JP7172534B2 - Piezoelectric oscillator manufacturing method - Google Patents

Piezoelectric oscillator manufacturing method Download PDF

Info

Publication number
JP7172534B2
JP7172534B2 JP2018229345A JP2018229345A JP7172534B2 JP 7172534 B2 JP7172534 B2 JP 7172534B2 JP 2018229345 A JP2018229345 A JP 2018229345A JP 2018229345 A JP2018229345 A JP 2018229345A JP 7172534 B2 JP7172534 B2 JP 7172534B2
Authority
JP
Japan
Prior art keywords
piezoelectric
sealing member
excitation electrode
bonding
holding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229345A
Other languages
Japanese (ja)
Other versions
JP2020092357A (en
Inventor
宏樹 吉岡
蘭 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2018229345A priority Critical patent/JP7172534B2/en
Publication of JP2020092357A publication Critical patent/JP2020092357A/en
Application granted granted Critical
Publication of JP7172534B2 publication Critical patent/JP7172534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15173Fan-out arrangement of the internal vias in a single layer of the multilayer substrate

Description

本発明は、圧電発振器の製造方法に関する。 The present invention relates to a method of manufacturing a piezoelectric oscillator.

近年、各種電子機器の動作周波数の高周波化や、パッケージの小型化(特に低背化)が進んでいる。そのため、高周波化やパッケージの小型化にともなって、圧電振動デバイス(例えば水晶振動子、水晶発振器など)も高周波化やパッケージの小型化への対応が求められている。 2. Description of the Related Art In recent years, the operating frequencies of various electronic devices have been increased, and packages have been reduced in size (especially, the height thereof has been reduced). Therefore, along with the increase in frequency and miniaturization of packages, piezoelectric vibration devices (for example, crystal resonators, crystal oscillators, etc.) are also required to cope with the increase in frequency and miniaturization of packages.

この種の圧電振動デバイスでは、その筐体が略直方体のパッケージで構成されている。このパッケージは、例えばガラスや水晶からなる第1封止部材および第2封止部材と、例えば水晶からなり両主面に励振電極が形成された圧電振動板とから構成され、第1封止部材と第2封止部材とが圧電振動板を介して積層して接合される。そして、パッケージの内部(内部空間)に配された圧電振動板の振動部(励振電極)が気密封止されている(例えば、特許文献1)。以下、このような圧電振動デバイスの積層形態をサンドイッチ構造という。 In this type of piezoelectric vibration device, the housing is composed of a substantially rectangular parallelepiped package. This package comprises a first sealing member and a second sealing member made of, for example, glass or crystal, and a piezoelectric vibration plate made of, for example, crystal and having excitation electrodes formed on both main surfaces. and the second sealing member are laminated and joined via the piezoelectric diaphragm. Then, the vibrating portion (excitation electrode) of the piezoelectric diaphragm disposed inside (internal space) of the package is hermetically sealed (eg, Patent Document 1). Hereinafter, such a laminated form of the piezoelectric vibration device will be referred to as a sandwich structure.

サンドイッチ構造の圧電振動デバイスにて使用される圧電振動板は、励振電極の形成された振動部と、振動部の周囲に配置された外枠部と、振動部を外枠部に連結して保持する保持部とが水晶板などにおいて一体形成されている。振動部と外枠部と保持部とが一体形成された圧電振動板では、振動部で生じた圧電振動が保持部を介して外枠部へ漏れやすいといった振動漏れの問題がある。 A piezoelectric diaphragm used in a piezoelectric vibration device having a sandwich structure includes a vibrating portion formed with an excitation electrode, an outer frame portion arranged around the vibrating portion, and the vibrating portion connected to and held by the outer frame portion. A holding portion is integrally formed on a crystal plate or the like. A piezoelectric diaphragm in which a vibrating portion, an outer frame portion, and a holding portion are integrally formed has a problem of vibration leakage, in which piezoelectric vibration generated in the vibrating portion tends to leak to the outer frame portion via the holding portion.

図8は、上記振動漏れを低減するための圧電振動板の一形状例を示すものである。図8に示す圧電振動板は、振動部22と外枠部23と保持部24とが一体形成されており、保持部24は振動部22の1つの角部のみから外枠部23に向けて突出されている。以下、圧電振動板におけるこのような形状をクラブ型という。振動部22の振動は、各辺の中央部で大きくなり端部において小さくなる。このため、クラブ型の圧電振動板では、保持部24を振動部22の振動の小さい角部から突出させることで、保持部24からの振動漏れを低減できる。また、保持部24の数を少なくすることで、より一層、外枠部23への振動漏れを防ぐことができる。 FIG. 8 shows an example of the shape of the piezoelectric diaphragm for reducing the vibration leakage. In the piezoelectric diaphragm shown in FIG. 8, a vibrating portion 22, an outer frame portion 23, and a holding portion 24 are integrally formed. protruded. Hereinafter, such a shape of the piezoelectric diaphragm will be referred to as a club shape. The vibration of the vibrating portion 22 increases at the center of each side and decreases at the ends. Therefore, in the club-type piezoelectric diaphragm, vibration leakage from the holding portion 24 can be reduced by projecting the holding portion 24 from the corner portion of the vibrating portion 22 where vibration is small. Further, by reducing the number of holding portions 24, vibration leakage to the outer frame portion 23 can be further prevented.

国際公開第2016/121182号WO2016/121182

図8に示すクラブ型の圧電振動板は、保持部24を介しての振動漏れの低減には有効であるが、保持部24に応力が集中しやすく、保持部折れの問題が生じ易い。特に、クラブ型の圧電振動板を用いた圧電振動デバイスを、圧電振動子にICチップを搭載した圧電発振器とする場合、ICチップのFCB(Flip Chip Bonding)接合の際に保持部折れが生じることがある。これは、以下の理由による。 The club-type piezoelectric diaphragm shown in FIG. 8 is effective in reducing vibration leakage through the holding portion 24, but stress tends to concentrate on the holding portion 24, and the problem of breakage of the holding portion tends to occur. In particular, when a piezoelectric vibration device using a club-type piezoelectric vibration plate is used as a piezoelectric oscillator in which an IC chip is mounted on a piezoelectric vibrator, the holding portion may be bent during FCB (Flip Chip Bonding) bonding of the IC chip. There is This is for the following reasons.

圧電発振器において、ICチップをリッド上面にFCB接合する際には、通常、超音波接合が用いられる。サンドイッチ構造の圧電発振器では、IC接合時に印加される超音波に振動部22が共振(共鳴)すると、保持部24が折れる虞がある。特に、保持部24の突出方向と直交する方向(図8に示す矢印A方向)への振動は、共振が生じた場合に保持部折れに繋がるような応力集中を保持部24において生じさせ易い。 In piezoelectric oscillators, ultrasonic bonding is usually used to FCB bond the IC chip to the upper surface of the lid. In the sandwich-structured piezoelectric oscillator, if the vibrating portion 22 resonates (resonates) with the ultrasonic waves applied during IC bonding, the holding portion 24 may break. In particular, vibration in a direction perpendicular to the projecting direction of the holding portion 24 (the direction of arrow A in FIG. 8) tends to cause stress concentration in the holding portion 24 that may lead to breakage of the holding portion when resonance occurs.

上記保持部折れの不都合を避けるためには、圧電振動板が有する振動モードにおいて、その固有振動数が印加される超音波周波数の整数倍とならないようにすることが考えられる。しかしながら、超音波接合を行う装置(超音波接合機)においては、通常、印加する超音波周波数を調整する機能は無く、超音波周波数は容易に変更できない。また、圧電振動板の固有振動モードを変更するには、圧電振動板における振動部のサイズを変更する必要があるが、振動部のサイズは圧電発振器における発振周波数に密接に関係するものであるため、これも容易に変更できるものではない。したがって、クラブ型の圧電振動板を用いたサンドイッチ構造の圧電発振器において、より簡単に保持部折れを抑制できる方法が求められる。 In order to avoid the inconvenience of the holding portion bending, it is conceivable to prevent the natural frequency from becoming an integral multiple of the applied ultrasonic frequency in the vibration mode of the piezoelectric diaphragm. However, an apparatus for ultrasonic bonding (an ultrasonic bonding machine) usually does not have a function of adjusting the frequency of ultrasonic waves to be applied, and the frequency of ultrasonic waves cannot be easily changed. In addition, in order to change the natural vibration mode of the piezoelectric diaphragm, it is necessary to change the size of the vibrating part in the piezoelectric diaphragm. , which is also not easily changeable. Therefore, in a piezoelectric oscillator having a sandwich structure using a club-type piezoelectric diaphragm, there is a demand for a method that can more easily suppress the bending of the holding portion.

本発明は、上記課題に鑑みてなされたものであり、ICチップをFCB接合する際の超音波接合時に、保持部折れを抑制できる圧電発振器の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a piezoelectric oscillator capable of suppressing breakage of a holding portion during ultrasonic bonding for FCB bonding of an IC chip.

上記の課題を解決するために、本発明は、圧電振動子の上にICチップを搭載する圧電発振器の製造方法であって、前記圧電振動子は、基板の一主面に第1励振電極が形成され、前記基板の他主面に前記第1励振電極と対になる第2励振電極が形成された圧電振動板と、前記圧電振動板の前記第1励振電極を覆う第1封止部材と、前記圧電振動板の前記第2励振電極を覆う第2封止部材と、が設けられ、前記第1封止部材と前記圧電振動板とが接合され、前記第2封止部材と前記圧電振動板とが接合されて、前記第1励振電極と前記第2励振電極とを含む前記圧電振動板の振動部を気密封止した内部空間が形成されており、前記圧電振動板は、前記第1励振電極および前記第2励振電極が備えられた略矩形状の振動部と、前記振動部の角部から第1方向に突出され、当該振動部を保持する1本の保持部と、前記振動部の外周を取り囲むと共に、前記保持部を保持する外枠部とを有しており、前記ICチップを、超音波接合を用いたフリップチップボンディングによって前記圧電振動子上に搭載し、当該超音波接合では前記第1方向とは直交しない第2方向に振動する超音波振動を印加することを特徴としている。 In order to solve the above problems, the present invention provides a method of manufacturing a piezoelectric oscillator in which an IC chip is mounted on a piezoelectric vibrator, wherein the piezoelectric vibrator has first excitation electrodes on one main surface of a substrate. a piezoelectric vibration plate having a second excitation electrode formed on the other main surface of the substrate to form a pair with the first excitation electrode; and a first sealing member covering the first excitation electrode of the piezoelectric vibration plate. and a second sealing member covering the second excitation electrode of the piezoelectric vibration plate, the first sealing member and the piezoelectric vibration plate are joined together, and the second sealing member and the piezoelectric vibration plate are joined together. an internal space is formed in which a vibrating portion of the piezoelectric diaphragm including the first excitation electrode and the second excitation electrode is hermetically sealed; A substantially rectangular vibrating portion provided with an excitation electrode and the second excitation electrode, one holding portion projecting from a corner portion of the vibrating portion in a first direction and holding the vibrating portion, and the vibrating portion. and an outer frame portion that holds the holding portion, and the IC chip is mounted on the piezoelectric vibrator by flip-chip bonding using ultrasonic bonding, and the ultrasonic bonding is characterized by applying ultrasonic vibration that vibrates in a second direction that is not perpendicular to the first direction.

超音波接合を用いたフリップチップボンディングによってICチップを圧電振動子上に搭載する際、超音波の振動方向である第2方向が、圧電振動板における保持部の突出方向である第1方向と直交すると、印加される超音波に振動部が共振し、保持部が折れる虞がある。上記の構成によれば、第1方向と第2方向とが直交しないようにすることで、第1方向と第2方向とが直交する場合に比べて振動部の共振を低減でき、振動部の共振による保持部折れを低減することができる。 When the IC chip is mounted on the piezoelectric vibrator by flip-chip bonding using ultrasonic bonding, the second direction, which is the vibration direction of the ultrasonic waves, is orthogonal to the first direction, which is the projection direction of the holding portion on the piezoelectric diaphragm. Then, the vibrating portion may resonate with the applied ultrasonic waves, and the holding portion may break. According to the above configuration, since the first direction and the second direction are not perpendicular to each other, resonance of the vibrating portion can be reduced compared to the case where the first direction and the second direction are perpendicular to each other. It is possible to reduce breakage of the holding portion due to resonance.

また、上記圧電発振器の製造方法では、前記第1方向と前記第2方向とのなす角が45°以下であることが好ましく、前記第1方向と前記第2方向とが平行であることが最も好ましい。 In the method for manufacturing a piezoelectric oscillator, the angle formed by the first direction and the second direction is preferably 45° or less, and most preferably the first direction and the second direction are parallel. preferable.

本発明の圧電発振器の製造方法は、ICチップをFCB接合するための超音波接合において、超音波の振動方向である第2方向が圧電振動板における保持部の突出方向である第1方向と直交しないため、振動部の共振による保持部折れを抑制できるといった効果を奏する。 In the method of manufacturing a piezoelectric oscillator according to the present invention, in ultrasonic bonding for FCB bonding of an IC chip, the second direction, which is the vibration direction of the ultrasonic waves, is orthogonal to the first direction, which is the projection direction of the holding portion in the piezoelectric diaphragm. Therefore, there is an effect that it is possible to suppress breakage of the holding portion due to resonance of the vibrating portion.

本実施の形態にかかる水晶発振器の各構成を模式的に示した概略構成図である。1 is a schematic configuration diagram schematically showing each configuration of a crystal oscillator according to an embodiment; FIG. 水晶発振器の第1封止部材の第1主面側の概略平面図である。FIG. 4 is a schematic plan view of the first main surface side of the first sealing member of the crystal oscillator; 水晶発振器の第1封止部材の第2主面側の概略平面図である。FIG. 4 is a schematic plan view of the second main surface side of the first sealing member of the crystal oscillator; 水晶発振器の水晶振動板の第1主面側の概略平面図である。FIG. 2 is a schematic plan view of the first main surface side of the crystal plate of the crystal oscillator; 水晶発振器の水晶振動板の第2主面側の概略平面図である。FIG. 3 is a schematic plan view of the second main surface side of the crystal plate of the crystal oscillator; 水晶発振器の第2封止部材の第1主面側の概略平面図である。FIG. 4 is a schematic plan view of the first main surface side of the second sealing member of the crystal oscillator; 水晶発振器の第2封止部材の第2主面側の概略平面図である。FIG. 4 is a schematic plan view of the second main surface side of the second sealing member of the crystal oscillator; サンドイッチ構造の圧電発振器において、振動漏れを低減するための圧電振動板の一形状例を示す概略平面図である。FIG. 2 is a schematic plan view showing one shape example of a piezoelectric diaphragm for reducing vibration leakage in a piezoelectric oscillator having a sandwich structure.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。尚、以下の実施の形態では、本発明を適用する圧電発振器が、圧電振動板に水晶を用いた水晶発振器である場合について説明する。但し、本発明の圧電発振器において、圧電振動板に使用される材料は、圧電振動を行うものであれば水晶に限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the case where the piezoelectric oscillator to which the present invention is applied is a crystal oscillator using crystal for the piezoelectric diaphragm will be described. However, in the piezoelectric oscillator of the present invention, the material used for the piezoelectric diaphragm is not limited to crystal as long as it performs piezoelectric vibration.

-水晶発振器-
本実施の形態にかかる水晶発振器101は、図1に示すように、水晶振動板2、第1封止部材3、第2封止部材4、およびICチップ5を備えて構成されている。この水晶発振器101では、水晶振動板2と第1封止部材3とが接合され、水晶振動板2と第2封止部材4とが接合されることによって、略直方体のサンドイッチ構造の水晶振動子(圧電振動子)となるパッケージ12が構成される。また、第1封止部材3における水晶振動板2との接合面と反対側の主面に、ICチップ5が搭載される。電子部品素子としてのICチップ5は、水晶振動板2とともに発振回路を構成する1チップ集積回路素子である。
-Crystal Oscillator-
A crystal oscillator 101 according to the present embodiment includes a crystal plate 2, a first sealing member 3, a second sealing member 4, and an IC chip 5, as shown in FIG. In this crystal oscillator 101, the crystal oscillator plate 2 and the first sealing member 3 are joined together, and the crystal oscillator plate 2 and the second sealing member 4 are joined together, thereby forming a crystal oscillator having a substantially rectangular parallelepiped sandwich structure. A package 12 that becomes a (piezoelectric vibrator) is configured. Also, an IC chip 5 is mounted on the main surface of the first sealing member 3 opposite to the bonding surface with the crystal diaphragm 2 . The IC chip 5 as an electronic component element is a one-chip integrated circuit element forming an oscillation circuit together with the crystal plate 2 .

水晶振動板2では、一方の主面である第1主面211に第1励振電極221が形成され、他方の主面である第2主面212に第2励振電極222が形成されている。そして、水晶発振器101においては、水晶振動板2の両主面(第1主面211、第2主面212)のそれぞれに第1封止部材3および第2封止部材4が接合されることで、パッケージ12の内部空間が形成され、内部空間に第1励振電極221および第2励振電極222を含む振動部22(図4,5参照)が気密封止されている。 In the crystal diaphragm 2, a first excitation electrode 221 is formed on a first principal surface 211, which is one principal surface, and a second excitation electrode 222 is formed on a second principal surface 212, which is the other principal surface. In the crystal oscillator 101, the first sealing member 3 and the second sealing member 4 are bonded to both main surfaces (the first main surface 211 and the second main surface 212) of the crystal diaphragm 2, respectively. Thus, an internal space is formed in the package 12, and the vibrating portion 22 (see FIGS. 4 and 5) including the first excitation electrode 221 and the second excitation electrode 222 is hermetically sealed in the internal space.

本実施の形態にかかる水晶発振器101は、例えば、1.0×0.8mmのパッケージサイズであり、小型化と低背化とを図ったものである。また、小型化に伴い、パッケージ12では、キャスタレーションを形成せずに、後述する貫通孔を用いて電極の導通を図っている。 The crystal oscillator 101 according to this embodiment has a package size of, for example, 1.0×0.8 mm, and is designed to be small and low profile. Further, along with miniaturization, the package 12 does not form castellations, but uses through holes (to be described later) for electrode conduction.

次に、上記した水晶発振器101における水晶振動板2、第1封止部材3および第2封止部材4の各部材について、図1~7を用いて説明する。尚、ここでは、接合されていないそれぞれ単体として構成されている各部材について説明を行う。 Next, each member of the crystal diaphragm 2, the first sealing member 3, and the second sealing member 4 in the crystal oscillator 101 described above will be described with reference to FIGS. In addition, each member which is not joined and which is configured as a single unit will be described here.

水晶振動板2は、図4,5に示すように、水晶からなる圧電基板であって、その両主面(第1主面211,第2主面212)が平坦平滑面(鏡面加工)として形成されている。本実施の形態では、水晶振動板2として、厚みすべり振動を行うATカット水晶板が用いられている。図4,5に示す水晶振動板2では、水晶振動板2の両主面211,212が、XZ´平面とされている。このXZ´平面において、水晶振動板2の短手方向(短辺方向)に平行な方向がX軸方向とされ、水晶振動板2の長手方向(長辺方向)に平行な方向がZ´軸方向とされている。尚、ATカットは、人工水晶の3つの結晶軸である電気軸(X軸)、機械軸(Y軸)、および光学軸(Z軸)のうち、Z軸に対してX軸周りに35°15′だけ傾いた角度で切り出す加工手法である。ATカット水晶板では、X軸は水晶の結晶軸に一致する。Y´軸およびZ´軸は、水晶の結晶軸のY軸およびZ軸からそれぞれ35°15′傾いた軸に一致する。Y´軸方向およびZ´軸方向は、ATカット水晶板を切り出すときの切り出し方向に相当する。 As shown in FIGS. 4 and 5, the crystal diaphragm 2 is a piezoelectric substrate made of crystal, and both main surfaces (first main surface 211 and second main surface 212) thereof are flat smooth surfaces (mirror-finished). formed. In this embodiment, an AT-cut quartz plate that performs thickness-shear vibration is used as the quartz plate 2 . In the crystal diaphragm 2 shown in FIGS. 4 and 5, both main surfaces 211 and 212 of the crystal diaphragm 2 are XZ' planes. In this XZ′ plane, the direction parallel to the short side direction (short side direction) of the crystal diaphragm 2 is the X axis direction, and the direction parallel to the longitudinal direction (long side direction) of the crystal diaphragm 2 is the Z′ axis. direction. In addition, the AT cut is 35° around the X axis with respect to the Z axis among the three crystal axes of artificial quartz, the electrical axis (X axis), the mechanical axis (Y axis), and the optical axis (Z axis). This is a processing method for cutting at an angle inclined by 15'. In an AT-cut quartz plate, the X-axis coincides with the crystallographic axis of the quartz. The Y'-axis and Z'-axis coincide with axes tilted 35° 15' from the Y-axis and Z-axis of the crystal axes of the crystal, respectively. The Y'-axis direction and the Z'-axis direction correspond to the cutting direction when cutting out an AT-cut crystal plate.

水晶振動板2の両主面211,212には、一対の励振電極(第1励振電極221,第2励振電極222)が形成されている。水晶振動板2は、略矩形に形成された振動部22と、この振動部22の外周を取り囲む外枠部23と、振動部22と外枠部23とを連結することで振動部22を保持する保持部24とを有している。すなわち、水晶振動板2は、振動部22、外枠部23および保持部24が一体的に設けられた構成となっている。 A pair of excitation electrodes (a first excitation electrode 221 and a second excitation electrode 222 ) are formed on both main surfaces 211 and 212 of the crystal plate 2 . The crystal diaphragm 2 has a substantially rectangular vibrating portion 22, an outer frame portion 23 surrounding the outer circumference of the vibrating portion 22, and the vibrating portion 22 and the outer frame portion 23, which are connected to each other to hold the vibrating portion 22. It has a holding portion 24 for holding. That is, the crystal diaphragm 2 has a configuration in which the vibrating portion 22, the outer frame portion 23, and the holding portion 24 are integrally provided.

本実施の形態では、保持部24は、振動部22と外枠部23との間の1箇所のみに設けられている。また、詳しくは後述するが、振動部22および保持部24は、基本的には外枠部23よりも薄く形成されている。このような外枠部23と保持部24との厚みの違いにより、外枠部23と保持部24の圧電振動の固有振動数が異なることになり、保持部24の圧電振動に外枠部23が共鳴しにくくなる。尚、保持部24の形成箇所は1か所に限定されるものではなく、保持部24は、振動部22と外枠部23との間の2箇所に設けられていてもよい。 In this embodiment, the holding portion 24 is provided only at one location between the vibrating portion 22 and the outer frame portion 23 . Further, although details will be described later, the vibrating portion 22 and the holding portion 24 are basically formed thinner than the outer frame portion 23 . Due to such a difference in thickness between the outer frame portion 23 and the holding portion 24 , the eigenfrequency of the piezoelectric vibration of the outer frame portion 23 and the holding portion 24 is different. becomes difficult to resonate. Note that the holding portion 24 is not limited to be formed at one location, and the holding portion 24 may be provided at two locations between the vibrating portion 22 and the outer frame portion 23 .

保持部24は、振動部22の+X方向かつ-Z´方向に位置する1つの角部のみから、-Z´方向に向けて外枠部23まで延びている(突出している)。このように、振動部22の外周端部のうち、圧電振動の変位が比較的小さい角部に保持部24が設けられているので、保持部24を角部以外の部分(辺の中央部)に設けた場合に比べて、保持部24を介して圧電振動が外枠部23に漏れることを抑制することができ、より効率的に振動部22を圧電振動させることができる。また、保持部24を2つ以上設けた場合に比べて、振動部22に作用する応力を低減することができ、そのような応力に起因する圧電振動の周波数シフトを低減して圧電振動の安定性を向上させることができる。 The holding portion 24 extends (protrudes) from only one corner of the vibrating portion 22 located in the +X direction and the -Z' direction to the outer frame portion 23 in the -Z' direction. As described above, since the holding portion 24 is provided at the corner portion where the displacement of the piezoelectric vibration is relatively small among the outer peripheral end portions of the vibrating portion 22, the holding portion 24 is attached to the portion other than the corner portion (central portion of the side). Leakage of the piezoelectric vibration to the outer frame portion 23 via the holding portion 24 can be suppressed, and the vibrating portion 22 can be piezoelectrically vibrated more efficiently than in the case where the vibration portion 22 is provided. Moreover, compared to the case where two or more holding portions 24 are provided, the stress acting on the vibrating portion 22 can be reduced. can improve sexuality.

第1励振電極221は振動部22の第1主面211側に設けられ、第2励振電極222は振動部22の第2主面212側に設けられている。第1励振電極221,第2励振電極222には、これらの励振電極を外部電極端子に接続するための引出配線(第1引出配線223,第2引出配線224)が接続されている。第1引出配線223は、第1励振電極221から引き出され、保持部24を経由して、外枠部23に形成された接続用接合パターン27に繋がっている。第2引出配線224は、第2励振電極222から引き出され、保持部24を経由して、外枠部23に形成された接続用接合パターン28に繋がっている。このように、保持部24の第1主面211側に第1引出配線223が形成され、保持部24の第2主面212側に第2引出配線224が形成されている。 The first excitation electrode 221 is provided on the first principal surface 211 side of the vibrating portion 22 , and the second excitation electrode 222 is provided on the second principal surface 212 side of the vibrating portion 22 . Lead wires (first lead wire 223 and second lead wire 224) for connecting these excitation electrodes to external electrode terminals are connected to the first excitation electrode 221 and the second excitation electrode 222, respectively. The first extraction wiring 223 is drawn out from the first excitation electrode 221 and connected to the connection bonding pattern 27 formed on the outer frame portion 23 via the holding portion 24 . The second lead wiring 224 is led out from the second excitation electrode 222 and connected to the connection bonding pattern 28 formed on the outer frame portion 23 via the holding portion 24 . Thus, the first lead wiring 223 is formed on the first main surface 211 side of the holding portion 24 , and the second lead wiring 224 is formed on the second main surface 212 side of the holding portion 24 .

水晶振動板2の両主面(第1主面211,第2主面212)には、水晶振動板2を第1封止部材3および第2封止部材4に接合するための振動側封止部がそれぞれ設けられている。第1主面211の振動側封止部としては、第1封止部材3に接合するための振動側第1接合パターン251が形成されている。また、第2主面212の振動側封止部としては、第2封止部材4に接合するための振動側第2接合パターン252が形成されている。振動側第1接合パターン251および振動側第2接合パターン252は、外枠部23に設けられており、平面視で環状に形成されている。第1励振電極221,第2励振電極222は、振動側第1接合パターン251および振動側第2接合パターン252とは電気的に接続されていない。 On both main surfaces (first main surface 211, second main surface 212) of the crystal diaphragm 2, vibration side seals for bonding the crystal diaphragm 2 to the first sealing member 3 and the second sealing member 4 are provided. Each stop is provided. A vibration-side first bonding pattern 251 for bonding to the first sealing member 3 is formed as the vibration-side sealing portion of the first main surface 211 . Further, as the vibration side sealing portion of the second main surface 212, a vibration side second bonding pattern 252 for bonding to the second sealing member 4 is formed. The vibration-side first bonding pattern 251 and the vibration-side second bonding pattern 252 are provided on the outer frame portion 23 and are formed in an annular shape in plan view. The first excitation electrode 221 and the second excitation electrode 222 are not electrically connected to the first vibration-side bonding pattern 251 and the second vibration-side bonding pattern 252 .

また、水晶振動板2には、図4,5に示すように、第1主面211と第2主面212との間を貫通する5つの貫通孔が形成されている。具体的には、4つの第1貫通孔261は、外枠部23の4隅(角部)の領域にそれぞれ設けられている。第2貫通孔262は、外枠部23であって、振動部22のZ´軸方向の一方側(図4,5では、+Z´方向側)に設けられている。第1貫通孔261の周囲には、それぞれ接続用接合パターン253が形成されている。また、第2貫通孔262の周囲には、第1主面211側では接続用接合パターン254が、第2主面212側では接続用接合パターン28が形成されている。 In addition, as shown in FIGS. 4 and 5, the crystal diaphragm 2 is formed with five through holes penetrating between the first principal surface 211 and the second principal surface 212 . Specifically, the four first through holes 261 are provided in four corner (corner) regions of the outer frame portion 23 . The second through hole 262 is provided in the outer frame portion 23 on one side of the vibrating portion 22 in the Z′-axis direction (+Z′ direction side in FIGS. 4 and 5). Connection bonding patterns 253 are formed around the first through holes 261 . Further, around the second through-hole 262, a connection bonding pattern 254 is formed on the first main surface 211 side, and a connection bonding pattern 28 is formed on the second main surface 212 side.

第1貫通孔261および第2貫通孔262には、第1主面211と第2主面212とに形成された電極の導通を図るための貫通電極が、貫通孔それぞれの内壁面に沿って形成されている。また、第1貫通孔261および第2貫通孔262それぞれの中央部分は、第1主面211と第2主面212との間を貫通した中空状態の貫通部分となる。 In the first through hole 261 and the second through hole 262, through electrodes for conducting the electrodes formed on the first main surface 211 and the second main surface 212 are formed along the inner wall surfaces of the respective through holes. formed. Further, the central portions of the first through hole 261 and the second through hole 262 are hollow penetrating portions penetrating between the first main surface 211 and the second main surface 212 .

水晶振動板2において、第1励振電極221、第2励振電極222、第1引出配線223,第2引出配線224、第1接合パターン251、振動側第2接合パターン252、および接続用接合パターン253,254,27,28は、同一のプロセスで形成することができる。具体的には、これらは、水晶振動板2の両主面211,212上に物理的気相成長させて形成された下地膜と、当該下地膜上に物理的気相成長させて積層形成された接合膜とから形成することができる。尚、本実施の形態では、下地膜には、Ti(もしくはCr)が用いられ、接合膜にはAuが用いられている。 In the crystal plate 2, the first excitation electrode 221, the second excitation electrode 222, the first lead wire 223, the second lead wire 224, the first bonding pattern 251, the vibration side second bonding pattern 252, and the connection bonding pattern 253 , 254, 27 and 28 can be formed in the same process. More specifically, they are formed by stacking an underlying film formed by physical vapor phase growth on both main surfaces 211 and 212 of the crystal diaphragm 2 and by physical vapor phase growth on the underlying film. and a bonding film. In this embodiment, Ti (or Cr) is used for the base film, and Au is used for the bonding film.

第1封止部材3は、図2,3に示すように、1枚のガラスウエハから形成された直方体の基板であり、この第1封止部材3の第2主面312(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として形成されている。 The first sealing member 3, as shown in FIGS. 2 and 3, is a rectangular parallelepiped substrate formed from one glass wafer. ) is formed as a flat smooth surface (mirror finish).

第1封止部材3の第1主面311(ICチップ5を搭載する面)には、図2に示すように、発振回路素子であるICチップ5を搭載する搭載パッドを含む6つの電極パターン37が形成されている。ICチップ5は、金属バンプ(例えばAuバンプ等)38(図1参照)を用いて電極パターン37に、FCB(Flip Chip Bonding)法により接合される。 As shown in FIG. 2, on the first main surface 311 (the surface on which the IC chip 5 is mounted) of the first sealing member 3, there are six electrode patterns including mounting pads for mounting the IC chip 5, which is an oscillation circuit element. 37 is formed. The IC chip 5 is bonded to the electrode pattern 37 by FCB (Flip Chip Bonding) using metal bumps (eg, Au bumps, etc.) 38 (see FIG. 1).

第1封止部材3には、図2,3に示すように、6つの電極パターン37のそれぞれと接続され、第1主面311と第2主面312との間を貫通する6つの貫通孔が形成されている。具体的には、4つの第3貫通孔322が、第1封止部材3の4隅(角部)の領域に設けられている。第4,第5貫通孔323,324は、図2,3のA2方向およびA1方向にそれぞれ設けられている。尚、図2,3,6,7のA1およびA2方向は、図4,5の-Z´方向および+Z´方向にそれぞれ一致し、図2,3,6,7のB1およびB2方向は、図4,5の-X方向および+X方向にそれぞれ一致する。 As shown in FIGS. 2 and 3, the first sealing member 3 has six through holes connected to the six electrode patterns 37 and penetrating between the first main surface 311 and the second main surface 312. is formed. Specifically, four third through-holes 322 are provided in four corner (corner) regions of the first sealing member 3 . The fourth and fifth through holes 323 and 324 are provided in directions A2 and A1 in FIGS. 2 and 3, respectively. The A1 and A2 directions in FIGS. 2, 3, 6 and 7 correspond to the −Z′ and +Z′ directions in FIGS. 4 and 5, respectively, and the B1 and B2 directions in FIGS. They correspond to the -X and +X directions in FIGS. 4 and 5, respectively.

第3貫通孔322および第4,第5貫通孔323,324には、第1主面311と第2主面312とに形成された電極の導通を図るための貫通電極が、貫通孔それぞれの内壁面に沿って形成されている。また、第3貫通孔322および第4,第5貫通孔323,324それぞれの中央部分は、第1主面311と第2主面312との間を貫通した中空状態の貫通部分となる。 In the third through-hole 322 and the fourth and fifth through-holes 323 and 324, through-electrodes for conducting the electrodes formed on the first principal surface 311 and the second principal surface 312 are provided in the respective through-holes. It is formed along the inner wall surface. Further, the center portions of the third through-hole 322 and the fourth and fifth through-holes 323 and 324 are hollow penetrating portions penetrating between the first main surface 311 and the second main surface 312 .

第1封止部材3の第2主面312には、水晶振動板2に接合するための封止側第1封止部としての封止側第1接合パターン321が形成されている。封止側第1接合パターン321は、平面視で環状に形成されている。 A sealing-side first bonding pattern 321 as a sealing-side first sealing portion for bonding to the crystal plate 2 is formed on the second main surface 312 of the first sealing member 3 . The sealing-side first bonding pattern 321 is formed in an annular shape in plan view.

また、第1封止部材3の第2主面312では、第3貫通孔322の周囲には、それぞれ接続用接合パターン34が形成されている。第4貫通孔323の周囲には接続用接合パターン351が、第5貫通孔324の周囲には接続用接合パターン352が形成されている。さらに、接続用接合パターン351に対して第1封止部材3の長軸方向の反対側(A2方向側)には接続用接合パターン353が形成されており、接続用接合パターン351と接続用接合パターン353とは配線パターン33によって接続されている。尚、接続用接合パターン353は、接続用接合パターン352とは接続されていない。 In addition, on the second main surface 312 of the first sealing member 3, the connection bonding patterns 34 are formed around the third through holes 322, respectively. A connection bonding pattern 351 is formed around the fourth through hole 323 , and a connection bonding pattern 352 is formed around the fifth through hole 324 . Furthermore, a connection bonding pattern 353 is formed on the opposite side (A2 direction side) of the first sealing member 3 in the longitudinal direction of the first sealing member 3 with respect to the connection bonding pattern 351. It is connected to the pattern 353 by the wiring pattern 33 . Note that the connection bonding pattern 353 is not connected to the connection bonding pattern 352 .

第1封止部材3において、封止側第1接合パターン321、接続用接合パターン34,351~353、および配線パターン33は、同一のプロセスで形成することができる。具体的には、これらは、第1封止部材3の第2主面312上に物理的気相成長させて形成された下地膜と、当該下地膜上に物理的気相成長させて積層形成された接合膜とから形成することができる。尚、本実施の形態では、下地膜には、Ti(もしくはCr)が用いられ、接合膜にはAuが用いられている。 In the first sealing member 3, the sealing-side first bonding pattern 321, the connecting bonding patterns 34, 351 to 353, and the wiring pattern 33 can be formed by the same process. Specifically, these are a base film formed by physical vapor deposition on the second main surface 312 of the first sealing member 3 and a laminate formed by physical vapor deposition on the base film. It can be formed from a bonded film and a bonding film. In this embodiment, Ti (or Cr) is used for the base film, and Au is used for the bonding film.

第2封止部材4は、図6,7に示すように、1枚のガラスウエハから形成された直方体の基板であり、この第2封止部材4の第1主面411(水晶振動板2に接合する面)は平坦平滑面(鏡面加工)として形成されている。 As shown in FIGS. 6 and 7, the second sealing member 4 is a rectangular parallelepiped substrate formed from one glass wafer. ) is formed as a flat smooth surface (mirror finish).

この第2封止部材4の第1主面411には、水晶振動板2に接合するための封止側第2封止部としての封止側第2接合パターン421が形成されている。封止側第2接合パターン421は、平面視で環状に形成されている。 A sealing-side second bonding pattern 421 as a sealing-side second sealing portion for bonding to the crystal plate 2 is formed on the first main surface 411 of the second sealing member 4 . The sealing-side second bonding pattern 421 is formed in an annular shape in plan view.

第2封止部材4の第2主面412(水晶振動板2に面しない外方の主面)には、外部に電気的に接続する4つの外部電極端子43が設けられている。外部電極端子43は、第2封止部材4の4隅(角部)にそれぞれ位置する。 Four external electrode terminals 43 electrically connected to the outside are provided on the second main surface 412 of the second sealing member 4 (the outer main surface not facing the crystal diaphragm 2). The external electrode terminals 43 are positioned at four corners (corners) of the second sealing member 4 respectively.

第2封止部材4には、図6,7に示すように、第1主面411と第2主面412との間を貫通する4つの貫通孔が形成されている。具体的には、4つの第6貫通孔44は、第2封止部材4の4隅(角部)の領域に設けられている。第6貫通孔44には、第1主面411と第2主面412とに形成された電極の導通を図るための貫通電極が、貫通孔それぞれの内壁面に沿って形成されている。また、第6貫通孔44それぞれの中央部分は、第1主面411と第2主面412との間を貫通した中空状態の貫通部分となる。また、第2封止部材4の第1主面411では、第6貫通孔44の周囲には、それぞれ接続用接合パターン45が形成されている。 As shown in FIGS. 6 and 7, the second sealing member 4 is formed with four through-holes penetrating between the first principal surface 411 and the second principal surface 412 . Specifically, the four sixth through holes 44 are provided in four corner (corner) regions of the second sealing member 4 . In the sixth through-hole 44, through-electrodes are formed along the inner wall surfaces of the respective through-holes for conducting the electrodes formed on the first main surface 411 and the second main surface 412. As shown in FIG. Further, the central portion of each sixth through-hole 44 is a hollow penetrating portion penetrating between the first main surface 411 and the second main surface 412 . In addition, on the first main surface 411 of the second sealing member 4 , connecting bonding patterns 45 are formed around the sixth through-holes 44 .

第2封止部材4において、封止側第2接合パターン421、および接続用接合パターン45は、同一のプロセスで形成することができる。具体的には、これらは、第2封止部材4の第1主面411上に物理的気相成長させて形成された下地膜と、当該下地膜上に物理的気相成長させて積層形成された接合膜とから形成することができる。尚、本実施の形態では、下地膜には、Ti(もしくはCr)が用いられ、接合膜にはAuが用いられている。 In the second sealing member 4, the sealing-side second bonding pattern 421 and the connecting bonding pattern 45 can be formed by the same process. Specifically, these are a base film formed by physical vapor deposition on the first main surface 411 of the second sealing member 4, and a laminate formed by physical vapor deposition on the base film. It can be formed from a bonded film and a bonding film. In this embodiment, Ti (or Cr) is used for the base film, and Au is used for the bonding film.

上記の水晶振動板2、第1封止部材3、および第2封止部材4を含む水晶発振器101では、水晶振動板2と第1封止部材3とが振動側第1接合パターン251および封止側第1接合パターン321を重ね合わせた状態で拡散接合され、水晶振動板2と第2封止部材4とが振動側第2接合パターン252および封止側第2接合パターン421を重ね合わせた状態で拡散接合されて、図1に示すサンドイッチ構造のパッケージ12が製造される。これにより、パッケージ12の内部空間、つまり、振動部22の収容空間が気密封止される。 In the crystal oscillator 101 including the crystal diaphragm 2, the first sealing member 3, and the second sealing member 4, the crystal diaphragm 2 and the first sealing member 3 are connected to the vibration side first bonding pattern 251 and the sealing member. Diffusion bonding is performed with the stop-side first bonding pattern 321 overlapped, and the crystal diaphragm 2 and the second sealing member 4 are overlapped with the vibration-side second bonding pattern 252 and the sealing-side second bonding pattern 421. The sandwich structure package 12 shown in FIG. 1 is manufactured by diffusion bonding in this state. Thereby, the internal space of the package 12, that is, the accommodation space of the vibrating portion 22 is hermetically sealed.

この際、上述した接続用接合パターン同士も重ね合わせられた状態で拡散接合される。そして、接続用接合パターン同士の接合により、水晶発振器101では、第1励振電極221、第2励振電極222、ICチップ5および外部電極端子43の電気的導通が得られるようになっている。 At this time, the bonding patterns for connection described above are also overlapped and diffusion bonded. In the crystal oscillator 101, electrical continuity between the first excitation electrode 221, the second excitation electrode 222, the IC chip 5, and the external electrode terminal 43 is obtained by bonding the connection bonding patterns to each other.

具体的には、第1励振電極221は、第1引出配線223、接続用接合パターン27と接続用接合パターン353との接合部、配線パターン33、接続用接合パターン351、第4貫通孔323内の貫通電極、および電極パターン37を順に経由して、ICチップ5に接続される。第2励振電極222は、第2引出配線224、接続用接合パターン28、第2貫通孔262内の貫通電極、接続用接合パターン254と接続用接合パターン352との接合部、第5貫通孔324内の貫通電極、および電極パターン37を順に経由して、ICチップ5に接続される。また、ICチップ5は、電極パターン37、第3貫通孔322内の貫通電極、接続用接合パターン34と接続用接合パターン253との接合部、第1貫通孔261内の貫通電極、接続用接合パターン253と接続用接合パターン45との接合部、および第6貫通孔44内の貫通電極を順に経由して、外部電極端子43に接続される。 Specifically, the first excitation electrode 221 includes the first lead wiring 223 , the joint portion between the connection joint pattern 27 and the connection joint pattern 353 , the wiring pattern 33 , the connection joint pattern 351 , and the fourth through hole 323 . , and the electrode pattern 37 in order to connect to the IC chip 5 . The second excitation electrode 222 includes the second lead-out wiring 224 , the connection joint pattern 28 , the through electrode in the second through hole 262 , the joint portion between the connection joint pattern 254 and the connection joint pattern 352 , and the fifth through hole 324 . It is connected to the IC chip 5 via the through electrodes inside and the electrode pattern 37 in this order. The IC chip 5 includes the electrode pattern 37, the through electrode in the third through hole 322, the joint portion between the connection joint pattern 34 and the connection joint pattern 253, the through electrode in the first through hole 261, and the connection joint. It is connected to the external electrode terminal 43 via the junction between the pattern 253 and the connection bonding pattern 45 and the through electrode in the sixth through hole 44 in this order.

以上が本実施の形態にかかる水晶発振器101の基本構造であるが、本発明における特徴点は、ICチップ5を第1封止部材3の第1主面311に接合する際に、水晶振動板2の保持部24における保持部折れを抑制するための製造方法にある。これより、この特徴点について詳細に説明する。 The basic structure of the crystal oscillator 101 according to the present embodiment has been described above. 2, a manufacturing method for suppressing breakage of the holding portion 24 . This feature point will now be described in detail.

上述したように、ICチップ5は、金属バンプ38(図1参照)を用いて第1封止部材3の電極パターン37にFCB法により接合される。また、このFCB接合には、超音波接合が用いられる。すなわち、ICチップ5のFCB接合の際には、超音波接合機によってICチップ5と第1封止部材3との接合面に垂直な方向の加圧力を与えながらICチップ5に接合面と平行な方向の超音波振動を印加する。これにより金属バンプ38と電極パターン37とが擦れあって摩擦による発熱が生じ、金属バンプ38と電極パターン37とが溶融接合されることになる。 As described above, the IC chip 5 is bonded to the electrode pattern 37 of the first sealing member 3 by the FCB method using the metal bumps 38 (see FIG. 1). Ultrasonic bonding is used for this FCB bonding. That is, when the IC chip 5 is FCB bonded, the IC chip 5 is pressed parallel to the bonding surface while applying pressure in a direction perpendicular to the bonding surface between the IC chip 5 and the first sealing member 3 by an ultrasonic bonding machine. Apply ultrasonic vibration in the direction As a result, the metal bumps 38 and the electrode patterns 37 are rubbed against each other, heat is generated by friction, and the metal bumps 38 and the electrode patterns 37 are melt-bonded.

本実施の形態に係る水晶発振器101の製造方法において、超音波接合機によって印加される超音波の周波数は62kHzであった。また、振動部22において、保持部24の突出方向と直交する方向(図8に示す矢印A方向)の振動モードにおける固有振動数は、185.5kHzであった。すなわち、上記振動モードにおける固有振動数は、印加される超音波周波数の整数倍(約3倍)である。このため、ICチップ5をFCB接合する方法によっては、振動部22の共振が生じて保持部折れに繋がる虞がある。 In the method of manufacturing the crystal oscillator 101 according to this embodiment, the frequency of the ultrasonic waves applied by the ultrasonic bonding machine was 62 kHz. Further, in the vibrating portion 22, the natural frequency in the vibration mode in the direction perpendicular to the projecting direction of the holding portion 24 (direction of arrow A shown in FIG. 8) was 185.5 kHz. That is, the natural frequency in the vibration mode is an integer multiple (approximately three times) of the applied ultrasonic frequency. Therefore, depending on the method of FCB bonding the IC chip 5, there is a possibility that resonance of the vibrating portion 22 may occur, leading to breakage of the holding portion.

ここで、保持部24の突出方向を第1方向とし、ICチップ5を超音波接合する際に印加される超音波の振動方向を第2方向とする場合、第1方向と第2方向とが互いに直交する関係にあれば、振動部22の共振が大きくなり保持部折れが生じ易くなる。これは、超音波の振動方向が、保持部24の突出方向と直交する方向(図8に示す矢印A方向)と平行になるためである。上述したように、保持部24の突出方向と直交する方向への振動は、共振が生じた場合に保持部折れに繋がるような応力集中を保持部24に生じさせ易い。 Here, when the projection direction of the holding portion 24 is defined as the first direction and the vibration direction of the ultrasonic waves applied when the IC chip 5 is ultrasonically bonded is defined as the second direction, the first direction and the second direction are the same. If they are perpendicular to each other, the resonance of the vibrating portion 22 increases and the holding portion is likely to break. This is because the vibration direction of the ultrasonic waves is parallel to the direction perpendicular to the projecting direction of the holding portion 24 (direction of arrow A shown in FIG. 8). As described above, the vibration in the direction orthogonal to the projecting direction of the holding portion 24 tends to cause stress concentration in the holding portion 24 that leads to the holding portion breaking when resonance occurs.

このため、本実施の形態に係る水晶発振器101の製造方法においては、ICチップ5をFCB接合する際に、保持部24の突出方向である第1方向と超音波の振動方向である第2方向とが直交しないようにすることを特徴とする。このようにすることで、仮に保持部24の突出方向と直交する方向への振動モードにおける固有振動数が、印加される超音波周波数の整数倍になっていたとしても、第1方向と第2方向とが直交する場合に比べて該振動モードにおける共振を低減でき、振動部22の共振による保持部折れを低減することができる。 Therefore, in the method of manufacturing the crystal oscillator 101 according to the present embodiment, when the IC chip 5 is FCB-bonded, the first direction, which is the projecting direction of the holding portion 24, and the second direction, which is the vibration direction of the ultrasonic waves, and are not orthogonal to each other. By doing so, even if the natural frequency in the vibration mode in the direction orthogonal to the projecting direction of the holding portion 24 is an integral multiple of the applied ultrasonic frequency, the first direction and the second direction are equal to each other. The resonance in the vibration mode can be reduced compared to the case where the directions are perpendicular to each other, and bending of the holding portion due to the resonance of the vibrating portion 22 can be reduced.

また、保持部折れの低減効果を向上させるためには、第1方向と第2方向とのなす角が45°以下であることが好ましく、第1方向と第2方向とが平行(第1方向と第2方向とのなす角が0°)であることが最も好ましい。 Further, in order to improve the effect of reducing the bending of the holding portion, it is preferable that the angle formed by the first direction and the second direction is 45° or less, and the first direction and the second direction are parallel (the first direction and the second direction is 0°).

今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 The embodiments disclosed this time are exemplifications in all respects and are not grounds for restrictive interpretation. Therefore, the technical scope of the present invention is not to be interpreted only by the above-described embodiments, but is defined based on the claims. In addition, all changes within the meaning and range of equivalents to the scope of claims are included.

2 水晶振動板(圧電振動板)
3 第1封止部材
4 第2封止部材
5 ICチップ
12 パッケージ(圧電振動子)
22 振動部
23 外枠部
24 保持部
101 水晶発振器(圧電発振器)
211 第1主面
212 第2主面
221 第1励振電極
222 第2励振電極
223 第1引出配線
224 第2引出配線
2 crystal diaphragm (piezoelectric diaphragm)
3 first sealing member 4 second sealing member 5 IC chip 12 package (piezoelectric vibrator)
22 vibrating portion 23 outer frame portion 24 holding portion 101 crystal oscillator (piezoelectric oscillator)
211 First main surface 212 Second main surface 221 First excitation electrode 222 Second excitation electrode 223 First extraction wiring 224 Second extraction wiring

Claims (3)

圧電振動子上の平面部にICチップを搭載する圧電発振器の製造方法であって、
前記圧電振動子は、
基板の一主面に第1励振電極が形成され、前記基板の他主面に前記第1励振電極と対になる第2励振電極が形成された圧電振動板と、
前記圧電振動板の前記第1励振電極を覆う第1封止部材と、
前記圧電振動板の前記第2励振電極を覆う第2封止部材と、が設けられ、
前記第1封止部材と前記圧電振動板とが接合され、前記第2封止部材と前記圧電振動板とが接合されて、前記第1励振電極と前記第2励振電極とを含む前記圧電振動板の振動部を気密封止した内部空間が形成されており、
前記圧電振動板は、
前記第1励振電極および前記第2励振電極が備えられた略矩形状の振動部と、
前記振動部の角部から第1方向に突出され、当該振動部を保持する1本の保持部と、
前記振動部の外周を取り囲むと共に、前記保持部を保持する外枠部とを有しており、
前記ICチップを、超音波接合を用いたフリップチップボンディングによって前記圧電振動子上に搭載し、当該超音波接合では前記第1方向とは直交しない第2方向に振動する超音波振動を印加することを特徴とする圧電発振器の製造方法。
A method for manufacturing a piezoelectric oscillator in which an IC chip is mounted on a planar portion of a piezoelectric vibrator, comprising:
The piezoelectric vibrator is
a piezoelectric diaphragm having a first excitation electrode formed on one principal surface of a substrate and a second excitation electrode formed on the other principal surface of the substrate to form a pair with the first excitation electrode;
a first sealing member covering the first excitation electrode of the piezoelectric diaphragm;
a second sealing member covering the second excitation electrode of the piezoelectric diaphragm,
The first sealing member and the piezoelectric diaphragm are bonded together, the second sealing member and the piezoelectric diaphragm are bonded together, and the piezoelectric vibration includes the first excitation electrode and the second excitation electrode. An internal space is formed by hermetically sealing the vibrating part of the plate,
The piezoelectric diaphragm is
a substantially rectangular vibrating portion provided with the first excitation electrode and the second excitation electrode;
a holding portion projecting in a first direction from a corner portion of the vibrating portion and holding the vibrating portion;
an outer frame surrounding the vibrating portion and holding the holding portion;
The IC chip is mounted on the piezoelectric vibrator by flip-chip bonding using ultrasonic bonding, and in the ultrasonic bonding, ultrasonic vibrations that vibrate in a second direction that is not orthogonal to the first direction are applied. A method of manufacturing a piezoelectric oscillator, characterized by:
請求項1に記載の圧電発振器の製造方法であって、
前記第1方向と前記第2方向とのなす角が45°以下であることを特徴とする圧電発振器の製造方法。
A method for manufacturing a piezoelectric oscillator according to claim 1,
A method of manufacturing a piezoelectric oscillator, wherein an angle between the first direction and the second direction is 45° or less.
請求項1に記載の圧電発振器の製造方法であって、
前記第1方向と前記第2方向とが平行であることを特徴とする圧電発振器の製造方法。
A method for manufacturing a piezoelectric oscillator according to claim 1,
A method of manufacturing a piezoelectric oscillator, wherein the first direction and the second direction are parallel.
JP2018229345A 2018-12-06 2018-12-06 Piezoelectric oscillator manufacturing method Active JP7172534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229345A JP7172534B2 (en) 2018-12-06 2018-12-06 Piezoelectric oscillator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229345A JP7172534B2 (en) 2018-12-06 2018-12-06 Piezoelectric oscillator manufacturing method

Publications (2)

Publication Number Publication Date
JP2020092357A JP2020092357A (en) 2020-06-11
JP7172534B2 true JP7172534B2 (en) 2022-11-16

Family

ID=71013194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229345A Active JP7172534B2 (en) 2018-12-06 2018-12-06 Piezoelectric oscillator manufacturing method

Country Status (1)

Country Link
JP (1) JP7172534B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033455A1 (en) 1998-12-02 2000-06-08 Seiko Epson Corporation Piezoelectric device and method of manufacture thereof
JP2001291742A (en) 2000-04-06 2001-10-19 Nippon Dempa Kogyo Co Ltd Bonding method of ic chip and quartz oscillator using this bonding method
WO2018051800A1 (en) 2016-09-16 2018-03-22 株式会社大真空 Piezoelectric vibration device
JP2018046476A (en) 2016-09-16 2018-03-22 株式会社大真空 Piezoelectric vibration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033455A1 (en) 1998-12-02 2000-06-08 Seiko Epson Corporation Piezoelectric device and method of manufacture thereof
JP2001291742A (en) 2000-04-06 2001-10-19 Nippon Dempa Kogyo Co Ltd Bonding method of ic chip and quartz oscillator using this bonding method
WO2018051800A1 (en) 2016-09-16 2018-03-22 株式会社大真空 Piezoelectric vibration device
JP2018046476A (en) 2016-09-16 2018-03-22 株式会社大真空 Piezoelectric vibration device

Also Published As

Publication number Publication date
JP2020092357A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
CN108496307B (en) Crystal oscillator and method for manufacturing same
TWI668960B (en) Piezo vibrating element and system integration package (SIP) module having the same
JP6737326B2 (en) Piezoelectric vibration device
WO2018092572A1 (en) Quartz oscillation device
TWI729621B (en) Piezoelectric vibration device
JP2009188483A (en) Piezoelectric device, and surface-mounted type piezoelectric oscillator
JP2012249099A (en) Piezoelectric vibration piece
TW201939888A (en) Piezoelectric vibration device
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
CN110622416A (en) Crystal oscillation element, crystal oscillator, and method for manufacturing crystal oscillation element and crystal oscillator
JP6531616B2 (en) Quartz crystal vibration plate and crystal vibration device
JP6794941B2 (en) Crystal diaphragm and crystal vibration device
JP7172534B2 (en) Piezoelectric oscillator manufacturing method
JP6015010B2 (en) Vibration element, vibrator, oscillator and electronic equipment
JP6696378B2 (en) Piezoelectric vibration device
JP7056531B2 (en) Crystal diaphragm and crystal vibration device
TWI660582B (en) Crystal vibrating piece and crystal vibrating element
WO2024024614A1 (en) Quartz crystal vibration plate and quartz crystal vibration device
WO2024024741A1 (en) Piezoelectric vibration device
JP6794938B2 (en) Crystal diaphragm and crystal vibration device
WO2023032342A1 (en) Piezoelectric oscillator
JP7293037B2 (en) Crystal elements, crystal devices and electronic equipment
JP2020141358A (en) Piezoelectric diaphragm and piezoelectric vibration device
TW202408158A (en) Crystal vibration piece and crystal vibration device
CN117957768A (en) Piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150