services.
  • MTTR mean time to recovery
  • the optical module when an optical path failure occurs in the communication system, the optical module is required to upload the collected sampling data to the electronic device, and then transmit the sampling data to the network management device through the electronic device, and the network management device calculates and analyzes the sampling data. , to locate the fault point.
  • This requires the sampling data of multiple optical modules of multiple electronic devices in the network system to be transmitted to the network management equipment.
  • the amount of data that needs to be transmitted is very large. Limited by the communication bus transmission rate, it takes a long time to transmit the sampling data to the network management equipment. time, resulting in the failure to identify or report the cause of the fault and the location of the fault point in a timely manner after an optical path fault occurs.
  • Embodiments of the present application provide an optical module, electronic equipment, communication system and related processing methods to solve the problem of being unable to promptly identify or report the cause of the fault and the location of the fault point after an optical path failure occurs in the communication system.
  • inventions of the present application provide an optical module.
  • the optical module may be a photoelectric conversion module, an optical amplification module, an optical switching module or other functional modules.
  • the optical module in the embodiment of the present application may include: a first processing unit, and a sampling unit, a sampling information storage unit, and a fault information storage unit that are electrically connected to the first processing unit respectively.
  • the sampling unit is used to collect the first sampling parameter, and store the first sampling parameter in the sampling information storage unit through the first processing unit.
  • the sampling unit can collect the first sampling parameter in real time, and transmit the collected first sampling parameter to the first processing unit in real time.
  • the first processing unit transmits the first sampling parameter to the sampling information in real time.
  • the storage unit, the sampling information storage unit receives and stores the first sampling parameter in real time.
  • the first sampling parameter collected by the sampling unit may be micro-granularity data, and the micro-granularity may be such that the sampling interval is less than 100 milliseconds.
  • the first sampling parameter may include: a photogenerated current that represents the optical power of the input optical signal.
  • the first processing unit is configured to read the first sampling parameter in the sampling information storage unit when the alarm information is recognized, determine the fault type information corresponding to the alarm information according to the first sampling parameter, and store the fault type information in the fault information storage in the unit.
  • the first processing unit when the first processing unit recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. In this way, functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module. Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately Determine the cause of the fault and the location of the fault point. Therefore, the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • the first processing unit may be a central processing unit (CPU) or a microprocessor (Microcontroller Unit, MCU) or other device with data processing functions.
  • the sampling unit can be a sampling circuit including an analog-to-digital converter.
  • the sampling information storage unit and the fault information storage unit can be specific areas of the memory in the optical module. At least one independent memory chip can also be provided in the optical module, and the memory chip can be used as a memory chip.
  • the sampling information storage unit and/or the fault information storage unit that is, the sampling information storage unit and the fault information storage unit can respectively use a memory chip, or they can share the same memory chip. This is just an example, and does not apply to the sampling information storage unit and the fault information storage unit.
  • the specific implementation method of the fault information storage unit is limited.
  • the fault information storage unit can also store fault occurrence time information corresponding to the alarm information.
  • the above-mentioned first sampling parameter may include a photogenerated current.
  • the above-mentioned first sampling parameter can be implemented in a variety of ways, including photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, and photoelectric eye. Any of the parameters such as image amplitude, optical signal phase, optical signal spectrum, etc. can be used as the above-mentioned first sampling parameter.
  • the photogenerated current is the DC component of the input optical signal
  • the optical signal amplitude is the difference between the high level and the low level of the input optical signal. Both the photogenerated current and the optical signal amplitude are positively correlated with the optical power of the input optical signal.
  • other parameters can also be used as the above-mentioned first sampling parameters, as long as the first processing unit can determine the fault type information corresponding to the alarm information based on the first sampling parameters.
  • the specific implementation method of the first sampling parameter is not limited here.
  • the optical module in the embodiment of the present application can use multiple methods to determine the alarm status.
  • the following is an example of several methods for determining the alarm status of the optical module.
  • the above-mentioned optical module may further include: an alarm information generating unit, which is electrically connected to the sampling unit and the first processing unit respectively.
  • the sampling unit is also used to send the first sampling parameter to the alarm information generation unit.
  • the alarm information generation unit is used to determine whether the first sampling parameter is within a preset threshold range. When the first sampling parameter exceeds the threshold range, generate alarm information, and Send the alarm information to the first processing unit.
  • the alarm information generation unit can receive multiple first sampling parameters output by the sampling unit in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset threshold range When the maximum value or less than the minimum value of the preset threshold range, Generate alarm information.
  • the alarm information can be a digital logic signal changing from low level to high level, or the alarm information can also be a digital logic signal changing from high level to low level.
  • the alarm information can also be of other types. The information is not limited here.
  • the parameters used by the alarm information generation unit to judge the alarm status may be the same as the parameters used by the first processing unit to determine the fault type information.
  • the first sampling parameters collected by the sampling unit may both be used.
  • the first sampling parameter may include a photogenerated current.
  • the first sampling parameter may include parameters such as photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase or optical signal spectrum.
  • the first sampling parameter may also include other parameters, which are not limited here.
  • the above-mentioned optical module may further include: an alarm information generating unit, which is electrically connected to the sampling unit and the first processing unit respectively.
  • the sampling unit is also used to collect a second sampling parameter, and send the second sampling parameter to the alarm information generation unit, where the second sampling parameter is different from the first sampling parameter.
  • the alarm information generating unit is used to determine whether the second sampling parameter is within a preset threshold range. When the second sampling parameter exceeds the threshold range, generate alarm information and send the alarm information to the first processing unit.
  • the alarm information generation unit can receive multiple second sampling parameters output by the sampling unit in real time, and compare each received second sampling parameter with the end value of the preset threshold range one by one. When the second sampling parameter is greater than the preset threshold range, When the maximum value or the minimum value is less than the preset threshold range, an alarm message is generated.
  • the sampling unit can be specifically used to collect the second sampling parameter in real time with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling unit has high sampling accuracy and can be used to determine faults. Type information provides more sample data.
  • the parameters used by the alarm information generation unit to judge the alarm status are different from the parameters used by the first processing unit to determine the fault type information.
  • the first processing unit uses the first sampling The parameters determine the fault type information
  • the alarm information generating unit uses a second sampling parameter that is different from the first sampling parameter to determine the alarm status.
  • the first sampling parameter may include photogenerated current, and the second sampling parameter may include optical signal amplitude; or, the first sampling parameter may include photogenerated current, and the second sampling parameter may include correction Bit error rate.
  • the first sampling parameter and the second sampling parameter may also include other parameters, which are not limited here.
  • the alarm information generation unit may be an independent hardware unit.
  • the alarm information generation unit may be hardware such as a comparator, or the alarm information generation unit may be integrated with the first processing unit in the same unit.
  • the specific implementation method of the alarm information generating unit is not limited here.
  • the alarm information generation unit can be implemented by hardware or software to "judge whether the first sampling parameter (or second sampling parameter) is within the preset threshold range, and when the first sampling parameter exceeds the threshold range, generate Alarm information" function.
  • the first sampling parameter is monitored in real time by setting an alarm information generation unit.
  • the alarm information generation unit can detect the abnormality in time, generate alarm information, and report the alarm The information is sent to the first processing unit.
  • the function of determining the alarm status in the optical module can also be implemented through the first processing unit.
  • the first processing unit can use the first sampling parameter to determine the alarm status, that is, the first processing unit can determine whether the first sampling parameter is within the preset threshold range. , when the first sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit can receive multiple first sampling parameters output by the sampling unit in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset threshold range, When the maximum value or the minimum value is less than the preset threshold range, an alarm message is generated.
  • the first processing unit can use a second sampling parameter different from the first sampling parameter to judge the alarm status, that is, the first processing unit can judge the second sampling parameter. Whether the second sampling parameter is within the preset threshold range. When the second sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit can receive multiple second sampling parameters output by the sampling unit in real time, and compare each received second sampling parameter with the end value of the preset threshold range one by one. When the second sampling parameter is greater than the preset threshold range, When the maximum value or the minimum value is less than the preset threshold range, an alarm message is generated.
  • the sampling unit can be specifically used to collect the first sampling parameter with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling of the sampling unit The accuracy is higher and more sampling data can be provided to determine the fault type information.
  • the optical module since the optical module does not need to send the first sampling parameter to the electronic device, the sampling unit has a higher sampling accuracy and does not increase the number of optical modules. Data transmission pressure to and from electronic devices.
  • the optical module can collect the first sampling parameter in real time under normal working conditions, encode the first sampling parameter and store it in the sampling information storage unit through the first processing unit. If the storage in the sampling information storage unit When the space is full, the wrap can be overwritten from the starting point.
  • the first processing unit may be specifically configured to continue to store the first sampling parameters of p sampling points collected by the sampling unit in the sampling information storage unit when alarm information is recognized, where p is an integer greater than or equal to 0, in During specific implementation, the specific value of p can be set according to the application scenario. For example, p can be a value between 10 and 1000. Afterwards, the first sampling parameter (including at least 2 sampling point data) within the preset time window in the sampling information storage unit is read, and the fault type information corresponding to the alarm information is determined based on the read first sampling parameter.
  • the first processing unit when the first processing unit recognizes the alarm information, it will continue to store the first sampling parameters of the p sampling points collected by the sampling unit in the sampling information storage unit, and read the sampling information storage unit.
  • the first sampling parameter within the preset time window, p is greater than or equal to 0. That is to say, when the first processing unit recognizes the alarm information, it can immediately read the first sampling parameter in the sampling information storage unit, or it can delay Read the first sampling parameter in the sampling information storage unit after a period of time. In this way, the first processing unit obtains more data on the first sampling parameter after identifying the alarm information, and can determine the fault type information corresponding to the alarm information by obtaining the waveform of the first sampling parameter within the preset time window, The accuracy of fault analysis is higher.
  • the first processing unit after the first processing unit reads the first sampling parameter within the preset time window in the sampling information storage unit, it can extract the characteristic parameters of the first sampling parameter within the preset time window. For example, it can use Supervised and/or unsupervised algorithms, and the extracted feature parameters are stored in the cache queue of the first processing unit according to the classification results.
  • the first processing unit can be based on the feature parameters of the first sampling parameter within the preset time window, Classify fault types to determine the fault type information corresponding to the alarm information.
  • At least one parameter of the optical module may be abnormal, and a certain parameter may be used as the first sampling parameter.
  • the first sampling parameter may include : Photogenerated current or optical signal amplitude.
  • the first sampling parameter can also be other parameters, which are not limited here.
  • the first processing unit in the optical module may determine the fault type information based on the first sampling parameter when the fault occurs.
  • the first processing unit may be specifically used for:
  • the difference between the first sampling parameter at the initial time and the last time is less than the first threshold (that is, the difference between the first sampling parameter at the initial time and the last time is small), and the waveform of the first sampling parameter within the preset time window Fluctuation events exist regularly, that is to say, after the first sampling parameter fluctuates within the preset time window, it can return to the value before the fluctuation, then the fault type information corresponding to the alarm information is the input optical power fluctuation; or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, and the first sampling parameter at the last time is less than the second threshold (that is, the difference between the first sampling parameter at the initial time and the last time is large, and the final (the first sampling value at the moment is smaller), and the waveform pattern of the first sampling parameter within the preset time window fluctuates and drops. That is to say, the value obtained after the first sampling parameter fluctuates within the preset time window is smaller, the fault type information corresponding to the alarm information is input optical power fluctuation loss; or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, and the first sampling parameter at the last time is less than the second threshold (that is, the difference between the first sampling parameter at the initial time and the last time is large, and the final (the first sampling value at the moment is smaller), and the waveform pattern of the first sampling parameter within the preset time window has a rapid decline event, that is to say, the first sampling parameter quickly drops to a smaller value within the preset time window.
  • the fault type information corresponding to the alarm information is rapid loss of input optical power; or,
  • the waveform pattern of the first sampling parameter within the preset time window has a step-down event, that is to say, the first sampling parameter steps down to a smaller value within the preset time window. value, then the fault type information corresponding to the alarm information is input optical power step loss; or,
  • the first sampling parameter at the last time is greater than the second threshold, and
  • the waveform pattern of the first sampling parameter within the preset time window has deterioration characteristics. That is to say, within the preset time window, the first sampling parameter has declined to a certain extent, and the first sampling parameter at the last moment is at the second threshold. and the first threshold, for example, the first sampling parameter at the last moment may be approximately half of the first sampling parameter at the initial moment, then the fault type information corresponding to the alarm information is input optical power degradation.
  • the first sampling parameter within the preset time window is used to determine the fault type information. Combined with the waveform and end value of the first sampling parameter within the preset time window, the fault type information corresponding to the alarm information can be accurately determined. This makes subsequent determination of the cause and point of the fault more accurate.
  • the first sampling parameters may include: photogenerated current and precorrection bit error rate.
  • the first processing unit in the optical module may determine the fault type information based on at least two parameters at the time when the fault occurs. In this way, the first processing unit has more parameters for fault classification and can accurately determine the fault type corresponding to the alarm information, thereby improving the accuracy of fault cause location.
  • the first processing unit may be specifically used for:
  • the difference between the photocurrents at the initial time and the last time is less than the first threshold, and the difference between the pre-corrected bit error rates at the initial time and the last time is greater than the third threshold (that is, the difference between the photocurrents at the initial time and the last time is greater than small, initial moment
  • the difference with the pre-correction bit error rate at the last moment is large), that is to say, within the preset time window, the pre-correction bit error rate decreases and the photogenerated current basically remains unchanged, then the fault type information corresponding to the alarm information is the optical power Multipath interference is degraded.
  • the specific values of the first threshold, the second threshold, the third threshold and the preset time window may be set according to the application scenario of the network system and other factors.
  • inventions of the present application also provide an electronic device.
  • the electronic device may be an optical transmission device, an optical access device, an optical switching device, an optical amplification device, a router, a switch, a wireless base station, or a wireless remote access device. Or wireless baseband signal processing equipment, etc.
  • the electronic device in the embodiment of the present application may include: a second processing unit, and any of the above optical modules, and the optical module is connected to the second processing unit.
  • the optical module is configured to send alarm information to the second processing unit when the alarm information is recognized.
  • the second processing unit is configured to read the fault information storage unit of the optical module after a first preset time after receiving the alarm information. Fault type information corresponding to the alarm information.
  • the second processing unit may be a device with strong data processing functions such as a server.
  • the first processing unit in the optical module when the first processing unit in the optical module recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit.
  • the second processing unit in the electronic device can read the fault type information corresponding to the alarm information in the fault information storage unit after receiving the first preset time of the alarm information, and combined with the network topology relationship of the communication system, it can quickly , Accurately determine the cause of the fault and the location of the fault point. Therefore, the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • the electronic device may include at least one optical module.
  • the electronic device may be an integrated device.
  • the optical module may be directly plugged into the electronic device as a pluggable independent module, or the optical module may be configured Inside electronic devices.
  • the second processing unit can be connected to the alarm information generation unit in the optical module through a hardware pin interface.
  • the alarm information generation unit is used to send an alarm to the second processing unit through a level transition of the hardware pin interface when generating alarm information. information.
  • the level of the hardware pin interface can change from high level to low level, or from low level to high level. Through the level transition of the hardware pin interface, the alarm information generating unit can quickly transmit the alarm information to the second processing unit.
  • the second processing unit may be connected to the first processing unit through a communication bus, and the first processing unit is configured to send alarm information to the second processing unit through the communication bus when the alarm information is recognized.
  • the second processing unit can also read parameters such as fault type information and fault occurrence time in the fault information storage unit through the communication bus.
  • the second processing unit can read the status parameters and performance parameters of the optical module through the communication bus, and configure the working parameters of the optical module.
  • the second processing unit can also interact with the optical module through other information through the communication bus. Here No more examples one by one.
  • the electronic device may include: at least one single board, and the single board may be pluggable into the electronic device, or the single board may be disposed inside the electronic device.
  • At least one optical module can be provided in the single board, and the optical module can be pluggably inserted into the single board, or the optical module can also be installed inside the single board.
  • Optical modules can interact with electronic devices through single boards.
  • the single board may include: a third processing unit.
  • the third processing unit is connected to the alarm information generation unit in the optical module through a hardware pin interface.
  • the alarm information generation unit is used to generate alarm information through a level of the hardware pin interface.
  • the transition sends alarm information to the third processing unit, and the level of the hardware pin interface can change from high level to low level, or from low level to high level.
  • the alarm information generation unit can quickly transmit the alarm information to the third processing unit.
  • the third processing unit The alarm information can be sent to the second processing unit through the communication interface.
  • the third processing unit may be connected to the first processing unit through a communication bus, and the third processing unit may be connected to the second processing unit through a communication interface.
  • the first processing unit is configured to send the alarm information to the third processing unit through the communication bus when the alarm information is recognized, and the third processing unit is configured to send the alarm information to the second processing unit through the communication interface.
  • the third processing unit can read the fault type information, fault generation time and other parameters in the fault information storage unit through the communication bus, and transmit the read fault type information, fault generation time and other parameters to the second processing unit. processing unit.
  • the optical module can also interact with electronic devices through other information through the single board, and no examples are given here.
  • the communication bus can be a serial peripheral interface (Serial Peripheral Interface, SPI) bus or an inter-integrated circuit serial communication bus (Inter-Integrated Circuit, I2C).
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • the above communication bus It can also be a high-speed communication bus, for example, it can be a Management Data Input Output Interface (MDIO).
  • MDIO Management Data Input Output Interface
  • the above-mentioned communication bus can also be other types of buses, as long as it can meet the requirements between the first processing unit and the electronic device. It is sufficient to meet the transmission requirements between the two, and there is no limit here.
  • the first processing unit is also configured to store the delay prompt information in the fault information storage unit
  • the second processing unit is also configured to read the delay prompt information in the fault information storage unit.
  • the delay prompt information is used to indicate the shortest time period between the second processing unit receiving the alarm information and being able to read the fault type information corresponding to the alarm information, and the first preset time is greater than or equal to the shortest time period. This ensures that the second processing unit can read the fault type information after waiting for the first preset time.
  • the minimum length of time needs to be considered at least: after the optical module generates alarm information, the length of time required for the first processing unit to continue to store the first sampling parameters collected by the sampling unit in the sampling information storage unit, the length of time required for the first processing unit to read The length of time required to sample the first sampling parameter in the information storage unit, and the length of time required for the first processing unit to determine the fault type information based on the first sampling parameter.
  • the delay prompt information can be written into the fault information storage unit during the manufacturing process of the optical module.
  • the first processing unit is also configured to delete the fault type information in the fault information storage unit after the second processing unit reads the fault type information, so that the optical module returns to the state of no fault after reporting the fault type information. The status indicated by the alarm information.
  • the second processing unit may be used to determine the cause of the fault based on the read fault type information and the network topology relationship of the network system where it is located. Since the first processing unit in the optical module has determined the fault type information, the second processing unit can determine the cause of the fault based on the fault type information and the network topology relationship of the network system, which simplifies the fault cause analysis by the second processing unit. The process reduces the amount of calculation and shortens the time required for failure cause analysis.
  • the second processing unit can be specifically used for:
  • the co-cable relationship of the optical module that generates the alarm information is determined based on the network topology of the network system; if the optical module that generates the alarm information belongs to the same cable of the same electronic device, If the optical module is normal, or there is no optical module that belongs to the same cable of the same electronic device as the optical module that generated the alarm information, the cause of the fault is the vibration fault of the optical jumper; if there are at least two optical modules of the same cable that belong to the same electronic device If the fault type is input optical power fluctuation, then the cause of the fault is determined to be optical cable vibration fault; or,
  • the fault type information is identified as input optical power fluctuation and loss, determine the co-cable relationship of the optical module that generates the alarm information based on the network topology of the network system; if the optical module that generates the alarm information belongs to the same cable of the same electronic device If the optical module is normal, or there is no optical module that belongs to the same cable of the same electronic device as the optical module that generated the alarm information, the cause of the fault is a broken optical jumper; if there are at least two optical modules of the same cable that belong to the same electronic device. If the module's fault type is input optical power fluctuation, the cause of the fault is determined to be an optical cable break.
  • the second processing unit may be used to determine the cause of the fault based on the read fault type information. Since the first processing unit in the optical module has determined the fault type information, the second processing unit can determine the cause of the fault based on the fault type information, which simplifies the process of fault cause analysis by the second processing unit and reduces the amount of calculation. The time required for failure cause analysis is shortened.
  • the second processing unit can be specifically used for:
  • the cause of the fault is determined to be a device power failure
  • the cause of the fault is determined to be an optical jumper detachment fault
  • the cause of the fault is determined to be an optical jumper bending fault
  • the fault cause is optical path quality degradation fault.
  • embodiments of the present application also provide a communication system.
  • the communication system in the embodiment of the present application may include: any of the above electronic devices, and a power supply line, and the power supply line is used to supply power to the electronic device.
  • the communication system in the embodiment of the present application may also include: a network management device, and the network management device may perform unified management and control of the communication system where it is located.
  • the second processing unit in the electronic device can be connected to the network management device through a network communication interface.
  • the electronic device can interact with the grid device through the network communication interface. For example, the electronic device can transmit fault type information and fault occurrence time through the network communication interface. and other parameters are transmitted to the network management device.
  • the network management device can be used to obtain fault type information of the electronic device, and determine the cause of the fault based on the fault type information and the network topology relationship of the network system. Since the first processing unit in the optical module has determined the fault type information, the network management device can determine the cause of the fault based on the fault type information and the network topology relationship of the network system, which simplifies the process of fault cause analysis by the network management device and reduces The calculation amount is reduced and the time required for failure cause analysis is shortened.
  • the electronic device may be specifically used for:
  • the co-cable relationship of the optical module that generates the alarm information is determined based on the network topology of the network system; if the optical module that is co-cable with the optical module that generates the alarm information is normal, or If there is no optical module with the same cable as the optical module that generates the alarm information, the cause of the fault is optical jumper vibration fault; if there are at least two optical modules with the same cable and the fault type is input optical power fluctuation, then the cause of the fault is determined to be the optical cable. Vibration failure; or,
  • the fault type information is identified as input optical power fluctuation loss, determine the co-cable relationship of the optical module that generates the alarm information based on the network topology of the network system; if the optical module that is co-cable with the optical module that generates the alarm information is normal, Or there is no optical module with the same cable as the optical module that generated the alarm information, then the cause of the fault is a broken optical jumper; if there are at least two optical modules with the same cable and the fault type information is input optical power fluctuation, then determine the cause of the fault It is a fiber optic cable breakage fault;
  • the network management device may be used to obtain fault type information of the electronic device, and determine the cause of the fault based on the fault type information. Since the first processing unit in the optical module has determined the fault type information, the network management equipment can determine the cause of the fault based on the fault type information, which simplifies the process of analyzing the cause of the failure by the network management equipment, reduces the amount of calculation, and shortens the time for the cause of the failure. Time required for analysis.
  • the electronic device may be specifically used for:
  • the cause of the fault is determined to be a device power failure
  • the cause of the fault is determined to be an optical jumper detachment fault
  • the cause of the fault is determined to be an optical jumper bending fault
  • the fault cause is optical path quality degradation fault.
  • inventions of the present application also provide a fault type determination method applied to an optical module.
  • the optical module may include: a first processing unit, a sampling unit, and a sampling information storage unit that are electrically connected to the first processing unit respectively. unit and fault information storage unit.
  • the sampling unit collects the first sampling parameter and stores the first sampling parameter in the sampling information storage unit through the first processing unit;
  • the first processing unit When the first processing unit recognizes the alarm information, it reads the first sampling parameter in the sampling information storage unit, determines the fault type information corresponding to the alarm information based on the first sampling parameter, and stores the fault type information in the fault information storage unit. .
  • the first processing unit when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. .
  • functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module.
  • Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately Accurately determine the cause of the fault and the location of the fault point to quickly repair the fault in the communication system and reduce the cost of fault resolution.
  • the optical module has at least the following ways of judging alarms.
  • the above-mentioned optical module may also include: an alarm information generating unit.
  • the above fault type determination methods may also include:
  • the sampling unit sends the first sampling parameter to the alarm information generation unit
  • the alarm information generating unit determines whether the first sampling parameter is within a preset threshold range. When the first sampling parameter exceeds the threshold range, it generates alarm information and sends the alarm information to the first processing unit.
  • the alarm information generation unit can receive multiple first sampling parameters output by the sampling unit in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset threshold range When the maximum value or the minimum value is less than the preset threshold range, an alarm message is generated.
  • the parameters used by the alarm information generating unit to judge the alarm status may be the same as the parameters used by the first processing unit to determine the fault type information.
  • the first sampling parameter may include a photogenerated current.
  • the first sampling parameter may include parameters such as photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase or optical signal spectrum.
  • the first sampling parameter may also include other parameters, which are not limited here.
  • the above-mentioned optical module may also include: an alarm information generating unit.
  • the above fault type determination methods may also include:
  • the sampling unit collects the second sampling parameter and sends the second sampling parameter to the alarm information generation unit; the second sampling parameter is different from the first sampling parameter;
  • the alarm information generating unit determines whether the second sampling parameter is within a preset threshold range. When the second sampling parameter exceeds the threshold range, it generates alarm information and sends the alarm information to the first processing unit.
  • the alarm information generation unit can receive multiple second sampling parameters output by the sampling unit in real time, and compare each received second sampling parameter with the preset threshold one by one. The end values of the range are compared, and when the second sampling parameter is greater than the maximum value of the preset threshold range or less than the minimum value of the preset threshold range, alarm information is generated.
  • the sampling unit can be specifically used to collect the second sampling parameter in real time with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling unit has high sampling accuracy and can be used to determine faults. Type information provides more sample data.
  • the parameters used by the alarm information generation unit to judge the alarm status are different from the parameters used by the first processing unit to determine the fault type information.
  • the first processing unit uses the first sampling The parameters determine the fault type information
  • the alarm information generating unit uses a second sampling parameter that is different from the first sampling parameter to determine the alarm status.
  • the optical module is a photoelectric conversion module
  • the first sampling parameter may include photogenerated current
  • the second sampling parameter may include optical signal amplitude
  • the first sampling parameter may include photogenerated current
  • the second sampling parameter may include correction Bit error rate.
  • the first sampling parameter and the second sampling parameter may also include other parameters, which are not limited here.
  • the first sampling parameter is monitored in real time by setting an alarm information generation unit.
  • the alarm information generation unit can detect the abnormality in time, generate alarm information, and report the alarm The information is sent to the first processing unit.
  • the function of determining the alarm status in the above-mentioned optical module can also be implemented by the first processing unit.
  • the sampling unit collects the first sampling parameter with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling unit has a higher sampling accuracy. More sampling data can be provided for determining fault type information, and since the optical module does not need to send the first sampling parameter to the electronic device, the sampling accuracy of the sampling unit is higher, and the relationship between the optical module and the electronic device will not be increased. data transmission pressure.
  • the first processing unit When the above-mentioned first processing unit recognizes the alarm information, it reads the first sampling parameter in the sampling information storage unit, and determines the fault type information corresponding to the alarm information based on the first sampling parameter, which may specifically include:
  • the first processing unit When the first processing unit recognizes the alarm information, it continues to store the first sampling parameters of p sampling points collected by the sampling unit in the sampling information storage unit, where p is an integer greater than or equal to 0.
  • p is an integer greater than or equal to 0.
  • the specific value of p can be set according to the application scenario. For example, p can be a value between 10 and 1000.
  • the first processing unit reads the first sampling parameter (including at least 2 sampling point data) within the preset time window in the sampling information storage unit;
  • the fault type information corresponding to the alarm information is determined according to the read first sampling parameter.
  • the first processing unit when the first processing unit recognizes the alarm information, it will continue to store the first sampling parameters of the p sampling points collected by the sampling unit in the sampling information storage unit, and read the sampling information storage unit.
  • the first sampling parameter within the preset time window, p is greater than or equal to 0. That is to say, when the first processing unit recognizes the alarm information, it can immediately read the first sampling parameter in the sampling information storage unit, or it can delay Read the first sampling parameter in the sampling information storage unit after a period of time. In this way, the first processing unit acquires more data on the first sampling parameter after identifying the alarm information, and can determine the fault type information corresponding to the alarm information by obtaining the waveform of the first sampling parameter within the preset time window, The accuracy of fault analysis is higher.
  • the first processing unit may also detect whether the storage unit of the sampling information storage unit Cleared. If not cleared, the sampling information storage unit can be controlled to perform a clearing operation.
  • the first sampling parameter may include: photogenerated current or optical signal amplitude. In some cases, the first sampling parameter may also be other parameters, which are not limited here.
  • the above-mentioned first processing unit determines the fault type information corresponding to the alarm information based on the read first sampling parameter, which may specifically include:
  • the first processing unit can extract the events in the buffer queue and sort them according to time, so that in subsequent steps, it can be determined whether the waveform of the first sampling parameter has a fluctuation event, a fluctuation and falling event, etc.
  • the fault type information corresponding to the alarm information is input optical power fluctuation. ;or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, the first sampling parameter at the last time is less than the second threshold, and the waveform pattern of the first sampling parameter within the preset time window fluctuates and drops. , then the fault type information corresponding to the alarm information is input optical power fluctuation loss; or,
  • the first sampling parameter at the last time is less than the second threshold, and there is a rapid decline event in the waveform pattern of the first sampling parameter within the preset time window, Then the fault type information corresponding to the alarm information is rapid loss of input optical power; or,
  • the first sampling parameter at the last time is less than the second threshold, and there is a step decrease event in the waveform pattern of the first sampling parameter within the preset time window. , then the fault type information corresponding to the alarm information is input optical power step loss; or,
  • the fault type information corresponding to the alarm information is input optical power degradation.
  • the first sampling parameter may include at least two parameters.
  • the first sampling parameter may include: photogenerated current and pre-correction bit error rate.
  • the above-mentioned first processing unit determines the fault type information corresponding to the alarm information based on the read first sampling parameter, which may specifically include:
  • the fault type information corresponding to the alarm information is optical power multipath. Interference degradation.
  • the specific values of the first threshold, the second threshold, the third threshold and the preset time window may be set according to the application scenario of the network system and other factors.
  • the embodiment of the present application also provides another fault type determination method, which is applied to the first processing unit in the optical module.
  • the fault type determination method may include:
  • the first sampling parameter in the sampling information storage unit is read, the fault type information corresponding to the alarm information is determined based on the first sampling parameter, and the fault type information is stored in the fault information storage unit.
  • the first processing unit when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. .
  • functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module.
  • Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately accurately determine the cause of the fault and the location of the fault point to quickly repair faults in the communication system and reduce Cost of troubleshooting.
  • the first sampling parameter in the sampling information storage unit is read, and the fault type information corresponding to the alarm information is determined based on the first sampling parameter, which may specifically include:
  • the fault type information corresponding to the alarm information is determined according to the read first sampling parameter.
  • the first processing unit when the first processing unit recognizes the alarm information, it will continue to store the first sampling parameters of the p sampling points collected by the sampling unit in the sampling information storage unit, and read the sampling information storage unit.
  • the first sampling parameter within the preset time window, p is greater than or equal to 0. That is to say, when the first processing unit recognizes the alarm information, it can immediately read the first sampling parameter in the sampling information storage unit, or it can delay Read the first sampling parameter in the sampling information storage unit after a period of time. In this way, the first processing unit obtains more data on the first sampling parameter after identifying the alarm information, and can determine the fault type information corresponding to the alarm information by obtaining the waveform of the first sampling parameter within the preset time window, The accuracy of fault analysis is higher.
  • the first sampling parameter may include: photogenerated current or optical signal amplitude. In some cases, the first sampling parameter may also be other parameters, which are not limited here.
  • the above-mentioned determination of the fault type information corresponding to the alarm information based on the read first sampling parameter may specifically include:
  • the fault type information corresponding to the alarm information is input optical power fluctuation. ;or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, the first sampling parameter at the last time is less than the second threshold, and the waveform pattern of the first sampling parameter within the preset time window fluctuates and drops. , then the fault type information corresponding to the alarm information is input optical power fluctuation loss; or,
  • the first sampling parameter at the last moment is less than the second threshold, and there is a rapid decline event in the waveform pattern of the first sampling parameter within the preset time window, Then the fault type information corresponding to the alarm information is rapid loss of input optical power; or,
  • the first sampling parameter at the last time is less than the second threshold, and there is a step decrease event in the waveform pattern of the first sampling parameter within the preset time window. , then the fault type information corresponding to the alarm information is input optical power step loss; or,
  • the fault type information corresponding to the alarm information is input optical power degradation.
  • the first sampling parameter may include at least two parameters.
  • the first sampling parameter may include: photogenerated current and pre-correction bit error rate.
  • the above-mentioned determination of the fault type information corresponding to the alarm information based on the read first sampling parameter may specifically include:
  • the fault type information corresponding to the alarm information is optical power multipath. Interference degradation.
  • embodiments of the present application also provide a fault type determination device, including: a processor and a memory.
  • the memory is used to store each step in the fault type determination method in the fifth aspect.
  • the processor is used to execute the steps in the memory. Stored steps.
  • the specific implementation of the fault type determination device may refer to the implementation of the fault type determination method in the fifth aspect, and repeated details will not be described again.
  • inventions of the present application also provide a fault handling method, which can be applied to a communication system.
  • the communication system may include: an electronic device.
  • the electronic device may include: a second processing unit and an optical module.
  • the optical module may include: a first processing unit, and a sampling unit, a sampling information storage unit and a fault information that are respectively electrically connected to the first processing unit. storage unit.
  • the sampling unit collects the first sampling parameter and stores the first sampling parameter in the sampling information storage unit through the first processing unit;
  • the optical module When the optical module recognizes the alarm information, it sends the alarm information to the second processing unit;
  • the first processing unit reads the first sampling parameter in the sampling information storage unit, determines the fault type information corresponding to the alarm information according to the first sampling parameter, and stores the fault type information in the fault information storage unit.
  • the specific process of determining the fault type information by the first processing unit can be referred to the above description, and repeated details will not be repeated.
  • the second processing unit After the first preset time of receiving the alarm information, the second processing unit reads the fault type information corresponding to the alarm information in the fault information storage unit.
  • the first processing unit in the optical module when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information in the storage unit.
  • the second processing unit in the electronic device can read the fault type information corresponding to the alarm information in the fault information storage unit after the first preset time of recognizing the alarm information.
  • the electronic device or network management device communicates with the user according to the fault type information.
  • the network topology relationship of the system can quickly and accurately determine the cause of the fault and the location of the fault point.
  • the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • the first processing unit in the optical module is connected to the second processing unit through a communication bus, and the first processing unit can send alarm information to the second processing unit through the communication bus.
  • the alarm information generation unit can be connected to the second processing unit through a hardware pin interface, and the alarm information generation unit can be connected to the second processing unit through a level transition of the hardware pin interface. Send alert information.
  • the first processing unit can write the alarm information into the fault information storage unit, and the second processing unit can query the alarm information stored in the fault information storage unit through the communication bus and the first processing unit.
  • the second processing unit after recognizing the alarm information, the second processing unit needs to wait for a first preset time before reading the fault type information in the fault information storage unit, so that the first processing unit can The operation of determining the fault type information and storing it is completed within a preset time.
  • the specific duration of the first preset time can be determined based on the actual calculation amount of the first processing unit, so that the second processing unit can read the fault type information after waiting for the first preset time.
  • the first processing unit can also delete the fault type information in the fault information storage unit after the second processing unit reads the fault type information, so that after the optical module reports the fault type information, Restore to the state without alarm information indication.
  • the fault handling method in the embodiment of this application may also include:
  • the first processing unit stores the delay prompt information in the fault information storage unit
  • the second processing unit reads the delay prompt information in the fault information storage unit.
  • the second processing unit can read the delay prompt information before identifying the alarm information, or the second processing unit can also read the delay information after identifying the alarm information.
  • the delay prompt information is used to indicate the shortest length of time between the second processing unit receiving the alarm information and being able to read the fault type information corresponding to the alarm information, and the first preset time is greater than or equal to the shortest length of time. This ensures that the second processing unit can read the fault type information after waiting for the first preset time.
  • the minimum length of time needs to be considered at least: after the optical module generates alarm information, the length of time required for the first processing unit to continue to store the first sampling parameters collected by the sampling unit in the sampling information storage unit, the length of time required for the first processing unit to read The length of time required to sample the first sampling parameter in the information storage unit, and the length of time required for the first processing unit to determine the fault type information based on the first sampling parameter.
  • the delay prompt information can be written into the fault information storage unit during the manufacturing process of the optical module.
  • the second processing unit in the electronic device can determine the cause of the fault based on the read fault type information and the network topology relationship of the network system where it is located, specifically including the following steps:
  • the second processing unit recognizes that the fault type information is that the input optical power step is lost, it determines that the cause of the fault is a device power-off fault; or,
  • the second processing unit determines that the cause of the fault is an optical jumper disconnection fault
  • the second processing unit recognizes that the fault type information is input optical power degradation, it determines that the cause of the fault is an optical jumper bending fault; or,
  • the second processing unit recognizes that the fault type information is input optical power fluctuation, it will determine the co-cable relationship of the optical module that generates the alarm information based on the network topology relationship of the network system; if it belongs to the same electronic device as the optical module that generates the alarm information, If the optical module of the same cable is normal, or there is no optical module of the same cable that belongs to the same electronic device as the optical module that generated the alarm information, the cause of the fault is the vibration fault of the optical jumper; if there are at least two optical modules of the same cable that belong to the same electronic device. If the fault type of the optical module of the cable is input optical power fluctuation, then the cause of the fault is determined to be optical cable vibration fault;
  • the second processing unit recognizes that the fault type information is input optical power fluctuation and loss, it will determine the co-cable relationship of the optical module that generates the alarm information based on the network topology relationship of the network system; if it belongs to the same electronics as the optical module that generates the alarm information, If the optical module of the same cable of the device is normal, or there is no optical module of the same cable of the same electronic device as the optical module that generated the alarm information, the cause of the fault is a broken optical jumper; if there are at least two optical modules belonging to the same electronic device If the fault type of the optical module on the same cable is input optical power fluctuation, then the cause of the fault is determined to be an optical cable breakage; or,
  • the fault cause is an optical path quality degradation fault.
  • electronic equipment can accurately determine the cause of the fault based on the fault type information and fault occurrence time information of the optical module, combined with the fault type information and fault occurrence time information of other optical modules.
  • the electronic device can also push information such as the cause of the fault and the location of the fault point to the user.
  • the electronic device can upload the fault type information, fault occurrence time information and other information corresponding to the alarm information to the network management device.
  • the network management device can read the fault type information and the network topology of the network system where it is located. relationship to determine the cause of the fault, including the following steps:
  • the network management device If the network management device recognizes that the fault type information is the input optical power step loss, it determines that the cause of the fault is a power outage of the device. malfunction; or,
  • the network management equipment recognizes that the fault type information is a rapid loss of input optical power, it determines that the cause of the fault is an optical jumper detachment fault; or,
  • the network management equipment recognizes that the fault type information is input optical power degradation, it determines that the cause of the fault is an optical jumper bending fault; or,
  • the network management equipment recognizes that the fault type information is input optical power fluctuation, it will determine the co-cable relationship of the optical module that generates the alarm information based on the network topology of the network system; if the optical module that is co-cable with the optical module that generates the alarm information is normal, , or there is no optical module with the same cable as the optical module that generated the alarm information, then the cause of the fault is optical jumper vibration fault; if there are at least two optical modules with the same cable and the fault type is input optical power fluctuation, then determine the cause of the fault It is a vibration failure of the optical cable; or,
  • the network management equipment recognizes that the fault type information is input optical power fluctuation and loss, it will determine the co-cable relationship of the optical module that generates the alarm information based on the network topology relationship of the network system; if the optical module that is co-cable with the optical module that generates the alarm information Normal, or there is no optical module with the same cable as the optical module that generated the alarm information, the cause of the fault is a broken optical jumper; if there are at least two optical modules with the same cable and the fault type is input optical power fluctuation, then the fault is determined The reason is that the optical cable is broken; or,
  • the cause of the fault is optical path quality degradation.
  • the network management equipment can accurately determine the cause of the fault based on the fault type information and fault occurrence time information of the optical module, combined with the fault type information and fault occurrence time information of other optical modules.
  • the network management device can also push information such as the cause of the fault and the location of the fault point to the user.
  • the process of determining the cause of the fault and the location of the fault point can be implemented in the electronic device, or it can also be implemented in the network management device, or the electronic device can make a preliminary judgment on the cause of the fault and the location of the fault point. Then the network management equipment makes a secondary judgment, and through the combination of electronic equipment and network management equipment, the effect of accurately determining the cause of the fault and the location of the fault point is achieved.
  • Figure 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • Figure 2 is another structural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 3 is another structural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 4 is another structural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 5 is another structural schematic diagram of the communication system in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an optical amplification module in an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an optical switching module in an embodiment of the present application.
  • Figure 9a is a partial structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 9b is another partial structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 9c is another partial structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 9d is another structural schematic diagram of the communication system in the embodiment of the present application.
  • Figure 10 is another structural schematic diagram of a communication system in an embodiment of the present application.
  • Figure 11 is another structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 12 is another structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • Figure 14 is another structural schematic diagram of an electronic device in an embodiment of the present application.
  • Figure 15 is another structural schematic diagram of the communication system in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the communication system when a device power-off failure occurs in the embodiment of the present application.
  • Figure 17 is a sampling diagram obtained by collecting the first sampling parameters by the second optical module when a device power-off fault occurs;
  • Figure 18 is a schematic diagram of the communication system in the embodiment of the present application when an optical jumper falls off;
  • Figure 19 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module when an optical jumper disconnection fault occurs;
  • Figure 20 is a schematic diagram of the communication system in the embodiment of the present application when an optical cable breakage fault or optical jumper damage fault occurs;
  • Figure 21 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical cable breakage fault occurs;
  • Figure 22 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical jumper damage fault occurs;
  • Figure 23 is another schematic diagram of the communication system in the embodiment of the present application when an optical cable breakage fault or an optical jumper damage fault occurs;
  • Figure 24 is a schematic diagram of the communication system in the embodiment of the present application when an optical jumper bending fault occurs;
  • Figure 25 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module when an optical jumper bending fault occurs;
  • Figure 26 is a schematic diagram of the communication system in the embodiment of the present application when optical cable vibration failure or optical jumper vibration failure occurs;
  • Figure 27 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical cable vibration fault occurs;
  • Figure 28 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical jumper vibration fault occurs;
  • Figure 29 is another schematic diagram of the communication system in the embodiment of the present application when optical cable vibration failure or optical jumper vibration failure occurs;
  • Figure 30 is a schematic diagram of the communication system in the embodiment of the present application when an optical path quality degradation fault occurs
  • Figure 31 is a sampling diagram obtained by collecting the first sampling parameters by the second optical module when an optical path quality degradation fault occurs;
  • Figure 32 is a schematic waveform diagram of the first sampling parameter corresponding to different fault type information in the embodiment of the present application.
  • Figure 33 is a schematic waveform diagram of the first sampling parameter corresponding to the optical path quality degradation fault in the embodiment of the present application.
  • Figure 34 is a flow chart of a fault type determination method in an embodiment of the present application.
  • Figure 35 is a flow chart of the first processing unit extracting the characteristic parameters of the first sampling parameter in the embodiment of the present application.
  • Figure 36 is a flow chart for the first processing unit to determine fault type information in the embodiment of the present application.
  • Figure 37 is a flow chart of another fault type determination method provided by the embodiment of the present application.
  • Figure 38 is a schematic structural diagram of a fault type determination device provided by an embodiment of the present application.
  • Figure 39 is a flow chart of the fault handling method in the embodiment of the present application.
  • Figure 40 is another flow chart of the fault handling method in the embodiment of the present application.
  • Figure 41 is another flow chart of the fault handling method in the embodiment of the present application.
  • Figure 42 is another flowchart of the fault handling method in the embodiment of the present application.
  • an optical module In order to solve the problem of being unable to promptly identify or report the cause of the fault and the location of the fault point after an optical path failure occurs in the communication system, embodiments of the present application provide an optical module, electronic equipment, a communication system and related processing methods.
  • the communication system can be applied to any communication network that uses optical fiber as the main information transmission medium.
  • Electronic equipment can be optical transmission equipment, optical access equipment, optical switching equipment, optical amplification equipment, routers, switches, wireless base stations, wireless remote access equipment or wireless baseband signal processing equipment, etc.
  • the optical module can be a photoelectric conversion module, an optical amplification module, an optical switching module or other functional modules.
  • Figure 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • the communication system in an embodiment of the present application may include: electronic equipment and a power supply line.
  • the power supply line is used to supply power to the electronic equipment.
  • the electronic equipment may include At least one optical module.
  • the optical modules in different electronic devices can realize optical signal connection through optical jumpers and communication optical cables.
  • the communication system shown in FIG. 1 may at least include: a first electronic device 111 and a second electronic device 112.
  • the optical signal output by the first optical module 121 in the first electronic device 111 is input to
  • the optical signal output by the communication optical cable 14 is input to the second optical module 122 in the second electronic device 112 through the second optical jumper 132, thereby realizing optical communication between the first optical module 121 and the second optical module 122.
  • the first power supply line 151 is connected to the first electronic device 111.
  • the first power supply line 151 is used to supply power to the first electronic device 111.
  • the second power supply line 151 is connected to the first electronic device 111.
  • the path 152 is connected to the second electronic device 112 , and the second power supply line 152 is used to supply power to the second electronic device 112 .
  • Figure 2 is another structural schematic diagram of a communication system in an embodiment of the present application.
  • the communication system shown in Figure 2 can also include: for controlling the entire communication Network management equipment 16 for unified management and control of the system.
  • the first optical module 121 and the second optical module 122 in the communication system shown in Figure 2 can transmit optical signals in both directions. That is to say, the first optical module 121 can send optical signals to the second optical module 122, or Receive the optical signal sent by the second optical module 122, and the second optical module 122 can receive the optical signal sent by the first optical module 121, and can also send the optical signal to the first optical module 121.
  • the communication system shown in Figure 2 may also include: an optical distribution frame (ODF), which is divided into a first optical distribution frame 171 and a second optical distribution frame 172.
  • the first optical distribution frame 171 Located between the first optical module 121 and the communication optical cable 14, the second optical distribution frame 172 is located between the second optical module 122 and the communication optical cable 14, and corresponding optical jumpers are added.
  • the optical signal output by the first optical module 121 is input to the communication optical cable 14 through the first optical jumper 131, the first optical distribution frame 171, and the second optical jumper 132.
  • the optical signal output by the communication optical cable 14 passes through the third optical jumper. 133.
  • the second optical distribution frame 172 and the fourth optical jumper 134 are input to the second optical module 122.
  • the optical signal output by the second optical module 122 passes through the fifth optical jumper 135, the second optical distribution frame 172 and the third optical jumper 134.
  • the six optical jumpers 136 are input to the communication optical cable 14, and the optical signal output by the communication optical cable 14 is input to the first optical module 121 through the seventh optical jumper 137, the first optical distribution frame 171, and the eighth optical jumper 138, thereby achieving The optical signal between the first optical module 121 and the second optical module 122 is transmitted bidirectionally.
  • the eighth optical jumper 138 can be connected to the first optical module 121 , or the eighth optical jumper 138 can also be connected to the first optical module 111 . to connect other optical modules.
  • Figure 3 is another schematic structural diagram of a communication system in an embodiment of the present application.
  • the electronic device may include two or more optical modules.
  • the first electronic device 111 may include: a first optical module 121 and The third optical module 123 and the second electronic device 112 may include: a second optical module 122 and a fourth optical module 124 .
  • the optical signal output by the first optical module 121 can be transmitted to the second optical module 122 through the first optical jumper 131, the communication optical cable 14, and the second optical jumper 132.
  • the optical signal output by the third optical module 123 can be transmitted through the third optical jumper 132.
  • the jumper 133, the communication optical cable 14, and the fourth optical jumper 134 are transmitted to the fourth optical module 124.
  • the first optical module 121 and the second optical module 122 can also transmit optical signals in two directions
  • the third optical module 123 and the fourth optical module 124 can also transmit optical signals in two directions. That is to say, the first electronic device 111 can transmit optical signals to the second electronic device 112 through two optical modules.
  • the first electronic device 111 and the second electronic device 112 include multiple optical modules
  • the first electronic device 111 can also Optical signals are transmitted to the second electronic device 112 through a plurality of optical modules.
  • Figure 4 is another schematic structural diagram of a communication system in an embodiment of the present application.
  • optical modules in different electronic devices can send optical signals to optical modules in the same or different electronic devices through the same communication optical cable, for example , the communication system shown in Figure 4 may include: a first electronic device 111, a second electronic device 112, a third electronic device 113 and a fourth electronic device 114, the first power supply line 151 is used to supply power to the first electronic device 111, The second power supply line 152 is used to power the second electronic device 112 , the third power supply line 153 is used to power the third electronic device 113 , and the fourth power supply line 154 is used to power the fourth electronic device 114 .
  • the first electronic device 111 may include a first optical module 121
  • the second electronic device 112 may include a second optical module 122
  • the third electronic device 113 may include a third optical module 123
  • the fourth electronic device 114 may include a third optical module 123 .
  • the first optical module 121 and the third optical module 123 belonging to different electronic devices can respectively send optical signals to the second optical module 122 and the fourth optical module 124 belonging to different electronic devices through the same communication optical cable 14.
  • the above has introduced several structures of the communication system in the embodiments of the present application.
  • the communication system can also have other structures.
  • the components and connection relationships in the communication system can be specifically set according to the actual application scenarios, which will not be discussed here. Let’s go over them one by one.
  • Figure 5 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • the optical module 12 in the embodiment of the present application may include: a first processing unit 201, and electrically connected to the first processing unit 201 respectively. sampling unit 202, sampling information storage unit 203 and fault information storage unit 204.
  • the sampling unit 202 is used to collect first sampling parameters, and store the first sampling parameters in the sampling information storage unit 203 through the first processing unit 201.
  • the sampling unit 202 can collect the first sampling parameter in real time, and transmit the collected first sampling parameter to the first processing unit 201 in real time.
  • the first processing unit 201 transmits the first sampling parameter in real time. to the sampling information storage unit 203.
  • the sampling information storage unit 203 receives and stores the first sampling parameter in real time.
  • the first sampling parameter collected by the sampling unit 202 may be micro-granularity data, and the micro-granularity may be such that the sampling interval is less than 100 milliseconds.
  • the first sampling parameter may include: a photogenerated current that represents the optical power of the input optical signal.
  • the first processing unit 201 is configured to read the first sampling parameter in the sampling information storage unit 203 when the alarm information is recognized, determine the fault type information corresponding to the alarm information according to the first sampling parameter, and store the fault type information in the fault in the information storage unit 204.
  • the first processing unit when the first processing unit recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. In this way, functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module. Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately Determine the cause of the fault and the location of the fault point. Therefore, the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • the first processing unit 201 may be a central processing unit (CPU) or a microprocessor (Microcontroller Unit, MCU) or other device with data processing functions.
  • the sampling unit 202 may be a sampling circuit including an analog-to-digital converter.
  • the sampling information storage unit 203 and the fault information storage unit 204 may be specific areas of the memory in the optical module 12 , or at least one independent memory chip may be provided in the optical module 12 , use the memory chip as the sampling information storage unit 203 and/or the fault information storage unit 204, that is, the sampling information storage unit 203 and the fault information storage unit 204 can respectively use one memory chip, or they can share the same memory chip, here it is just
  • the specific implementation manner of the sampling information storage unit 203 and the fault information storage unit 204 is not limited.
  • the fault information storage unit 204 can also store fault occurrence time information corresponding to the alarm information.
  • the optical module in the embodiment of the present application may be a photoelectric conversion module.
  • Figure 6 is a schematic structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • the photoelectric conversion module 12a includes In addition to the first processing unit 201, the sampling unit 202, the sampling information storage unit 203 and the fault information storage unit 204, the photoelectric conversion module 12a may also include: a photoelectric conversion unit 206 and an electro-optical conversion unit 207.
  • the photoelectric conversion unit 206 is used to convert the input optical signal into an electrical signal, and output the converted electrical signal to the electronic device.
  • the electro-optical conversion unit 207 is used to convert the electrical signal output by the electronic device into an optical signal.
  • the photoelectric conversion unit 206 may include a photodetector 31 and The transimpedance amplifier 32 and the photodetector 31 are used to convert the input optical signal into a photogenerated current signal carrying information, and input the photogenerated current signal to the transimpedance amplifier 32.
  • the transimpedance amplifier 32 is used to convert the photogenerated current signal into a voltage. signal and amplify it.
  • the DC component of the photogenerated current signal can be defined as the photogenerated current.
  • the photogenerated current has a linear relationship with the optical power of the input optical signal. The greater the photogenerated current indicates, the greater the optical power of the input optical signal. The greater the photogenerated current. Small indicates that the optical power of the input optical signal is smaller. Therefore, the photogenerated current can be used to characterize the optical power.
  • the sampling unit 202 may collect the photocurrent output by the photoelectric conversion unit 206, and may use the photocurrent as the first sampling parameter.
  • the function of detecting the photogenerated current and transmitting the photogenerated current to the sampling unit 202 can be integrated in the photodetector 31 or in the transimpedance amplifier 32. In Figure 6, the function is integrated in the transimpedance amplifier 32 as an example. Make a signal.
  • the optical module in the embodiment of the present application may be an optical amplification module.
  • Figure 7 is a schematic structural diagram of the optical amplification module in the embodiment of the present application. As shown in Figure 7, the optical amplification module 12b except In addition to the first processing unit 201, the sampling unit 202, the sampling information storage unit 203 and the fault information storage unit 204, the optical amplification module 12b may also include: an optical amplification unit 208.
  • the optical amplification unit 208 is used to amplify the input optical signal to output an optical signal with stronger optical power.
  • the optical amplification unit 208 may include: an optical splitter 33, an optical detector 31 and an optical amplifier 34.
  • the optical splitter 33 is used to divide the input optical signal into two parts, one part is input to the optical amplifier 34, and the other part is input to the optical detector 31.
  • the optical amplifier 34 is used to amplify the input optical signal and output it.
  • the photodetector 31 is used to convert the input optical signal into a photogenerated current signal.
  • the photodetector 31 Since the optical amplification module 12b does not need to process the electrical signal contained in the optical signal, the photodetector 31 only detects the DC component of the photogenerated current signal (ie, the photogenerated current), and the photodetector 31 is also used to convert the photogenerated current into Transmitted to the sampling unit 202, the sampling unit 202 can collect the photogenerated current output by the photodetector 31, and can use the photogenerated current as the above-mentioned first sampling parameter.
  • the optical module in the embodiment of the present application may be an optical switching module.
  • Figure 8 is a schematic structural diagram of the optical switching module in the embodiment of the present application.
  • the optical switching module 12c In addition to the first processing unit 201, the sampling unit 202, the sampling information storage unit 203 and the fault information storage unit 204, the optical switching module 12c may also include an optical switching unit 209.
  • the optical switching unit 209 is used to perform channel or wavelength switching on multi-port input optical signals, and output the switched optical signals to different output ports.
  • the input optical signal or output optical signal of each port may include optical signals of one or more wavelengths.
  • the optical switching unit 209 may include: a plurality of optical splitters (for example, the first optical splitter 331...Nth optical splitter 33n in Figure 8), a plurality of photodetectors (for example, the first photodetector 311... in Figure 8) Nth photodetector 31n) and optical switching component 35.
  • the optical splitter is used to divide the input optical signal into two parts, one part is input to the optical switching component 35, and the other part is input to the corresponding light detector.
  • the optical switching component 35 is used to perform channel or wavelength switching on the input optical signal and output it.
  • the photodetector is used to convert the input optical signal into a photogenerated current signal.
  • the photodetector Since the electrical signal contained in the optical signal does not need to be processed in the optical switching module 12c, the photodetector only detects the DC component of the photogenerated current signal (i.e., photogenerated current ), the photodetector is also used to transmit the photogenerated current to the sampling unit 202.
  • the sampling unit 202 can collect the photogenerated current output by the photodetector, and the photogenerated current can be used as the above-mentioned first sampling parameter.
  • the above-mentioned first sampling parameter may include a photogenerated current.
  • the optical module when the optical module is a photoelectric conversion module, the above-mentioned first sampling parameter can be implemented in a variety of ways, which will be described in detail below with reference to the accompanying drawings.
  • FIG 9a is a partial structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • the photoelectric conversion unit 206 may include: a photodetector 31, a transimpedance amplifier 32 and an optical signal processor 36 (Optical Digital Signal). Processor, ODSP).
  • the photodetector 31 is used to convert the input optical signal into a photogenerated current signal carrying information, and input the photogenerated current signal to the transimpedance amplifier 32.
  • the transimpedance amplifier 32 is used to convert the photogenerated current signal into a voltage signal and amplify it.
  • the amplified electrical signal is input to the optical signal processor 36.
  • the optical signal processor 36 is used to convert the electrical signal sample into a digital electrical signal and perform digital signal processing, and output the processed electrical signal to the electronic device.
  • the real-time parameters that the photodetector 31 can output include but are not limited to photo-generated current, etc.
  • the real-time parameters that the transimpedance amplifier 32 can output include but are not limited to optical signal amplitude, photo-generated current, etc., where the photo-generated current is the direct current of the input optical signal.
  • the optical signal amplitude is the difference between the high level and the low level of the input optical signal. Both the photogenerated current and the optical signal amplitude are positively correlated with the optical power of the input optical signal.
  • the real-time parameters that the optical signal processor 36 can output include but are not limited to pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase, optical signal spectrum, etc. That is to say, the photoelectric conversion unit 206 can output various parameters such as photocurrent, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electric eye diagram amplitude, optical signal phase, and optical signal spectrum, and the sampling unit can sample photoelectric conversion Any parameter output by the unit 206, that is, any of the photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase, optical signal spectrum and other parameters output by the photoelectric conversion unit 206. Either one can be used as the above-mentioned first sampling parameter.
  • the photoelectric conversion module can have multiple optical signal transmission channels, and the photoelectric conversion unit in the photoelectric conversion module can output more parameters.
  • Figure 9b is another partial structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • the photoelectric conversion module can be a wavelength division photoelectric conversion module, and the photoelectric conversion unit 206 can include: a wavelength decomplexer 37, The photodetector 31, the transimpedance amplifier 32, and the wave decomposition multiplexer 37 are used to decompose and multiplex the input multi-wave optical signals to output multiple channels of optical signals.
  • 4 channels are taken as an example.
  • the number of channels can be any integer greater than or equal to 2.
  • the number of channels can be 2, 4, 6, or 8.
  • the photodetector 31 is used to convert the multi-wave optical signal into a photocurrent signal carrying information, and transmit the converted photocurrent signal to the transimpedance amplifier 32.
  • the transimpedance amplifier 32 is used to convert the photocurrent signal into a voltage signal and conduct enlarge.
  • the photoelectric conversion unit 206 may also include: an optical signal processor 36.
  • the optical signal processor 36 is used to collect the voltage signal amplified by the transimpedance amplifier 32, convert the voltage signal into a digital electrical signal, and perform digital signal processing. , and output the processed electrical signal to the electronic device.
  • Figure 9c is another partial structural schematic diagram of the photoelectric conversion module in the embodiment of the present application.
  • the photoelectric conversion module can be a Parallel Single Mode (PSM) photoelectric conversion module
  • the photoelectric conversion unit 206 can include The photodetector 31 and the transimpedance amplifier 32 , optionally, the photoelectric conversion unit 206 may also include: an optical signal processor 36 .
  • Multiple channel optical signals are input to the light detector 31 through multiple optical fibers.
  • the figure takes 4 channels (ch1, ch2, ch3 and ch4 respectively) as an example. In practical applications, the number of channels can be greater than or equal to Any integer of 2, for example: the number of channels can be 2, 4, 6, or 8.
  • the photodetector 31 is used to convert the optical signals of multiple channels into photogenerated current signals carrying information, and transmits the converted photogenerated current signals to the transimpedance amplifier 32 , and the transimpedance amplifier 32 is used to convert the photogenerated current signals into voltage signals. and zoom in.
  • the optical signal processor 36 is used to collect the voltage signal amplified by the transimpedance amplifier 32, convert the voltage signal into a digital electrical signal and perform digital signal processing, and output the processed electrical signal to the electronic device. Since the PSM photoelectric conversion module usually uses Parallel Single Mode Fiber (PSM) as the optical jumper, the optical signals of each channel have the same transmitting end and the same receiving end (same origin and same sink). Therefore, PSM photoelectric conversion The module can adopt the same hardware device and method process as the wavelength division photoelectric conversion module.
  • PSM Parallel Single Mode Fiber
  • the photoelectric conversion module when the photoelectric conversion module can be a wavelength division photoelectric conversion module or a PSM photoelectric conversion module, the photoelectric conversion module can have multiple optical signal transmission channels. Taking the number of channels as 4 as an example, the photodetector 31
  • the real-time parameters output include but are not limited to the photogenerated currents ch1 ⁇ ch4 of the 4 channels, etc.
  • the real-time parameters that the transimpedance amplifier 32 can output Including but not limited to 4 channels of optical signal amplitudes ch1 to ch4, 4 channels of photogenerated currents ch1 to ch4, etc.
  • the real-time parameters that the optical signal processor 36 can output include but are not limited to pre-correction bit error rate, post-correction bit error rate rate, the electric eye diagram amplitude of the 4 channels ch1 ⁇ ch4, etc. Any parameter output by the photoelectric conversion unit 206 can be used as the above-mentioned first sampling parameter.
  • the sampling data of any one channel can be used as the first sampling parameter, or the average or sum of the sampling data of multiple channels can be used as the first sampling parameter.
  • the sampling unit can only sample and store the sampling data of any one of the multiple channels, or sample the sampling data of multiple channels and store the average or sum value in the sampling information in the storage unit.
  • the photocurrent of any one of the four channels can be used as the first sampling parameter, or the average photocurrent of the four channels, or the sum of the four channels can be used. Current is used as the first sampling parameter.
  • FIG. 9d is another schematic structural diagram of a communication system in an embodiment of the present application. As shown in Figure 9d, the first optical module 121 in the first electronic device 111 and the second optical module 122 in the second electronic device 112 pass light.
  • the jumper 13, the first optical distribution frame 171, the first communication optical cable 141, the second optical distribution frame 172, etc. realize optical signal connection.
  • the third optical module 123 in the third electronic device 113 and the second electronic device 112 The second optical module 122 realizes optical signal connection through the optical jumper 13, the third optical distribution frame 173, the second communication optical cable 142, the second optical distribution frame 172, etc. That is to say, the second optical module 122 is A part of the multi-channel input photoelectric conversion module receives the optical signal transmitted by the first optical module 121 through the first communication optical cable 141. This part of the channel can be logically defined as the first sub-module 122a, and the remaining channels receive the third optical signal.
  • the optical signal transmitted by the module 123 through the second communication optical cable 142, this part of the channel can be logically defined as the second sub-module 122b.
  • Both the first sub-module 122a and the second sub-module 122b can independently perform operations such as real-time parameter sampling, alarming, real-time parameter sampling data storage, fault type analysis and calculation, and result storage and reporting.
  • the optical module is another functional module
  • other parameters can also be used as the above-mentioned first sampling parameters, as long as the first processing unit can determine the fault type information corresponding to the alarm information based on the first sampling parameters.
  • the specific implementation method of the first sampling parameter is not limited here.
  • the optical module in the embodiment of the present application can use multiple methods to determine the alarm status.
  • the following is an example of several methods for determining the alarm status of the optical module.
  • Figure 10 is another structural schematic diagram of the communication system in the embodiment of the present application.
  • the above-mentioned optical module 12 may also include: an alarm information generation unit 205.
  • the alarm information generation unit 205 is connected to the sampling unit 202 and the first processing unit respectively.
  • Unit 201 is electrically connected.
  • the sampling unit 202 is also used to send the first sampling parameter to the alarm information generation unit 205.
  • the alarm information generation unit 205 is used to determine whether the first sampling parameter is within a preset threshold range, and when the first sampling parameter exceeds the threshold range, generate an alarm. information, and sends the alarm information to the first processing unit 201.
  • the alarm information generation unit 205 may receive multiple first sampling parameters output by the sampling unit 202 in real time.
  • the first sampling parameters may be analog quantities, or the first sampling parameters may also be quantized analog quantities, or,
  • the first sampling parameter can also be a digital quantity.
  • the alarm information generating unit 205 can monitor the status of each first sampling parameter in real time, compare each first sampling parameter one by one with the end value of the preset threshold range, and when the first sampling parameter drops from the normal value to below the preset threshold range when the minimum value is reached, or when the first sampling parameter rises from the normal value to be higher than the preset threshold range When the maximum value of the range is reached, the alarm information generating unit 205 generates alarm information.
  • the alarm information can be a digital logic signal changing from low level to high level, or the alarm information can also be a digital logic signal changing from high level to low level.
  • the alarm information can also be of other types. The information is not limited here.
  • the parameters used by the alarm information generation unit 205 to judge the alarm status may be the same as the parameters used by the first processing unit 201 to determine the fault type information.
  • the first sampling parameters collected by the sampling unit 202 may both be used.
  • the first sampling parameter may include a photogenerated current.
  • the first sampling parameter may include parameters such as photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase or optical signal spectrum.
  • the first sampling parameter may also include other parameters, which are not limited here.
  • the above-mentioned optical module 12 may also include: an alarm information generating unit 205.
  • the alarm information generating unit 205 is electrically connected to the sampling unit 202 and the first processing unit 201 respectively.
  • the sampling unit 202 is also used to collect a second sampling parameter, and send the second sampling parameter to the alarm information generating unit 205.
  • the second sampling parameter is different from the first sampling parameter.
  • the alarm information generating unit 205 is used to determine whether the second sampling parameter is within a preset threshold range. When the second sampling parameter exceeds the threshold range, generate alarm information and send the alarm information to the first processing unit 201 .
  • the sampling unit can be specifically used to collect the second sampling parameter in real time with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling unit has high sampling accuracy and can be used to determine faults. Type information provides more sample data.
  • the parameters used by the alarm information generation unit 205 to judge the alarm status are different from the parameters used by the first processing unit 201 to determine the fault type information.
  • the first processing unit 201 uses The first sampling parameter determines the fault type information
  • the alarm information generating unit 205 uses a second sampling parameter that is different from the first sampling parameter to determine the alarm status.
  • the alarm information generation unit 205 may receive multiple second sampling parameters output by the sampling unit 202 in real time.
  • the second sampling parameters may be analog quantities, or the second sampling parameters may also be quantized analog quantities, or,
  • the second sampling parameter may also be a digital quantity.
  • the alarm information generating unit 205 can monitor the status of each second sampling parameter in real time, compare each second sampling parameter one by one with the end value of the preset threshold range, and when the second sampling parameter drops from the normal value to below the preset threshold range When the minimum value is reached, or when the second sampling parameter rises from a normal value to a maximum value higher than the preset threshold range, the alarm information generating unit 205 generates alarm information.
  • the alarm information can be a digital logic signal changing from low level to high level, or the alarm information can also be a digital logic signal changing from high level to low level.
  • the alarm information can also be of other types. The information is not limited here.
  • Figure 11 is another schematic structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • Figure 12 is another schematic structural diagram of the photoelectric conversion module in the embodiment of the present application.
  • the sampling unit may include: a first Sampling unit 202a and second sampling unit 202b.
  • the first sampling unit 202a is used to collect the first sampling parameters, and store the first sampling parameters in the sampling information storage unit 203 through the first processing unit 201.
  • the second sampling unit 202b is used to collect the second sampling parameter and send the second sampling parameter to the alarm information generating unit 205.
  • the first sampling parameter may include a photogenerated current
  • the second sampling parameter may include an optical signal amplitude.
  • the first sampling unit 202a may collect the output of the photodetector 31 The photogenerated current is used as the first sampling parameter.
  • the second sampling unit 202b can collect the optical signal amplitude output by the transimpedance amplifier 32 and the optical signal amplitude is used as the second sampling parameter.
  • the first sampling parameter may include The photogenerated current and the second sampling parameter may include pre-correction bit error rate. As shown in FIG.
  • the first sampling unit 202a may collect the photogenerated current output by the photodetector 31 and use the photogenerated current as the first sampling parameter and the second sampling parameter.
  • the unit 202b may collect the pre-correction bit error rate output by the optical signal processor 36, and use the pre-correction bit error rate as the above-mentioned second sampling parameter.
  • the first sampling parameter and the second sampling parameter may also include other parameters, which are not limited here.
  • the alarm information generation unit 205 may be an independent hardware unit.
  • the alarm information generation unit may be hardware such as a comparator, or the alarm information generation unit 205 may be combined with the first processing unit 201 Integrated in the same processor or processing chip, the specific implementation manner of the alarm information generating unit 205 is not limited here.
  • the alarm information generation unit 205 can implement "determining whether the first sampling parameter (or the second sampling parameter) is within the preset threshold range, and when the first sampling parameter exceeds the threshold range,” can be implemented through hardware or software. Generate alarm information" function.
  • the first sampling parameter is monitored in real time by setting an alarm information generation unit.
  • the alarm information generation unit can detect the abnormality in time, generate alarm information, and report the alarm The information is sent to the first processing unit.
  • the function of determining the alarm status in the optical module 12 can also be implemented by the first processing unit 201 .
  • the first processing unit can use the first sampling parameter to determine the alarm status, that is, the first processing unit 201 can determine whether the first sampling parameter is within the preset threshold. range, when the first sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit 201 can receive multiple first sampling parameters output by the sampling unit 202 in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • the first processing unit can use a second sampling parameter different from the first sampling parameter to judge the alarm status, that is, the first processing unit 201 can judge Whether the second sampling parameter is within the preset threshold range, and when the second sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit 201 can receive multiple second sampling parameters output by the sampling unit 202 in real time, and compare each received second sampling parameter with the end value of the preset threshold range one by one. When the second sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • optical module The basic structure of the optical module has been introduced above.
  • connection relationship between the optical module and components such as electronic equipment and network management equipment in the communication system according to the embodiment of the present application will be introduced below with reference to the accompanying drawings.
  • the electronic device 11 in the embodiment of the present application may include: a second processing unit 11a, and any optical module 12 in the embodiment of the present application, and the optical module 12 is connected to the second processing unit 11a.
  • the second processing unit 11a is used to control the electronic device 11.
  • the optical module 12 is used to send alarm information to the second processing unit 11a when the alarm information is recognized, and the second processing unit 11a is used to read the optical module 12 after a first preset time after receiving the alarm information.
  • Fault type information corresponding to the alarm information in the fault information storage unit 204.
  • the second processing unit 11a may be a server or other device with strong data processing functions.
  • the second processing unit 11a may be configured to determine the cause of the fault based on the read fault type information and the network topology relationship of the network system where it is located. Alternatively, the second processing unit 11a may be used to determine the cause of the fault based on the read fault type information. Since the first processing unit 201 in the optical module 12 has determined the fault type information, the second processing unit 11a can determine the cause of the fault based on the fault type information, which simplifies the process of fault cause analysis by the second processing unit 11a and reduces The calculation amount is reduced and the time required for failure cause analysis is shortened.
  • the first processing unit 201 in the optical module when the first processing unit 201 in the optical module recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit 204 .
  • the second processing unit 11a in the electronic device 11 can read the fault type information corresponding to the alarm information in the fault information storage unit 204 after receiving the first preset time of the alarm information, and combine it with the network topology relationship of the communication system. , can quickly and accurately determine the cause of the fault and the location of the fault point. Therefore, the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • Figure 13 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • the electronic device 11 may include at least one optical module.
  • the electronic device may include: An optical module 121, a second optical module 122, ... and a Jth optical module 12j. 10 and 13 , the electronic device 11 can be an integrated device, and the optical module can be directly plugged into the electronic device 11 as a pluggable independent module, or the optical module can also be provided inside the electronic device 11 .
  • the second processing unit 11a can be connected to the alarm information generating unit 205 in the optical module 12 through a hardware pin interface.
  • the alarm information generating unit 205 is configured to, when generating alarm information, jump to the second level through the level transition of the hardware pin interface.
  • the processing unit 11a sends alarm information.
  • the level of the hardware pin interface can change from high level to low level, or from low level to high level.
  • the alarm information can be a loss of signal (LOS) alarm, and the alarm information can be transmitted through the corresponding hardware pin interface.
  • LOS loss of signal
  • the alarm information generating unit 205 can quickly transmit the alarm information to the second processing unit 11a.
  • the second processing unit 11a can be connected to the first processing unit 201 through a communication bus.
  • the first processing unit 201 is configured to send an alarm to the second processing unit 11a through the communication bus when alarm information is recognized. information.
  • the first processing unit 201 can also store the alarm information in the fault information storage unit 204 when recognizing the alarm information, and the second processing unit 11a can read the alarm in the fault information storage unit 204 through the communication bus. information.
  • the second processing unit 11a can also read parameters such as fault type information and fault generation time in the fault information storage unit 204 through the communication bus.
  • the second processing unit 11a can read the status parameters and performance parameters of the optical module through the communication bus, and configure the operating parameters of the optical module.
  • the second processing unit 11a can also interact with the optical module through other information through the communication bus. No more examples here.
  • Figure 14 is another schematic structural diagram of an electronic device in an embodiment of the present application.
  • the electronic device 11 may include: at least one single board 18.
  • the electronic device 11 may include: a first single board 181, a second single board 182, ... and an M-th single board 18m that are independent of each other.
  • the single board 18 can be pluggably inserted into the electronic device 11 , or the single board 18 can also be disposed inside the electronic device 11 .
  • At least one optical module can be provided in the single board 18, and the optical module can be pluggably inserted into the single board 18, or the optical module can also be provided inside the single board 18.
  • the first optical module 121, The second optical module 122,... and the Jth optical module 12j can be pluggably inserted into the single board 18.
  • FIG. 15 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • the optical module 12 can interact with the electronic device 11 through the single board 18 .
  • the single board 18 may include: a third processing unit 18a.
  • the third processing unit 18a is connected to the alarm information generating unit 205 in the optical module 12 through a hardware pin interface.
  • the alarm information generating unit 205 is configured to generate alarm information through hardware.
  • the level transition of the pin interface sends alarm information to the third processing unit 18a.
  • the level of the hardware pin interface may change from high level to low level, or may also change from low level to high level.
  • the alarm information may be a loss of signal (LOS) alarm, and the alarm information may be transmitted through a corresponding hardware pin interface.
  • LOS loss of signal
  • the alarm information generating unit 205 can The alarm information can be quickly transmitted to the third processing unit 18a. Furthermore, the third processing unit 18a may send alarm information to the second processing unit 11a through the communication interface.
  • the third processing unit 18a may be a central processing unit (CPU) or a microprocessor (Microcontroller Unit, MCU) or other device with a data processing function.
  • the third processing unit 18a may be connected to the first processing unit 201 through a communication bus, and the third processing unit 18a is connected to the second processing unit 11a through a communication interface.
  • the first processing unit 201 is configured to send the alarm information to the third processing unit 18a through the communication bus when the alarm information is recognized, and the third processing unit 18a is configured to send the alarm information to the second processing unit 11a through the communication interface.
  • the third processing unit 18a can read the fault type information, fault generation time and other parameters in the fault information storage unit 204 through the communication bus, and transmit the read fault type information, fault generation time and other parameters to Second processing unit 11a.
  • the optical module 12 can also interact with the electronic device 11 through other information through the single board 18, and no examples are given here.
  • the communication bus can be a serial peripheral interface (Serial Peripheral Interface, SPI) bus or an inter-integrated circuit serial communication bus (Inter-Integrated Circuit, I2C).
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • the above communication bus It can also be a high-speed communication bus, for example, it can be a Management Data Input Output Interface (MDIO).
  • MDIO Management Data Input Output Interface
  • the above-mentioned communication bus can also be other types of buses, as long as it can meet the requirements between the first processing unit and the electronic device. It suffices to meet the transmission requirements between the two, and there is no limit here.
  • the communication system in the embodiment of the present application may also include: a network management device 16.
  • the network management device 16 can perform unified management and control of the communication system where it is located.
  • the second processing unit 11a in the electronic device 11 can be connected to the network management device 16 through the network communication interface.
  • the electronic device 11 can implement information interaction with the grid device 16 through the network communication interface. For example, the electronic device 11 can report faults through the network communication interface. Parameters such as type information and fault occurrence time are transmitted to the network management device 16 .
  • the network management device 16 can be used to obtain the fault type information of the electronic device 11 and determine the cause of the fault based on the fault type information and the network topology relationship of the network system. Alternatively, the network management device 16 may be used to obtain fault type information of the electronic device 11 and determine the cause of the fault based on the fault type information.
  • At least one parameter of the optical module may be abnormal, and a certain parameter may be used as the first sampling parameter.
  • the first processing unit in the optical module The fault type information can be determined based on the first sampling parameter when a fault occurs, and subsequent electronic equipment or network management equipment can determine the fault cause and fault point based on the fault type information and network topology relationship.
  • Figure 16 is a schematic diagram of the communication system in the embodiment of the present application when a device power failure occurs.
  • the communication system may include: electronic equipment and a power supply line.
  • the power supply line is used to supply power to the electronic equipment.
  • the electronic equipment may include at least An optical module, the optical modules in different electronic devices can realize optical signal connection through optical jumpers and communication optical cables.
  • the communication system shown in Figure 16 may at least include: a first electronic device 111 and a second electronic device 112.
  • the optical signal output by the first optical module 121 in the first electronic device 111 passes through the first optical jumper 131, The communication optical cable 14 and the second optical jumper 132 are input to the second optical module 122 in the second electronic device 112, thereby realizing optical signal transmission between the first optical module 121 and the second optical module 122.
  • the first power supply line 151 is connected to the first electronic device 111.
  • the first power supply line 151 is used to supply power to the first electronic device 111.
  • the second power supply line 152 is connected to the second electronic device 112.
  • the second power supply line 152 is used to supply power to the second electronic device 111. Two electronic devices 112 are powered.
  • FIG. 17 is a sampling diagram obtained by collecting the first sampling parameter when the equipment power-off fault occurs.
  • the main features of the sampling diagram are: the first sampling parameter ( For example, the photogenerated current) drops from the normal value to the state of no light signal input in a very short time (from t0 to t1 in the figure), and the first sampling parameter drops from the normal value to the time window of no signal input (from t0 to t1 (the time difference between
  • the first processing in the second optical module 122 When the unit recognizes that the first sampling parameter satisfies the judgment basis, it can determine that the fault type information is the input optical power step loss.
  • the second electronic device 112 can determine that the fault cause is the first electronic device 111 based on the fault type information and network topology relationship. In case of power outage, the fault point is at the position of the first power supply line 151 .
  • Figure 18 is a schematic diagram of the communication system in the embodiment of the present application when an optical jumper falls off. As shown in Figure 18, when the optical jumper in the optical signal transmission link between the first electronic device 111 and the second electronic device 112 falls off. For example, when the optical jumper has poor contact or is manually pulled out, the first sampling parameter sampled by the second optical module 122 may be abnormal.
  • Figure 19 is a sampling diagram obtained by collecting the first sampling parameter from the second optical module when an optical jumper disconnection fault occurs in the communication system.
  • the main features of the sampling diagram are: the first sampling Parameters (such as photogenerated current) fall to a state of no light signal input within a short time window (from t0 to t1 in the figure).
  • This time window (the time difference between t0 and t1) is generally between 20 milliseconds and 500 Between milliseconds, in different scenarios and different types of optical modules, the specific value of this time window may vary.
  • the first processing in the second optical module 122 can determine that the fault type information is a rapid loss of input optical power.
  • the second electronic device 112 can determine that the fault cause is an optical jumper disconnection fault based on the fault type information and network topology relationship.
  • the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • Figure 20 is a schematic diagram of the communication system in the embodiment of the present application when an optical cable breakage fault or an optical jumper damage fault occurs.
  • the communication system may include: a first electronic device 111, a second electronic device 112, a third electronic device
  • the device 113 and the network management device 16 are connected to the second processing unit in the first electronic device 111, the second electronic device 112, and the third electronic device 113 respectively.
  • the first electronic device 111 includes a first optical module 121
  • the third electronic device 113 includes a third optical module 123 , that is, the first optical module 121 and the third optical module 123 are distributed in different electronic devices.
  • the first optical module 121 and the third optical module 123 can also be distributed in the same electronic device.
  • the second electronic device 112 includes a second optical module 122 and a fourth optical module 124 that transmit on the same cable. That is, the second optical module 122 and the fourth optical module 124 transmit optical signals through the same communication optical cable 14 .
  • the first optical module 121 realizes optical signal transmission with the second optical module 122 through the optical jumper 13, the first optical distribution frame 171, the communication optical cable 14 and the second optical distribution frame 172.
  • the third optical module 123 realizes optical signal transmission through the optical jumper. 13.
  • the first optical distribution frame 171, the communication optical cable 14, the second optical distribution frame 172 and the fourth optical module 124 realize optical signal transmission.
  • Figure 21 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when the optical cable breakage fault occurs. (1) in Figure 21 shows the first sampling collected by the second optical module when the optical cable breakage fault occurs. The sampling diagram obtained by the parameters. (2) in Figure 21 is the sampling diagram obtained by collecting the first sampling parameter by the fourth optical module when an optical cable breakage fault occurs.
  • the main characteristics of the sampling diagrams of the second optical module 122 and the fourth optical module 124 are: when the first sampling parameter (such as the photogenerated current) drops to a state of no light signal input, fluctuations will appear, and the number and size of the fluctuations will appear. It is directly related to the degree of excavation or damage. During the specific implementation, it is detected that the first sampling parameter drops from the normal value to less than a certain threshold of several microamps to several milliamperes, and the waveform pattern of the first sampling parameter fluctuates and Decline events are used as a basis for judgment.
  • the first sampling parameter such as the photogenerated current
  • Figure 22 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical jumper damage fault occurs.
  • (1) in Figure 22 is a diagram obtained by collecting the first sampling parameters of the second optical module.
  • Sampling diagram, (2) in Figure 22 is the sampling diagram obtained by collecting the first sampling parameter by the fourth optical module.
  • the main characteristics of the sampling diagram are: the sampling diagram of one of the two optical modules transmitted on the same cable has the characteristics of fluctuation and decline, and the sampling diagram of the other optical module has the characteristics of fluctuation.
  • the sampling chart is normal.
  • the sampling chart of the second optical module has fluctuation and decreasing characteristics
  • the sampling chart of the fourth optical module is normal.
  • the first processing unit in the second optical module 122 and the fourth optical module 124 can determine the fault type information according to the first sampling parameter, for example, (1) and (2) in Figure 21 ), the fault type information corresponding to the sampling chart is loss of input optical power fluctuation, the fault type information corresponding to the sampling chart (1) in Figure 22 is loss of input optical power fluctuation, and the sampling chart (2) in Figure 22 is normal ( No fault type information).
  • the second electronic device 112 can determine the cause of the fault and the location of the fault point based on the fault type information of the second optical module 122 and the fourth optical module 124 and the network topology relationship of the network system where it is located.
  • the second electronic device 112 detects that the fault type information of at least two optical modules transmitted on the same cable is a loss of input optical power fluctuation, for example, the fault type corresponding to the sampling diagram of the second optical module 122 and the fourth optical module 124 in Figure 21 If the information is all lost due to input optical power fluctuation, it can be determined that the cause of the fault is an optical cable breakage fault, and the fault point is at the position of the communication optical cable 14 .
  • the sampling chart of the second optical module 122 in Figure 22 corresponds to If the fault type information is that the input optical power fluctuates and is lost, and the sampling pattern of the fourth optical module 124 is normal, it can be determined that the cause of the fault is a damaged optical jumper.
  • the fault point is at the optical module corresponding to the fault type information that the input optical power fluctuates and is lost. The location of the optical jumper.
  • Figure 23 is another schematic diagram when an optical cable breakage fault or optical jumper damage failure occurs in the communication system in the embodiment of the present application. As shown in Figure 23, the difference from Figure 20 is that in Figure 23, the same cable transmission
  • the second optical module 122 and the fourth optical module 124 are distributed in different electronic devices, wherein the second optical module 122 is located in the second electronic device 112 and the fourth optical module 124 is located in the fourth electronic device 114 .
  • the second optical module 122 and the fourth optical module 124 of the same cable transmission sample are The first sampling parameter will be abnormal.
  • the sampling diagram of the first sampling parameter sampled by the second optical module 122 and the fourth optical module 124 can be referred to Figure 21.
  • the second optical module 122 and the fourth optical module when an optical cable breakage fault occurs in the communication system, the second optical module 122 and the fourth optical module The main feature of the sampling diagram of the module 124 is that when the first sampling parameter (such as the photogenerated current) drops to a state of no light signal input, a fluctuation drop characteristic will appear.
  • the number and size of the fluctuations are directly related to the degree of excavation or damage.
  • the judgment is based on the fact that the first sampling parameter drops from a normal value by less than a certain threshold of several microamps to several milliamperes, and the waveform pattern of the first sampling parameter fluctuates and drops.
  • the first sampling parameter sampled by at least one of the second optical module 122 and the fourth optical module 124 transmitted on the same cable will be abnormal, and the second optical module will be abnormal, and the second optical module will The sampling diagram of the first sampling parameter sampled by 122 and the fourth optical module 124 can refer to Figure 22.
  • the main features of the sampling diagram are: co-cable transmission
  • the sampling chart of one of the two optical modules has the characteristic of fluctuation and decline, and the sampling chart of the other optical module is normal.
  • the sampling chart of the second optical module has the characteristic of fluctuation and decline
  • the sampling chart of the fourth optical module has the characteristic of fluctuation and decline.
  • the sampling chart is normal.
  • the first processing unit in the second optical module 122 and the fourth optical module 124 can determine the fault type information according to the sampling map of the first sampling parameter, for example, (1) in Figure 21
  • the fault type information corresponding to the sampling diagram of (2) is the loss of input optical power fluctuation.
  • the fault type information corresponding to the sampling diagram of (1) in Figure 22 is the loss of input optical power fluctuation.
  • the sampling of (2) in Figure 22 The graph is normal (no fault type information).
  • the second electronic device 112 obtains the fault type information and fault occurrence time information of the second optical module 122, and reports the fault type information and fault occurrence time information of the second optical module 122 to the network management device 16.
  • the fourth electronic device 114 obtains the fault type information and fault occurrence time information of the second optical module 122.
  • the fault type information and fault occurrence time information of the four optical modules 124 are reported to the network management device 16 .
  • the network management device 16 can determine the cause of the fault and the location of the fault point based on the fault type information of the second optical module 122 and the fourth optical module 124, the fault occurrence time, and the network topology relationship of the network system where it is located.
  • the network management device 16 detects that the fault type information of at least two optical modules transmitted on the same cable is a loss of input optical power fluctuation, for example, the fault type information corresponding to the sampling diagrams of the second optical module 122 and the fourth optical module 124 in Figure 21 are both If the input optical power fluctuates and is lost, it can be determined that the cause of the fault is an optical cable breakage fault, and the fault point is at the position of the communication optical cable 14 .
  • the network management device 16 detects that the fault type information of at least one optical module among the optical modules transmitted on the same cable is loss of input optical power fluctuation, and the remaining optical modules are normal, for example, the fault corresponding to the sampling chart of the second optical module 122 in Figure 22 If the type information is that the input optical power fluctuates and is lost, and the sampling pattern of the fourth optical module 124 is normal, it can be determined that the cause of the fault is a damaged optical jumper.
  • the fault point is the optical jumper of the optical module whose fault type information is that the input optical power fluctuates and is lost. location.
  • Figure 24 is a schematic diagram when an optical jumper bending fault occurs in the communication system in the embodiment of the present application.
  • Figure 24 shows the bending of the optical jumper. The sampling diagram obtained by collecting the first sampling parameters of the second optical module during the fault.
  • the main features of the sampling diagram are: the first sampling of the second optical module 122 Parameters (such as photogenerated current) will have a falling waveform when the optical jumper is bent. The falling rate and falling difference are strongly related to the time of external force and the degree of bending. Generally, the first sampling parameter can drop to the normal working value. About half, that is, the waveform of the first sampling parameter has degradation characteristics. In specific implementation, the decrease amplitude value can be preset according to the actual usage scenario.
  • the first processing unit in the second optical module 122 recognizes that the first sampling parameter has degradation characteristics, it can determine that the fault type information is input optical power degradation.
  • the second electronic device 112 can determine that the cause of the fault is an optical jumper bending fault based on the fault type information and the network topology relationship, and the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • Figure 26 is a schematic diagram of the communication system in the embodiment of the present application when optical cable vibration failure or optical jumper vibration failure occurs.
  • the structure of the communication system shown in Figure 26 is similar to the structure of the communication system shown in Figure 20, and there will be no duplication. Repeat.
  • Figure 27 is a sampling diagram obtained by collecting the first sampling parameters of the second optical module and the fourth optical module when an optical cable vibration fault occurs, where (1) in Figure 27 shows the first sampling collected by the second optical module when an optical cable vibration fault occurs.
  • the sampling diagram obtained by the parameters. (2) in Figure 27 is the sampling diagram obtained by collecting the first sampling parameters of the fourth optical module when an optical cable vibration fault occurs.
  • the second The main feature of the sampling diagrams of the optical module 122 and the fourth optical module 124 is: a fluctuation event occurs in the first sampling parameter (for example, the photogenerated current).
  • the number and amplitude of movements are directly related to the number and degree of vibrations. After the vibration disappears, the first sampling parameter can be restored to the value before the vibration.
  • Figure 28 is a sampling diagram obtained by collecting the first sampling parameter by the second optical module and the fourth optical module when an optical jumper vibration fault occurs.
  • (1) in Figure 28 is a sample diagram obtained by collecting the first sampling parameter by the second optical module.
  • Sampling diagram, (2) in Figure 28 is the sampling diagram obtained by collecting the first sampling parameter by the fourth optical module.
  • the main characteristics of the sampling diagram are: the sampling diagram of one of the two optical modules transmitted on the same cable has fluctuation characteristics, and the sampling diagram of the other optical module has fluctuation characteristics.
  • the sampling pattern is normal.
  • the sampling pattern of the second optical module has fluctuation characteristics
  • the sampling pattern of the fourth optical module is normal.
  • the first processing unit in the second optical module 122 and the fourth optical module 124 can determine the fault type information according to the first sampling parameter, for example, (1) and (1) in Figure 27
  • the fault type information corresponding to the sampling chart of 2) is the input optical power fluctuation.
  • the fault type information corresponding to the sampling chart of (1) in Figure 28 is the input optical power fluctuation.
  • the sampling chart of (2) in Figure 28 is normal (no Fault type information).
  • the second electronic device 112 can determine the cause of the fault and the location of the fault point based on the fault type information of the second optical module 122 and the fourth optical module 124 and the network topology relationship of the network system where it is located.
  • the second electronic device 112 detects that the fault type information of at least two optical modules transmitted on the same cable is input optical power fluctuation, for example, the fault type information corresponding to the sampling diagram of the second optical module 122 and the fourth optical module 124 in Figure 27 If all are input optical power fluctuations, it can be determined that the cause of the fault is an optical cable vibration fault, and the fault point is at the position of the communication optical cable 14 .
  • the second electronic device 112 detects that the fault type information of at least one optical module among the optical modules transmitted over the same cable is input optical power fluctuation, the remaining optical modules are normal, for example, corresponding to the sampling chart of the second optical module 122 in Figure 28 If the fault type information is the input optical power fluctuation, and the sampling pattern of the fourth optical module 124 is normal, it can be determined that the cause of the fault is an optical jumper vibration fault, and the fault point is the optical jumper corresponding to the optical module whose fault type information is the input optical power fluctuation. location.
  • Figure 29 is another schematic diagram when an optical cable vibration failure or an optical jumper vibration failure occurs in the communication system according to the embodiment of the present application.
  • the difference from Figure 26 is that in Figure 29, the second optical module 122 and the second optical module 122 for co-cable transmission
  • the fourth optical module 124 is distributed in different electronic devices, wherein the second optical module 122 is located in the second electronic device 112 and the fourth optical module 124 is located in the fourth electronic device 114 .
  • the first sampling parameters sampled by module 124 will all be abnormal.
  • the sampling diagram obtained by collecting the first sampling parameters by the second optical module and the fourth optical module can be referred to Figure 27.
  • the main characteristics of the sampling diagrams of the second optical module 122 and the fourth optical module 124 are: the first sampling parameter (such as the photogenerated current) fluctuates, and the number of fluctuations The amplitude is directly related to the number and degree of vibration. After the vibration disappears, the first sampling parameter can be restored to the value before the vibration.
  • the sampling diagram obtained by collecting the first sampling parameters by the second optical module and the fourth optical module can be referred to Figure 28.
  • the main characteristics of the sampling diagram are: the sampling diagram of one of the two optical modules transmitted on the same cable has fluctuation characteristics, and the sampling diagram of the other optical module has fluctuation characteristics.
  • the sampling pattern is normal. For example, in Figure 28, the sampling pattern of the second optical module has fluctuation characteristics, and the sampling pattern of the fourth optical module is normal.
  • the first processing unit in the second optical module 122 and the fourth optical module 124 can determine the fault type information according to the first sampling parameter, for example, (1) and (1) in Figure 27
  • the fault type information corresponding to the sampling chart of 2) is the input optical power fluctuation.
  • the fault type information corresponding to the sampling chart of (1) in Figure 28 is the input optical power fluctuation.
  • the sampling chart of (2) in Figure 28 is normal (no Fault type information).
  • the second electronic device 112 obtains the fault type information and fault occurrence time information of the second optical module 122, and reports the fault type information and fault occurrence time information of the second optical module 122 to the network management device 16.
  • the fourth electronic device 114 obtains the fault type information and fault occurrence time information of the second optical module 122.
  • the fault type information and fault occurrence time information of the four optical modules 124 are reported to the network management device 16 .
  • the network management device 16 can determine the cause of the fault and the location of the fault point based on the fault type information of the second optical module 122 and the fourth optical module 124, the fault occurrence time, and the network topology relationship of the network system where it is located.
  • the network management device 16 detects that the fault type information of at least two optical modules transmitted on the same cable is input optical power fluctuation, for example, the fault type information corresponding to the sampling diagrams of the second optical module 122 and the fourth optical module 124 in Figure 27 are both If the input optical power fluctuates, it can be determined that the cause of the fault is an optical cable vibration fault, and the fault point is at the position of the communication optical cable 14 .
  • the network management device 16 detects that the fault type information of at least one optical module among the optical modules transmitted on the same cable is input optical power fluctuation, and the remaining optical modules are normal, for example, the fault type corresponding to the sampling chart of the second optical module 122 in Figure 28 If the information is input optical power fluctuation, and the sampling pattern of the fourth optical module 124 is normal, it can be determined that the cause of the fault is an optical jumper vibration fault, and the fault point is at the position of the optical jumper corresponding to the optical module whose fault type information is input optical power fluctuation. at.
  • any one of the first optical module 121 , the second optical module 122 , the third optical module 123 or the fourth optical module 124 can be a photoelectric conversion module, an optical amplification module or an optical switching module. Any one of them, correspondingly, the above-mentioned first sampling parameter can be the photogenerated current.
  • the photoelectric conversion modules can generate and detect a variety of real-time parameters. Based on these implementation parameters, multiple implementations can be implemented. A fault location method.
  • the photoelectric conversion module has various parameters such as photocurrent, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electric eye diagram amplitude, optical signal phase, optical signal spectrum, etc.
  • optical Any one of the signal amplitude, pre-correction bit error rate, post-correction bit error rate, electric eye diagram amplitude, optical signal phase, and optical signal spectrum can also be used as the first sampling parameter above, that is to say, the first sampling parameter in the optical module
  • the processing unit can also determine the fault type information through any one of the optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electric eye diagram amplitude, optical signal phase, and optical signal spectrum.
  • At least two parameters can be used as the first sampling parameters, and the first processing unit in the optical module can determine based on at least two parameters at the time of the fault. Based on the fault type information, subsequent electronic equipment or network management equipment can determine the cause and point of the fault based on the fault type information and network topology relationship.
  • Figure 30 is a schematic diagram when an optical path quality degradation fault occurs in the communication system in the embodiment of the present application.
  • the optical signal output by the first optical module 121 in the first electronic device 111 passes through the first optical path.
  • the jumper 131, the communication optical cable 14 and the second optical jumper 132 are input to the second optical module 122 in the second electronic device 112, thereby realizing optical signal transmission between the first optical module 121 and the second optical module 122.
  • the first optical module 121 and the second optical module 122 may be photoelectric conversion modules.
  • MPI multipath interference degradation
  • the fault point is usually the communication optical cable 14 and the optical jumper (the first optical jumper 131 or the second optical jumper 131 or the second optical jumper 131 ). Pluggable connection points for optical jumpers 132). Therefore, when an optical path quality degradation fault occurs in the optical signal transmission link, the first sampling parameter sampled by the second optical module 122 in the second electronic device 112 will be abnormal.
  • the first sampling parameter may include a pre-correction bit error rate. and photocurrent.
  • an optical signal processor can be provided in the second optical module 122, and the function of detecting and reporting the bit error rate is implemented through the optical signal processor.
  • Figure 31 is a sampling diagram obtained by collecting the first sampling parameter by the second optical module when the optical path quality degradation fault occurs.
  • (1) in Figure 31 is the pre-correction bit error rate obtained by the second optical module when the optical path quality degradation fault occurs.
  • Sampling diagram, (2) in Figure 31 is a sampling diagram obtained from the photogenerated current collected by the second optical module when an optical path quality degradation fault occurs.
  • the second optical module 122 when an optical path degradation fault occurs in the communication system, the second optical module 122
  • the main features of the collected sampling images are: the pre-correction bit error rate has deteriorated to a certain threshold, and the photo-generated current has no change within the fault window (generally within the range of 1dB corresponding to the optical power value).
  • the first processing unit in the second optical module 122 when the first processing unit in the second optical module 122 recognizes that the pre-correction bit error rate and the photogenerated current satisfy this characteristic, it can determine that the fault type information is optical power multipath interference degradation.
  • the second electronic device 112 can determine that the cause of the fault is an optical path quality degradation fault based on the fault type information and the network topology relationship, and the fault point is the connection between the communication optical cable 14 and the optical jumper (the first optical jumper 131 or the second optical jumper 132). Pluggable connection points, such as communication fiber optic cables 14 and optical jumper pluggable connection points, are contaminated.
  • the optical module in the embodiment of the present application may include: a first processing unit 201, and a sampling unit 202, a sampling information storage unit 203 and a fault information storage unit 204 that are electrically connected to the first processing unit 201 respectively.
  • the sampling unit 202 is used to collect first sampling parameters, and store the first sampling parameters in the sampling information storage unit 203 through the first processing unit 201.
  • the first processing unit 201 is configured to read the first sampling parameter in the sampling information storage unit 203 when the alarm information is recognized, determine the fault type information corresponding to the alarm information according to the first sampling parameter, and store the fault type information in the fault in the information storage unit 204.
  • the optical module 12 can realize functions such as collection, storage and analysis of the first sampling parameters.
  • the electronic device 11 or the network management device 16 reads the fault type information stored in the optical module 12 and combines it with the network topology relationship of the communication system. The cause of the fault and the location of the fault point can be determined quickly and accurately.
  • the fault information storage unit 204 can also store fault occurrence time information corresponding to the alarm information.
  • the sampling unit 202 may be specifically configured to collect the first sampling parameter with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit 202 collects at least 2 data within 1 s.
  • the sampling accuracy of the sampling unit 202 Higher, more sampling data can be provided for determining fault type information, and since the optical module 12 does not need to send the first sampling parameter to the electronic device 11, the sampling accuracy of the sampling unit 202 is higher and will not increase Data transmission pressure between the optical module 12 and the electronic device 11 .
  • the optical module 12 can collect the first sampling parameter in real time under normal working conditions, encode the first sampling parameter and store it in the sampling information storage unit 203 through the first processing unit 201. If the sampling information storage unit The storage space in 203 is full and the wrap can be overwritten from the beginning.
  • the first processing unit 201 may be specifically configured to continue to store the first sampling parameters of p sampling points collected by the sampling unit 202 in the sampling information storage unit 203 when alarm information is recognized, where p is greater than or equal to 0.
  • the specific value of p can be set according to the application scenario. For example, p can be a value between 10 and 1000.
  • the first sampling parameter (including at least 2 sampling point data) within the preset time window in the sampling information storage unit 203 is read, and the fault type information corresponding to the alarm information is determined based on the read first sampling parameter.
  • the first processing unit 201 when the first processing unit 201 recognizes the alarm information, it will continue to store the first sampling parameters of the p sampling points collected by the sampling unit 202 in the sampling information storage unit 203, and read the sampling information. stored in storage unit 203 Assume that p is greater than or equal to 0 for the first sampling parameter in the time window. That is to say, when the first processing unit 201 recognizes the alarm information, it can immediately read the first sampling parameter in the sampling information storage unit 203, or it can Delay for a period of time before reading the first sampling parameter in the sampling information storage unit 203.
  • the first processing unit 201 acquires more data on the first sampling parameter after identifying the alarm information, and can determine the fault type information corresponding to the alarm information through the acquired waveform of the first sampling parameter within the preset time window. , the accuracy of fault analysis is higher.
  • the characteristic parameters of the first sampling parameter within the preset time window can be extracted, for example, A supervised and/or unsupervised algorithm is used, and the extracted feature parameters are stored in the cache queue of the first processing unit 201 according to the classification results.
  • the first processing unit 201 can be based on the first sampling parameter within the preset time window. Characteristic parameters are used to classify fault types to determine the fault type information corresponding to the alarm information.
  • the first sampling parameter may include: photogenerated current or optical signal amplitude.
  • the first sampling parameter may also be are other parameters and are not limited here.
  • Figure 32 is a schematic waveform diagram of the first sampling parameter corresponding to different fault type information in the embodiment of the present application. As shown in Figure 32, the first processing unit 201 can be specifically used for:
  • the difference between the first sampling parameter at the initial time and the last time is less than the first threshold (that is, the difference between the first sampling parameter at the initial time and the last time is small), and the preset time There is a fluctuation event in the waveform pattern of the first sampling parameter within the window T. That is to say, within the preset time window T, the first sampling parameter can return to the value before the fluctuation after fluctuating. Then the fault type information corresponding to the alarm information is Input optical power fluctuation; or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, and the first sampling parameter at the last time is less than the second threshold (that is, the first sampling parameter at the initial time and the last time is The difference in parameters is large, and the first sampling value at the last moment is small), and the waveform pattern of the first sampling parameter within the preset time window T has fluctuations and declining events, that is to say, within the preset time window T If the value obtained after the first sampling parameter fluctuates is smaller, the fault type information corresponding to the alarm information is the loss of input optical power fluctuation; or,
  • the difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, and the first sampling parameter at the last time is less than the second threshold (that is, the first sampling parameter at the initial time and the last time The parameter difference is large, and the first sampling value at the last moment is small), and the waveform pattern of the first sampling parameter within the preset time window T has a step-down event, that is to say, within the preset time window T If the first sampling parameter step drops to a smaller value, the fault type information corresponding to the alarm information is the input optical power step loss; or,
  • the first sampling parameter at the last time will be A sampling parameter is greater than the second threshold, and the waveform pattern of the first sampling parameter within the preset time window T has deterioration characteristics. That is to say, within the preset time window T, the first sampling parameter has declined to a certain extent, and The first sampling parameter at the last moment is between the second threshold and the first threshold. For example, the first sampling parameter at the last moment may be approximately half of the first sampling parameter at the initial moment, and an alarm is issued.
  • the fault type information corresponding to the information is input optical power degradation.
  • the first sampling parameter within the preset time window is used to determine the fault type information. Combined with the waveform and end value of the first sampling parameter within the preset time window, the fault type information corresponding to the alarm information can be accurately determined. This makes subsequent determination of the cause and point of the fault more accurate.
  • the first sampling parameter may include at least two parameters.
  • the first sampling parameter may include: photogenerated current and error correction. Code rate.
  • the first processing unit in the optical module may determine the fault type information based on at least two parameters at the time when the fault occurs. In this way, the first processing unit has more parameters for fault classification and can accurately determine the fault type corresponding to the alarm information, thereby improving the accuracy of fault cause location.
  • Figure 33 is a schematic waveform diagram of the first sampling parameter corresponding to the optical path quality degradation fault in the embodiment of the present application.
  • (1) in Figure 33 is a schematic waveform diagram of the pre-correction bit error rate when the optical path quality degradation fault occurs.
  • (1) in Figure 33 2 This is a schematic diagram of the waveform of light-generated current when an optical path quality degradation fault occurs, as shown in Figure 33.
  • the first processing unit 201 can be specifically used for:
  • the difference between the photocurrents at the initial time and the last time is less than the first threshold, and the difference between the pre-corrected bit error rates at the initial time and the last time is greater than the third threshold (that is, the difference between the photocurrents at the initial time and the last time is greater than small, the difference between the pre-correction bit error rate at the initial moment and the last moment is large), that is to say, within the preset time window T, the pre-correction bit error rate decreases and the photogenerated current basically remains unchanged, then the fault corresponding to the alarm information
  • the type information is optical power multipath interference degradation.
  • the specific values of the first threshold, the second threshold, the third threshold and the preset time window may be set according to the application scenario of the network system and other factors.
  • the fault type determination method can be executed in the optical module in the embodiment of the present application.
  • Figure 34 is a flow chart of the fault type determination method in the embodiment of the present application. As shown in Figure 34, the fault type determination method may include:
  • the sampling unit collects the first sampling parameter, and stores the first sampling parameter in the sampling information storage unit through the first processing unit;
  • the first processing unit When the first processing unit recognizes the alarm information, it reads the first sampling parameter in the sampling information storage unit, determines the fault type information corresponding to the alarm information based on the first sampling parameter, and stores the fault type information in the fault information storage. in the unit.
  • the first processing unit when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. .
  • functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module.
  • Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately Accurately determine the cause of the fault and the location of the fault point to quickly repair the fault in the communication system and reduce the cost of fault resolution.
  • the optical module has at least the following ways of judging alarms.
  • the optical module 12 may also include an alarm information generating unit 205 .
  • the above fault type determination methods may also include:
  • the sampling unit 202 sends the first sampling parameter to the alarm information generating unit 205;
  • the alarm information generating unit 205 determines whether the first sampling parameter is within a preset threshold range, and when the first sampling parameter exceeds the threshold range, generates alarm information and sends the alarm information to the first processing unit 201 .
  • the first sampling parameter may be an analog quantity, a quantized analog quantity or a digital quantity.
  • the alarm information can be a digital logic signal changing from low level to high level, or the alarm information can also be a digital logic signal changing from high level to low level.
  • the alarm information can also be of other types.
  • the information is not limited here.
  • the alarm information generation unit 205 may receive multiple first sampling parameters output by the sampling unit 202 in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • the parameters used by the alarm information generating unit 205 to judge the alarm status may be the same as the parameters used by the first processing unit 201 to determine the fault type information.
  • the first sampling parameter may include a photogenerated current.
  • the first sampling parameter may include parameters such as photogenerated current, optical signal amplitude, pre-correction bit error rate, post-correction bit error rate, electrical eye diagram amplitude, optical signal phase or optical signal spectrum.
  • the first sampling parameter may also include other parameters, which are not limited here.
  • the optical module 12 may also include an alarm information generating unit 205 .
  • the above fault type determination methods may also include:
  • the sampling unit 202 collects the second sampling parameter and sends the second sampling parameter to the alarm information generation unit; the second sampling parameter is different from the first sampling parameter;
  • the alarm information generating unit 205 determines whether the second sampling parameter is within a preset threshold range, and when the second sampling parameter exceeds the threshold range, generates alarm information and sends the alarm information to the first processing unit.
  • the alarm information generation unit 205 may receive multiple second sampling parameters output by the sampling unit 202 in real time, and compare each received second sampling parameter with the end value of the preset threshold range one by one. When the second sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • the sampling unit can be specifically used to collect the second sampling parameter in real time with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit collects at least 2 data within 1 second.
  • the sampling unit has high sampling accuracy and can be used to determine faults. Type information provides more sample data.
  • the sampling unit 202 can collect the first sampling parameter and the second sampling parameter at the same time, or the sampling unit 202 can also collect the first sampling parameter and the second sampling parameter separately in a polling manner.
  • the sampling unit 202 can collect the first sampling parameter and the second sampling parameter. After the first sampling parameter, the second sampling parameter is collected after an interval of several ms (such as 5ms), and then the first sampling parameter is collected after an interval of several ms, and so on.
  • the parameters used by the alarm information generation unit 205 to judge the alarm status are different from the parameters used by the first processing unit 201 to determine the fault type information.
  • the first processing unit 201 uses The first sampling parameter determines the fault type information
  • the alarm information generating unit 205 uses a second sampling parameter that is different from the first sampling parameter to determine the alarm status.
  • the optical module is a photoelectric conversion module
  • the first sampling parameter may include photogenerated current
  • the second sampling parameter may include optical signal amplitude
  • the first sampling parameter may include photogenerated current
  • the second sampling parameter may include correction Bit error rate.
  • the first sampling parameter and the second sampling parameter may also include other parameters, which are not limited here.
  • the alarm information generation unit 205 is set to monitor the first sampling parameter in real time.
  • the alarm information generation unit 205 can detect the abnormality in time and generate alarm information. Send the alarm information to the first processing unit 201.
  • the function of determining the alarm status in the optical module 12 can also be implemented by the first processing unit 201 .
  • the first processing unit can use the first sampling parameter to determine the alarm status, that is, the first processing unit 201 can determine whether the first sampling parameter is within the preset threshold. range, when the first sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit 201 can receive multiple first sampling parameters output by the sampling unit 202 in real time, and compare each received first sampling parameter with the end value of the preset threshold range one by one. When the first sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • the first processing unit can use a second sampling parameter different from the first sampling parameter to judge the alarm status, that is, the first processing unit 201 can judge Whether the second sampling parameter is within the preset threshold range, and when the second sampling parameter exceeds the threshold range, an alarm message is generated.
  • the first processing unit 201 can receive multiple second sampling parameters output by the sampling unit 202 in real time, and compare each received second sampling parameter with the end value of the preset threshold range one by one. When the second sampling parameter is greater than the preset When the maximum value of the threshold range is smaller than the minimum value of the preset threshold range, an alarm message is generated.
  • the sampling unit 202 collects the first sampling parameter with millisecond-level sampling time accuracy.
  • the millisecond-level sampling time accuracy means that the sampling unit 202 collects at least 2 data within 1 s.
  • the sampling accuracy of the sampling unit 202 is relatively high and can provide more sampling data for determining fault type information.
  • the optical module 12 since the optical module 12 does not need to send the first sampling parameter to the electronic device 11, the sampling accuracy of the sampling unit 202 is relatively high. It is high and will not increase the data transmission pressure between the optical module 12 and the electronic device 11 .
  • the optical module 12 can collect the first sampling parameter in real time under normal working conditions, encode the first sampling parameter and store it in the sampling information storage unit 203 through the first processing unit 201. If the sampling information storage unit The storage space in 203 is full and the wrap can be overwritten from the beginning.
  • step S402 may specifically include:
  • the first processing unit 201 When the first processing unit 201 recognizes the alarm information, it continues to store the first sampling parameters of p sampling points collected by the sampling unit 202 in the sampling information storage unit 203, where p is an integer greater than or equal to 0.
  • p is an integer greater than or equal to 0.
  • the specific value of p can be set according to the application scenario. For example, p can be a value between 10 and 1000.
  • the first processing unit 201 reads the first sampling parameter (including at least 2 sampling point data) within the preset time window in the sampling information storage unit 203;
  • the fault type information corresponding to the alarm information is determined according to the read first sampling parameter.
  • the first processing unit 201 when the first processing unit 201 recognizes the alarm information, it will continue to store the first sampling parameters of the p sampling points collected by the sampling unit 202 in the sampling information storage unit 203, and read the sampling information.
  • the first sampling parameter in the preset time window in the storage unit 203, p is greater than or equal to 0. That is to say, when the first processing unit 201 recognizes the alarm information, it can immediately read the first sampling information storage unit 203.
  • the sampling parameters can also be delayed for a period of time before reading the first sampling parameters in the sampling information storage unit 203.
  • the first processing unit 201 acquires more data on the first sampling parameter after identifying the alarm information, and can determine the fault type information corresponding to the alarm information through the acquired waveform of the first sampling parameter within the preset time window. , the accuracy of fault analysis is higher.
  • the first processing unit may also detect whether the storage unit of the sampling information storage unit Cleared. If not cleared, the sampling information storage unit can be controlled to perform a clearing operation.
  • the first processing unit 201 after the first processing unit 201 reads the first sampling parameter within the preset time window in the sampling information storage unit 203, it can extract the characteristic parameters of the first sampling parameter within the preset time window.
  • the first processing The unit 201 can classify the fault type according to the characteristic parameters of the first sampling parameter within the preset time window to determine the alarm information. corresponding fault type information.
  • Figure 35 is a flow chart for the first processing unit to extract the characteristic parameters of the first sampling parameter in an embodiment of the present application. As shown in Figure 35, the method for the first processing unit to extract the characteristic parameters of the first sampling parameter may include:
  • step S501 Sort the sampling point data according to the sampling time to obtain the waveform sequence of the sampling point data; in specific implementation, after the sampling unit collects the first sampling parameter, the first sampling parameter can be encoded, and the encoded first The sampling parameters are stored in the sampling information storage unit through the first processing unit. Therefore, in step S501, the sampling point data can be sorted according to the encoding.
  • the first sampling parameter may include: photogenerated current or optical signal amplitude.
  • the first sampling parameter may also be are other parameters and are not limited here.
  • Figure 36 is a flow chart for the first processing unit to determine the fault type information in the embodiment of the present application. As shown in Figure 36, the first processing unit determines the fault type information corresponding to the alarm information based on the read first sampling parameter, which may specifically include :
  • the first processing unit can extract the events in the buffer queue and sort them according to time, so that in subsequent steps, it can be determined whether the waveform of the first sampling parameter has a fluctuation event, a fluctuation and falling event, etc.
  • Situation 1 The difference between the first sampling parameter at the initial time and the last time is less than the first threshold, that is, the change in the first sampling parameter at the initial time and the last time is small.
  • the first sampling parameter is the photogenerated current
  • the initial time and The difference in photogenerated current at the last moment corresponds to a change in optical power of about 1dB.
  • step S602. Determine whether there is a fluctuation event in the waveform pattern of the first sampling parameter within the preset time window; if so, execute step S603; if not, end this process;
  • step S604. Determine whether the waveform pattern of the first sampling parameter within the preset time window has fluctuation and declining events, that is, determine whether the first sampling parameter has fluctuation characteristics and whether it shows a downward trend over time; if so, perform step S605; if If not, then execute step S606;
  • step S608 Determine whether there is a step drop event in the waveform pattern of the first sampling parameter within the preset time window. For example, if the time window in which the first sampling parameter drops from the normal value to no photocurrent is less than 20 ms, then the waveform of the first sampling parameter The rule has the characteristics of a step decrease; if yes, step S609 is executed; if not, the process ends;
  • Case 3 The difference between the first sampling parameter at the initial time and the last time is greater than the first threshold, and the first sampling parameter at the last time is greater than the second threshold. For example, when the first sampling parameter is the photogenerated current, the photocurrent corresponding to the photocurrent The power drops by about 3dB. Execute step S610;
  • step S610 Determine whether the waveform pattern of the first sampling parameter within the preset time window has deterioration characteristics (the first sampling parameter shows a downward trend with time and does not decrease stepwise); if so, execute step S611; if not, end This process;
  • Table 1 is a list of the correspondence between each byte in the fault information storage unit and fault type information. As shown in Table 1, it can be Bytes bit3 ⁇ bit7 in the fault information storage unit are set as bytes used to store fault type information, and bytes bit0, bit1 and bit2 can be set as reserved bits. When bit3 ⁇ bit7 of bytes are set to 0, it means there is no fault.
  • byte bit 7 When byte bit 7 is set to 1, it can indicate that the fault type information is a step loss of input optical power, and the corresponding fault cause is a device power failure; when byte bit 6 is set to 1, it can indicate that the fault type information is a rapid loss of input optical power, and the corresponding fault The cause is an optical jumper falling off fault; when byte bit 5 is set to 1, it can indicate that the fault type information is a loss of input optical power fluctuation, and the corresponding fault cause is an optical cable breakage fault or an optical jumper damage fault; when byte bit 4 is set to 1, it can indicate a fault The type information is input optical power fluctuation, and the corresponding fault cause is optical cable vibration fault or optical jumper vibration fault; when byte bit3 is set to 1, it can indicate that the fault type information is input optical power degradation, and the corresponding fault cause is optical jumper bending.
  • the byte bit4 can be set to 1; in the above step S605, the byte bit5 can be set to 1; in the above step S607, the byte bit6 can be set to 1; in the above step S609, the byte bit6 can be set to 1.
  • Byte bit7 is set to 1; in the above step S611, byte bit3 can be set to 1.
  • the correspondence relationship shown in Table 1 is used as an example.
  • the correspondence relationship between bytes in the fault information storage unit and fault type information can be set according to actual needs, which is not limited here.
  • Table 1 Correspondence list between each byte in the fault information storage unit and fault type information
  • the first sampling parameter may include at least two parameters.
  • the first sampling parameter may include: photogenerated current and error correction. Code rate.
  • the first processing unit determines the fault type information corresponding to the alarm information based on the read first sampling parameter, which may specifically include:
  • the fault type information is optical power multipath interference degradation.
  • bytes used to store fault type information can be set in the fault information storage unit.
  • Table 2 is another correspondence list between each byte in the fault information storage unit and fault type information, as shown in Table 2.
  • the fault information storage unit can store Byte bit7 is set to 1.
  • the correspondence relationship shown in Table 2 is used as an example.
  • the correspondence relationship between bytes in the fault information storage unit and fault type information can be set according to actual needs, which is not limited here.
  • the specific values of the first threshold, the second threshold, the third threshold and the preset time window may be set according to the application scenario of the network system and other factors.
  • Table 2 Another correspondence list between each byte in the fault information storage unit and fault type information
  • embodiments of the present application also provide another fault type determination method, which is applied to the first processing unit in the optical module.
  • Figure 37 is a flow chart of another fault type determination method provided by an embodiment of the present application. As shown in Figure 37, the fault type determination method may include:
  • the first processing unit when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information storage unit. .
  • functions such as collection, storage and analysis of the first sampling parameters can be realized inside the optical module.
  • Subsequent electronic equipment or network management equipment can read the fault type information stored in the optical module and combine it with the network topology relationship of the communication system to quickly and accurately Accurately determine the cause of the fault and the location of the fault point to quickly repair the fault in the communication system and reduce the cost of fault resolution.
  • Figure 38 is a schematic structural diagram of the fault type determination device provided by the embodiment of the present application.
  • the fault type determination device may include: Processor 2011 and memory 2012, the memory 2012 is used to store each step in the fault type determination method shown in Figure 37, and the processor 2011 is used to execute each step stored in the memory 2012.
  • the specific implementation of the fault type determination device shown in FIG. 38 can be referred to the implementation of the fault type determination method shown in FIG. 37 , and repeated details will not be described again.
  • the fault handling method can be executed in the communication system in the embodiment of the present application.
  • Figure 39 is a flow chart of the fault handling method in the embodiment of the present application. As shown in Figure 39, the fault handling method may include:
  • the sampling unit collects the first sampling parameter, and stores the first sampling parameter in the sampling information storage unit through the first processing unit; step S701 can be performed with reference to step S401, and repeated details will not be repeated.
  • the optical module When the optical module recognizes the alarm information, it sends the alarm information to the second processing unit;
  • the second processing unit in the electronic device recognizes the alarm information
  • the first processing unit reads the first sampling parameter in the sampling information storage unit, and determines the fault type information corresponding to the alarm information based on the first sampling parameter.
  • the specific process of determining the fault type information by the first processing unit can be referred to the above description, and repeated details will not be repeated.
  • the first processing unit stores the fault type information in the fault information storage unit
  • the second processing unit After receiving the first preset time of the alarm information, the second processing unit reads the fault type information corresponding to the alarm information in the fault information storage unit.
  • the first processing unit in the optical module can respond to the query request of the second processing unit and report the fault type information stored in the fault information storage unit to the second processing unit, so that the second processing unit can read Fault type information in the fault information storage unit.
  • the first processing unit in the optical module when it recognizes the alarm information, it can determine the fault type information corresponding to the alarm information based on the first sampling parameter, and store the fault type information in the fault information in the storage unit.
  • the second processing unit in the electronic device can read the fault type information corresponding to the alarm information in the fault information storage unit after the first preset time of recognizing the alarm information.
  • the electronic device or network management device communicates with the user according to the fault type information.
  • the network topology relationship of the system can quickly and accurately determine the cause of the fault and the location of the fault point.
  • the optical module does not need to transmit a large amount of sampling data to the electronic device, which saves data transmission time and reduces the data transmission pressure between the optical module and the electronic device. Therefore, the communication system in the embodiment of the present application suffers from optical path failure. Afterwards, the delay time required to determine the cause of the fault and the location of the fault point is short, and the cause of the fault and the location of the fault point can be located in time.
  • the first processing unit in the optical module is connected to the second processing unit through the communication bus,
  • the first processing unit may send alarm information to the second processing unit through the communication bus.
  • the alarm information generation unit can be connected to the second processing unit through a hardware pin interface, and the alarm information generation unit can be connected to the second processing unit through a level transition of the hardware pin interface. Send alert information.
  • the first processing unit can write the alarm information into the fault information storage unit, and the second processing unit can query the alarm information stored in the fault information storage unit through the communication bus and the first processing unit.
  • the second processing unit needs to wait for the first preset time before reading the fault type information in the fault information storage unit, so that the first processing unit can Complete the operation of determining the fault type information and storing it within a preset time.
  • the specific duration of the first preset time can be determined based on the actual calculation amount of the first processing unit, so that the second processing unit can read the fault type information after waiting for the first preset time.
  • the first processing unit can also delete the fault type information in the fault information storage unit after the second processing unit reads the fault type information, so that after the optical module reports the fault type information, Restore to the state without alarm information indication.
  • Figure 40 is another flow chart of the fault handling method in the embodiment of the present application. As shown in Figure 40, before the above step S702, it may also include:
  • the first processing unit stores the delay prompt information in the fault information storage unit
  • the second processing unit reads the delay prompt information in the fault information storage unit.
  • the delay prompt information is used to indicate the shortest time period between the second processing unit receiving the alarm information and being able to read the fault type information corresponding to the alarm information, and the first preset time is greater than or equal to the shortest time period. This ensures that the second processing unit can read the fault type information after waiting for the first preset time.
  • the minimum length of time needs to be considered at least: after the optical module generates alarm information, the length of time required for the first processing unit to continue to store the first sampling parameters collected by the sampling unit in the sampling information storage unit, the length of time required for the first processing unit to read The length of time required to sample the first sampling parameter in the information storage unit, and the length of time required for the first processing unit to determine the fault type information based on the first sampling parameter.
  • the delay prompt information can be written into the fault information storage unit during the manufacturing process of the optical module.
  • step S708 is taken before step S703 as an example. That is, the second processing unit can read the delay prompt information before identifying the alarm information. In specific implementation, the second processing unit can also read the delay information after identifying the alarm information. , that is, step S708 may also follow step S703.
  • step S702 it may also include:
  • the first processing unit stores the fault occurrence time information in the fault information storage unit
  • the second processing unit reads the fault occurrence time information in the fault information storage unit.
  • step S709 and before step S704 may also include:
  • the first processing unit continues to store the first sampling parameters of the p sampling points collected by the sampling unit in the sampling information storage unit.
  • p is an integer greater than or equal to 0.
  • the specific value of p can be set according to the application scenario. For example, p can be a value between 10 and 1000. In this way, after the first processing unit recognizes the alarm information, it obtains more data on the first sampling parameter, so that the first processing unit can determine the fault type information more accurately, and the accuracy of the fault analysis is higher.
  • the first processing unit may also store completion prompt information in the fault information storage unit.
  • the completion prompt information is used to indicate that the first processing unit has completed the operation of determining and storing the fault type information.
  • the second processing unit reads the completion prompt information in the fault information storage unit, it can execute reading the fault information.
  • the fault occurrence time information, fault type information, etc. in the fault type information storage unit can be performed, that is, operations such as step S710 and step S706 can be performed.
  • the byte used to store the completion prompt information can be set in the fault information storage unit. For example, the preset bit 0 in Table 1 can be set to the byte used to store the completion prompt information.
  • bit0 When bit0 is set to 0, it means “analyzing”, that is, the first processing unit has not completed the operation of determining the fault type information and storing it.
  • bit0 When bit0 is set to 1, it means “analysis has been completed”, that is, the first processing unit has completed determining the fault type information and stored it.
  • other bytes can also be used to store the completion prompt information, and there is no limit here.
  • the optical module when it recognizes an alarm, it can provide various information such as delay prompt information, fault occurrence time information, fault type information, etc. to the electronic device, so that the electronic device or network management device can more accurately determine the cause and reason of the fault. Location of fault points to quickly repair faults in the communication system and reduce fault handling costs.
  • different locations in the fault information storage unit can store fault type information, delay prompt information, fault occurrence time, etc.
  • Table 3 shows the corresponding relationship between the information and format in the fault information storage unit, as shown in Table 3.
  • Bits can be set in the fault information storage unit to store fault type information. Each bit can represent a fault type information.
  • Bits can be set in the fault information storage unit to store delay prompt information.
  • the delay prompt information is generally less than 255 seconds.
  • multiple bits can be set to store fault occurrence time information. For example, 6 bits can be set to store the year, month, day, hour, minute, second and other time information of the fault occurrence time. For example, 4 can be set.
  • the fault generation time can be determined by the set time and the time difference.
  • the set time can be set to January 1, 1970, and the fault generation time can be 2022.
  • the time difference is 1651334400, which is expressed in hexadecimal as 0x626D5D00.
  • the correspondence relationship shown in Table 3 is used as an example.
  • the correspondence relationship between the information and the format in the fault information storage unit can be set according to actual needs, and is not limited here.
  • the electronic device can determine the cause of the fault based on the read fault type information and the network topology relationship of the network system where it is located.
  • Figure 41 is another flowchart of a fault handling method in an embodiment of the present application.
  • the second processing unit in the electronic device can perform the steps shown in Figure 41.
  • the second processing unit reads the fault according to Type information and the network topology relationship of the network system where it is located to determine the cause of the fault, which may specifically include:
  • the second processing unit identifies fault type information. According to the recognition results, there can be the following branches:
  • the fault type information is input optical power step loss, determine that the cause of the fault is a device power-off fault.
  • the fault point is located on the power supply line of the peer electronic device.
  • the fault point is at the first power supply line 151 .
  • the cause of the fault is determined to be an optical jumper detachment fault.
  • the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • the fault type information is input optical power degradation, determine that the cause of the fault is an optical jumper bending fault.
  • the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • the cause of the fault is the optical jumper. Vibration failure.
  • the fault cause is the input optical power fluctuation of the second optical module 122.
  • An optical jumper vibration fault occurs in the optical signal transmission link, and the fault point is at the position of the optical jumper 13 corresponding to the second optical module 122 .
  • the fault type of at least two co-cable optical modules belonging to the same electronic device is input optical power fluctuation, determine that the cause of the fault is an optical cable vibration fault.
  • the fault cause is the optical cable vibration fault, and the fault point is in the communication The location of the optical cable 14.
  • the cause of the fault is the optical jumper. Breaking failure.
  • the fault type information of the second optical module 122 is loss of input optical power fluctuation and the fourth optical module 124 is normal, then the fault cause is the second optical module 122
  • An optical jumper breakage fault occurs in the optical signal transmission link, and the fault point is at the position of the optical jumper 13 corresponding to the second optical module 122 .
  • the fault type of at least two co-cable optical modules belonging to the same electronic device is input optical power fluctuation, determine that the cause of the fault is an optical cable break fault. For example, in the optical cable breakage fault scenario shown in Figure 20, if the fault type information of the second optical module 122 and the fourth optical module 124 is input optical power fluctuation, the fault cause is the optical cable breakage fault, and the fault point is in the communication The location of the optical cable 14.
  • the fault cause is optical path quality degradation fault.
  • the fault point is the pluggable connection point between the communication optical cable 14 and the optical jumper (the first optical jumper 131 or the second optical jumper 132), for example, The pluggable connection points between the communication optical cable 14 and the optical jumper are contaminated.
  • electronic equipment can accurately determine the cause of the fault based on the fault type information and fault occurrence time information of the optical module, combined with the fault type information and fault occurrence time information of other optical modules.
  • the electronic device can also push information such as the cause of the fault and the location of the fault point to the user.
  • the electronic device can upload the fault type information, fault occurrence time information and other information corresponding to the alarm information to the network management device.
  • the network management device can read the fault type information and the network topology of the network system where it is located. relationship to determine the cause of the failure.
  • Figure 42 is another flow chart of the fault handling method in the embodiment of the present application.
  • the network management device can perform the steps shown in Figure 42.
  • the network management device reads the fault type information and the network of the network system where it is located.
  • Topological relationships to determine the cause of the failure may specifically include:
  • the network management device identifies fault type information. According to the recognition results, there can be the following branches:
  • the cause of the fault is determined to be a device power-off fault.
  • the fault point is located on the power supply line of the peer electronic device.
  • the fault point is at the first power supply line 151 .
  • the cause of the fault is determined to be an optical jumper detachment fault.
  • the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • the fault type information is input optical power degradation
  • determine that the cause of the fault is an optical jumper bending fault.
  • the fault point is at the position of the first optical jumper 131 or the second optical jumper 132 .
  • the fault type information is input optical power fluctuation, based on the network topology relationship of the network system where it is located, system to determine the co-cable relationship of the optical module that generates the alarm information;
  • the cause of the fault is optical jumper vibration failure.
  • the fault cause is the input optical power fluctuation of the second optical module 122.
  • An optical jumper vibration fault occurs in the optical signal transmission link, and the fault point is at the position of the optical jumper 13 corresponding to the second optical module 122 .
  • the fault type of at least two optical modules on the same cable is input optical power fluctuation, it is determined that the cause of the fault is optical cable vibration fault.
  • the fault cause is the optical cable vibration fault, and the fault point is in the communication The location of the optical cable 14.
  • the cause of the fault is a broken optical jumper.
  • the fault cause is the second optical module 122
  • An optical jumper breakage fault occurs in the optical signal transmission link, and the fault point is at the position of the optical jumper 13 corresponding to the second optical module 122 .
  • the fault type information of at least two optical modules on the same cable is input optical power fluctuation, determine that the cause of the fault is an optical cable break fault. For example, in the optical cable breakage fault scenario shown in Figure 23, if the fault type information of the second optical module 122 and the fourth optical module 124 is input optical power fluctuation, the cause of the fault is the optical cable breakage fault, and the fault point is in the communication The location of the optical cable 14.
  • the fault cause is optical path quality degradation fault.
  • the fault point is the pluggable connection point between the communication optical cable 14 and the optical jumper (the first optical jumper 131 or the second optical jumper 132), for example, The pluggable connection points between the communication optical cable 14 and the optical jumper are contaminated.
  • the network management equipment can accurately determine the cause of the fault based on the fault type information and fault occurrence time information of the optical module, combined with the fault type information and fault occurrence time information of other optical modules.
  • the network management device can also push information such as the cause of the fault and the location of the fault point to the user.
  • the process of determining the cause of the fault and the location of the fault point can be implemented in the electronic device, or it can also be implemented in the network management device, or the electronic device can make a preliminary judgment on the cause of the fault and the location of the fault point. Then the network management equipment makes a secondary judgment, and through the combination of electronic equipment and network management equipment, the effect of accurately determining the cause of the fault and the location of the fault point is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种光模块、电子设备、通信系统及相关处理方法,光模块包括:第一处理单元,以及分别与第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元。采样单元用于采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中,第一处理单元用于在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,能够及时定位故障原因和故障点位置。

Description

一种光模块、电子设备、通信系统及相关处理方法
相关申请的交叉引用
本申请要求在2022年05月26日提交中国专利局、申请号为202210588839.6、申请名称为“一种可用于网络故障定位的模块及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年09月16日提交中国专利局、申请号为202211131775.3、申请名称为“一种光模块、电子设备、通信系统及相关处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种光模块、电子设备、通信系统及相关处理方法。
背景技术
光路故障是光纤网络中常见的故障现象,故障原因可以包括电力故障、线路故障、模块故障、设备故障等。这些光路故障会导致光路中断(如设备收不到光)或者光路劣化(如设备收到的光功率低),从而影响网络服务质量。当出现光路故障时,如何快速并准确识别和定界这些故障点,对于减少网络业务的平均恢复时间(Mean Time To Recovery,MTTR)有非常重要的意义。
然而,在相关技术中,在通信系统出现光路故障时,需要光模块将采集到的采样数据上传至电子设备,再经电子设备将采样数据传输至网管设备,由网管设备对采样数据进行计算分析,来定位故障点。这就需要将网络系统中多个电子设备的多个光模块的采样数据传输到网管设备,需要传输的数据量非常大,受限于通信总线传输速率,将采样数据传输到网管设备需要很长的时间,导致产生光路故障后,无法及时识别或上报故障原因和故障点位置。
发明内容
本申请实施例提供了一种光模块、电子设备、通信系统及相关处理方法,用以解决通信系统出现光路故障后,无法及时识别或上报故障原因和故障点位置的问题。
第一方面,本申请实施例提供了一种光模块,光模块可以为光电转换模块、光放大模块、光交换模块或其他功能模块。
本申请实施例中的光模块可以包括:第一处理单元,以及分别与第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元。
采样单元用于采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中。在一种可能的实现方式中,采样单元可以实时采集第一采样参数,并将采集到的第一采样参数实时传输至第一处理单元,第一处理单元将第一采样参数实时传输至采样信息存储单元,采样信息存储单元实时接收并存储第一采样参数。在具体实施时,采样单元采集的第一采样参数可以为微观粒度数据,微观粒度可以为采样间隔小于100毫秒。 举例来说,第一采样参数可以包括:表征输入光信号光功率的光生电流。
第一处理单元用于在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。
本申请实施例提供的光模块中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
在本申请实施例中,第一处理单元可以为中央处理器(central processing unit,CPU)或微处理器(Microcontroller Unit,MCU)等具有数据处理功能的器件。采样单元可以为包括模数转换器的采样电路,采样信息存储单元和故障信息存储单元可以是光模块中存储器的特定区域,也可以在光模块中设置至少一个独立的存储芯片,将存储芯片用作采样信息存储单元和/或故障信息存储单元,即采样信息存储单元与故障信息存储单元可以分别采用一个存储芯片,也可以共用同一个存储芯片,此处只是举例说明,不对采样信息存储单元和故障信息存储单元的具体实现方式进行限定。
为了便于后续电子设备或网管设备确定故障原因和故障点位置,故障信息存储单元除了用于存储故障类型信息外,故障信息存储单元还可以存储告警信息对应的故障产生时间信息。
在本申请的一些实施例中,光模块为光电转换模块、光放大模块或光交换模块等功能模块时,上述第一采样参数可以包括光生电流。在本申请的另一些实施例中,光模块为光电转换模块时,上述第一采样参数可以具有多种实现方式,光生电流、光信号幅度、纠前误码率、纠后误码率,电眼图幅度、光信号相位、光信号频谱等参数中的任一个均可以作为上述第一采样参数。其中,光生电流为输入光信号的直流分量,光信号幅度为输入光信号的高电平与低电平的差值,光生电流和光信号幅度均与输入光信号的光功率呈正相关的关系。当然,在一些情况下,光模块为其他功能模块时,也可以将其他参数作为上述第一采样参数,只要第一处理单元能够根据第一采样参数确定告警信息对应的故障类型信息即可,此处不对第一采样参数的具体实现方式进行限定。
本申请实施例中的光模块可以采用多种方式判断告警状态,以下对光模块的几种判断告警状态的方式进行举例说明。
判断方式一:
上述光模块还可以包括:告警信息生成单元,告警信息生成单元分别与采样单元和第一处理单元电连接。采样单元还用于将第一采样参数发送至告警信息生成单元,告警信息生成单元用于判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元。告警信息生成单元可以实时接收采样单元输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时, 生成告警信息。
举例来说,告警信息可以是数字逻辑信号从低电平变为高电平,或者,告警信息也可以是数字逻辑信号从高电平变为低电平,当然,告警信息也可以为其他类型的信息,此处不做限定。
在判断方式一中,告警信息生成单元判断告警状态采用的参数,可以与第一处理单元确定故障类型信息采用的参数可以相同,例如,可以均采用采样单元采集的第一采样参数。举例来说,本申请实施例中的光模块为光电转换模块、光电放大模块或光交换模块等模块时,第一采样参数可以包括光生电流。光模块为光电转换模块时,第一采样参数可以包括光生电流、光信号幅度、纠前误码率、纠后误码率、电眼图幅度、光信号相位或光信号频谱等参数。当然,在一些情况下,第一采样参数也可以包括其他参数,此处不做限定。
判断方式二:
上述光模块还可以包括:告警信息生成单元,告警信息生成单元分别与采样单元和第一处理单元电连接。采样单元还用于采集第二采样参数,并将第二采样参数发送至告警信息生成单元,第二采样参数与第一采样参数不同。告警信息生成单元用于判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元。告警信息生成单元可以实时接收采样单元输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
采样单元可以具体用于以毫秒级的采样时间精度实时采集第二采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据。
与判断方式一不同的是,在判断方式二中,告警信息生成单元判断告警状态采用的参数,与第一处理单元确定故障类型信息采用的参数不同,具体地,第一处理单元采用第一采样参数确定故障类型信息,告警信息生成单元采用与第一采样参数不同的第二采样参数判断告警状态。
举例来说,光模块为光电转换模块时,第一采样参数可以包括光生电流,第二采样参数可以包括光信号幅度;或者,第一采样参数可以包括光生电流,第二采样参数可以包括纠前误码率。在具体实施时,第一采样参数和第二采样参数也可以包括其他参数,此处不做限定。
在判断方式一和判断方式二中,告警信息生成单元可以是一个独立的硬件单元,例如,告警信息生成单元可以为比较器等硬件,或者,告警信息生成单元可以与第一处理单元集成于同一处理器或处理芯片中,此处不对告警信息生成单元的具体实现方式进行限定。在具体实施时,可以通过硬件或软件的方式,实现告警信息生成单元中“判断第一采样参数(或第二采样参数)是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息”的功能。
在判断方式一和判断方式二中,通过设置告警信息生成单元来实时监测第一采样参数,当第一采样参数出现异常时,告警信息生成单元可以及时发现该异常,并生成告警信息,将告警信息发送至第一处理单元。
判断方式三:
光模块中判断告警状态的功能也可以通过第一处理单元来实现。
与判断方式一中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用第一采样参数判断告警状态,即第一处理单元可以判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息。第一处理单元可以实时接收采样单元输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
或者,与判断方式二中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用不同于第一采样参数的第二采样参数判断告警状态,即第一处理单元可以判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息。第一处理单元可以实时接收采样单元输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
在一种可能的实现方式中,采样单元可以具体用于以毫秒级的采样时间精度采集第一采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据,并且,由于光模块不需要将第一采样参数发送给电子设备,因而,采样单元的采样精度较高,也不会增加光模块与电子设备之间的数据传输压力。在具体实施时,光模块在正常工作状态下,可以实时采集第一采样参数,并将第一采样参数编码后通过第一处理单元存储于采样信息存储单元中,若采样信息存储单元中的存储空间存满,可以从起始处覆盖绕接。
第一处理单元可以具体用于在识别到告警信息时,继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,其中p为大于或等于0的整数,在具体实施时,可以根据应用场景设置p的具体数值,例如,p可以为10~1000之间的某个值。之后,读取采样信息存储单元中预设时间窗内的第一采样参数(至少包含2个采样点数据),根据读取的第一采样参数确定告警信息对应的故障类型信息。本申请实施例中,第一处理单元在识别到告警信息时,会继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,并读取采样信息存储单元中预设时间窗内的第一采样参数,p大于或等于0,也就是说,第一处理单元在识别到告警信息时,可以立即读取采样信息存储单元中的第一采样参数,也可以延迟一段时间再读取采样信息存储单元中的第一采样参数。这样,第一处理单元在识别到告警信息后获取的第一采样参数的数据较多,可以通过获取的预设时间窗内的第一采样参数的波形,确定该告警信息对应的故障类型信息,故障分析的准确性较高。
在实际应用中,第一处理单元读取采样信息存储单元中预设时间窗内的第一采样参数后,可以提取该预设时间窗内的第一采样参数的特征参数,例如,可以采用有监督和/或无监督的算法,并把提取到的特征参数按照分类结果存到第一处理单元的缓存队列中,第一处理单元可以根据预设时间窗内的第一采样参数的特征参数,进行故障类型分类,以确定告警信息对应的故障类型信息。
在本申请的一些实施例中,在通信系统的多种故障场景下,会导致光模块的至少一种参数异常,可以将某一种参数作为第一采样参数,例如,第一采样参数可以包括:光生电流或光信号幅度,在一些情况下,第一采样参数也可以为其他参数,此处不做限定。光模块中的第一处理单元可以根据发生故障时的第一采样参数确定故障类型信息。
第一处理单元可以具体用于:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的第一采样参数;
若初始时刻与最后时刻的第一采样参数的差值小于第一阈值(即初始时刻与最后时刻的第一采样参数的差值较小),且预设时间窗内的第一采样参数的波形规律存在波动事件,也就是说,在预设时间窗内第一采样参数经波动后可以恢复到波动之前的数值,则告警信息对应的故障类型信息为输入光功率波动;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样值较小),且预设时间窗内的第一采样参数的波形规律存在波动且下降事件,也就是说,在预设时间窗内第一采样参数经波动后得到的数值较小,则告警信息对应的故障类型信息为输入光功率波动丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样值较小),且预设时间窗内的第一采样参数的波形规律存在快速下降事件,也就是说,在预设时间窗内第一采样参数快速下降至较小的数值,则告警信息对应的故障类型信息为输入光功率快速丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样参数较小),且预设时间窗内的第一采样参数的波形规律存在阶跃下降事件,也就是说,在预设时间窗内第一采样参数阶跃下降至较小的数值,则告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值(即初始时刻与最后时刻的第一采样参数的差值较大),最后时刻的第一采样参数大于第二阈值,且预设时间窗内的第一采样参数的波形规律具有劣化特征,也就是说,在预设时间窗内,第一采样参数有一定程度的下降,且最后时刻的第一采样参数在第二阈值与第一阈值之间,例如,最后时刻第一采样参数可以约为初始时刻第一采样参数的一半,则告警信息对应的故障类型信息为输入光功率劣化。
本申请实施例中,采用预设时间窗内的第一采样参数确定故障类型信息,结合预设时间窗内第一采样参数的波形和端值,可以准确地确定告警信息对应的故障类型信息,使后续确定故障原因和故障点的准确性较高。
在本申请的另一些实施例中,在通信系统的一些故障场景下,可以将至少两种参数作为第一采样参数,例如,第一采样参数可以包括:光生电流和纠前误码率。光模块中的第一处理单元可以根据发生故障时刻的至少两种参数确定故障类型信息。这样,第一处理单元进行故障分类的参数较多,可以准确地确定告警信息对应的故障类型,从而提高故障原因定位的准确度。
第一处理单元可以具体用于:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的光生电流,比较初始时刻与最后时刻的纠前误码率;
若初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值(即初始时刻与最后时刻的光生电流的差值较小,初始时刻 与最后时刻的纠前误码率的差值较大),也就是说,在预设时间窗内纠前误码率下降,光生电流基本不变,则告警信息对应的故障类型信息为光功率多径干扰劣化。
在具体实施时,可以根据网络系统的应用场景等因素,来设置第一阈值、第二阈值、第三阈值和预设时间窗的具体数值。
第二方面,本申请实施例还提供了一种电子设备,电子设备可以为光传输设备、光接入设备、光交换设备、光放大设备、路由器、交换机、无线基站、无线远端接入设备或无线基带信号处理设备等。
本申请实施例中的电子设备可以包括:第二处理单元,以及上述任一光模块,光模块与第二处理单元连接。光模块用于在识别到告警信息时,向第二处理单元发送告警信息,第二处理单元用于在接收到告警信息的第一预设时间后,读取光模块的故障信息存储单元中的告警信息对应的故障类型信息。第二处理单元可以为服务器等具有较强数据处理功能的器件。
本申请实施例中,光模块中的第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。电子设备中的第二处理单元可以在接收到告警信息的第一预设时间后,读取故障信息存储单元中的告警信息对应的故障类型信息,并结合所在通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
在本申请的一些实施例中,电子设备可以包括至少一个光模块,电子设备可以为一体化设备,光模块可以作为一个可插拔的独立模块直接插在电子设备上,或者光模块也可以设置在电子设备的内部。第二处理单元可以通过硬件管脚接口与光模块中的告警信息生成单元连接,告警信息生成单元用于在生成告警信息时,通过硬件管脚接口的电平跳变向第二处理单元发送告警信息。硬件管脚接口的电平可以由高电平变为低电平,或者,也可以由低电平变为高电平。通过硬件管脚接口的电平跳变,告警信息生成单元能够快速地将告警信息传输至第二处理单元。
第二处理单元可以通过通信总线与第一处理单元连接,第一处理单元用于在识别到告警信息时,通过通信总线向第二处理单元发送告警信息。第二处理单元还可以通过通信总线读取故障信息存储单元中的故障类型信息和故障产生时间等参数。此外,第二处理单元可以通过通信总线,读取光模块的状态参数和性能参数,配置光模块的工作参数,当然,第二处理单元也可以通过通信总线与光模块进行其他信息交互,此处不再一一举例。
在本申请的另一些实施例中,电子设备可以包括:至少一个单板,单板可以可插拔的插在电子设备上,或者单板也可以设置在电子设备的内部。单板中可以设置至少一个光模块,光模块可以可插拔地插在单板上,或者,光模块也可以设置在单板内部。光模块可以通过单板与电子设备进行信息交互。单板可以包括:第三处理单元,第三处理单元通过硬件管脚接口与光模块中的告警信息生成单元连接,告警信息生成单元用于在生成告警信息时,通过硬件管脚接口的电平跳变向第三处理单元发送告警信息,硬件管脚接口的电平可以由高电平变为低电平,或者,也可以由低电平变为高电平。通过硬件管脚接口的电平跳变,告警信息生成单元能够快速地将告警信息传输至第三处理单元。并且,第三处理单元 可以通过通信接口向第二处理单元发送告警信息。
第三处理单元可以通过通信总线与第一处理单元连接,第三处理单元通过通信接口与第二处理单元连接。第一处理单元用于在识别到告警信息时,通过通信总线向第三处理单元发送告警信息,第三处理单元用于通过通信接口向第二处理单元发送告警信息。在具体实施时,第三处理单元可以通过通信总线读取故障信息存储单元中的故障类型信息和故障产生时间等参数,并将读取到的故障类型信息和故障产生时间等参数传输至第二处理单元。在具体实施时,光模块还可以通过单板与电子设备进行其他信息交互,此处不再一一举例。
在本申请实施例中,通信总线可以为串行外围设备接口(Serial Perripheral Interface,SPI)总线或集成电路之间串行通讯总线(Inter-Integrated Circuit,I2C),为了提高传输速率,上述通信总线也可以为高速通信总线,例如可以为管理数据输入输出接口总线(Management Data Input Output Interface,MDIO),当然,上述通信总线也可以为其他类型的总线,只要能够满足第一处理单元与电子设备之间的传输需求即可,此处不做限定。
在一种可能的实现方式中,第一处理单元还用于将延迟提示信息存储于故障信息存储单元,第二处理单元还用于读取故障信息存储单元中的延迟提示信息。延迟提示信息用于指示第二处理单元在接收到告警信息到能够读取到告警信息对应的故障类型信息的最短时长,第一预设时间大于或等于最短时长。这样能够保证第二处理单元在等待第一预设时间后能够读取到故障类型信息。该最短时长的大小至少需要考虑:光模块在产生告警信息后,第一处理单元继续将采样单元采集的第一采样参数存储于采样信息存储单元中所需的时间长度、第一处理单元读取采样信息存储单元中的第一采样参数所需的时间长度,以及第一处理单元根据第一采样参数确定故障类型信息所需的时间长度。在具体实施时,可以在光模块的制作过程中,将延迟提示信息写入到故障信息存储单元中。
在具体实施时,第一处理单元还用于在第二处理单元读取故障类型信息后,将故障信息存储单元中的故障类型信息删除,以使光模块在上报故障类型信息后,恢复到无告警信息指示的状态。
在本申请的一些实施例中,第二处理单元可以用于根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。由于光模块中的第一处理单元已经确定了故障类型信息,第二处理单元根据该故障类型信息和所在网络系统的网络拓扑关系,就可以确定故障原因,简化了第二处理单元进行故障原因分析的过程,减小了计算量,缩短了故障原因分析所需的时间。
具体地,第二处理单元可以具体用于:
若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线震动故障;若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障;或,
若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线断裂故障;若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆断裂故障。
在本申请的另一些实施例中,第二处理单元可以用于根据读取的故障类型信息确定故障原因。由于光模块中的第一处理单元已经确定了故障类型信息,第二处理单元根据该故障类型信息就可以确定故障原因,简化了第二处理单元进行故障原因分析的过程,减小了计算量,缩短了故障原因分析所需的时间。
具体地,第二处理单元可以具体用于:
若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障;或,
若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
第三方面,本申请实施例还提供了一种通信系统,本申请实施例中的通信系统可以包括:上述任一电子设备,以及供电线路,供电线路用于向电子设备供电。
在具体实施时,本申请实施例中的通信系统还可以包括:网管设备,网管设备可以对所在通信系统进行统一的管控。电子设备中的第二处理单元可以通过网络通信接口与网管设备连接,电子设备可以通过网络通信接口与网格设备实现信息交互,例如,电子设备可以通过网络通信接口将故障类型信息和故障产生时间等参数传输至网管设备。
在本申请的一些实施例中,网管设备可以用于获取电子设备的故障类型信息,根据故障类型信息以及网络系统的网络拓扑关系,确定故障原因。由于光模块中的第一处理单元已经确定了故障类型信息,网管设备根据该故障类型信息和网络系统的网络拓扑关系,就可以确定故障原因,简化了网管设备进行故障原因分析的过程,减小了计算量,缩短了故障原因分析所需的时间。
具体地,电子设备可以具体用于:
若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线震动故障;若存在至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障;或,
若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线断裂故障;若存在至少两个同缆的光模块的故障类型信息为输入光功率波动,则确定故障原因为光缆断裂故障;
在本申请的另一些实施例中,网管设备可以用于获取电子设备的故障类型信息,根据故障类型信息确定故障原因。由于光模块中的第一处理单元已经确定了故障类型信息,网管设备根据该故障类型信息就可以确定故障原因,简化了网管设备进行故障原因分析的过程,减小了计算量,缩短了故障原因分析所需的时间。
具体地,电子设备可以具体用于:
若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障;或,
若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
第四方面,本申请实施例还提供了一种应用于光模块的故障类型确定方法,该光模块可以包括:第一处理单元,以及分别与第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元。
本申请实施例中的故障类型确定方法可以包括:
采样单元采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中;
第一处理单元在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。
本申请实施例提供的故障类型确定方法中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置,以便快速修复通信系统中的故障,并减少故障解决的成本。
在本申请实施例中,光模块至少具有以下几种判断告警的方式。
判断方式一:
上述光模块还可以包括:告警信息生成单元。
上述故障类型确定方法还可以包括:
采样单元将第一采样参数发送至告警信息生成单元;
告警信息生成单元判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元。告警信息生成单元可以实时接收采样单元输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
在判断方式一中,告警信息生成单元判断告警状态采用的参数,可以与第一处理单元确定故障类型信息采用的参数可以相同。举例来说,本申请实施例中的光模块为光电转换模块、光电放大模块或光交换模块等模块时,第一采样参数可以包括光生电流。光模块为光电转换模块时,第一采样参数可以包括光生电流、光信号幅度、纠前误码率、纠后误码率、电眼图幅度、光信号相位或光信号频谱等参数。当然,在一些情况下,第一采样参数也可以包括其他参数,此处不做限定。
判断方式二:
上述光模块还可以包括:告警信息生成单元。
上述故障类型确定方法还可以包括:
采样单元采集第二采样参数,并将第二采样参数发送至告警信息生成单元;第二采样参数与第一采样参数不同;
告警信息生成单元判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元。告警信息生成单元可以实时接收采样单元输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值 范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
采样单元可以具体用于以毫秒级的采样时间精度实时采集第二采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据。
与判断方式一不同的是,在判断方式二中,告警信息生成单元判断告警状态采用的参数,与第一处理单元确定故障类型信息采用的参数不同,具体地,第一处理单元采用第一采样参数确定故障类型信息,告警信息生成单元采用与第一采样参数不同的第二采样参数判断告警状态。举例来说,光模块为光电转换模块时,第一采样参数可以包括光生电流,第二采样参数可以包括光信号幅度;或者,第一采样参数可以包括光生电流,第二采样参数可以包括纠前误码率。在具体实施时,第一采样参数和第二采样参数也可以包括其他参数,此处不做限定。
在判断方式一和判断方式二中,通过设置告警信息生成单元来实时监测第一采样参数,当第一采样参数出现异常时,告警信息生成单元可以及时发现该异常,并生成告警信息,将告警信息发送至第一处理单元。
判断方式三:
上述光模块中判断告警状态的功能也可以通过第一处理单元来实现。
在一种可能的实现方式中,采样单元以毫秒级的采样时间精度采集第一采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据,并且,由于光模块不需要将第一采样参数发送给电子设备,因而,采样单元的采样精度较高,也不会增加光模块与电子设备之间的数据传输压力。
上述第一处理单元在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
第一处理单元在识别到告警信息时,继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,其中p为大于或等于0的整数。在具体实施时,可以根据应用场景设置p的具体数值,例如,p可以为10~1000之间的某个值。
第一处理单元读取采样信息存储单元中预设时间窗内的第一采样参数(至少包含2个采样点数据);
根据读取的第一采样参数确定告警信息对应的故障类型信息。
本申请实施例中,第一处理单元在识别到告警信息时,会继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,并读取采样信息存储单元中预设时间窗内的第一采样参数,p大于或等于0,也就是说,第一处理单元在识别到告警信息时,可以立即读取采样信息存储单元中的第一采样参数,也可以延迟一段时间再读取采样信息存储单元中的第一采样参数。这样,第一处理单元在识别到告警信息后获取的第一采样参数的数据较多,可以通过获取的预设时间窗内的第一采样参数的波形,确定该告警信息对应的故障类型信息,故障分析的准确性较高。
在一种可能的实现方式中,第一处理单元在读取采样信息存储单元中的第一采样参数之后,在确定告警信息对应的故障类型信息之前,还可以检测采样信息存储单元的存储单元是否清零,若未清零,则可以控制采样信息存储单元执行清零操作。
在本申请的一些实施例中,第一采样参数可以包括:光生电流或光信号幅度,在一些情况下,第一采样参数也可以为其他参数,此处不做限定。上述第一处理单元根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的第一采样参数。在具体实施时,第一处理单元可以提取缓冲队列中的事件并按照时间进行排序,以便后续步骤中判断第一采样参数的波形是否存在波动事件、波动且下降事件等。
若初始时刻与最后时刻的第一采样参数的差值小于第一阈值,且预设时间窗内的第一采样参数的波形规律存在波动事件,则告警信息对应的故障类型信息为输入光功率波动;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在波动且下降事件,则告警信息对应的故障类型信息为输入光功率波动丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在快速下降事件,则告警信息对应的故障类型信息为输入光功率快速丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在阶跃下降事件,则告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数大于第二阈值,且预设时间窗内的第一采样参数的波形规律具有劣化特征,则告警信息对应的故障类型信息为输入光功率劣化。
在本申请的另一些实施例中,第一采样参数可以包括至少两种参数,例如,第一采样参数可以包括:光生电流和纠前误码率。上述第一处理单元根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的光生电流,比较初始时刻与最后时刻的纠前误码率;
若初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值,则告警信息对应的故障类型信息为光功率多径干扰劣化。
在具体实施时,可以根据网络系统的应用场景等因素,来设置第一阈值、第二阈值、第三阈值和预设时间窗的具体数值。
第五方面,本申请实施例还提供了另一种故障类型确定方法,该故障类型确定方法应用于光模块中的第一处理单元,该故障类型确定方法可以包括:
将采样单元采集的第一采样参数存储于采样信息存储单元中;
在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。
本申请实施例提供的故障类型确定方法中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置,以便快速修复通信系统中的故障,并减少 故障解决的成本。
在一种可能的实现方式中,上述在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在识别到告警信息时,继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,其中p为大于或等于0的整数;
读取采样信息存储单元中预设时间窗内的第一采样参数;
根据读取的第一采样参数确定告警信息对应的故障类型信息。
本申请实施例中,第一处理单元在识别到告警信息时,会继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中,并读取采样信息存储单元中预设时间窗内的第一采样参数,p大于或等于0,也就是说,第一处理单元在识别到告警信息时,可以立即读取采样信息存储单元中的第一采样参数,也可以延迟一段时间再读取采样信息存储单元中的第一采样参数。这样,第一处理单元在识别到告警信息后获取的第一采样参数的数据较多,可以通过获取的预设时间窗内的第一采样参数的波形,确定该告警信息对应的故障类型信息,故障分析的准确性较高。
在本申请的一些实施例中,第一采样参数可以包括:光生电流或光信号幅度,在一些情况下,第一采样参数也可以为其他参数,此处不做限定。上述根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的第一采样参数;
若初始时刻与最后时刻的第一采样参数的差值小于第一阈值,且预设时间窗内的第一采样参数的波形规律存在波动事件,则告警信息对应的故障类型信息为输入光功率波动;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在波动且下降事件,则告警信息对应的故障类型信息为输入光功率波动丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在快速下降事件,则告警信息对应的故障类型信息为输入光功率快速丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值,且预设时间窗内的第一采样参数的波形规律存在阶跃下降事件,则告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数大于第二阈值,且预设时间窗内的第一采样参数的波形规律具有劣化特征,则告警信息对应的故障类型信息为输入光功率劣化。
在本申请的另一些实施例中,第一采样参数可以包括至少两种参数,例如,第一采样参数可以包括:光生电流和纠前误码率。上述根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的光生电流,比较初始时刻与最后时刻的纠前误码率;
若初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值,则告警信息对应的故障类型信息为光功率多径干扰劣化。
第六方面,本申请实施例还提供了一种故障类型确定装置,包括:处理器和存储器,存储器用于存储上述第五方面中的故障类型确定方法中的各步骤,处理器用于执行存储器中存储的各步骤。
该故障类型确定装置的具体实施方式可以参照上述第五方面中的故障类型确定方法的实施,重复之处不再赘述。
第七方面,本申请实施例还提供了一种故障处理方法,该故障处理方法可以应用于通信系统。通信系统可以包括:电子设备,电子设备可以包括:第二处理单元和光模块,光模块可以包括:第一处理单元,以及分别与第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元。
本申请实施例中的故障处理方法可以包括:
采样单元采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中;
光模块在识别到告警信息时,向第二处理单元发送告警信息;
第一处理单元读取采样信息存储单元中的第一采样参数,根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。第一处理单元确定故障类型信息的具体过程可以参见上述描述,重复之处不再赘述。
第二处理单元在接收到告警信息的第一预设时间后,读取故障信息存储单元中的告警信息对应的故障类型信息。
本申请实施例提供的故障处理方法中,光模块中的第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。电子设备中的第二处理单元可以在识别到告警信息的第一预设时间后,读取故障信息存储单元中的告警信息对应的故障类型信息,电子设备或网管设备根据故障类型信息和所在通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
在具体实施时,光模块中的第一处理单元通过通信总线与第二处理单元连接,第一处理单元可以通过通信总线向第二处理单元发送告警信息。或者,当光模块中具有告警信息生成单元时,告警信息生成单元可以通过硬件管脚接口与第二处理单元连接,告警信息生成单元可以通过硬件管脚接口的电平跳变向第二处理单元发送告警信息。或者,第一处理单元可以将告警信息写入故障信息存储单元中,第二处理单元可以通过通信总线和第一处理单元,查询到故障信息存储单元中存储的告警信息。
在本申请实施例中,第二处理单元在识别到告警信息后,需要等待第一预设时间后,在读取故障信息存储单元中的故障类型信息,以使第一处理单元可以在该第一预设时间内完成确定故障类型信息并存储的操作。在具体实施时,可以根据第一处理单元的实际计算量,来确定第一预设时间的具体时长,以便第二处理单元在等待第一预设时间后能够读取到故障类型信息。
在一种可能的实现方式中,第一处理单元还可以在第二处理单元读取故障类型信息后,将故障信息存储单元中的故障类型信息删除,以使光模块在上报故障类型信息后,恢复到无告警信息指示的状态。
在实际应用中,本申请实施例中的故障处理方法还可以包括:
第一处理单元将延迟提示信息存储于故障信息存储单元;
第二处理单元读取故障信息存储单元中的延迟提示信息,第二处理单元可以在识别告警信息之前读取延迟提示信息,或者,第二处理单元也可以在识别告警信息之后读取延迟信息。
其中,延迟提示信息用于指示第二处理单元在接收到告警信息到能够读取到告警信息对应的故障类型信息的最短时长,第一预设时间大于或等于最短时长。这样能够保证第二处理单元在等待第一预设时间后能够读取到故障类型信息。该最短时长的大小至少需要考虑:光模块在产生告警信息后,第一处理单元继续将采样单元采集的第一采样参数存储于采样信息存储单元中所需的时间长度、第一处理单元读取采样信息存储单元中的第一采样参数所需的时间长度,以及第一处理单元根据第一采样参数确定故障类型信息所需的时间长度。在具体实施时,可以在光模块的制作过程中,将延迟提示信息写入到故障信息存储单元中。
在本申请的一些实施例中,电子设备中的第二处理单元可以根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因,具体包括以下步骤:
第二处理单元若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障;或,
第二处理单元若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
第二处理单元若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
第二处理单元若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线震动故障;若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障;
第二处理单元若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线断裂故障;若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆断裂故障;或,
第二处理单元若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
综上,电子设备可以根据光模块的故障类型信息和故障产生时间信息等信息,并结合其他光模块的故障类型信息和故障产生时间等信息,可以准确地确定故障原因。此外,在确定故障原因后,电子设备还可以将故障原因和故障点位置等信息推送给用户。
在本申请的另一些实施例中,电子设备可以将告警信息对应的故障类型信息、故障产生时间信息等信息上传至网管设备,网管设备可以根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因,具体包括以下步骤:
网管设备若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电 故障;或,
网管设备若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
网管设备若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
网管设备若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线震动故障;若存在至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障;或,
网管设备若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线断裂故障;若存在至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆断裂故障;或,
网管设备若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
综上,网管设备可以根据光模块的故障类型信息和故障产生时间信息等信息,并结合其他光模块的故障类型信息和故障产生时间等信息,可以准确地确定故障原因。此外,在确定故障原因后,网管设备还可以将故障原因和故障点位置等信息推送给用户。
以上介绍了电子设备或网管设备确定故障原因和故障点的具体过程,在具体实施时,在其他故障场景下,电子设备或网管设备也可以采用类似的方法确定故障原因和故障点的位置,此处不再一一举例。
在本申请实施例中,确定故障原因和故障点位置的过程可以在电子设备中实现,或者,也可以在网管设备中实现,或者,可以由电子设备对故障原因和故障点位置进行初步判断,再由网管设备进行二次判断,通过电子设备与网管设备结合的方式,实现精确确定故障原因和故障点位置的效果。
附图说明
图1为本申请实施例中通信系统的结构示意图;
图2为本申请实施例中通信系统的另一结构示意图;
图3为本申请实施例中通信系统的另一结构示意图;
图4为本申请实施例中通信系统的另一结构示意图;
图5为本申请实施例中通信系统的另一结构示意图;
图6为本申请实施例中光电转换模块的结构示意图;
图7为本申请实施例中光放大模块的结构示意图;
图8为本申请实施例中光交换模块的结构示意图;
图9a为本申请实施例中光电转换模块的局部结构示意图;
图9b为本申请实施例中光电转换模块的另一局部结构示意图;
图9c为本申请实施例中光电转换模块的另一局部结构示意图;
图9d为本申请实施例中通信系统的另一结构示意图;
图10为本申请实施例中通信系统的另一结构示意图;
图11为本申请实施例中光电转换模块的另一结构示意图;
图12为本申请实施例中光电转换模块的另一结构示意图;
图13为本申请实施例中电子设备的结构示意图;
图14为本申请实施例中电子设备的另一结构示意图;
图15为本申请实施例中通信系统的另一结构示意图;
图16为本申请实施例中通信系统产生设备掉电故障时的示意图;
图17为产生设备掉电故障时第二光模块采集第一采样参数得到的采样图;
图18为本申请实施例中通信系统产生光跳线脱落故障时的示意图;
图19为产生光跳线脱落故障时第二光模块采集第一采样参数得到的采样图;
图20为本申请实施例中通信系统产生光缆断裂故障或光跳线破损故障时的示意图;
图21为产生光缆断裂故障时第二光模块和第四光模块采集第一采样参数得到的采样图;
图22为产生光跳线破损故障时第二光模块和第四光模块采集第一采样参数得到的采样图;
图23为本申请实施例中通信系统产生光缆断裂故障或光跳线破损故障时的另一示意图;
图24为本申请实施例中通信系统产生光跳线弯折故障时的示意图;
图25为产生光跳线弯折故障时第二光模块采集第一采样参数得到的采样图;
图26为本申请实施例中通信系统产生光缆震动故障或光跳线震动故障时的示意图;
图27为产生光缆震动故障时第二光模块和第四光模块采集第一采样参数得到的采样图;
图28为产生光跳线震动故障时第二光模块和第四光模块采集第一采样参数得到的采样图;
图29为本申请实施例中通信系统产生光缆震动故障或光跳线震动故障时的另一示意图;
图30为本申请实施例中通信系统产生光路质量劣化故障时的示意图;
图31为产生光路质量劣化故障时第二光模块采集第一采样参数得到的采样图;
图32为本申请实施例中不同故障类型信息对应的第一采样参数的波形示意图;
图33为本申请实施例中光路质量劣化故障对应的第一采样参数的波形示意图;
图34为本申请实施例中故障类型确定方法的流程图;
图35为本申请实施例中第一处理单元提取第一采样参数的特征参数的流程图;
图36为本申请实施例中第一处理单元确定故障类型信息的流程图;
图37为本申请实施例提供的另一种故障类型确定方法的流程图;
图38为本申请实施例提供的故障类型确定装置的结构示意图;
图39为本申请实施例中故障处理方法的流程图;
图40为本申请实施例中故障处理方法的另一流程图;
图41为本申请实施例中故障处理方法的另一流程图;
图42为本申请实施例中故障处理方法的另一流程图。
附图标记:
11-电子设备;11a-第二处理单元;111-第一电子设备;112-第二电子设备;113-第三电子设备;114-第四电子设备;12-光模块;12a-光电转换模块;12b-光放大模块;12c-光交换模块;121-第一光模块;122-第二光模块;122a-第一子模块;122b-第二子模块;123-第三光模块;124-第四光模块;12j-第J光模块;13-光跳线;131-第一光跳线;132-第二光跳线;133-第三光跳线;134-第四光跳线;135-第五光跳线;136-第六光跳线;137-第七光跳线;138-第八光跳线;14-通信光缆;141-第一通信光缆;142-第二通信光缆;151-第一供电线路;152-第二供电线路;153-第三供电线路;154-第四供电线路;16-网管设备;171-第一光配线架;172-第二光配线架;173-第三光配线架;18-单板;181-第一单板;182-第二单板;18a-第三处理单元;18m-第M单板;201-第一处理单元;2011-处理器;2012-存储器;202-采样单元;202a-第一采样单元;202b-第二采样单元;203-采样信息存储单元;204-故障信息存储单元;205-告警信息生成单元;206-光电转换单元;207-电光转换单元;208-光放大单元;209-光交换单元;31-光探测器;311-第一光探测器;31n-第N光探测器;32-跨阻放大器;33-分光器;331-第一分光器;33n-第N分光器;34-光放大器;35-光交换组件;36-光信号处理器;37-波分解复用器。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应注意的是,本申请的附图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了解决通信系统出现光路故障后,无法及时识别或上报故障原因和故障点位置的问题,本申请实施例提供了一种光模块、电子设备、通信系统及相关处理方法。通信系统可以适用于采用光纤作为主要信息传输媒介的任何通信网络。电子设备可以为光传输设备、光接入设备、光交换设备、光放大设备、路由器、交换机、无线基站、无线远端接入设备或无线基带信号处理设备等。光模块可以为光电转换模块、光放大模块、光交换模块或其他功能模块。
以下结合附图,对本申请实施例中通信系统的几种结构进行介绍。
图1为本申请实施例中通信系统的结构示意图,如图1所示,本申请实施例中的通信系统可以包括:电子设备及供电线路,供电线路用于向电子设备供电,电子设备可以包括至少一个光模块,不同电子设备中的光模块可以通过光跳线和通信光缆等实现光信号连接。例如图1中所示的通信系统可以至少包括:第一电子设备111和第二电子设备112,第一电子设备111中的第一光模块121输出的光信号经过第一光跳线131输入到通信光缆14,通信光缆14输出的光信号经过第二光跳线132输入到第二电子设备112中的第二光模块122,从而实现第一光模块121与第二光模块122之间的光信号传输。第一供电线路151与第一电子设备111连接,第一供电线路151用于向第一电子设备111供电,第二供电线 路152与第二电子设备112连接,第二供电线路152用于向第二电子设备112供电。
图2为本申请实施例中通信系统的另一结构示意图,结合图1和图2,相比于图1所示的通信系统,图2所示的通信系统还可以包括:用于对整个通信系统进行统一管控的网管设备16。并且,图2所示的通信系统中的第一光模块121与第二光模块122可以双向传输光信号,也就是说,第一光模块121可以向第二光模块122发送光信号,也可以接收第二光模块122发送的光信号,并且,第二光模块122可以接收第一光模块121发送的光信号,也可以向第一光模块121发送光信号。此外,图2所示的通信系统还可以包括:光配线架(optical distribution frame,ODF),分为第一光配线架171和第二光配线架172,第一光配线架171位于第一光模块121与通信光缆14之间,第二光配线架172位于第二光模块122与通信光缆14之间,并增加相应地光跳线。第一光模块121输出的光信号经过第一光跳线131、第一光配线架171、第二光跳线132输入到通信光缆14,通信光缆14输出的光信号经过第三光跳线133、第二光配线架172、第四光跳线134输入到第二光模块122,第二光模块122输出的光信号经过第五光跳线135、第二光配线架172、第六光跳线136输入到通信光缆14,通信光缆14输出的光信号经过第七光跳线137、第一光配线架171、第八光跳线138输入到第一光模块121,从而实现第一光模块121与第二光模块122之间的光信号双向传输。在具体实施时,如果第一电子设备111包括至少两个光模块,第八光跳线138可以与第一光模块121连接,或者,第八光跳线138也可以与第一电子设备111中的其他光模块连接。
图3为本申请实施例中通信系统的另一结构示意图,如图3所示,电子设备可以包括两个或多个光模块,例如,第一电子设备111可以包括:第一光模块121和第三光模块123,第二电子设备112可以包括:第二光模块122和第四光模块124。第一光模块121输出的光信号可以经过第一光跳线131、通信光缆14、第二光跳线132传输至第二光模块122,第三光模块123输出的光信号可以经过第三光跳线133、通信光缆14、第四光跳线134传输至第四光模块124。当然,第一光模块121与第二光模块122也可以双向传输光信号,第三光模块123与第四光模块124也可以双向传输光信号。也就是说,第一电子设备111可以通过两个光模块向第二电子设备112传输光信号,第一电子设备111和第二电子设备112包括多个光模块时,第一电子设备111也可以通过多个光模块向第二电子设备112传输光信号。
图4为本申请实施例中通信系统的另一结构示意图,如图4所示,不同电子设备中的光模块可以通过同一条通信光缆向相同或不同电子设备中的光模块发送光信号,例如,图4所示的通信系统可以包括:第一电子设备111、第二电子设备112、第三电子设备113和第四电子设备114,第一供电线路151用于向第一电子设备111供电,第二供电线路152用于向第二电子设备112供电,第三供电线路153用于向第三电子设备113供电,第四供电线路154用于向第四电子设备114供电。第一电子设备111可以包括:第一光模块121,第二电子设备112可以包括第二光模块122,第三电子设备113可以包括:第三光模块123,第四电子设备114可以包括:第四光模块124,属于不同电子设备的第一光模块121和第三光模块123可以通过同一通信光缆14,分别向属于不同电子设备的第二光模块122和第四光模块124发送光信号。
以上介绍了本申请实施例中通信系统的几种结构,在具体实施时,通信系统也可以具有其他结构,可以根据实际应用场景,具体设置通信系统中的部件和连接关系,此处不再 一一赘述。
以下结合附图,对本申请实施例中光模块的具体结构进行介绍。
图5为本申请实施例中通信系统的另一结构示意图,如图5所示,本申请实施例中的光模块12可以包括:第一处理单元201,以及分别与第一处理单元201电连接的采样单元202、采样信息存储单元203和故障信息存储单元204。
采样单元202用于采集第一采样参数,并通过第一处理单元201将第一采样参数存储于采样信息存储单元203中。在一种可能的实现方式中,采样单元202可以实时采集第一采样参数,并将采集到的第一采样参数实时传输至第一处理单元201,第一处理单元201将第一采样参数实时传输至采样信息存储单元203,采样信息存储单元203实时接收并存储第一采样参数。在具体实施时,采样单元202采集的第一采样参数可以为微观粒度数据,微观粒度可以为采样间隔小于100毫秒。举例来说,第一采样参数可以包括:表征输入光信号光功率的光生电流。
第一处理单元201用于在识别到告警信息时,读取采样信息存储单元203中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元204中。
本申请实施例提供的光模块中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
继续参照图5,在本申请实施例中,第一处理单元201可以为中央处理器(central processing unit,CPU)或微处理器(Microcontroller Unit,MCU)等具有数据处理功能的器件。采样单元202可以为包括模数转换器的采样电路,采样信息存储单元203和故障信息存储单元204可以是光模块12中存储器的特定区域,也可以在光模块12中设置至少一个独立的存储芯片,将存储芯片用作采样信息存储单元203和/或故障信息存储单元204,即采样信息存储单元203与故障信息存储单元204可以分别采用一个存储芯片,也可以共用同一个存储芯片,此处只是举例说明,不对采样信息存储单元203和故障信息存储单元204的具体实现方式进行限定。
为了便于后续电子设备或网管设备确定故障原因和故障点位置,故障信息存储单元204除了用于存储故障类型信息外,故障信息存储单元204还可以存储告警信息对应的故障产生时间信息。
在一种可能的实现方式中,本申请实施例中的光模块可以为光电转换模块,图6为本申请实施例中光电转换模块的结构示意图,如图6所示,光电转换模块12a除了包括第一处理单元201、采样单元202、采样信息存储单元203和故障信息存储单元204外,光电转换模块12a还可以包括:光电转换单元206和电光转换单元207。光电转换单元206用于将输入光信号转换为电信号,并将转换得到的电信号输出至电子设备,电光转换单元207用于将电子设备输出的电信号转换为光信号。光电转换单元206可以包括光探测器31和 跨阻放大器32,光探测器31用于将输入光信号转换为携带信息的光生电流信号,并将该光生电流信号输入到跨阻放大器32,跨阻放大器32用于将光生电流信号转换为电压信号并进行放大。
本申请实施例中,可以将光生电流信号的直流分量定义为光生电流,光生电流与输入光信号的光功率大小成线性关系,光生电流越大表明输入光信号的光功率越大,光生电流越小表明输入光信号的光功率越小。因而,可以采用光生电流表征光功率的大小。采样单元202可以采集光电转换单元206输出的光生电流,可以将光生电流作为上述第一采样参数。其中,检测光生电流并将光生电流传输至采样单元202的功能可以集成在光探测器31中,也可以集成在跨阻放大器32中,图6中以该功能集成在跨阻放大器32中为例进行示意。
在另一种可能的实现方式中,本申请实施例中的光模块可以为光放大模块,图7为本申请实施例中光放大模块的结构示意图,如图7所示,光放大模块12b除了包括第一处理单元201、采样单元202、采样信息存储单元203和故障信息存储单元204外,光放大模块12b还可以包括:光放大单元208。光放大单元208用于将输入光信号进行放大,以输出光功率更强的光信号。光放大单元208可以包括:分光器33,光探测器31和光放大器34,分光器33用于将输入光信号分为两部分,一部分输入光放大器34,另外一部分输入到光探测器31,光放大器34用于对输入的光信号进行放大并输出。光探测器31用于对输入的光信号转换为光生电流信号。由于在光放大模块12b不需要对光信号所含的电信号进行处理,因而在光探测器31仅检测该光生电流信号的直流分量(即光生电流),光探测器31还用于将光生电流传输至采样单元202,采样单元202可以采集光探测器31输出的光生电流,可以将光生电流作为上述第一采样参数。
在另一种可能的实现方式中,本申请实施例中的光模块可以为光交换模块,图8为本申请实施例中光交换模块的结构示意图,如图8所示,光交换模块12c除了包括第一处理单元201、采样单元202、采样信息存储单元203和故障信息存储单元204外,光交换模块12c还可以包括:光交换单元209。光交换单元209用于将多端口输入光信号进行通道或波长交换,并将交换后的光信号输出到不同的输出端口。其中,每个端口的输入光信号或输出光信号,可以包含一个或多个波长的光信号。光交换单元209可以包括:多个分光器(例如图8中的第一分光器331……第N分光器33n),多个光探测器(例如图8中的第一光探测器311……第N光探测器31n)和光交换组件35。分光器用于将输入光信号分为两部分,一部分输入光交换组件35,另一部分输入到对应的光探测器。光交换组件35用于对输入的光信号进行通道或波长交换并输出。光探测器用于将输入的光信号转换为光生电流信号,由于在光交换模块12c不需要对光信号所含的电信号进行处理,因而光探测器仅检测光生电流信号的直流分量(即光生电流),光探测器还用于将光生电流传输至采样单元202,采样单元202可以采集光探测器输出的光生电流,可以将光生电流作为上述第一采样参数。
在本申请的一些实施例中,光模块为光电转换模块、光放大模块或光交换模块等功能模块时,上述第一采样参数可以包括光生电流。在本申请的另一些实施例中,光模块为光电转换模块时,上述第一采样参数可以具有多种实现方式,以下结合附图进行详细说明。
图9a为本申请实施例中光电转换模块的局部结构示意图,如图9a所示,光电转换单元206可以包括:光探测器31、跨阻放大器32和光信号处理器36(Optical Digital Signal  Processor,ODSP)。光探测器31用于将输入光信号转换为携带信息的光生电流信号,并将该光生电流信号输入到跨阻放大器32,跨阻放大器32用于将光生电流信号转换为电压信号并进行放大,并将放大后的电信号输入到光信号处理器36,光信号处理器36用于将电信号采样转换为数字电信号并进行数字信号处理,并将处理后的电信号输出至电子设备。其中,光探测器31可以输出的实时参数包括但不限于光生电流等,跨阻放大器32可以输出的实时参数包括但不限于光信号幅度、光生电流等,其中,光生电流为输入光信号的直流分量,光信号幅度为输入光信号的高电平与低电平的差值,光生电流和光信号幅度均与输入光信号的光功率呈正相关的关系。光信号处理器36可以输出的实时参数包括但不限于纠前误码率、纠后误码率、电眼图幅度、光信号相位、光信号频谱等。也就是说,光电转换单元206可以输出光生电流、光信号幅度、纠前误码率、纠后误码率、电眼图幅度、光信号相位、光信号频谱多种参数,采样单元可以采样光电转换单元206输出的任一参数,即光电转换单元206输出的光生电流、光信号幅度、纠前误码率、纠后误码率,电眼图幅度、光信号相位、光信号频谱等参数中的任一个均可以作为上述第一采样参数。
在实际应用中,光电转换模块可以具有多个光信号传输通道,光电转换模块中的光电转换单元可以输出更多参数。图9b为本申请实施例中光电转换模块的另一局部结构示意图,如图9b所示,该光电转换模块可以为波分光电转换模块,光电转换单元206可以包括:波分解复用器37、光探测器31和跨阻放大器32,波分解复用器37用于对输入的多波光信号进行分解复用,以输出多个通道的光信号,例如图中以4个通道(分别为ch1、ch2、ch3和ch4)为例进行示意,在实际应用中,通道数可以是大于或等于2的任意整数,比如:通道数可以为2、4、6、8个。光探测器31用于将多波光信号转换为携带信息的光生电流信号,并将转换后的光生电流信号传输至跨阻放大器32,跨阻放大器32用于将光生电流信号转换为电压信号并进行放大。可选地,光电转换单元206还可以包括:光信号处理器36,光信号处理器36用于采集跨阻放大器32放大后的电压信号,将该电压信号转换为数字电信号并进行数字信号处理,并将处理后的电信号输出至电子设备。
图9c为本申请实施例中光电转换模块的另一局部结构示意图,如图9c所示,该光电转换模块可以为并行单模(Parallel Single Mode,PSM)光电转换模块,光电转换单元206可以包括光探测器31和跨阻放大器32,可选地,光电转换单元206还可以包括:光信号处理器36。多个通道光信号通过多根光纤输入到光探测器31,图中以4个通道(分别为ch1、ch2、ch3和ch4)为例进行示意,在实际应用中,通道数可以是大于或等于2的任意整数,比如:通道数可以为2、4、6、8个。光探测器31用于多个通道的光信号转换为携带信息的光生电流信号,并将转换后的光生电流信号传输至跨阻放大器32,跨阻放大器32用于将光生电流信号转换为电压信号并进行放大。光信号处理器36用于采集跨阻放大器32放大后的电压信号,将该电压信号转换为数字电信号并进行数字信号处理,并将处理后的电信号输出至电子设备。由于PSM光电转换模块通常采用并行单模光纤(Parallel Single Mode Fiber,PSM)作为光跳线,各通道的光信号具有相同的发送端和相同的接收端(同源同宿),因此,PSM光电转换模块可以采用与波分光电转换模块一致的硬件装置和方法流程。
如图9b和图9c所示,光电转换模块可以为波分光电转换模块或PSM光电转换模块时,光电转换模块可以具有多个光信号传输通道,以通道数为4为例,光探测器31输出的实时参数包括但不限于4个通道的光生电流ch1~ch4等,跨阻放大器32可以输出的实时参数 包括但不限于4个通道的光信号幅度ch1~ch4、4个通道的光生电流ch1~ch4等,光信号处理器36可以输出的实时参数包括但不限于纠前误码率、纠后误码率、4个通道的电眼图幅度ch1~ch4等。可以将光电转换单元206输出的任一参数作为上述第一采样参数。
在具体实施时,光电转换模块具有多个光信号传输通道时,可以将任意一个通道的采样数据作为第一采样参数,也可以将多个通道的采样数据的平均值或总和等作为第一采样参数,相应地,采样单元在采样的过程中,可以只采样并存储多个通道中的任意一个通道的采样数据,或者采样多个通道的采样数据且将其平均值或总和值存储于采样信息存储单元中。以图9b和图9c中的光生电流为例,可以将4个通道中任一通道的光生电流作为第一采样参数,也可以将4个通道的平均光生电流,或4个通道的总和光生电流作为第一采样参数。
在具体实施时,对于多个通道输入的光电转换模块,如果该光电转换模块的输入光信号来源于不同的光模块,则该光电转换模块可根据输入光信号来源不同从逻辑上划分为多个独立的子模块,每个子模块独立进行实时参数采样、告警、实时参数采样数据存储、故障类型分析计算及其结果存储和上报等操作。图9d为本申请实施例中通信系统的另一结构示意图,如图9d所示,第一电子设备111中的第一光模块121与第二电子设备112中的第二光模块122,通过光跳线13、第一光配线架171、第一通信光缆141、第二光配线架172等实现光信号连接,第三电子设备113中的第三光模块123与第二电子设备112中的第二光模块122,通过光跳线13、第三光配线架173、第二通信光缆142、第二光配线架172等实现光信号连接,也就是说,第二光模块122为多通道输入的光电转换模块,其部分通道接收第一光模块121通过第一通信光缆141传输的光信号,这部分通道可以从逻辑上定义为第一子模块122a,其余部分通道接收第三光模块123通过第二通信光缆142传输的光信号,这部分通道可以从逻辑上定义为第二子模块122b。第一子模块122a和第二子模块122b均可以独立进行实时参数采样、告警、实时参数采样数据存储、故障类型分析计算及其结果存储和上报等操作。
当然,在一些情况下,光模块为其他功能模块时,也可以将其他参数作为上述第一采样参数,只要第一处理单元能够根据第一采样参数确定告警信息对应的故障类型信息即可,此处不对第一采样参数的具体实现方式进行限定。
本申请实施例中的光模块可以采用多种方式判断告警状态,以下对光模块的几种判断告警状态的方式进行举例说明。
判断方式一:
图10为本申请实施例中通信系统的另一结构示意图,如图10所示,上述光模块12还可以包括:告警信息生成单元205,告警信息生成单元205分别与采样单元202和第一处理单元201电连接。采样单元202还用于将第一采样参数发送至告警信息生成单元205,告警信息生成单元205用于判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元201。
在具体实施时,告警信息生成单元205可以实时接收采样单元202输出的多个第一采样参数,第一采样参数可以是模拟量,或者,第一采样参数也可以是量化的模拟量,或者,第一采样参数也可以是数字量。告警信息生成单元205可以实时监测各第一采样参数的状态,将各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数从正常值下降到低于预设阈值范围的最小值时,或者,第一采样参数从正常值上升到高于预设阈值范 围的最大值时,告警信息生成单元205生成告警信息。举例来说,告警信息可以是数字逻辑信号从低电平变为高电平,或者,告警信息也可以是数字逻辑信号从高电平变为低电平,当然,告警信息也可以为其他类型的信息,此处不做限定。
在判断方式一中,告警信息生成单元205判断告警状态采用的参数,可以与第一处理单元201确定故障类型信息采用的参数可以相同,例如,可以均采用采样单元202采集的第一采样参数。举例来说,本申请实施例中的光模块为光电转换模块、光电放大模块或光交换模块等模块时,第一采样参数可以包括光生电流。光模块为光电转换模块时,第一采样参数可以包括光生电流、光信号幅度、纠前误码率、纠后误码率、电眼图幅度、光信号相位或光信号频谱等参数。当然,在一些情况下,第一采样参数也可以包括其他参数,此处不做限定。
判断方式二:
如图10所示,上述光模块12还可以包括:告警信息生成单元205,告警信息生成单元205分别与采样单元202和第一处理单元201电连接。采样单元202还用于采集第二采样参数,并将第二采样参数发送至告警信息生成单元205,第二采样参数与第一采样参数不同。告警信息生成单元205用于判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元201。
采样单元可以具体用于以毫秒级的采样时间精度实时采集第二采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据。
与判断方式一不同的是,在判断方式二中,告警信息生成单元205判断告警状态采用的参数,与第一处理单元201确定故障类型信息采用的参数不同,具体地,第一处理单元201采用第一采样参数确定故障类型信息,告警信息生成单元205采用与第一采样参数不同的第二采样参数判断告警状态。
在具体实施时,告警信息生成单元205可以实时接收采样单元202输出的多个第二采样参数,第二采样参数可以是模拟量,或者,第二采样参数也可以是量化的模拟量,或者,第二采样参数也可以是数字量。告警信息生成单元205可以实时监测各第二采样参数的状态,将各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数从正常值下降到低于预设阈值范围的最小值时,或者,第二采样参数从正常值上升到高于预设阈值范围的最大值时,告警信息生成单元205生成告警信息。举例来说,告警信息可以是数字逻辑信号从低电平变为高电平,或者,告警信息也可以是数字逻辑信号从高电平变为低电平,当然,告警信息也可以为其他类型的信息,此处不做限定。
图11为本申请实施例中光电转换模块的另一结构示意图,图12为本申请实施例中光电转换模块的另一结构示意图,如图11和图12所示,采样单元可以包括:第一采样单元202a和第二采样单元202b。第一采样单元202a用于采集第一采样参数,并通过第一处理单元201将第一采样参数存储于采样信息存储单元203中。第二采样单元202b用于采集第二采样参数,并将第二采样参数发送至告警信息生成单元205。
举例来说,光模块为光电转换模块时,第一采样参数可以包括光生电流,第二采样参数可以包括光信号幅度,如图11所示,第一采样单元202a可以采集光探测器31输出的光生电流,将光生电流作为上述第一采样参数,第二采样单元202b可以采集跨阻放大器32输出的光信号幅度,将光信号幅度作为上述第二采样参数。或者,第一采样参数可以包括 光生电流,第二采样参数可以包括纠前误码率,如图12所示,第一采样单元202a可以采集光探测器31输出的光生电流,将光生电流作为上述第一采样参数,第二采样单元202b可以采集光信号处理器36输出的纠前误码率,将纠前误码率作为上述第二采样参数。在具体实施时,第一采样参数和第二采样参数也可以包括其他参数,此处不做限定。
在判断方式一和判断方式二中,告警信息生成单元205可以是一个独立的硬件单元,例如,告警信息生成单元可以为比较器等硬件,或者,告警信息生成单元205可以与第一处理单元201集成于同一处理器或处理芯片中,此处不对告警信息生成单元205的具体实现方式进行限定。在具体实施时,可以通过硬件或软件的方式,实现告警信息生成单元205中“判断第一采样参数(或第二采样参数)是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息”的功能。
在判断方式一和判断方式二中,通过设置告警信息生成单元来实时监测第一采样参数,当第一采样参数出现异常时,告警信息生成单元可以及时发现该异常,并生成告警信息,将告警信息发送至第一处理单元。
判断方式三:
参照图5,光模块12中判断告警状态的功能也可以通过第一处理单元201来实现。
与判断方式一中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用第一采样参数判断告警状态,即第一处理单元201可以判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息。第一处理单元201可以实时接收采样单元202输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
或者,与判断方式二中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用不同于第一采样参数的第二采样参数判断告警状态,即第一处理单元201可以判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息。第一处理单元201可以实时接收采样单元202输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
以上介绍了光模块的基本结构,以下结合附图,对本申请实施例的通信系统中光模块与电子设备和网管设备等部件的连接关系进行介绍。
如图10所示,本申请实施例中电子设备11可以包括:第二处理单元11a,以及本申请实施例中的任一光模块12,光模块12与第二处理单元11a连接。第二处理单元11a用于实现对电子设备11的控制。其中,光模块12用于在识别到告警信息时,向第二处理单元11a发送告警信息,第二处理单元11a用于在接收到告警信息的第一预设时间后,读取光模块12的故障信息存储单元204中的告警信息对应的故障类型信息。第二处理单元11a可以为服务器等具有较强数据处理功能的器件。
进一步地,第二处理单元11a可以用于根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。或者,第二处理单元11a可以用于根据读取的故障类型信息确定故障原因。由于光模块12中的第一处理单元201已经确定了故障类型信息,第二处理单元11a根据该故障类型信息就可以确定故障原因,简化了第二处理单元11a进行故障原因分析的过程,减小了计算量,缩短了故障原因分析所需的时间。
本申请实施例中,光模块中的第一处理单元201在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元204中。电子设备11中的第二处理单元11a可以在接收到告警信息的第一预设时间后,读取故障信息存储单元204中的告警信息对应的故障类型信息,并结合所在通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
图13为本申请实施例中电子设备的结构示意图,如图13所示,在本申请的一些实施例中,电子设备11可以包括至少一个光模块,例如图13中,电子设备可以包括:第一光模块121、第二光模块122、……及第J光模块12j。结合图10和图13,电子设备11可以为一体化设备,光模块可以作为一个可插拔的独立模块直接插在电子设备11上,或者光模块也可以设置在电子设备11的内部。第二处理单元11a可以通过硬件管脚接口与光模块12中的告警信息生成单元205连接,告警信息生成单元205用于在生成告警信息时,通过硬件管脚接口的电平跳变向第二处理单元11a发送告警信息。硬件管脚接口的电平可以由高电平变为低电平,或者,也可以由低电平变为高电平。例如,告警信息可以为信号丢失告警(loss of signal,LOS),可以通过相应地硬件管脚接口传输该告警信息。通过硬件管脚接口的电平跳变,告警信息生成单元205能够快速地将告警信息传输至第二处理单元11a。
继续参照图10和图13,第二处理单元11a可以通过通信总线与第一处理单元201连接,第一处理单元201用于在识别到告警信息时,通过通信总线向第二处理单元11a发送告警信息。在具体实施时,第一处理单元201也可以在识别到告警信息时,将告警信息存入故障信息存储单元204中,第二处理单元11a可以通过通信总线读取故障信息存储单元204中的告警信息。第二处理单元11a还可以通过通信总线读取故障信息存储单元204中的故障类型信息和故障产生时间等参数。此外,第二处理单元11a可以通过通信总线,读取光模块的状态参数和性能参数,配置光模块的工作参数,当然,第二处理单元11a也可以通过通信总线与光模块进行其他信息交互,此处不再一一举例。
图14为本申请实施例中电子设备的另一结构示意图,如图14所示,在本申请的另一些实施例中,电子设备11可以包括:至少一个单板18,例如图14中,电子设备11可以包括:相互独立的第一单板181、第二单板182、……及第M单板18m。单板18可以可插拔的插在电子设备11上,或者单板18也可以设置在电子设备11的内部。单板18中可以设置至少一个光模块,光模块可以可插拔地插在单板18上,或者,光模块也可以设置在单板18内部,例如图14中,第一光模块121、第二光模块122、……及第J光模块12j可以可插拔地插在单板18上。
图15为本申请实施例中通信系统的另一结构示意图,结合图14和图15,光模块12可以通过单板18与电子设备11进行信息交互。单板18可以包括:第三处理单元18a,第三处理单元18a通过硬件管脚接口与光模块12中的告警信息生成单元205连接,告警信息生成单元205用于在生成告警信息时,通过硬件管脚接口的电平跳变向第三处理单元18a发送告警信息,硬件管脚接口的电平可以由高电平变为低电平,或者,也可以由低电平变为高电平。例如,告警信息可以为信号丢失告警(loss of signal,LOS),可以通过相应地硬件管脚接口传输该告警信息。通过硬件管脚接口的电平跳变,告警信息生成单元205能 够快速地将告警信息传输至第三处理单元18a。并且,第三处理单元18a可以通过通信接口向第二处理单元11a发送告警信息。第三处理单元18a可以为中央处理器(central processing unit,CPU)或微处理器(Microcontroller Unit,MCU)等具有数据处理功能的器件。
继续参照图14和图15,第三处理单元18a可以通过通信总线与第一处理单元201连接,第三处理单元18a通过通信接口与第二处理单元11a连接。第一处理单元201用于在识别到告警信息时,通过通信总线向第三处理单元18a发送告警信息,第三处理单元18a用于通过通信接口向第二处理单元11a发送告警信息。在具体实施时,第三处理单元18a可以通过通信总线读取故障信息存储单元204中的故障类型信息和故障产生时间等参数,并将读取到的故障类型信息和故障产生时间等参数传输至第二处理单元11a。在具体实施时,光模块12还可以通过单板18与电子设备11进行其他信息交互,此处不再一一举例。
在本申请实施例中,通信总线可以为串行外围设备接口(Serial Perripheral Interface,SPI)总线或集成电路之间串行通讯总线(Inter-Integrated Circuit,I2C),为了提高传输速率,上述通信总线也可以为高速通信总线,例如可以为管理数据输入输出接口总线(Management Data Input Output Interface,MDIO),当然,上述通信总线也可以为其他类型的总线,只要能够满足第一处理单元与电子设备之间的传输需求即可,此处不做限定。
在具体实施时,如图10所示,本申请实施例中的通信系统还可以包括:网管设备16,网管设备16可以对所在通信系统进行统一的管控。电子设备11中的第二处理单元11a可以通过网络通信接口与网管设备16连接,电子设备11可以通过网络通信接口与网格设备16实现信息交互,例如,电子设备11可以通过网络通信接口将故障类型信息和故障产生时间等参数传输至网管设备16。网管设备16可以用于获取电子设备11的故障类型信息,根据故障类型信息以及网络系统的网络拓扑关系,确定故障原因。或者,网管设备16可以用于获取电子设备11的故障类型信息,根据故障类型信息确定故障原因。
以上介绍了通信系统中各部件的连接关系,以下结合附图,对本申请实施例中通信系统产生故障的场景进行举例说明。
在本申请的一些实施例中,在通信系统的多种故障场景下,会导致光模块的至少一种参数异常,可以将某一种参数作为第一采样参数,光模块中的第一处理单元可以根据发生故障时的第一采样参数确定故障类型信息,后续电子设备或网管设备可以根据故障类型信息和网络拓扑关系,确定故障原因和故障点。
图16为本申请实施例中通信系统产生设备掉电故障时的示意图,如图16所示,通信系统可以包括:电子设备及供电线路,供电线路用于向电子设备供电,电子设备可以包括至少一个光模块,不同电子设备中的光模块可以通过光跳线和通信光缆等实现光信号连接。例如图16中所示的通信系统可以至少包括:第一电子设备111和第二电子设备112,第一电子设备111中的第一光模块121输出的光信号,经过第一光跳线131、通信光缆14和第二光跳线132输入到第二电子设备112中的第二光模块122,从而实现第一光模块121与第二光模块122之间的光信号传输。第一供电线路151与第一电子设备111连接,第一供电线路151用于向第一电子设备111供电,第二供电线路152与第二电子设备112连接,第二供电线路152用于向第二电子设备112供电。
当第一电子设备111产生设备掉电故障时,会导致第一电子设备111掉电离线。通信系统正常工作时,第一光模块121与第二光模块122可以点对点对端传输光信号,第一电 子设备111掉电离线后,第二光模块122采样得到的第一采样参数会出现异常。图17为产生设备掉电故障时第二光模块采集第一采样参数得到的采样图,如图17所示,通信系统产生设备掉电故障时,采样图的主要特征是:第一采样参数(例如光生电流)在极短时间(如图中t0时刻到t1时刻)从正常值跌落至无光信号输入的状态,第一采样参数从正常值跌落至无信号输入的时间窗(t0时刻到t1之间的时间差)一般小于20毫秒,在不同的场景和不同类型的光模块中,该时间窗的具体数值可能会有一定差异。在具体实施时,以检测到在该时间窗内第一采样参数从正常值阶跃下降至小于数微安到数毫安的某个阈值作为判断依据,第二光模块122中的第一处理单元识别到第一采样参数满足该判断依据时,可以确定故障类型信息为输入光功率阶跃丢失,第二电子设备112可以根据故障类型信息和网络拓扑关系,确定故障原因为第一电子设备111掉电,故障点在第一供电线路151的位置处。
图18为本申请实施例中通信系统产生光跳线脱落故障时的示意图,如图18所示,当第一电子设备111与第二电子设备112的光信号传输链路中的光跳线脱落时,例如,光跳线出现接触不良或被人工拔出时,第二光模块122采样得到的第一采样参数会出现异常。图19为产生光跳线脱落故障时第二光模块采集第一采样参数得到的采样图,如图19所示,通信系统产生光跳线脱落故障时,采样图的主要特征是:第一采样参数(例如光生电流)在很短时间窗(如图中t0时刻到t1时刻)内跌落至无光信号输入的状态,该时间窗(t0时刻到t1之间的时间差)一般在20毫秒~500毫秒之间,在不同的场景和不同类型的光模块中,该时间窗的具体数值可能会有一定差异。在具体实施时,以检测到在该时间窗内第一采样参数从正常值快速地下降至小于数微安到数毫安的某个阈值作为判决依据,第二光模块122中的第一处理单元识别到第一采样参数满足该判断依据时,可以确定故障类型信息为输入光功率快速丢失,第二电子设备112可以根据故障类型信息和网络拓扑关系,确定故障原因为光跳线脱落故障,故障点在第一光跳线131或第二光跳线132的位置处。
图20为本申请实施例中通信系统产生光缆断裂故障或光跳线破损故障时的示意图,如图20所示,通信系统可以包括:第一电子设备111、第二电子设备112、第三电子设备113及网管设备16,网管设备16分别与第一电子设备111、第二电子设备112、第三电子设备113中的第二处理单元连接。第一电子设备111包括第一光模块121,第三电子设备113包括第三光模块123,即第一光模块121与第三光模块123分布在不同的电子设备中,当然,在一些情况下,第一光模块121和第三光模块123也可以分布在同一电子设备中。第二电子设备112包括同缆传输的第二光模块122和第四光模块124,即第二光模块122与第四光模块124通过同一通信光缆14传输光信号。第一光模块121通过光跳线13、第一光配线架171、通信光缆14和第二光配线架172与第二光模块122实现光信号传输,第三光模块123通过光跳线13、第一光配线架171、通信光缆14和第二光配线架172与第四光模块124实现光信号传输。
继续参照图20,当光信号传输链路中出现光缆断裂故障时,例如,通信光缆14由于外力被挖断或者破坏时,第二电子设备112中同缆传输的第二光模块122和第四光模块124采样得到的第一采样参数均会出现异常。图21为产生光缆断裂故障时第二光模块和第四光模块采集第一采样参数得到的采样图,其中,图21中的(1)为产生光缆断裂故障时第二光模块采集第一采样参数得到的采样图,图21中的(2)为产生光缆断裂故障时第四光模块采集第一采样参数得到的采样图,结合图20和图21,通信系统产生光缆断裂故障时, 第二光模块122和第四光模块124的采样图的主要特征是:在第一采样参数(例如光生电流)跌落至无光信号输入状态的过程中会出现波动下降特征,波动的次数和大小跟挖掘或损坏的程度有直接关系,在具体实施时,以检测到第一采样参数从正常值下降小于数微安到数毫安的某个阈值,并且第一采样参数的波形规律存在波动且下降事件作为判断依据。
如图20所示,当光信号传输链路中出现光跳线破损故障时,第二电子设备112中同缆传输的第二光模块122和第四光模块124中的至少之一采样得到的第一采样参数会出现异常。图22为产生光跳线破损故障时第二光模块和第四光模块采集第一采样参数得到的采样图,其中,图22中的(1)为第二光模块采集第一采样参数得到的采样图,图22中的(2)为第四光模块采集第一采样参数得到的采样图。结合图20和图22,通信系统产生光跳线破损故障时,采样图的主要特征是:同缆传输的两个光模块中的其中一个光模块的采样图具有波动下降特征,另一个光模块的采样图正常,例如图22中,第二光模块的采样图具有波动下降特征,第四光模块的采样图正常。
继续参照图20,在具体实施时,第二光模块122和第四光模块124中的第一处理单元可以根据第一采样参数确定故障类型信息,例如,图21中的(1)和(2)的采样图对应的故障类型信息为输入光功率波动丢失,图22中的(1)的采样图对应的故障类型信息为输入光功率波动丢失,图22中的(2)的采样图正常(无故障类型信息)。第二电子设备112可以根据第二光模块122和第四光模块124的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因和故障点位置。当第二电子设备112检测到同缆传输的至少两个光模块的故障类型信息为输入光功率波动丢失,例如图21中第二光模块122和第四光模块124的采样图对应的故障类型信息均为输入光功率波动丢失,则可以确定故障原因为光缆断裂故障,故障点在通信光缆14的位置处。当第二电子设备112检测到同缆传输的光模块中至少一个光模块的故障类型信息为输入光功率波动丢失,其余的光模块正常,例如图22中的第二光模块122的采样图对应的故障类型信息为输入光功率波动丢失,第四光模块124的采样图正常,则可以确定故障原因为光跳线破损故障,故障点在故障类型信息为输入光功率波动丢失的光模块对应的光跳线的位置处。
图23为本申请实施例中通信系统产生光缆断裂故障或光跳线破损故障时的另一示意图,如图23所示,与图20的不同之处在于:在图23中,同缆传输的第二光模块122和第四光模块124分布在不同的电子设备中,其中,第二光模块122位于第二电子设备112中,第四光模块124位于第四电子设备114中。
如图23所示,当光信号传输链路中出现光缆断裂故障时,例如,通信光缆14由于外力被挖断或者破坏时,同缆传输的第二光模块122和第四光模块124采样得到的第一采样参数均会出现异常。第二光模块122和第四光模块124采样得到的第一采样参数的采样图可以参照图21,结合图21和图23,通信系统产生光缆断裂故障时,第二光模块122和第四光模块124的采样图的主要特征是:在第一采样参数(例如光生电流)跌落至无光信号输入状态的过程中会出现波动下降特征,波动的次数和大小跟挖掘或损坏的程度有直接关系,在具体实施时,以第一采样参数从正常值下降小于数微安到数毫安的某个阈值,并且第一采样参数的波形规律存在波动且下降事件作为判决依据。当光信号传输链路中出现光跳线破损故障时,同缆传输的第二光模块122和第四光模块124中的至少之一采样得到的第一采样参数会出现异常,第二光模块122和第四光模块124采样得到的第一采样参数的采样图可以参照图22,通信系统产生光跳线破损故障时,采样图的主要特征是:同缆传输 的两个光模块中的其中一个光模块的采样图具有波动下降特征,另一个光模块的采样图正常,例如图22中,第二光模块的采样图具有波动下降特征,第四光模块的采样图正常。
在具体实施时,继续参照图23,第二光模块122和第四光模块124中的第一处理单元可以根据第一采样参数的采样图确定故障类型信息,例如,图21中的(1)和(2)的采样图对应的故障类型信息为输入光功率波动丢失,图22中的(1)的采样图对应的故障类型信息为输入光功率波动丢失,图22中的(2)的采样图正常(无故障类型信息)。第二电子设备112获取第二光模块122的故障类型信息和故障产生时间信息,并将第二光模块122的故障类型信息和故障产生时间信息上报至网管设备16,第四电子设备114获取第四光模块124的故障类型信息和故障产生时间信息,并将第四光模块124的故障类型信息和故障产生时间信息上报至网管设备16。网管设备16可以根据第二光模块122和第四光模块124的故障类型信息、故障产生时间以及所在网络系统的网络拓扑关系,确定故障原因和故障点位置。当网管设备16检测到同缆传输的至少两个光模块的故障类型信息为输入光功率波动丢失,例如图21中第二光模块122和第四光模块124的采样图对应的故障类型信息均为输入光功率波动丢失,则可以确定故障原因为光缆断裂故障,故障点在通信光缆14的位置处。当网管设备16检测到同缆传输的光模块中至少一个光模块的故障类型信息为输入光功率波动丢失,其余的光模块正常,例如图22中的第二光模块122的采样图对应的故障类型信息为输入光功率波动丢失,第四光模块124的采样图正常,则可以确定故障原因为光跳线破损故障,故障点在故障类型信息为输入光功率波动丢失的光模块的光跳线的位置处。
图24为本申请实施例中通信系统产生光跳线弯折故障时的示意图,如图24所示,当第一电子设备111与第二电子设备112的光信号传输链路中产生光跳线弯折故障时,例如,光跳线受到外力作用出现弯折时,第二电子设备112中的第二光模块122采样得到的第一采样参数会出现异常,图25为产生光跳线弯折故障时第二光模块采集第一采样参数得到的采样图,结合图24和图25,通信系统产生光跳线弯折故障时,采样图的主要特征是:第二光模块122的第一采样参数(例如光生电流)在光跳线出现弯折时会出现下降波形,下降速率和下降差值与外力作用时间和弯折程度强相关,一般地,第一采样参数可以下降为正常工作值的一半左右,即第一采样参数的波形具有劣化特征。在具体实施时,可以根据实际使用场景预先设置下降幅度值,第二光模块122中的第一处理单元识别到第一采样参数具有劣化特征时,可以确定故障类型信息为输入光功率劣化,第二电子设备112可以根据故障类型信息和网络拓扑关系,确定故障原因为光跳线弯折故障,故障点在第一光跳线131或第二光跳线132的位置处。
图26为本申请实施例中通信系统产生光缆震动故障或光跳线震动故障时的示意图,图26所示的通信系统的结构与图20所示的通信系统的结构类似,重复之处不再赘述。当光信号传输链路中出现光缆震动故障时,例如,通信光缆14受到外力作用出现震动时,第二电子设备112中同缆传输的第二光模块122和第四光模块124采样得到的第一采样参数均会出现异常。图27为产生光缆震动故障时第二光模块和第四光模块采集第一采样参数得到的采样图,其中,图27中的(1)为产生光缆震动故障时第二光模块采集第一采样参数得到的采样图,图27中的(2)为产生光缆震动故障时第四光模块采集第一采样参数得到的采样图,结合图26和图27,通信系统产生光缆震动故障时,第二光模块122和第四光模块124的采样图的主要特征是:第一采样参数(例如光生电流)出现波动事件,波 动的次数和幅度大小跟震动次数和程度有直接关系。震动消失后第一采样参数可以恢复到震动前的数值。
继续参照图26,当光信号传输链路中出现光跳线震动故障时,第二电子设备112中同缆传输的第二光模块122和第四光模块124中的至少之一采样得到的第一采样参数会出现异常。图28为产生光跳线震动故障时第二光模块和第四光模块采集第一采样参数得到的采样图,其中,图28中的(1)为第二光模块采集第一采样参数得到的采样图,图28中的(2)为第四光模块采集第一采样参数得到的采样图。结合图26和图28,通信系统产生光跳线震动故障时,采样图的主要特征是:同缆传输的两个光模块中的其中一个光模块的采样图具有波动特征,另一个光模块的采样图正常,例如图28中,第二光模块的采样图具有波动特征,第四光模块的采样图正常。
在具体实施时,如图26所示,第二光模块122和第四光模块124中的第一处理单元可以根据第一采样参数确定故障类型信息,例如,图27中的(1)和(2)的采样图对应的故障类型信息为输入光功率波动,图28中的(1)的采样图对应的故障类型信息为输入光功率波动,图28中的(2)的采样图正常(无故障类型信息)。第二电子设备112可以根据第二光模块122和第四光模块124的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因和故障点位置。当第二电子设备112检测到同缆传输的至少两个光模块的故障类型信息为输入光功率波动,例如图27中第二光模块122和第四光模块124的采样图对应的故障类型信息均为输入光功率波动,则可以确定故障原因为光缆振动故障,故障点在通信光缆14的位置处。当第二电子设备112检测到同缆传输的光模块中至少一个光模块的故障类型信息为输入光功率波动,其余的光模块正常,例如图28中的第二光模块122的采样图对应的故障类型信息为输入光功率波动,第四光模块124的采样图正常,则可以确定故障原因为光跳线震动故障,故障点在故障类型信息为输入光功率波动的光模块对应的光跳线的位置处。
图29为本申请实施例中通信系统产生光缆震动故障或光跳线震动故障时的另一示意图,与图26的不同之处在于:在图29中,同缆传输的第二光模块122和第四光模块124分布在不同的电子设备中,其中,第二光模块122位于第二电子设备112中,第四光模块124位于第四电子设备114中。
如图29所示,当光信号传输链路中出现光缆震动故障时,例如,通信光缆14受到外力作用出现震动时,第二电子设备112中同缆传输的第二光模块122和第四光模块124采样得到的第一采样参数均会出现异常。第二光模块和第四光模块采集第一采样参数得到的采样图可以参照图27。结合图27和图29,通信系统产生光缆震动故障时,第二光模块122和第四光模块124的采样图的主要特征是:第一采样参数(例如光生电流)出现波动事件,波动的次数和幅度大小跟震动次数和程度有直接关系。震动消失后第一采样参数可以恢复到震动前的数值。
继续参照图29,当光信号传输链路中出现光跳线震动故障时,第二电子设备112中同缆传输的第二光模块122和第四光模块124中的至少之一采样得到的第一采样参数会出现异常。第二光模块和第四光模块采集第一采样参数得到的采样图可以参照图28。结合图28和图29,通信系统产生光跳线震动故障时,采样图的主要特征是:同缆传输的两个光模块中的其中一个光模块的采样图具有波动特征,另一个光模块的采样图正常,例如图28中,第二光模块的采样图具有波动特征,第四光模块的采样图正常。
在具体实施时,如图29所示,第二光模块122和第四光模块124中的第一处理单元可以根据第一采样参数确定故障类型信息,例如,图27中的(1)和(2)的采样图对应的故障类型信息为输入光功率波动,图28中的(1)的采样图对应的故障类型信息为输入光功率波动,图28中的(2)的采样图正常(无故障类型信息)。第二电子设备112获取第二光模块122的故障类型信息和故障产生时间信息,并将第二光模块122的故障类型信息和故障产生时间信息上报至网管设备16,第四电子设备114获取第四光模块124的故障类型信息和故障产生时间信息,并将第四光模块124的故障类型信息和故障产生时间信息上报至网管设备16。网管设备16可以根据第二光模块122和第四光模块124的故障类型信息、故障产生时间以及所在网络系统的网络拓扑关系,确定故障原因和故障点位置。当网管设备16检测到同缆传输的至少两个光模块的故障类型信息为输入光功率波动,例如图27中第二光模块122和第四光模块124的采样图对应的故障类型信息均为输入光功率波动,则可以确定故障原因为光缆振动故障,故障点在通信光缆14的位置处。当网管设备16检测到同缆传输的光模块中至少一个光模块的故障类型信息为输入光功率波动,其余的光模块正常,例如图28中的第二光模块122的采样图对应的故障类型信息为输入光功率波动,第四光模块124的采样图正常,则可以确定故障原因为光跳线震动故障,故障点在故障类型信息为输入光功率波动的光模块对应的光跳线的位置处。
在图16至图29中,第一光模块121、第二光模块122、第三光模块123或第四光模块124中的任意一个均可以为光电转换模块、光放大模块或光交换模块中的任意一种,相应地,上述第一采样参数可以为光生电流。当第一光模块121、第二光模块122、第三光模块123和第四光模块124为光电转换模块时,光电转换模块能够生成并检测多种实时参数,基于这些实施参数,可以实现多种故障定位方式,光电转换模块具有光生电流、光信号幅度、纠前误码率、纠后误码率,电眼图幅度、光信号相位、光信号频谱等多种参数,除光生电流外,光信号幅度、纠前误码率、纠后误码率,电眼图幅度、光信号相位、光信号频谱中的任意之一也可以作为上述第一采样参数,也就是说,光模块中的第一处理单元也可以通过光信号幅度、纠前误码率、纠后误码率,电眼图幅度、光信号相位、光信号频谱中的任意之一确定故障类型信息。
在本申请的另一些实施例中,在通信系统的一些故障场景下,可以将至少两种参数作为第一采样参数,光模块中的第一处理单元可以根据发生故障时刻的至少两种参数确定故障类型信息,后续电子设备或网管设备可以根据故障类型信息和网络拓扑关系,确定故障原因和故障点。
举例来说,图30为本申请实施例中通信系统产生光路质量劣化故障时的示意图,如图30所示,第一电子设备111中的第一光模块121输出的光信号,经过第一光跳线131、通信光缆14和第二光跳线132输入到第二电子设备112中的第二光模块122,从而实现第一光模块121与第二光模块122之间的光信号传输。其中,第一光模块121和第二光模块122可以为光电转换模块。通常光路质量劣化故障会加重多径干扰劣化(Multi Path Interference,MPI),触发光信号传输链路产生误码,故障点通常为通信光缆14与光跳线(第一光跳线131或第二光跳线132)的可插拔连接点。因而,当光信号传输链路中出现光路质量劣化故障时,第二电子设备112中的第二光模块122采样得到的第一采样参数会出现异常,第一采样参数可以包括纠前误码率和光生电流。在实际应用中,可以在第二光模块122中设置光信号处理器,通过光信号处理器实现检测和上报误码率的功能。
图31为产生光路质量劣化故障时第二光模块采集第一采样参数得到的采样图,图31中的(1)为产生光路质量劣化故障时第二光模块采集的纠前误码率得到的采样图,图31中的(2)为产生光路质量劣化故障时第二光模块采集的光生电流得到的采样图,结合图30和图31,通信系统产生光路劣化故障时,第二光模块122采集的采样图的主要特征是:纠前误码率劣化到一定的门限,光生电流在故障窗口内无变化(一般地在对应光功率值为1dB范围内)。在具体实施时,第二光模块122中的第一处理单元识别到纠前误码率和光生电流满足该特征时,可以确定故障类型信息为光功率多径干扰劣化。第二电子设备112可以根据故障类型信息和网络拓扑关系,确定故障原因为光路质量劣化故障,故障点为通信光缆14与光跳线(第一光跳线131或第二光跳线132)的可插拔连接点,例如,通信光缆14与光跳线可插拔连接点沾污。
以上介绍了通信系统产生故障的多个场景,在具体实施时,通信系统也可能产生其他故障场景,此处不再一一举例。以下结合附图,对本申请实施例中光模块确定故障类型信息的具体过程进行详细说明。
如图5所示,本申请实施例中的光模块可以包括:第一处理单元201,以及分别与第一处理单元201电连接的采样单元202、采样信息存储单元203和故障信息存储单元204。采样单元202用于采集第一采样参数,并通过第一处理单元201将第一采样参数存储于采样信息存储单元203中。第一处理单元201用于在识别到告警信息时,读取采样信息存储单元203中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元204中。这样,光模块12内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备11或网管设备16读取光模块12内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。
为了便于后续电子设备或网管设备确定故障原因和故障点位置,故障信息存储单元204除了用于存储故障类型信息外,故障信息存储单元204还可以存储告警信息对应的故障产生时间信息。
继续参照图5,采样单元202可以具体用于以毫秒级的采样时间精度采集第一采样参数,毫秒级的采样时间精度表示采样单元202在1s内至少采集2个数据,采样单元202的采样精度较高,可以为确定故障类型信息提供较多的采样数据,并且,由于光模块12不需要将第一采样参数发送给电子设备11,因而,采样单元202的采样精度较高,也不会增加光模块12与电子设备11之间的数据传输压力。在具体实施时,光模块12在正常工作状态下,可以实时采集第一采样参数,并将第一采样参数编码后通过第一处理单元201存储于采样信息存储单元203中,若采样信息存储单元203中的存储空间存满,可以从起始处覆盖绕接。
第一处理单元201可以具体用于在识别到告警信息时,继续将采样单元202采集到的p个采样点的第一采样参数存储于采样信息存储单元203中,其中p为大于或等于0的整数,在具体实施时,可以根据应用场景设置p的具体数值,例如,p可以为10~1000之间的某个值。之后,读取采样信息存储单元203中预设时间窗内的第一采样参数(至少包含2个采样点数据),根据读取的第一采样参数确定告警信息对应的故障类型信息。本申请实施例中,第一处理单元201在识别到告警信息时,会继续将采样单元202采集到的p个采样点的第一采样参数存储于采样信息存储单元203中,并读取采样信息存储单元203中预 设时间窗内的第一采样参数,p大于或等于0,也就是说,第一处理单元201在识别到告警信息时,可以立即读取采样信息存储单元203中的第一采样参数,也可以延迟一段时间再读取采样信息存储单元203中的第一采样参数。这样,第一处理单元201在识别到告警信息后获取的第一采样参数的数据较多,可以通过获取的预设时间窗内的第一采样参数的波形,确定该告警信息对应的故障类型信息,故障分析的准确性较高。
在实际应用中,第一处理单元201读取采样信息存储单元203中预设时间窗内的第一采样参数后,可以提取该预设时间窗内的第一采样参数的特征参数,例如,可以采用有监督和/或无监督的算法,并把提取到的特征参数按照分类结果存到第一处理单元201的缓存队列中,第一处理单元201可以根据预设时间窗内的第一采样参数的特征参数,进行故障类型分类,以确定告警信息对应的故障类型信息。
在本申请的一些实施例中,例如在图16至图29所示的几种故障场景中,第一采样参数可以包括:光生电流或光信号幅度,在一些情况下,第一采样参数也可以为其他参数,此处不做限定。图32为本申请实施例中不同故障类型信息对应的第一采样参数的波形示意图,如图32所示,第一处理单元201可以具体用于:
在读取预设时间窗T内的第一采样参数之后,比较初始时刻与最后时刻的第一采样参数;
参照图32中的(3),若初始时刻与最后时刻的第一采样参数的差值小于第一阈值(即初始时刻与最后时刻的第一采样参数的差值较小),且预设时间窗T内的第一采样参数的波形规律存在波动事件,也就是说,在预设时间窗T内第一采样参数经波动后可以恢复到波动之前的数值,则告警信息对应的故障类型信息为输入光功率波动;或,
参照图32中的(4),若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样值较小),且预设时间窗T内的第一采样参数的波形规律存在波动且下降事件,也就是说,在预设时间窗T内第一采样参数经波动后得到的数值较小,则告警信息对应的故障类型信息为输入光功率波动丢失;或,
参照图32中的(2),若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样参数较小),且预设时间窗T内的第一采样参数的波形规律存在快速下降事件,也就是说,在预设时间窗T内第一采样参数快速下降至较小的数值,则告警信息对应的故障类型信息为输入光功率快速丢失;或,
参照图32中的(1),若初始时刻与最后时刻的第一采样参数的差值大于第一阈值,最后时刻的第一采样参数小于第二阈值(即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样值较小),且预设时间窗T内的第一采样参数的波形规律存在阶跃下降事件,也就是说,在预设时间窗T内第一采样参数阶跃下降至较小的数值,则告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
参照图32中的(5),若初始时刻与最后时刻的第一采样参数的差值大于第一阈值(即初始时刻与最后时刻的第一采样参数的差值较大),最后时刻的第一采样参数大于第二阈值,且预设时间窗T内的第一采样参数的波形规律具有劣化特征,也就是说,在预设时间窗T内,第一采样参数有一定程度的下降,且最后时刻的第一采样参数在第二阈值与第一阈值之间,例如,最后时刻第一采样参数可以约为初始时刻第一采样参数的一半,则告警 信息对应的故障类型信息为输入光功率劣化。
本申请实施例中,采用预设时间窗内的第一采样参数确定故障类型信息,结合预设时间窗内第一采样参数的波形和端值,可以准确地确定告警信息对应的故障类型信息,使后续确定故障原因和故障点的准确性较高。
在本申请的另一些实施例中,例如在图30所示的光路质量劣化故障场景中,第一采样参数可以包括至少两种参数,例如,第一采样参数可以包括:光生电流和纠前误码率。光模块中的第一处理单元可以根据发生故障时刻的至少两种参数确定故障类型信息。这样,第一处理单元进行故障分类的参数较多,可以准确地确定告警信息对应的故障类型,从而提高故障原因定位的准确度。图33为本申请实施例中光路质量劣化故障对应的第一采样参数的波形示意图,图33中的(1)为发生光路质量劣化故障时纠前误码率的波形示意图,图33中的(2)为发生光路质量劣化故障时光生电流的波形示意图,如图33所示,第一处理单元201可以具体用于:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的光生电流,比较初始时刻与最后时刻的纠前误码率;
若初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值(即初始时刻与最后时刻的光生电流的差值较小,初始时刻与最后时刻的纠前误码率的差值较大),也就是说,在预设时间窗T内纠前误码率下降,光生电流基本不变,则告警信息对应的故障类型信息为光功率多径干扰劣化。
在具体实施时,可以根据网络系统的应用场景等因素,来设置第一阈值、第二阈值、第三阈值和预设时间窗的具体数值。
本申请实施例中的光模块中可以执行故障类型确定方法,图34为本申请实施例中故障类型确定方法的流程图,如图34所示,该故障类型确定方法可以包括:
S401、采样单元采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中;
S402、第一处理单元在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元中。
本申请实施例提供的故障类型确定方法中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置,以便快速修复通信系统中的故障,并减少故障解决的成本。
在本申请实施例中,光模块至少具有以下几种判断告警的方式。
判断方式一:
参照图10,光模块12还可以包括:告警信息生成单元205。
上述故障类型确定方法还可以包括:
采样单元202将第一采样参数发送至告警信息生成单元205;
告警信息生成单元205判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元201。
在具体实施时,第一采样参数可以是模拟量、量化的模拟量或数字量。举例来说,告警信息可以是数字逻辑信号从低电平变为高电平,或者,告警信息也可以是数字逻辑信号从高电平变为低电平,当然,告警信息也可以为其他类型的信息,此处不做限定。告警信息生成单元205可以实时接收采样单元202输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
在判断方式一中,告警信息生成单元205判断告警状态采用的参数,可以与第一处理单元201确定故障类型信息采用的参数可以相同。举例来说,本申请实施例中的光模块为光电转换模块、光电放大模块或光交换模块等模块时,第一采样参数可以包括光生电流。光模块为光电转换模块时,第一采样参数可以包括光生电流、光信号幅度、纠前误码率、纠后误码率、电眼图幅度、光信号相位或光信号频谱等参数。当然,在一些情况下,第一采样参数也可以包括其他参数,此处不做限定。
判断方式二:
参照图10,光模块12还可以包括:告警信息生成单元205。
上述故障类型确定方法还可以包括:
采样单元202采集第二采样参数,并将第二采样参数发送至告警信息生成单元;第二采样参数与第一采样参数不同;
告警信息生成单元205判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息,并将告警信息发送至第一处理单元。告警信息生成单元205可以实时接收采样单元202输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
采样单元可以具体用于以毫秒级的采样时间精度实时采集第二采样参数,毫秒级的采样时间精度表示采样单元在1s内至少采集2个数据,采样单元的采样精度较高,可以为确定故障类型信息提供较多的采样数据。在具体实施时,采样单元202可以同时采集第一采样参数和第二采样参数,或者,采样单元202也可以采用轮询的方式分别采集第一采样参数和第二采样参数,例如,可以采集第一采样参数后间隔几ms(比如5ms)后采集第二采样参数,再间隔几ms后采集第一采样参数,以此类推。
与判断方式一不同的是,在判断方式二中,告警信息生成单元205判断告警状态采用的参数,与第一处理单元201确定故障类型信息采用的参数不同,具体地,第一处理单元201采用第一采样参数确定故障类型信息,告警信息生成单元205采用与第一采样参数不同的第二采样参数判断告警状态。举例来说,光模块为光电转换模块时,第一采样参数可以包括光生电流,第二采样参数可以包括光信号幅度;或者,第一采样参数可以包括光生电流,第二采样参数可以包括纠前误码率。在具体实施时,第一采样参数和第二采样参数也可以包括其他参数,此处不做限定。
在判断方式一和判断方式二中,通过设置告警信息生成单元205来实时监测第一采样参数,当第一采样参数出现异常时,告警信息生成单元205可以及时发现该异常,并生成告警信息,将告警信息发送至第一处理单元201。
判断方式三:
参照图5,光模块12中判断告警状态的功能也可以通过第一处理单元201来实现。
与判断方式一中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用第一采样参数判断告警状态,即第一处理单元201可以判断第一采样参数是否位于预设阈值范围,当第一采样参数超出阈值范围时,生成告警信息。第一处理单元201可以实时接收采样单元202输出的多个第一采样参数,并将接收到的各第一采样参数逐个与预设阈值范围的端值进行比较,当第一采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
或者,与判断方式二中告警信息生成单元的功能类似,在判断方式三中,第一处理单元可以采用不同于第一采样参数的第二采样参数判断告警状态,即第一处理单元201可以判断第二采样参数是否位于预设阈值范围,当第二采样参数超出阈值范围时,生成告警信息。第一处理单元201可以实时接收采样单元202输出的多个第二采样参数,并将接收到的各第二采样参数逐个与预设阈值范围的端值进行比较,当第二采样参数大于预设阈值范围的最大值或小于预设阈值范围的最小值时,生成告警信息。
如图5所示,在一种可能的实现方式中,采样单元202以毫秒级的采样时间精度采集第一采样参数,毫秒级的采样时间精度表示采样单元202在1s内至少采集2个数据,采样单元202的采样精度较高,可以为确定故障类型信息提供较多的采样数据,并且,由于光模块12不需要将第一采样参数发送给电子设备11,因而,采样单元202的采样精度较高,也不会增加光模块12与电子设备11之间的数据传输压力。在具体实施时,光模块12在正常工作状态下,可以实时采集第一采样参数,并将第一采样参数编码后通过第一处理单元201存储于采样信息存储单元203中,若采样信息存储单元203中的存储空间存满,可以从起始处覆盖绕接。
上述步骤S402可以具体包括:
第一处理单元201在识别到告警信息时,继续将采样单元202采集到的p个采样点的第一采样参数存储于采样信息存储单元203中,其中p为大于或等于0的整数。在具体实施时,可以根据应用场景设置p的具体数值,例如,p可以为10~1000之间的某个值。
第一处理单元201读取采样信息存储单元203中预设时间窗内的第一采样参数(至少包含2个采样点数据);
根据读取的第一采样参数确定告警信息对应的故障类型信息。
本申请实施例中,第一处理单元201在识别到告警信息时,会继续将采样单元202采集到的p个采样点的第一采样参数存储于采样信息存储单元203中,并读取采样信息存储单元203中预设时间窗内的第一采样参数,p大于或等于0,也就是说,第一处理单元201在识别到告警信息时,可以立即读取采样信息存储单元203中的第一采样参数,也可以延迟一段时间再读取采样信息存储单元203中的第一采样参数。这样,第一处理单元201在识别到告警信息后获取的第一采样参数的数据较多,可以通过获取的预设时间窗内的第一采样参数的波形,确定该告警信息对应的故障类型信息,故障分析的准确性较高。
在一种可能的实现方式中,第一处理单元在读取采样信息存储单元中的第一采样参数之后,在确定告警信息对应的故障类型信息之前,还可以检测采样信息存储单元的存储单元是否清零,若未清零,则可以控制采样信息存储单元执行清零操作。
在实际应用中,第一处理单元201读取采样信息存储单元203中预设时间窗内的第一采样参数后,可以提取该预设时间窗内的第一采样参数的特征参数,第一处理单元201可以根据预设时间窗内的第一采样参数的特征参数,进行故障类型分类,以确定告警信息对 应的故障类型信息。图35为本申请实施例中第一处理单元提取第一采样参数的特征参数的流程图,如图35所示,第一处理单元提取第一采样参数的特征参数的方法可以包括:
S501、将采样点数据按照采样时间先后排序,得到采样点数据的波形序列;在具体实施时,采样单元采集第一采样参数后,可以对第一采样参数进行编码,并将编码后的第一采样参数通过第一处理单元存入采样信息存储单元中,因而,在步骤S501中,可以根据该编码对采样点数据进行排序。
S502、按照特定时间滑窗,对波形序列进行振幅、值域、分布占比的特征进行提取;
S503、对振幅差值进行判断,确定是否存在阶跃事件;若是,则执行步骤S504;若否,则执行步骤S505;
S504、提取阶跃事件的振幅和值域占比,按照分类结果存到缓存队列;
S505、对提取的缓存波形进行滚动窗口计算,提取窗口内方差、均值、振幅和值域分布等特征参数,进行波动时间识别,把提取到的特征值按照分类结果存到缓存队列。
在本申请的一些实施例中,例如在图16至图29所示的几种故障场景中,第一采样参数可以包括:光生电流或光信号幅度,在一些情况下,第一采样参数也可以为其他参数,此处不做限定。图36为本申请实施例中第一处理单元确定故障类型信息的流程图,如图36所示,第一处理单元根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
S601、在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的第一采样参数。在具体实施时,第一处理单元可以提取缓冲队列中的事件并按照时间进行排序,以便后续步骤中判断第一采样参数的波形是否存在波动事件、波动且下降事件等。
情况一:初始时刻与最后时刻的第一采样参数的差值小于第一阈值,即初始时刻与最后时刻的第一采样参数变化较小,例如,第一采样参数为光生电流时,初始时刻与最后时刻的光生电流差异对应的光功率变化1dB左右。执行步骤S602;
S602、判断预设时间窗内的第一采样参数的波形规律是否存在波动事件;若是,则执行步骤S603;若否,则结束本流程;
S603、将告警信息对应的故障类型信息置为输入光功率波动;
情况二:初始时刻与最后时刻的第一采样参数的差值大于第一阈值,且最后时刻的第一采样参数小于第二阈值,即初始时刻与最后时刻的第一采样参数的差值较大,且最后时刻的第一采样值较小(最后时刻接近无光电流状态)。执行步骤S604;
S604、判断预设时间窗内的第一采样参数的波形规律是否存在波动且下降事件,即判断第一采样参数是否具有波动特征以及是否随时间变化呈下降趋势;若是,则执行步骤S605;若否,则执行步骤S606;
S605、将告警信息对应的故障类型信息置为输入光功率波动丢失;
S606、判断预设时间窗内的第一采样参数的波形规律是否存在快速下降事件,例如,第一采样参数从正常值下降至无光生电流的时间窗在20ms~500ms之间,则第一采样参数的波形规律具有快速下降的特征;若是,则执行步骤S607;若否,则执行步骤S608;
S607、将告警信息对应的故障类型信息置为输入光功率快速丢失;
S608、判断预设时间窗内的第一采样参数的波形规律是否存在阶跃下降事件,例如,第一采样参数从正常值下降至无光生电流的时间窗小于20ms,则第一采样参数的波形规律具有阶跃下降的特征;若是,则执行步骤S609;若否,则结束本流程;
S609、将告警信息对应的故障类型信息置为输入光功率阶跃丢失;
情况三:初始时刻与最后时刻的第一采样参数的差值大于第一阈值,且最后时刻的第一采样参数大于第二阈值,例如,第一采样参数为光生电流时,光生电流对应的光功率下降3dB左右。执行步骤S610;
S610、判断预设时间窗内的第一采样参数的波形规律是否具有劣化特征(第一采样参数随时间变化呈下降趋势且非阶跃下降);若是,则执行步骤S611;若否,则结束本流程;
S611、将告警信息对应的故障类型信息置为输入光功率劣化。
在具体实施时,故障信息存储单元中不同字节可以分别存储不同的故障类型信息,表1为故障信息存储单元中各字节与故障类型信息的对应关系列表,如表1所示,可以将故障信息存储单元中的字节bit3~bit7设置为用于存储故障类型信息的字节,将字节bit0、bit1和bit2可以设置为预留位。字节bit3~bit7置0时可以表示无故障。字节bit7置1时可以表示故障类型信息为输入光功率阶跃丢失,对应的故障原因为设备掉电故障;字节bit6置1时可以表示故障类型信息为输入光功率快速丢失,对应的故障原因为光跳线脱落故障;字节bit5置1时可以表示故障类型信息为输入光功率波动丢失,对应的故障原因为光缆断裂故障或光跳线损坏故障;字节bit4置1时可以表示故障类型信息为输入光功率波动,对应的故障原因为光缆震动故障或光跳线震动故障;字节bit3置1时可以表示故障类型信息为输入光功率劣化,对应的故障原因为光跳线弯折故障。在上述步骤S603中,可以将字节bit4置1;在上述步骤S605中,可以将字节bit5置1;在上述步骤S607中,可以将字节bit6置1;在上述步骤S609中,可以将字节bit7置1;在上述步骤S611中,可以将字节bit3置1。
本申请实施例中,以表1所示的对应关系进行举例,在具体实施时,可以根据实际需要设置故障信息存储单元中字节与故障类型信息的对应关系,此处不做限定。
表1故障信息存储单元中各字节与故障类型信息的对应关系列表

在本申请的另一些实施例中,例如在图30所示的光路质量劣化故障场景中,第一采样参数可以包括至少两种参数,例如,第一采样参数可以包括:光生电流和纠前误码率。参照图33,第一处理单元根据读取的第一采样参数确定告警信息对应的故障类型信息,可以具体包括:
在读取预设时间窗内的第一采样参数之后,比较初始时刻与最后时刻的光生电流,比较初始时刻与最后时刻的纠前误码率;
若初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值,(即初始时刻与最后时刻的光生电流的差值较小,初始时刻与最后时刻的纠前误码率的差值较大),也就是说,在预设时间窗T内纠前误码率下降,光生电流基本不变,则告警信息对应的故障类型信息为光功率多径干扰劣化。
在具体实施时,可以在故障信息存储单元中设置用于存储故障类型信息的字节,表2为故障信息存储单元中各字节与故障类型信息的另一对应关系列表,如表2所示,可以将故障信息存储单元中的字节bit7设置为用于存储故障类型信息的字节,将字节bit0~bit6设置为预留位。字节bit7置0时表示无故障,字节bit7置1时表示故障类型信息为光功率多径干扰劣化,对应的故障原因为光路质量劣化故障。第一处理单元识别到初始时刻与最后时刻的光生电流的差值小于第一阈值,且初始时刻与最后时刻的纠前误码率的差值大于第三阈值时,可以将故障信息存储单元中的字节bit7置1。
本申请实施例中,以表2所示的对应关系进行举例,在具体实施时,可以根据实际需要设置故障信息存储单元中字节与故障类型信息的对应关系,此处不做限定。
在具体实施时,可以根据网络系统的应用场景等因素,来设置第一阈值、第二阈值、第三阈值和预设时间窗的具体数值。
表2故障信息存储单元中各字节与故障类型信息的另一对应关系列表
基于同一技术构思,本申请实施例还提供了另一种故障类型确定方法,该故障类型确定方法应用于光模块中的第一处理单元。图37为本申请实施例提供的另一种故障类型确定方法的流程图,如图37所示,该故障类型确定方法可以包括:
S1011、将采样单元采集的第一采样参数存储于采样信息存储单元中;
S1012、在识别到告警信息时,读取采样信息存储单元中的第一采样参数,并根据第一采样参数确定告警信息对应的故障类型信息,将故障类型信息存储于故障信息存储单元 中。
本申请实施例提供的故障类型确定方法中,第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。这样,光模块内部可以实现第一采样参数的采集、存储和分析等功能,后续电子设备或网管设备读取光模块内存储的故障类型信息,并结合通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置,以便快速修复通信系统中的故障,并减少故障解决的成本。
图37所示的故障类型确定方法的具体实现方式,可以参见图34所示的故障类型确定方法中第一处理单元的功能,重复之处不再赘述。
基于同一技术构思,本申请实施例还提供了一种故障类型确定装置,图38为本申请实施例提供的故障类型确定装置的结构示意图,如图38所示,该故障类型确定装置可以包括:处理器2011和存储器2012,存储器2012用于存储图37所示的故障类型确定方法中的各步骤,处理器2011用于执行存储器2012中存储的各步骤。
图38所示的故障类型确定装置的具体实施方式可以参照图37所示的故障类型确定方法的实施,重复之处不再赘述。
以上介绍了光模块确定故障类型信息的具体过程,以下结合附图,对电子设备或网管设备确定故障原因和故障点的过程进行详细说明。
本申请实施例中的通信系统中可以执行故障处理方法,图39为本申请实施例中故障处理方法的流程图,如图39所示,该故障处理方法可以包括:
S701、采样单元采集第一采样参数,并通过第一处理单元将第一采样参数存储于采样信息存储单元中;步骤S701可以参照步骤S401执行,重复之处不再赘述。
S702、光模块在识别到告警信息时,向第二处理单元发送告警信息;
S703、电子设备中的第二处理单元识别到告警信息;
S704、第一处理单元读取采样信息存储单元中的第一采样参数,根据第一采样参数确定告警信息对应的故障类型信息。第一处理单元确定故障类型信息的具体过程可以参见上述描述,重复之处不再赘述。
S705、第一处理单元将故障类型信息存储于故障信息存储单元中;
S706、第二处理单元在接收到告警信息的第一预设时间后,读取故障信息存储单元中的告警信息对应的故障类型信息。在具体实施时,光模块中的第一处理单元可以响应第二处理单元的查询请求,将故障信息存储单元中存储的故障类型信息上报至第二处理单元,以使第二处理单元读取到故障信息存储单元中的故障类型信息。
本申请实施例提供的故障处理方法中,光模块中的第一处理单元在识别到告警信息时,可以根据第一采样参数确定告警信息对应的故障类型信息,并将故障类型信息存储于故障信息存储单元中。电子设备中的第二处理单元可以在识别到告警信息的第一预设时间后,读取故障信息存储单元中的告警信息对应的故障类型信息,电子设备或网管设备根据故障类型信息和所在通信系统的网络拓扑关系,可以快速、准确地确定故障原因和故障点位置。因而,光模块不需要将大量的采样数据传输至电子设备,节省了数据传输时间,减小了光模块与电子设备之间的数据传输压力,因而,本申请实施例中的通信系统出现光路故障后,确定故障原因和故障点位置所需的延迟时间较短,能够及时定位故障原因和故障点位置。
在上述步骤S702中,光模块中的第一处理单元通过通信总线与第二处理单元连接, 第一处理单元可以通过通信总线向第二处理单元发送告警信息。或者,当光模块中具有告警信息生成单元时,告警信息生成单元可以通过硬件管脚接口与第二处理单元连接,告警信息生成单元可以通过硬件管脚接口的电平跳变向第二处理单元发送告警信息。或者,第一处理单元可以将告警信息写入故障信息存储单元中,第二处理单元可以通过通信总线和第一处理单元,查询到故障信息存储单元中存储的告警信息。
在上述步骤S706中,第二处理单元在识别到告警信息后,需要等待第一预设时间后,在读取故障信息存储单元中的故障类型信息,以使第一处理单元可以在该第一预设时间内完成确定故障类型信息并存储的操作。在具体实施时,可以根据第一处理单元的实际计算量,来确定第一预设时间的具体时长,以便第二处理单元在等待第一预设时间后能够读取到故障类型信息。
在一种可能的实现方式中,第一处理单元还可以在第二处理单元读取故障类型信息后,将故障信息存储单元中的故障类型信息删除,以使光模块在上报故障类型信息后,恢复到无告警信息指示的状态。
图40为本申请实施例中故障处理方法的另一流程图,如图40所示,在上述步骤S702之前,还可以包括:
S707、第一处理单元将延迟提示信息存储于故障信息存储单元;
S708、第二处理单元读取故障信息存储单元中的延迟提示信息。
延迟提示信息用于指示第二处理单元在接收到告警信息到能够读取到告警信息对应的故障类型信息的最短时长,第一预设时间大于或等于最短时长。这样能够保证第二处理单元在等待第一预设时间后能够读取到故障类型信息。该最短时长的大小至少需要考虑:光模块在产生告警信息后,第一处理单元继续将采样单元采集的第一采样参数存储于采样信息存储单元中所需的时间长度、第一处理单元读取采样信息存储单元中的第一采样参数所需的时间长度,以及第一处理单元根据第一采样参数确定故障类型信息所需的时间长度。在具体实施时,可以在光模块的制作过程中,将延迟提示信息写入到故障信息存储单元中。
图40中以步骤S708在步骤S703之前为例,即第二处理单元可以在识别告警信息之前读取延迟提示信息,在具体实施时,第二处理单元也可以在识别告警信息之后读取延迟信息,即步骤S708也可以在步骤S703之后。
继续参照图40,在步骤S702之后,还可以包括:
S709、第一处理单元将故障产生时间信息储存于故障信息存储单元中;
S710、第二处理单元读取故障信息存储单元中的故障产生时间信息。
这样,可以便于后续电子设备或网管设备确定故障原因和故障点位置。
此外,在步骤S709之后,在步骤S704之前,还可以包括:
S711、第一处理单元继续将采样单元采集到的p个采样点的第一采样参数存储于采样信息存储单元中。其中p为大于或等于0的整数,在具体实施时,可以根据应用场景设置p的具体数值,例如,p可以为10~1000之间的某个值。这样,第一处理单元在识别到告警信息后,获取的第一采样参数的数据较多,使第一处理单元可以更准确地确定故障类型信息,故障分析的准确性较高。
在实际应用中,在上述步骤S705之后,第一处理单元还可以将完成提示信息存储于故障信息存储单元,完成提示信息用于指示第一处理单元已经完成确定故障类型信息并存储的操作。第二处理单元读取到故障信息存储单元中的完成提示信息后,可以执行读取故 障类型信息存储单元中的故障产生时间信息和故障类型信息等,即可以执行步骤S710和步骤S706等操作。在一种可能的实现方式中,可以在故障信息存储单元中设置用于存储完成提示信息的字节,例如可以将表1中的预置位bit0设置为用于存储完成提示信息的字节,bit0置0时表示“正在分析”,即第一处理单元未完成确定故障类型信息并存储的操作,bit0置1时表示“已完成分析”,即第一处理单元已经完成确定故障类型信息并存储的操作,当然也可以采用其他字节位来存储完成提示信息,此处不做限定。
本申请实施例中,光模块在识别到告警时,可以向电子设备提供延迟提示信息、故障产生时间信息及故障类型信息等多种信息,使得电子设备或网管设备能够更加精确地确定故障原因和故障点位置,以便快速修复通信系统中的故障,减少故障处理成本。
在具体实施时,故障信息存储单元中不同位置可以分别存储故障类型信息、延迟提示信息及故障产生时间等,表3为故障信息存储单元中的信息与格式的对应关系,如表3所示,可以在故障信息存储单元中设置比特位来存储故障类型信息,每一个比特位可以表示一种故障类型信息,具体设置方式可以参照上述表1和表2,此处不再赘述。可以在故障信息存储单元中设置比特位来存储延迟提示信息,该延迟提示信息一般小于255秒。另外,可以设置多个比特位来存储故障产生时间信息,例如,可以设置6个比特位分别存储故障产生时间的年、月、日、小时、分钟、秒等时间信息,又如,可以设置4个比特位来存储故障产生时间与设定时间之间的时间差,通过设定时间与该时间差可以确定故障产生时间,例如设定时间可以设置为1970年1月1日,故障产生时间可以为2022年5月1日0时0分0秒,则该时间差为1651334400,用十六进制表示为0x626D5D00。本申请实施例中,以表3所示的对应关系进行举例,在具体实施时,可以根据实际需要设置故障信息存储单元中的信息与格式的对应关系,此处不做限定。
表3故障信息存储单元中的信息与格式的对应关系

在本申请的一些实施例中,电子设备可以根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。
图41为本申请实施例中故障处理方法的另一流程图,电子设备中的第二处理单元可以执行如图41所示的步骤,如图41所示,第二处理单元根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因,可以具体包括:
S801、第二处理单元识别故障类型信息。根据识别的结果可以具有如下几种分支:
分支一:
S802、若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障。例如,在图16所示的设备掉电故障的场景中,故障点的位置为对端电子设备的供电线路,例如图16中故障点在第一供电线路151的位置处。
分支二:
S803、若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障。例如,在图18所示的光跳线脱落故障的场景中,故障点在第一光跳线131或第二光跳线132的位置处。
分支三:
S804、若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障。例如,在图24所示的光跳线弯折故障的场景中,故障点在第一光跳线131或第二光跳线132的位置处。
分支四:
S805、若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;
S806、若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线震动故障。例如,在图26所示的光跳线震动故障的场景中,如果第二光模块122的故障类型信息为输入光功率波动,第四光模块124正常,则故障原因为第二光模块122的光信号传输链路中出现光跳线震动故障,故障点在第二光模块122对应的光跳线13的位置处。
S807、若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障。例如,在图26所示的光缆震动故障的场景中,如果第二光模块122和第四光模块124的故障类型信息均为输入光功率波动,则故障原因为光缆震动故障,故障点在通信光缆14的位置处。
分支五:
S808、若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;
S809、若与产生告警信息的光模块属于同一电子设备的同缆的光模块正常,或不存在与产生告警信息的光模块属于同一电子设备的同缆的光模块,则故障原因为光跳线断裂故障。例如,在图20所示的光跳线断裂故障的场景中,如果第二光模块122的故障类型信息为输入光功率波动丢失,第四光模块124正常,则故障原因为第二光模块122的光信号传输链路中出现光跳线断裂故障,故障点在第二光模块122对应的光跳线13的位置处。
S810、若存在属于同一电子设备的至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆断裂故障。例如,在图20所示的光缆断裂故障的场景中,如果第二光模块122和第四光模块124的故障类型信息均为输入光功率波动,则故障原因为光缆断裂故障,故障点在通信光缆14的位置处。
分支六:
S811、若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。例如,在图30所示的光路质量劣化故障的场景中,故障点为通信光缆14与光跳线(第一光跳线131或第二光跳线132)的可插拔连接点,例如,通信光缆14与光跳线可插拔连接点沾污。
综上,电子设备可以根据光模块的故障类型信息和故障产生时间信息等信息,并结合其他光模块的故障类型信息和故障产生时间等信息,可以准确地确定故障原因。此外,在确定故障原因后,电子设备还可以将故障原因和故障点位置等信息推送给用户。
在本申请的另一些实施例中,电子设备可以将告警信息对应的故障类型信息、故障产生时间信息等信息上传至网管设备,网管设备可以根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。
图42为本申请实施例中故障处理方法的另一流程图,网管设备可以执行如图42所示的步骤,如图42所示,网管设备根据读取的故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因,可以具体包括:
S901、网管设备识别故障类型信息。根据识别的结果可以具有如下几种分支:
分支一:
S902、若识别到故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障。例如,在图16所示的设备掉电故障的场景中,故障点的位置为对端电子设备的供电线路,例如图16中故障点在第一供电线路151的位置处。
分支二:
S903、若识别到故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障。例如,在图18所示的光跳线脱落故障的场景中,故障点在第一光跳线131或第二光跳线132的位置处。
分支三:
S904、若识别到故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障。例如,在图24所示的光跳线弯折故障的场景中,故障点在第一光跳线131或第二光跳线132的位置处。
分支四:
S905、若识别到故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关 系,确定产生告警信息的光模块的同缆关系;
S906、若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线震动故障。例如,在图29所示的光跳线震动故障的场景中,如果第二光模块122的故障类型信息为输入光功率波动,第四光模块124正常,则故障原因为第二光模块122的光信号传输链路中出现光跳线震动故障,故障点在第二光模块122对应的光跳线13的位置处。
S907、若存在至少两个同缆的光模块的故障类型为输入光功率波动,则确定故障原因为光缆震动故障。例如,在图29所示的光缆震动故障的场景中,如果第二光模块122和第四光模块124的故障类型信息均为输入光功率波动,则故障原因为光缆震动故障,故障点在通信光缆14的位置处。
分支五:
S908、若识别到故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生告警信息的光模块的同缆关系;
S909、若与产生告警信息的光模块同缆的光模块正常,或不存在与产生告警信息的光模块同缆的光模块,则故障原因为光跳线断裂故障。例如,在图23所示的光跳线断裂故障的场景中,如果第二光模块122的故障类型信息为输入光功率波动丢失,第四光模块124正常,则故障原因为第二光模块122的光信号传输链路中出现光跳线断裂故障,故障点在第二光模块122对应的光跳线13的位置处。
S910、若存在至少两个同缆的光模块的故障类型信息为输入光功率波动,则确定故障原因为光缆断裂故障。例如,在图23所示的光缆断裂故障的场景中,如果第二光模块122和第四光模块124的故障类型信息均为输入光功率波动,则故障原因为光缆断裂故障,故障点在通信光缆14的位置处。
分支六:
S911、若识别到故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。例如,在图30所示的光路质量劣化故障的场景中,故障点为通信光缆14与光跳线(第一光跳线131或第二光跳线132)的可插拔连接点,例如,通信光缆14与光跳线可插拔连接点沾污。
综上,网管设备可以根据光模块的故障类型信息和故障产生时间信息等信息,并结合其他光模块的故障类型信息和故障产生时间等信息,可以准确地确定故障原因。此外,在确定故障原因后,网管设备还可以将故障原因和故障点位置等信息推送给用户。
以上介绍了电子设备或网管设备确定故障原因和故障点的具体过程,在具体实施时,在其他故障场景下,电子设备或网管设备也可以采用类似的方法确定故障原因和故障点的位置,此处不再一一举例。
在本申请实施例中,确定故障原因和故障点位置的过程可以在电子设备中实现,或者,也可以在网管设备中实现,或者,可以由电子设备对故障原因和故障点位置进行初步判断,再由网管设备进行二次判断,通过电子设备与网管设备结合的方式,实现精确确定故障原因和故障点位置的效果。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种光模块,其特征在于,包括:第一处理单元,以及分别与所述第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元;
    所述采样单元,用于采集第一采样参数,并通过所述第一处理单元将所述第一采样参数存储于所述采样信息存储单元中;
    所述第一处理单元,用于在识别到告警信息时,读取所述采样信息存储单元中的所述第一采样参数,并根据所述第一采样参数确定所述告警信息对应的故障类型信息,将所述故障类型信息存储于所述故障信息存储单元中。
  2. 如权利要求1所述的光模块,其特征在于,还包括:告警信息生成单元;
    所述告警信息生成单元分别与所述采样单元和所述第一处理单元电连接;
    所述采样单元,还用于将所述第一采样参数发送至所述告警信息生成单元;
    所述告警信息生成单元,用于判断所述第一采样参数是否位于预设阈值范围,当所述第一采样参数超出所述阈值范围时,生成告警信息,并将所述告警信息发送至所述第一处理单元。
  3. 如权利要求1所述的光模块,其特征在于,还包括:告警信息生成单元;
    所述告警信息生成单元分别与所述采样单元和所述第一处理单元电连接;
    所述采样单元,还用于采集第二采样参数,并将所述第二采样参数发送至所述告警信息生成单元;所述第二采样参数与所述第一采样参数不同;
    所述告警信息生成单元,用于判断所述第二采样参数是否位于预设阈值范围,当所述第二采样参数超出所述阈值范围时,生成告警信息,并将所述告警信息发送至所述第一处理单元。
  4. 如权利要求1~3任一项所述的光模块,其特征在于,所述采样单元,具体用于以毫秒级的采样时间精度采集所述第一采样参数;
    所述第一处理单元,具体用于在识别到所述告警信息时,继续将所述采样单元采集到的p个采样点的所述第一采样参数存储于所述采样信息存储单元中,其中p为大于或等于0的整数,之后,读取所述采样信息存储单元中预设时间窗内的所述第一采样参数;根据读取的所述第一采样参数确定所述告警信息对应的故障类型信息。
  5. 如权利要求4所述的光模块,其特征在于,所述第一处理单元具体用于:
    在读取所述预设时间窗内的所述第一采样参数之后,比较初始时刻与最后时刻的所述第一采样参数;
    若初始时刻与最后时刻的所述第一采样参数的差值小于第一阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在波动事件,则所述告警信息对应的故障类型信息为输入光功率波动;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在波动且下降事件,则所述告警信息对应的故障类型信息为输入光功率波动丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在快速下降事件,则所述告警信息对应的故障类型信息为输入光功率快速丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在阶跃下降事件,则所述告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数大于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律具有劣化特征,则所述告警信息对应的故障类型信息为输入光功率劣化。
  6. 如权利要求4所述的光模块,其特征在于,所述第一采样参数包括:光生电流和纠前误码率;
    所述第一处理单元具体用于:
    在读取所述预设时间窗内的所述第一采样参数之后,比较初始时刻与最后时刻的所述光生电流,比较初始时刻与最后时刻的所述纠前误码率;
    若初始时刻与最后时刻的所述光生电流的差值小于第一阈值,且初始时刻与最后时刻的所述纠前误码率的差值大于第三阈值,则所述告警信息对应的故障类型信息为光功率多径干扰劣化。
  7. 一种电子设备,其特征在于,包括:第二处理单元,以及如权利要求1~6任一项所述的光模块,所述光模块与所述第二处理单元连接;
    所述光模块用于在识别到告警信息时,向所述第二处理单元发送所述告警信息;
    所述第二处理单元,用于在接收到所述告警信息的第一预设时间后,读取所述光模块的故障信息存储单元中的所述告警信息对应的故障类型信息。
  8. 如权利要求7所述的电子设备,其特征在于,所述第一处理单元,还用于将延迟提示信息存储于所述故障信息存储单元;
    所述第二处理单元,还用于读取所述故障信息存储单元中的所述延迟提示信息;
    所述延迟提示信息用于指示所述第二处理单元在接收到所述告警信息到能够读取到所述告警信息对应的故障类型信息的最短时长,所述第一预设时间大于或等于所述最短时长。
  9. 如权利要求7或8所述的电子设备,其特征在于,所述第一处理单元,还用于在所述第二处理单元读取所述故障类型信息后,将所述故障信息存储单元中的所述故障类型信息删除。
  10. 如权利要求7~9任一项所述的电子设备,其特征在于,所述第二处理单元,还用于根据读取的所述故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。
  11. 如权利要求10所述的电子设备,其特征在于,所述第二处理单元具体用于:
    若识别到所述故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生所述告警信息的所述光模块的同缆关系;若与产生所述告警信息的所述光模块属于同一所述电子设备的同缆的光模块正常,或不存在与产生所述告警信息的所述光模块属于同一所述电子设备的同缆的光模块,则故障原因为光跳线震动故障;若存在属于同一所述电子设备的至少两个同缆的所述光模块的所述故障类型为输入光功率波动,则确定故障原因为光缆震动故障;或,
    若识别到所述故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生所述告警信息的所述光模块的同缆关系;若与产生所述告警信息的所述光模块属于同一所述电子设备的同缆的光模块正常,或不存在与产生所述告警信息的所述光 模块属于同一所述电子设备的同缆的光模块,则故障原因为光跳线断裂故障;若存在属于同一所述电子设备的至少两个同缆的所述光模块的所述故障类型为输入光功率波动,则确定故障原因为光缆断裂故障。
  12. 如权利要求7~9任一项所述的电子设备,其特征在于,所述第二处理单元,还用于根据读取的所述故障类型信息,确定故障原因。
  13. 如权利要求12所述的电子设备,其特征在于,所述第二处理单元具体用于:
    若识别到所述故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障;或,
    若识别到所述故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
    若识别到所述故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
    若识别到所述故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
  14. 一种通信系统,其特征在于,包括:如权利要求7~13任一项所述的电子设备,以及供电线路;
    所述供电线路用于向所述电子设备供电。
  15. 如权利要求14所述的通信系统,其特征在于,还包括:网管设备;
    所述网管设备,用于获取所述电子设备的故障类型信息,根据所述故障类型信息以及所述网络系统的网络拓扑关系,确定故障原因。
  16. 如权利要求15所述的通信系统,其特征在于,所述电子设备具体用于:
    若识别到所述故障类型信息为输入光功率波动,则根据所在网络系统的网络拓扑关系,确定产生所述告警信息的所述光模块的同缆关系;若与产生所述告警信息的所述光模块同缆的光模块正常,或不存在与产生所述告警信息的所述光模块同缆的光模块,则故障原因为光跳线震动故障;若存在至少两个同缆的所述光模块的所述故障类型为输入光功率波动,则确定故障原因为光缆震动故障;或,
    若识别到所述故障类型信息为输入光功率波动丢失,则根据所在网络系统的网络拓扑关系,确定产生所述告警信息的所述光模块的同缆关系;若与产生所述告警信息的所述光模块同缆的光模块正常,或不存在与产生所述告警信息的所述光模块同缆的光模块,则故障原因为光跳线断裂故障;若存在至少两个同缆的所述光模块的所述故障类型信息为输入光功率波动,则确定故障原因为光缆断裂故障。
  17. 如权利要求14所述的通信系统,其特征在于,还包括:网管设备;
    所述网管设备,用于获取所述电子设备的故障类型信息,根据所述故障类型信息确定故障原因。
  18. 如权利要求17所述的通信系统,其特征在于,所述电子设备具体用于:
    若识别到所述故障类型信息为输入光功率阶跃丢失,则确定故障原因为设备掉电故障;或,
    若识别到所述故障类型信息为输入光功率快速丢失,则确定故障原因为光跳线脱落故障;或,
    若识别到所述故障类型信息为输入光功率劣化,则确定故障原因为光跳线弯折故障;或,
    若识别到所述故障类型信息为光功率多径干扰劣化,则故障原因为光路质量劣化故障。
  19. 一种故障类型确定方法,所述故障类型处理方法应用于光模块中的第一处理单元,其特征在于,包括:
    将采样单元采集的第一采样参数存储于采样信息存储单元中;
    在识别到告警信息时,读取所述采样信息存储单元中的所述第一采样参数,并根据所述第一采样参数确定所述告警信息对应的故障类型信息,将所述故障类型信息存储于所述故障信息存储单元中。
  20. 如权利要求19所述的故障类型确定方法,其特征在于,所述在识别到告警信息时,读取所述采样信息存储单元中的所述第一采样参数,并根据所述第一采样参数确定所述告警信息对应的故障类型信息,具体包括:
    在识别到所述告警信息时,继续将所述采样单元采集到的p个采样点的所述第一采样参数存储于所述采样信息存储单元中,其中p为大于或等于0的整数;
    读取所述采样信息存储单元中预设时间窗内的所述第一采样参数;
    根据读取的所述第一采样参数确定所述告警信息对应的故障类型信息。
  21. 如权利要求20所述的故障类型确定方法,其特征在于,
    所述根据读取的所述第一采样参数确定所述告警信息对应的故障类型信息,具体包括:
    在读取所述预设时间窗内的所述第一采样参数之后,比较初始时刻与最后时刻的所述第一采样参数;
    若初始时刻与最后时刻的所述第一采样参数的差值小于第一阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在波动事件,则所述告警信息对应的故障类型信息为输入光功率波动;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在波动且下降事件,则所述告警信息对应的故障类型信息为输入光功率波动丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在快速下降事件,则所述告警信息对应的故障类型信息为输入光功率快速丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数小于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律存在阶跃下降事件,则所述告警信息对应的故障类型信息为输入光功率阶跃丢失;或,
    若初始时刻与最后时刻的所述第一采样参数的差值大于所述第一阈值,最后时刻的所述第一采样参数大于第二阈值,且所述预设时间窗内的所述第一采样参数的波形规律具有劣化特征,则所述告警信息对应的故障类型信息为输入光功率劣化。
  22. 如权利要求20所述的故障类型确定方法,其特征在于,所述第一采样参数包括:光生电流和纠前误码率;
    所述根据读取的所述第一采样参数确定所述告警信息对应的故障类型信息,具体包括:
    在读取所述预设时间窗内的所述第一采样参数之后,比较初始时刻与最后时刻的所述光生电流,比较初始时刻与最后时刻的所述纠前误码率;
    若初始时刻与最后时刻的所述光生电流的差值小于第一阈值,且初始时刻与最后时刻的所述纠前误码率的差值大于第三阈值,则所述告警信息对应的故障类型信息为光功率多 径干扰劣化。
  23. 一种故障类型确定装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储如权利要求19~22任一项所述的故障类型确定方法中的各步骤;
    所述处理器用于执行所述存储器中存储的各所述步骤。
  24. 一种故障处理方法,其特征在于,所述故障处理方法应用于通信系统,所述通信系统包括:电子设备;所述电子设备包括:第二处理单元和光模块,所述光模块包括:第一处理单元,以及分别与所述第一处理单元电连接的采样单元、采样信息存储单元和故障信息存储单元;
    所述故障处理方法包括:
    所述采样单元采集第一采样参数,并通过所述第一处理单元将所述第一采样参数存储于所述采样信息存储单元中;
    所述光模块在识别到告警信息时,向所述第二处理单元发送所述告警信息;
    所述第一处理单元读取所述采样信息存储单元中的所述第一采样参数,根据所述第一采样参数确定所述告警信息对应的故障类型信息,将所述故障类型信息存储于所述故障信息存储单元中;
    所述第二处理单元在接收到所述告警信息的第一预设时间后,读取所述故障信息存储单元中的所述告警信息对应的故障类型信息。
  25. 如权利要求24所述的故障处理方法,其特征在于,还包括:
    所述第一处理单元将延迟提示信息存储于所述故障信息存储单元;
    所述第二处理单元读取所述故障信息存储单元中的所述延迟提示信息;
    所述延迟提示信息用于指示所述第二处理单元在接收到所述告警信息到能够读取到所述告警信息对应的故障类型信息的最短时长,所述第一预设时间大于或等于所述最短时长。
  26. 如权利要求24或25所述的故障处理方法,其特征在于,还包括:
    所述第二处理单元根据读取的所述故障类型信息以及所在网络系统的网络拓扑关系,确定故障原因。
  27. 如权利要求24~26任一项所述的故障处理方法,其特征在于,所述通信系统还包括:网管设备;
    所述故障处理方法还包括:
    所述网管设备获取所述电子设备的故障类型信息,根据所述故障类型信息以及所述网络系统的网络拓扑关系,确定故障原因。
PCT/CN2023/075248 2022-05-26 2023-02-09 一种光模块、电子设备、通信系统及相关处理方法 WO2023226477A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210588839.6 2022-05-26
CN202210588839 2022-05-26
CN202211131775.3 2022-09-16
CN202211131775.3A CN117176247A (zh) 2022-05-26 2022-09-16 一种光模块、电子设备、通信系统及相关处理方法

Publications (1)

Publication Number Publication Date
WO2023226477A1 true WO2023226477A1 (zh) 2023-11-30

Family

ID=88918328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075248 WO2023226477A1 (zh) 2022-05-26 2023-02-09 一种光模块、电子设备、通信系统及相关处理方法

Country Status (1)

Country Link
WO (1) WO2023226477A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090296A (zh) * 2007-07-31 2007-12-19 亿阳信通股份有限公司 光缆中断诊断方法和装置
CN201282463Y (zh) * 2008-10-24 2009-07-29 北京蛙视通信技术有限责任公司 一种点对点光端机传输故障的判断装置
CN110380907A (zh) * 2019-07-26 2019-10-25 京信通信系统(中国)有限公司 一种网络故障诊断方法、装置、网络设备及存储介质
CN112054843A (zh) * 2020-08-21 2020-12-08 武汉光迅信息技术有限公司 一种光信号的传输系统及方法
CN112114220A (zh) * 2020-09-25 2020-12-22 上海商米科技集团股份有限公司 故障检测方法、装置
US20220021449A1 (en) * 2018-11-27 2022-01-20 Nippon Telegraph And Telephone Corporation Optical transmission system and failure diagnosis method for optical transmission system
CN114201379A (zh) * 2021-12-15 2022-03-18 中国电信股份有限公司 故障类型向量化方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090296A (zh) * 2007-07-31 2007-12-19 亿阳信通股份有限公司 光缆中断诊断方法和装置
CN201282463Y (zh) * 2008-10-24 2009-07-29 北京蛙视通信技术有限责任公司 一种点对点光端机传输故障的判断装置
US20220021449A1 (en) * 2018-11-27 2022-01-20 Nippon Telegraph And Telephone Corporation Optical transmission system and failure diagnosis method for optical transmission system
CN110380907A (zh) * 2019-07-26 2019-10-25 京信通信系统(中国)有限公司 一种网络故障诊断方法、装置、网络设备及存储介质
CN112054843A (zh) * 2020-08-21 2020-12-08 武汉光迅信息技术有限公司 一种光信号的传输系统及方法
CN112114220A (zh) * 2020-09-25 2020-12-22 上海商米科技集团股份有限公司 故障检测方法、装置
CN114201379A (zh) * 2021-12-15 2022-03-18 中国电信股份有限公司 故障类型向量化方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
JP2697519B2 (ja) 広帯域光ネットワーク用インテリジェント相互接続およびデータ伝送方法
US5523868A (en) Apparatus and method for monitoring power loss in a telecommunications system
CN110445533B (zh) 一种双冗余光纤以太网传输系统
US20060083511A1 (en) Network tap module
US20090147673A1 (en) Storage system and route switch
CN110212983B (zh) 一种fc信号和以太网信号的转换方法及装置
WO2022001234A1 (zh) 光网络运行信息监控方法及相关设备
CN111131933B (zh) 一种fc双冗余交换机配置管理装置及配置管理方法
WO2023226477A1 (zh) 一种光模块、电子设备、通信系统及相关处理方法
CN116471214A (zh) 一种电力通信数据监测方法及系统
CN105119652A (zh) 一种光缆主备路由控制器
WO2022270767A1 (ko) 지능형 네트워크 관리 시스템의 정보묶음 생성관리 장치 및 그 방법
CN103004108B (zh) 光功率检测方法、装置、设备和光模块
CN117176247A (zh) 一种光模块、电子设备、通信系统及相关处理方法
CN105356934B (zh) 一种高速电子开关型光缆保护仪的信号选择方式
CN110213118B (zh) 一种fc网络系统及其流量控制方法
CN214281540U (zh) 一种集成5g模块和光纤的双通讯远程监控装置
JP7323226B1 (ja) 終端装置、分析方法、及びプログラム
CN217388893U (zh) 机载dfti数据采集与状态警告装置
CN219227752U (zh) 一种oeo业务板卡及传输系统
CN219659726U (zh) 一种用于监测10g业务数据的光通信装置
CN220584374U (zh) 一种列头柜监控系统
CN211151620U (zh) 一种驱动盒故障处理单元
CN112783022B (zh) 网关系统和网关控制方法
CN212694404U (zh) 一种信号转换故障告警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810553

Country of ref document: EP

Kind code of ref document: A1