JP7167048B2 - 臓器視認のための最適走査面選択 - Google Patents

臓器視認のための最適走査面選択 Download PDF

Info

Publication number
JP7167048B2
JP7167048B2 JP2019550193A JP2019550193A JP7167048B2 JP 7167048 B2 JP7167048 B2 JP 7167048B2 JP 2019550193 A JP2019550193 A JP 2019550193A JP 2019550193 A JP2019550193 A JP 2019550193A JP 7167048 B2 JP7167048 B2 JP 7167048B2
Authority
JP
Japan
Prior art keywords
ultrasound
scan line
image
probe
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019550193A
Other languages
English (en)
Other versions
JP2020509862A5 (ja
JP2020509862A (ja
Inventor
マッキー ダン ポーランド
バラサンダー イヤヴ ラジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2020509862A publication Critical patent/JP2020509862A/ja
Publication of JP2020509862A5 publication Critical patent/JP2020509862A5/ja
Application granted granted Critical
Publication of JP7167048B2 publication Critical patent/JP7167048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • A61B8/4466Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe involving deflection of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4218Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

関連出願
本出願は、2017年3月16日に出願された米国仮出願第62/472,031号の利益及び優先権を主張し、同文献の全体が参照により組み込まれる。
[001] 超音波イメージングは、従来、超音波検査者及び放射線科医などの超音波技術における特殊な訓練を受けたユーザーにより実施されている。超音波イメージングは、十分な訓練を受けた超音波検査者及び放射線科医以外の従来とは異なる人員により益々使用されている。内部的な患者の特徴を視認するために、様々な症状を診断するために、及び、さらには、超音波療法を提供するために、このようなユーザーが、それらのユーザーの経験が不足しているにもかかわらず、正確且つ完全な画像データを取得することができることが重要である。臨床的に重要な画像面を特定することは軽視できない作業であり、典型的には、超音波プローブの熟練した操作を必要とする。例えば、肺イメージングの場合において、特定のイメージング面が、例えば、ラングスライディング、血管外肺水分評価、硬化、その他などの症状を評価又は特定することにおいて特に有用である。適切なイメージング面が選択されない場合、画像データは、正確な診断のための必要な情報を提供しない。
したがって、対象画像面特定の工程を改善又は簡略化するための技術が所望される。
[002] 選択された走査ラインパターンに沿った様々な物体の自動超音波イメージングのための超音波システム及び方法が本明細書において提供される。様々な例が、イメージングされる、例えば、心臓又は肺といった物体の標示を受信した後、対象者内に複数の走査ラインパターンに従って超音波信号を送信する。標示は、ユーザーがユーザーインターフェースにおける選択肢を選択することにより提供される。複数の走査ラインパターンから、走査ラインパターンが、イメージングされる物体に関係した対象特性、又は物体の特徴のその走査ラインパターンの包含状況に基づいて特定及び選択される。選択された走査ラインパターンに沿った物体の後続のイメージングのために、例は、選択された走査ラインパターンに従って、超音波ビームを自動的に操縦することを伴う。本明細書において開示されるシステムは、制御装置の方向において異なる走査ラインパターンにより超音波エネルギーを送信するように構成されたプローブを含む。プローブに結合された1つ又は複数のプロセッサが、プローブにおいて受信されたエコービームから画像データセットを生成するように、イメージングのために対象とされた物体に特有な対象特性に関して画像データセットを評価するように、対象特性を含む走査ラインパターンを特定するように、且つ、継続的なイメージングのための走査ラインパターンを選択するように構成される。本明細書において説明されるさらなる例は、特定の特徴を特定するために、及び、このような特徴に関係した様々なパラメータを測定するために行われる追加的な処理ステップを伴う。
[003] いくつかの例による、超音波イメージングシステムは、制御装置を含む。制御装置は、対象者のボリュームをイメージングするようにプローブを制御するように構成され、イメージングすることは、複数の走査ラインパターンに従って超音波信号を送信及び受信することを伴う。システムは、プローブと通信する1つ又は複数のプロセッサをさらに含む。いくつかの例において、1つ又は複数のプロセッサは、受信された超音波信号から複数の画像データセットを生成することであって、各画像データセットが、走査ラインパターンのうちの1つに対応する、生成することと、ボリューム内における物体に特有な対象特性に関して画像データセットを評価することと、対象特性を含む画像データセットを特定することと、ボリュームの後続のイメージングのために、特定された画像データセットに対応する走査ラインパターンを選択することとをするように構成される。
[004] いくつかの例において、対象特性は、画像品質閾値を満たす物体の特性である。実施形態において、対象特性は、物体に特有な特徴の強度レベルである。このような例のいくつかによると、物体は肺であり、特徴は、胸膜ラインである。いくつかの実施態様において、対象特性は、物体に特有な特徴の存在である。物体は肺であり、特徴は、胸膜ラインの深さの複数の距離における複数のAラインである。例において、対象特性は、物体に特有な特徴の長さ又は面積をもつ。
[005] いくつかの実施形態において、走査ラインパターンは、画像面に対応する。いくつかの例において、制御装置は、プローブの動きの検出時に複数の走査ラインパターンに従って、超音波信号を再送信及び受信することにより、対象者のボリュームをイメージングするようにプローブを制御するようにさらに構成される。いくつかの例において、プローブは、マトリックスプローブであり、送信することは、超音波信号を電子的に操縦することを伴う。いくつかの例において、プローブは、1Dアレイプローブであり、送信することは、超音波信号を機械的に掃引することを伴う。いくつかの実施形態は、複数の走査ラインパターンのうちの他のものを介して取得された画像を表示せずに、特定された画像データセットに対応する走査ラインパターンを介して取得された物体の画像を表示するように構成されたディスプレイスクリーンをさらに含む。制御装置は、選択された走査ラインパターンに従ってリアルタイムで画像を取得するようにプローブを自動的に制御するように構成され、システムは、リアルタイムの画像を表示するように構成されたディスプレイスクリーンをさらに含む。物体は、腎臓、心臓、血管、又は内部空洞を含む。
[006] いくつかの例によると、方法は、対象者のボリュームをイメージングするようにプローブを制御することであって、イメージングすることが、複数の走査ラインパターンに従って超音波信号を送信及び受信することを伴う、制御することと、受信された超音波信号から複数の画像データセットを生成することであって、各画像データセットが、走査ラインパターンのうちの1つに対応する、生成することと、ボリューム内における物体に特有な対象特性に関して画像データセットを評価することと、対象特性を含む画像データセットを特定することと、ボリュームの後続のイメージングのために、特定された画像データセットに対応する走査ラインパターンを選択することとを伴う。
[007] いくつかの例において、対象特性は、画像品質閾値を満たす物体の特性である。いくつかの実施態様において、対象特性は、物体に特有な特徴の強度レベル、及び/又は、物体に特有な特徴の存在である。物体は肺を含み、特徴は、胸膜ラインの深さの複数の距離における複数のAラインを含む。
[008] さらに、選択された走査ラインパターンにおいて物体の超音波画像を生成するための技術のうちの任意のものが、実行されたときに、医療イメージングシステムのプロセッサが非一時的なコンピュータ可読媒体において具現化された工程を実施するようにプログラムされることをもたらす非一時的なコンピュータ可読媒体に記憶された実行可能命令において具現化される。
[009] 本開示の原理による、超音波イメージングシステムのブロック図である。 [010] 本開示の原理による、別の超音波イメージングシステムのブロック図である。 [011] 本開示の原理による、超音波イメージング方法のブロック図である。 [012] 本開示の原理による、最適ではない走査ラインパターンを介して取得された肺超音波画像の図である。 [013] 本開示の原理による、選択された走査ラインパターンに沿って取得された肺超音波画像の図である。 [014] 本開示の原理による、超音波プローブから送信される走査ラインパターンの一例の図である。 [015] 本開示の原理による、超音波プローブから送信される走査ラインパターンの別の例の図である。
[016] 特定の例示的な実施形態の以下の説明は、本質的に例示にすぎず、どのような観点からも、本発明又は本発明の用途若しくは使用を限定することは意図されない。本システム及び方法の実施形態の以下の詳細な説明において、本出願の一部を構成する添付図面が参照され、説明されるシステム及び方法が実施される特定の実施形態が添付図面において例示として示される。これらの実施形態は、本明細書において開示されるシステム及び方法を当業者が実施することができるように十分詳細に説明され、他の実施形態が利用されること、並びに、本システムの趣旨及び範囲から逸脱することなく構造的な、及び論理的な変更がなされることが理解される。さらに、明確であることを目的として、特定の特徴の詳細な記述が当業者に明らかである場合、本システムの説明を不明瞭にしないために、その特定の特徴の詳細な記述は説明されない。したがって、以下の詳細な説明は限定的な意味に解釈されず、本システムの範囲は添付の特許請求の範囲によってのみ規定される。
[017] 本技術は、本実施形態に従った、方法、装置(システム)、及び/又はコンピュータプログラム製品のブロック図及び/又はフロー図を参照しながら以下でさらに説明される。ブロック図及び/又はフロー図のブロック、並びに、ブロック図及び/又はフロー図におけるブロックの組み合わせが、コンピュータにより実行可能な命令により実施されることが理解される。これらのコンピュータにより実行可能な命令は、コンピュータ及び/又は他のプログラム可能データ処理装置のプロセッサを介して実行される命令が、ブロック図及び/又はフロー図の1つ若しくは複数のブロックにおいて指定される機能/アクションを実施する手段を生成するように、機械を生成するように汎用コンピュータ、専用コンピュータ、及び/又は他のプログラム可能データ処理装置の、プロセッサ、制御装置、又は制御ユニットに提供される。
[018] 超音波イメージングを介して収集された情報の品質及び量は、超音波機器を操作する人の経験レベルに基づいて大幅に変動する。対象者の内部特徴の不適切なイメージングは、その特徴の正確な医療的評価を妨げ、自動分析プログラムが後続の評価を実施することを妨げる。超音波プローブの最適ではない位置及び配向は、多くの場合、最適ではない超音波画像の生成をもたらす。3Dボリューム内における対象者の異なるスライスを可視化するために使用される二次元画像面は、トランスデューサー要素の遅延を変化させること、例えば、フェーズドアレイビーム形成により調節され、それにより、品質の変動する内部特徴の異なるビューを提供する。しかし、超音波システムを操作するユーザーは、各平面に沿って取得された画像を解釈するために依然として必要とされる。
[019] 本明細書において提供される、複数の走査ラインパターンに沿って取得された画像の自動分析は、対象者の様々な内部物体のイメージングを妨害するヒューマンエラーの可能性を排除するか、又は少なくとも低減する。より詳細には、様々な内部物体、例えば、臓器又は臓器内の構造物は、超音波イメージング中に現れる1つ又は複数の特徴と関係付けられる。このような特徴が現れるとき、このような特徴は、対象とされた物体の明確な画像を示す。例えば、肺を走査するとき、「Aライン」として知られる水平配向された超音波アーチファクトが、超音波画像に現れる。Aラインは、肺胸膜界面の最適化された、又は強調された画像が、超音波プローブの現在位置により取得されることを示す。このような特徴を検出すること、及び、いくつかの場合において、検出された後に特徴の1つ又は複数のパラメータを測定することにより、イメージングシステムは、本明細書において「対象走査ラインパターン」と呼ばれる走査ラインパターンであって、その走査ラインパターンから最良の、又は少なくとも明確な物体の画像が取得され得る走査ラインパターンを、信頼可能に、及び自動的に特定するように構成される。手作業による介入を受けずに対象走査ラインパターンに沿って対象者の様々な内部物体を可視化するための自動システム及び方法が本明細書において提供される。
[020] 図1は、本開示による様々な患者物体をイメージングするための対象走査ラインパターンを特定及び選択するように構成された例示的な超音波システム100を示す。示されるように、システム100は、超音波データ獲得ユニット110を含む。超音波データ獲得ユニット110は、いくつかの実施形態において、イメージングされる物体114を含む3Dボリューム113内に超音波信号又はビーム111を送信するように、且つ、送信されたビームに応答して信号115を受信するように構成された超音波センサーアレイ112を含む超音波プローブを含む。データ獲得ユニット110は、ビーム形成器116と、受信された信号115から複数の画像データセット119を生成するように構成される信号プロセッサ118とをさらに含む。システム100は、超音波データ獲得ユニット110に通信可能に結合された、且つ、送信及び受信ビームの方向を制御(すなわち操縦)するように構成された走査ライン制御装置120をさらに含む。システム100は、信号プロセッサ118から受信された複数の画像データセット119に基づいて対象走査ラインパターン125を選択するように構成された、データプロセッサ122などの1つ又は複数のプロセッサをさらに含む。画像データセット119は、特徴121及び少なくとも1つの対象特性123を表すデータを含む。実施形態において、対象特性123は、例えば、物体に特有な特徴の強度レベルといった画像品質閾値を満たす物体114の特性を含む。実施形態において、特徴121は、低エコー特徴又は高エコー特徴である。システム100は、物体114の標示129を含むユーザー入力128を受信するように、且つ、例えば、システム100と動作可能に関係したディスプレイスクリーンに、超音波画像126、例えば、Bモード画像を表示するように構成されたユーザーインターフェース124をさらに含む。図1に示されるシステム100の構成は、一定とは限らない。例えば、システム100は、静止した、又はポータブルなものであり得る。様々なポータブルデバイス、例えば、ラップトップ、タブレット、スマートフォンなどは、システム100の1つ又は複数の機能を実施するために使用される。このようなデバイスを組み込んだ例において、超音波センサーアレイ112は、例えば、USBインターフェースを介して接続可能である。
[021] 超音波データ獲得ユニット110は、ユーザー、例えば、超音波検査者、臨床医、又は超音波技術者により選択可能な1つ又は複数の関心領域に対して、超音波データを獲得するように構成される。ビーム形成器116と組み合わされて、超音波センサーアレイ112は、特に、対象者内に超音波ビームの形態で超音波信号を送信するように、且つ、送信されたビームに応答して超音波エコーを受信するように構成される。超音波センサーアレイ112は、超音波エネルギーを送信及び受信するように構成された少なくとも1つのトランスデューサーアレイを含む。本開示の実施形態によると、様々なトランスデューサーアレイ、例えば、線形アレイ、凸アレイ、又はフェーズドアレイが使用される。センサーアレイ112に含まれるトランスデューサー要素の数及び配置は、異なる例において異なる。例えば、超音波センサーアレイ112は、線形アレイ及びマトリックスアレイプローブにそれぞれ対応する、トランスデューサー要素の1D又は2Dアレイを含む。2Dマトリックスアレイは、2D又は3Dイメージングのために(フェーズドアレイビーム形成を介して)エレベーション次元とアジマス次元との両方において電子的に走査するように構成される。例えば、全体が参照により本明細書に組み込まれる米国特許第6,013,032号(Savord)において説明されているように、いくつかの例において、2Dマトリックスアレイは、マイクロビーム形成器を使用してサブアレイビーム形成を実施するように構成される。一次元アレイは、(フェーズドアレイビーム形成を介して)電子的に2D画像を走査するように、又は、さらに、3D画像を生成するために、電気的に走査された次元に直交する方向に関心領域にわたって機械的に掃引されるように構成される。
[022] 動作中、超音波センサーアレイ112を含むプローブは、走査が実施されている間、固定位置に保持又は固定される。いくつかの実施形態は、1つの位置にセンサーアレイ112を含むプローブを保持するように構成された追加的な装置、例えば、長尺アームを含む。このような実施形態によると、ユーザーは、手動で、又は、装置に結合された動作コンピュータに命令を入力することにより装置を調節し、結果として、装置が関心領域にわたって、例えば、胸部領域にわたって超音波センサーアレイ112を配置する。他の実施形態において、ユーザーは、走査が実施されている間、対象者の表面における1つの位置に手動で超音波センサーアレイ112を含むプローブを簡単に保持する。さらに違う他の実施形態において、超音波センサーアレイ112を含むプローブは、接着剤、又は、イメージングされる対象者の表面にプローブを固定するように構成された1つ若しくは複数のストラップを含む。
[023] データ獲得ユニット110は、例えば、超音波センサーアレイ112に結合された、マイクロビーム形成器、又は、マイクロビーム形成器と主ビーム形成器との組み合わせを備えるビーム形成器116をさらに含む。ビーム形成器116は、例えば、超音波パルスを集束されたビームに形成することにより、超音波エネルギーの送信を制御する。ビーム形成器116は、識別可能な画像データが他のシステムコンポーネントの補助を受けて生成及び処理されるように、超音波信号の受信を制御するようにさらに構成される。ビーム形成器116の役割は、異なる超音波プローブの多様性により様々である。いくつかの実施形態において、ビーム形成器116は、2つの別々のビーム形成器、すなわち、対象者内への送信のために超音波エネルギーのパルス状シーケンスを受信及び処理するように構成された送信ビーム形成器、並びに、受信された超音波エコー信号を増幅する、遅延させる、且つ/又は加算するように構成された別の受信ビーム形成器を備える。いくつかの実施形態において、ビーム形成器116は、それぞれ送信ビーム形成と受信ビーム形成との両方に対してグループ入力及び出力に対して動作する主ビーム形成器に結合された、送信ビーム形成と受信ビーム形成との両方のためにセンサー要素のグループに対して動作するマイクロビーム形成器を備える。
[024] データ獲得ユニット110の動作は、走査ライン制御装置120により制御される。走査ライン制御装置120はデータ獲得ユニットに物理的に、動作可能に、及び/又は通信可能に結合される。走査ライン制御装置120は、イメージングされる所望の物体114の標示129を受信するように、且つ、この標示に基づいて、3Dボリュームを走査するようにデータ獲得ユニット110を操作するように構成された、1つ又は複数のプロセッサ、例えば、演算モジュール又は回路を含む。物体114は、例えば、心臓、及び/又は、その副次的部分、例えば、心臓の左心室を含む、1つ若しくは複数の身体構造物又は組織を含む。他の可能な物体の非網羅的なリストは、様々な臓器、例えば、腎臓、骨、血管、内部空洞、及び/又は、界面、例えば、肺の胸膜界面を含む。物体114を選択することにより、ユーザーは、物体の超音波画像の品質を増加、強化、及び/又は最大化する対象走査ラインパターン125を特定するために必要な走査を始めるように走査ライン制御装置120に効果的に命令する。各走査ラインパターン125は、形状及び配向という観点において異なる。例えば、走査ラインパターン125は、(図1において破線により示される)画像面、錐台、セクター、スラブ(複数の組み合わされた画像面)、又は均等に離隔した走査ラインのウェッジを含む。
[025] 走査ライン制御装置120におけるその受信前、イメージングされる物体114の標示129は、制御装置120を介して、超音波センサーアレイ112に動作可能に、物理的に、及び/又は通信可能に結合されるユーザーインターフェース124において最初に受信される。ユーザーインターフェース124は、ユーザーから手動による、電子的な、及び/又は無線による入力を受信するように構成される。いくつかの例において、ユーザーインターフェース124は、タッチスクリーンである。ユーザーインターフェース124は、ユーザー選択のための複数の選択肢又はプリセットを含み、各選択肢が、イメージングされる少なくとも1つの患者物体を表す。例えば、1つの選択肢は「肺胸膜界面」と表示する一方で、別の選択肢が「左心室」と表示する。ユーザーインターフェース124に表示された選択肢を選択することは、選択された物体114を探索している患者の3Dボリュームを自動的に走査するように、送信走査ライン制御装置120の方向にデータ獲得ユニット110の超音波センサーアレイ112を駆動する。いくつかの例において、超音波センサーアレイ112は、ユーザーインターフェース124において第2の選択肢が選択されるまで走査を始めない。選択可能な第2の選択肢は、例えば、「自動最適化」又は「検索開始」を含む。
[026] 、ユーザーインターフェース124からイメージングされる物体114の標示129を受信したことに応答して、制御装置120は、超音波データ獲得ユニット110、特に、超音波センサーアレイ112を、複数の走査ラインパターンに従って超音波ビーム111を送信するように、且つ、信号115を受信するように自動的に制御するように構成される。いくつかの例において、各走査ラインパターンは、3Dボリューム113を通る単一の画像面に対応するデータ、例えば、画像データを獲得するように構成される。3Dボリュームは、ユーザーにより選択された物体114を含む。例えば、選択された物体114が心臓である場合、制御装置120の方向において超音波センサーアレイ112により走査される3Dボリュームは、対象者の胸部領域である。セット的に複数の走査ラインパターンが3Dボリューム全体を走査するように、異なる走査ラインパターンが走査中に物体114を含むボリュームを通して連続的にステップ状にされる。
[027] 様々な実施形態において、手法であって、その手法により複数の走査ラインパターンが生成され、及び/又は、3Dボリュームを通して掃引される手法は異なり、利用されている超音波センサーアレイ112のタイプに依存する。例えば、マトリックスプローブを利用する実施形態は、異なる時点においてトランスデューサー要素の異なるグループを有効化することにより、及び、トランスデューサー要素のグループにおける送信パルス及び検出された受信パルスのタイミングを制御することにより、すなわち、送信及び受信ビーム形成により、ボリュームを通して超音波ビーム111を電子的に操縦することを伴う。特に、マトリックスプローブは、3Dボリューム全体が走査されるまでエレベーション方向において連続的にステップ状とされたアジマス走査面に沿った複数の個々の走査ラインを送信するように構成される。この手法により、複数の走査ラインパターンを電子的に操縦することは、一連のラスター式走査面を生成する。他の例において、マトリックスプローブは、中心走査ラインの周りで回転角を変化させることにより、3Dボリュームを通してアジマス又はエレベーション走査面を回転させるように構成される。マトリックスプローブを使用して異なる走査ラインパターンを生成する追加的なモードも、本開示により実施される。
[028] 他の実施形態は、3Dボリュームにわたってトランスデューサー要素のアレイを機械的に操縦するように構成された1Dアレイプローブを使用する。特定の実施形態において、1Dアレイが弧にわたって振り子様手法により掃引されることにより、そこから生成された2D走査面のセットが3Dボリュームを形成する。このような機械的操縦は、超音波センサーアレイ112に物理的に又は動作可能に結合されたモーターにより駆動される。
[029] いくつかの実施形態において、走査ライン制御装置120は、対象ボリューム113にわたって超音波ビーム111が操縦される速度を制御するようにさらに構成される。例えば、いくつかの状況において、ボリュームを通した比較的速い掃引が所望されるのに対し、他の状況においては、より遅い速度がより適切である。例えば、心臓といったイメージングされる物体が継続的に動いている場合、超音波センサーアレイ112が異なる走査ラインパターン間において切り替わる速度は、その各構成において物体114の画像データを捕捉するために低減される。低減は、典型的には、パターンにおける走査ラインの数を減らす(例えば、空間を設けてさらに走査ラインを離隔するように広げる)ことにより、又は、所与の送信ビームの非常に近傍における複数の平行受信ビームを処理することにより達成される。より具体的には、走査ライン制御装置120は、次の走査ラインパターンに切り替わる前の約0.5から約1.5秒のインターバルにおいて個々の走査ラインパターン125に沿って超音波ビーム111を送信するように超音波センサーアレイ112を方向付けする。このアプローチは、各心拍に関係した心臓組織の完全な拡張及び収縮を通して、例えば、所与の画像面に沿って、各走査ラインパターンが心臓の超音波データを捕捉することを確実なものとする。同様の調節は、対象者が吸気及び呼気するときに発生する肺の形状及び断面積の変化を考慮に入れるために、肺をイメージングするために実施される。時間インターバルは、異なる特徴に対して異なる。様々な実施形態において、走査速度は、ユーザーにより規定及び/若しくは調節され、又は、走査ライン制御装置120により自動的に選択される。
[030] 図1にさらに示されるように、信号プロセッサ118などの少なくとも1つのプロセッサが、超音波センサーアレイ112に通信可能に、動作可能に、及び/又は物理的に結合される。信号プロセッサ118は、送信された超音波ビーム111に応答して、超音波センサーアレイ112において受信された信号115から複数の画像データセット119を生成するように構成される。画像データセット119の各々は、単一の走査ラインパターン125に対応する。画像データにおいて具現化された情報は、様々な物体の外観に関係し、イメージングのためにユーザーにより選択された特定の物体114が挙げられるがこれに限定されない。データは、物体114に関係した1つ若しくは複数の特徴の空間的位置及び/又は明るさの強度に関する情報をさらに含む。信号プロセッサ118により収集された画像データは、選択された物体114に基づいてデータプロセッサ122により特定の情報のために受信及び分析される。
[031] 図1に示される例は、データ獲得ユニット110に結合されたデータプロセッサ122を示す。実施形態において、データプロセッサ122は、データ獲得ユニット110の1つ又はすべてのコンポーネントに動作可能に、物理的に、及び/又は通信可能に結合される。特定の例において、データプロセッサ122は、信号プロセッサ118に直接結合されるので、信号プロセッサにより生成された画像データセット119は、データプロセッサによりすぐに受信及び処理される。信号プロセッサ118から受信されたデータを分析する前に、データプロセッサ122は、ユーザーにより選択された物体114に基づいて特徴121を選択するように構成される。いくつかの例において、特徴121の選択は、制御装置120における特徴の標示129の受信後、データプロセッサ122によりすぐに実施され、制御装置120は、図1にさらに示されるように、データプロセッサ122にも結合される。データプロセッサ122は、各物体114を1つ又は複数の特徴121及び対象特性123に関係付けるようにプログラムされる。
[032] 概括的には、特徴121は、イメージングされる物体114の特徴的な標示であり、したがって物体ごとに異なる。特徴121は、物体114の有形の物理的特性、又は、超音波イメージングの視覚アーチファクトである。例えば、イメージングされる物体114が肺である場合、特徴121は、胸膜ライン及び/又は1つ若しくは複数のAラインを含む。胸膜ライン、又は胸膜界面は、胸壁と肺との間における物理的境界である。胸膜ラインの検出は、肺の満足のいく画像が取得されたことを示す。胸膜ラインの検出は、特定の症状、例えば、ラングスライディングを監視するためにさらに重要である。Aラインは、対照的に、超音波ビームが直交した角度で胸膜界面から反射したとき、特に明るくなる反響する超音波エコーにより生成された視覚アーチファクトにすぎない。Aラインは、胸膜ラインの深さの複数の距離に現れる。胸膜ライン及び1つ又は複数のAラインの特定は、文献の全体が参照により本明細書に組み込まれるBalasundarらによる「Target Probe Placement for Lung Ultrasound」を名称とする関係する米国特許出願において開示されている処理技術のうちの任意のものにより実施される。別の一例として、イメージングされる物体114が腎臓である場合、特徴121は、例えば、各々が粗い反射面のカラードップラーイメージング中における入れ替わる色の別個の集束として現れる1つ又は複数の明滅アーチファクトを含む。
[033] 超音波データ獲得ユニット110により生成された複数の走査ラインパターン125の中から、データプロセッサ122が、物体114に特有な対象特性123に関して画像データセット119を評価するように、且つ、対象特性123を含む画像データセットを特定するように構成される。対象特性123、及び、対象特性123を評価するように実施される手段は、実施形態において異なる。いくつかの実施形態において、対象特性123は、物体114に特有な特徴121の存在である。例えば、物体114が肺である実施形態において、特徴121は、複数のAラインを含み、対象特性123は、Aラインの存在を含む。このような実施形態によると、プロセッサ122は、Aラインを含む画像データセット119に対応する走査ラインパターン125を後続のイメージングのために選択するように構成される。様々な例において、対象特性123は、低エコー又は高エコーである特徴121の長さ及び/又は断面積を含む。いくつかの例において、対象特性123は、画像品質閾値を満たす物体114の特性又は物体114の特徴121を含む。閾値は、最大値、最小値、又は事前設定値である。例えば、処理パワーが制限されるモバイル超音波用途では、画像品質閾値は、固定の、又は少なくともよりポータブル性の低いシステム、例えば、概してより多くの処理リソースをもつ自動車ベースのシステムより低い事前設定値により満たされる。特定の実施形態において、対象特性123は、物体114に特有な特徴121の強度レベルである。強度レベルは複数の画像データセットにおいて獲得された特徴121の測定された強度レベルを比較することにより特定された最大若しくは最小強度レベルであるか、又は、強度レベルは既定の値である。したがって、データプロセッサ122は、複数の画像データセット119を比較することにより、対象特性123に関して画像データセット119を評価するように構成される。実施形態において、画像データセットは、例えば、走査ラインパターン125が調節されながら、又は、完全な走査の終了時に、フレームごとに反復して比較される。ここまでに説明されている肺の例では、例えば、データプロセッサ122は、胸膜ライン及び/又は1つ若しくは複数のAラインの明るさを最大化する走査ラインパターン125を特定するように構成される。別の一例において、イメージングされる物体114は、血管、例えば、動脈又は静脈であり、データプロセッサ122は、その血管の断面積が最大化される走査ラインパターン125を特定するように構成される。別の一例において、データプロセッサ122は、心臓の左心室の低エコーエリアが最大化される走査ラインパターン125を特定するように構成される。別の一例において、データプロセッサ122は、僧帽弁などの1つ又は複数の心臓弁の最大の長さを含む走査ラインパターンを特定するように構成される。さらに違う別の一例において、データプロセッサ122は、対象者の内部空洞内における腸ガスの最小量を含む走査ラインパターン125を特定するように構成される。追加的な例において、データプロセッサ122は、特徴121又はその副次的特徴が強度又は分解能閾値を上回ったときを特定することにより物体114の対象特性123を特定する1つ又は複数の閾値処理アルゴリズムを適用するように構成される。
[034] イメージングされる物体114に関係した1つ若しくは複数の特徴121、及び/又は、データプロセッサ122により評価された対象特性123に応じて、データプロセッサにより利用される特定の種類のデータは、さらに異なる。例えば、低エコー又は高エコー特徴121の異なる物理的パラメータ、例えば、断面幅、長さなどを特定及び測定することは、データ獲得ユニット110により集められたグレースケール画像データを分析することにより実施される。対照的に、明滅アーチファクト分析は、走査変換データにおいて特定されたカラーフロー(ドップラー)信号を処理することにより実施される。2D画像面に沿った特定の位置に存在するガス物質、例えば、腸ガスの量を特定するために、グレースケール画像処理の前に高調波信号がデータプロセッサ122により処理される。信号プロセッサ118などの信号プロセッサは、このような多岐にわたる種類の超音波データを導出するように、且つ、データプロセッサ122にこのデータを伝えるように構成される。データプロセッサ122は、1つ又は複数の実施形態においてBモード、ドップラー、及び/又は、カラーモードデータを分析するその能力に基づいて、様々な特徴を分析するように構成される。
[035] 対象特性123を含む画像データセット119を特定した後、データプロセッサ122は、特定された画像データセットに対応する走査ラインパターン125を選択するように構成される。データプロセッサ122によりなされた判定に基づいて、走査ライン制御装置120は、物体114の超音波画像を生成するために対象走査ラインパターン125に従って超音波ビーム111を出射するように、超音波センサーアレイ112を自動的に操縦するように構成される。この手法により、超音波プローブのユーザー操作も、ユーザーインターフェースに表示されたいかなる画像面のユーザーの解釈も伴わずに、物体114が対象走査ラインパターン125によりイメージングされる。
[036] 対象走査ラインパターン125に沿って取得された物体114の画像は、画像品質を示す1つ又は複数の閾値を満たす。例えば、物体の分解能は、閾値レベルを満たす。いくつかの例において、画像内に現れる物体の量は、閾値を上回る。別の一例において、画像内に現れる物体の強度は、閾値を上回る。
[037] ユーザーインターフェース124は、超音波データ獲得ユニット110を介して取得された、及び、データプロセッサ122を介して処理された超音波画像を表示するように構成されたディスプレイスクリーンを含む。いくつかの例において、ディスプレイスクリーンは、1つ又は複数の走査ラインパターンを介して取得された特定の画像のみを選択的に表示することにより、3Dボリュームを走査している間に取得された他の画像の表示を防ぐように構成される。例えば、いくつかの実施形態において、ディスプレイスクリーンは、他の走査ラインパターンからの画像を表示せずに対象走査ラインパターン125に応答して取得された物体の画像を表示のみとするように構成される。ユーザーインターフェース124は、走査中及び/又は走査後に超音波画像を表示するためのスクリーンをさらに含む。例えば、対象走査ラインパターン125が特定された後、走査ライン制御装置120は(例えば、動きが検出されるまでボリュームの他の部分を走査することなく)対象走査ラインパターン125に従うだけで(例えば、リアルタイムで)追加的な画像を取得するようにセンサーアレイ112を自動的に制御し、及び、追加的な画像がディスプレイにリアルタイムで表示される。いくつかの実施形態において、ユーザーインターフェース124は、対象走査ラインパターン125が特定された後にのみ、超音波画像を表示するように構成されるので、対象とされた走査ラインパターンを使用して取得された選択された特徴の画像のみが視認可能となる。他の実施形態において、スクリーンが対象走査ラインパターン125を介して取得された画像を表示するとき、ユーザーインターフェース124が、ディスプレイスクリーンに標示、例えば、グラフィック又はアイコンを表示するように構成される。
[038] 走査ライン制御装置120は、3Dボリュームを自動的に再走査するように、且つ、センサーアレイ112の動きの検出後に3Dボリュームから画像データを再獲得するように、超音波センサーアレイ112を制御するようにさらに構成される。例えば、ユーザー若しくは患者が超音波センサーアレイ112を意図せず、又は意図的に第1の位置から第2の位置に動かす場合、画像データの再獲得が必要である。第2の位置におけるセンサーアレイ112の異なる位置及び/又は角度配向に起因して、以前に特定された対象走査ラインパターン125は、もはや対象特性123を含む画像データを獲得しないので、対象走査ラインパターン125を再特定するために、及び、物体114をイメージングするために3Dボリュームの新たな走査を必要とする。
[039] 特徴をイメージングするための対象走査ラインパターン125を特定した後、システム100は、追加的な自動処理ステップを実施するようにさらに構成される。例えば、肺がイメージングされる場合、システム100は、ラングスライディング、血管外肺水分評価のためのBライン、及び/又は、肺炎を示す組織/流体の硬化を検出するように構成される。様々な症状が、システム100にプログラムされ、及び、イメージングされる各特徴に関係付けられる。いくつかの実施形態は、イメージングされた特徴の追加的な調査が行われるか否かを制御するための、ユーザーに対する選択肢を含む。このような選択肢は、対象走査ラインパターン125が特定された前及び/又は後に選択される。
[040] 追加的な実施形態において、システム100は、特定の時間長にわたって連続的な、又は少なくとも反復的な処理を実施するように構成される。特に、システム100は、対象走査ラインパターン125を定期的に特定するように構成され、物体114の最適画像が手作業による介入を必要とせず経時的に取得されるように、必要に応じて走査ラインパターン調節を実施する。特定の状況は、この種類の連続的な処理を必要とする。例えば、ICUにおける患者は、肺の反復した監視を必要とする。このような場合において、超音波センサーアレイ112は、接着剤又は他の手段を使用して患者の胸部に結合され、対象走査ラインパターン125を特定するための手順が指定されたインターバルで反復される。
[041] システム100は、例えば、気胸、肺炎、及び心不全といった多くの症状を診断及び/又は評価するために使用される。
[042] 図2は、本発明の原理により構築された超音波イメージングシステム200を示す。図2に示される1つ又は複数のコンポーネントは、1つ又は複数の選択された特徴をイメージングするための対象走査ラインパターンを特定するように構成されたシステム内に含まれる。例えば、走査ライン制御装置120及びデータプロセッサ122の上述の機能のうちの任意のものは、例えば、コンピュータにより実行可能な命令を介して既存のシステム200のプロセッサにプログラムされる。いくつかの例において、データプロセッサ122の機能は、例えば、Bモードプロセッサ228、スキャンコンバーター230、多断面再形成器232、及び/又は、画像プロセッサ236を含む図2に示される処理コンポーネントのうちの1つ又は複数により実施及び/又は制御される。
[043] 図2の超音波イメージングシステムでは、超音波プローブ212は、複数の走査ラインパターンに沿って超音波を送信するための、及び、エコー情報を受信するためのトランスデューサーアレイ214を含む。トランスデューサーアレイ214は、個々に有効化されるように構成された複数のトランスデューサー要素を含むマトリックスアレイである。他の実施形態において、トランスデューサーアレイ214は、一次元線形アレイである。トランスデューサーアレイ214は、アレイにおけるトランスデューサー要素による信号の送信と受信とを制御するプローブ212内におけるマイクロビーム形成器216に結合されている。示される例において、マイクロビーム形成器216は、送信と受信との間で切り替わる、且つ、高エネルギー送信信号から主ビーム形成器222を保護する送信/受信(T/R)スイッチ218にプローブケーブルにより結合されている。いくつかの実施形態において、T/Rスイッチ218及びシステムにおける他の要素は、別々の超音波システム基体内ではなくトランスデューサープローブに含まれ得る。マイクロビーム形成器216の制御下におけるトランスデューサーアレイ214からの超音波ビームの送信は、T/Rスイッチ218に結合された送信制御装置220及びビーム形成器222により方向付けされ、ビーム形成器222は、ユーザーインターフェース又は制御パネル224のユーザーの操作から入力、例えば、イメージングされる特徴の標示を受信する。送信制御装置220により制御される機能のうちの1つは、ビームが操縦される方向である。ビームは、トランスデューサーアレイからまっすぐに(トランスデューサーアレイに直交して)、又は、より幅の広い視野のために異なる角度で操縦される。マイクロビーム形成器216により生成された部分的にビーム形成された信号が主ビーム形成器222に結合され、主ビーム形成器222において、トランスデューサー要素の個々のパッチからの部分的にビーム形成された信号が、完全にビーム形成された信号へと組み合わされる。
[044] ビーム形成された信号は、信号プロセッサ226に結合される。信号プロセッサ118と同様に、信号プロセッサ226は、様々な手法、例えば、帯域通過フィルタ処理、デシメーション、I成分とQ成分との分離、及び高調波信号分離により、受信されたエコー信号を処理する。信号プロセッサ226により使用される異なる処理技術により生成されたデータは、異なる物体、特徴、対象特性、及び/又はそのパラメータを特定するために、データプロセッサにより使用される。信号プロセッサ226は、追加的な信号強調、例えば、スペックル低減、信号コンパウンディング、及びノイズ除去をさらに実施する。処理された信号はBモードプロセッサ228に結合され、Bモードプロセッサ228は、例えば、心臓、肺の胸膜界面、及び/又は1つ若しくは複数の血管といった体内における構造物のイメージングのために、振幅検出を使用し得る。Bモードプロセッサにより生成させられた信号は、スキャンコンバーター230及び多断面再形成器232に結合される。スキャンコンバーター230はエコー信号を、所望の像形式で、エコー信号が受信された元の空間的関係により配置する。例えば、スキャンコンバーター230は、エコー信号を二次元(2D)セクター形の形式に配置する。多断面再形成器232は、身体のボリュメトリック領域における共通面における点から受信されたエコーを、米国特許第6,443,896号(Detmer)において説明されているように共通面の超音波画像に変換し得る。画像は、像ディスプレイ238における表示のためのさらなる強調、バッファリング、及び、一時的な記憶のために、スキャンコンバーター230及び多断面再形成器432から画像プロセッサ236に結合される。グラフィックプロセッサ236は、超音波画像を使用した表示のためにグラフィックオーバーレイを生成し得る。これらのグラフィックオーバーレイは、例えば、標準的な特定情報、例えば、患者名、画像の日時、イメージングパラメータなどを含み得る。グラフィックオーバーレイは、対象走査ラインパターンが取得されたこと、及び/又は、システム200が対象走査ラインパターンを特定する工程にあることを示す1つ又は複数の信号をさらに含む。グラフィックプロセッサは、ユーザーインターフェース224から打ち込まれた患者名などの入力を受信する。ユーザーインターフェース224は、システム200により使用される設定及び/又はパラメータの調節を促す入力をさらに受信する。ユーザーインターフェースは、複数の多断面再形成(MPR)画像の表示の選択及び制御のために多断面再形成器232にさらに結合され得る。
[045] 図3は、本開示の原理による超音波イメージング方法のブロック図である。図3の例示的な方法300は、特定の身体的物体又はその特徴をイメージングするために使用される、走査ラインパターンを最適化又は改善するための本明細書において説明されるシステム及び/又は装置により任意の順序で利用されるステップを示す。方法300は、超音波イメージングシステム、例えば、システム100、又は、例えば、モバイルシステム、例えば、Koninklijke Philips N.V.(「Philips」)によるLUMIFYといった他のシステムにより実施される。追加的な例示的なシステムとして、同様にPhilipsにより製造されるSPARQ及び/又はEPIQが挙げられる。
[046] 示される実施形態では、方法300は、ブロック310において、「対象者のボリュームをイメージングするようにプローブを制御することであって、イメージングすることが複数の走査ラインパターンに従って超音波信号を送信及び受信することを有する、制御すること」により始まる。走査ライン制御装置が、例えば、ブロック310に記載されたアクションを実行する。実施形態において、プローブは、マトリックス、直線、湾曲・直線、又はセクタープローブである。いくつかの例において、方法300は、プローブを制御する前に、イメージングされる物体の標示を受信することをさらに伴う。このような標示は、例えば、ユーザーインターフェースにおけるユーザー入力に応答して受信される。物体として、様々な臓器、臓器の副次的部分、又は様々な他の構造物が挙げられる。特定の一実施形態において、物体は肺である。
[047] ブロック312において、方法300は、「受信された超音波信号から複数の画像データセットを生成することであって、各画像データセットが、走査ラインパターンのうちの1つに対応する、生成すること」を伴う。1つ又は複数のプロセッサは、複数の画像データセットを生成することに関与する。プロセッサは、超音波プローブのサブコンポーネント、又は、そこに通信可能に結合された別のコンポーネントを備える。超音波ビームは、3Dボリュームを通して連続的にステップ状である(又は、例えば、回転させられる)ので、これらのビームに応答した超音波エコーの変換は、複数の別個の画像データセットをもたらす。各データセットが単一の走査ラインパターンに対応するので、各データセットを分析することは、対象とされた物体に関係した各走査ラインパターンの品質又は内容に関する情報もたらす。
[048] ブロック314において、方法300は、「ボリューム内における物体に特有な対象特性に関して画像データセットを評価すること」を伴う。画像データセットを評価するために様々なプロセッサが利用される。データセットは、複数のデータセットを比較することにより評価され、比較は、フレームごとに、又は完全な走査の終了時に行われる。特定の実施形態は、対象特性を特定するために、各データセット内における特定の特性に互いに重み付けすることをさらに伴う。
[049] ブロック316において、方法300は、「対象特性を含む画像データセットを特定すること」を伴う。対象特性は、物体に応じて異なる。いくつかの例において、対象特性は、走査前に、方法300を実施するシステムにより自動的に選択される。他の実施形態において、対象特性は、超音波プローブにおいて受信されたデータに基づいて、走査が実施された後に選択される。例えば、2つ以上の対象特性が、イメージングされる物体に関係する場合、データは、それらの対象特性のうちの1つのみが使用される走査ラインパターンから識別可能であることを明らかにする。この例において、対象特性は、デフォルト設定により選択される。追加的な例において、特定の対象特性が他より大きい優先度を割り当てられるので、特定の高優先度の対象特性を表す弱いエコー信号であっても、さらなる処理のためにその特性を選択するために十分である。対象特性は、画像品質閾値を満たす物体の特性、及び/又は物体に特有な特徴の強度レベルである。対象特性は、物体、例えば、肺に特有な、例えば、複数のAライン又は胸膜ラインといった特徴の単なる存在をさらに含む。いくつかの例において、対象特性を特定することは、画像データセットのうちの少なくとも1つにおける1つ又は複数の低エコー特徴及び/又は高エコー特徴を特定することを伴う。
[050] 方法300は、ブロック318において、「ボリュームの後続のイメージングのために、特定された画像データセットに対応する走査ラインパターンを選択すること」を伴う。対象特性を含む選択された走査ラインパターンは、他の走査ラインパターンに比べて物体の最適な画像を提供する。ブロック318は、また、選択された走査ラインパターンを、プローブ及びプローブに含まれるセンサーアレイを操作するために使用される制御装置に通信する1つ又は複数のプロセッサにより実施される。したがって、走査ラインパターンを選択した後、実施形態は、選択された走査ラインパターンに従って物体のリアルタイムの画像を取得することを伴う。これらの像は、ディスプレイスクリーンに表示される。
[051] いくつかの例において、方法は、ブロック318の後に続く。例えば、方法は、3Dボリュームを走査するために、又は、このような走査により収集されたデータを処理するために使用される1つ又は複数のパラメータを調節することをさらに伴う。例えば、方法300は、走査速度を選択することを伴う。走査速度は、超音波ビームが3Dボリュームを通して機械的に、又は電子的に掃引される速度を表す。選択された走査ラインパターンに従って調節される他のパラメータとして、送信焦点深度、送信パルス特性、走査ライン間隔、受信フィルタ処理帯域、空間コンパウンディングなどが挙げられ、すべて、当技術分野においてよく知られている超音波獲得及び処理である。
[052] 図4は、最適ではない走査ラインパターンから取得された肺超音波画像400を示す。図4は、Bモード画像に表示された肺410及び胸膜ライン412を示す。示されるように、胸膜ライン412が不明確であり、肺組織と空気との間の界面が、不鮮明且つ曖昧であると見受けられる。画像の鮮明さのこの欠如に起因して、胸膜ライン及び/又は肺の検査は困難であり、このことが、例えば、胸膜ライン検出に依存する1つ若しくは複数の補助的特徴を妨害するか、又は、さらには利用不能にする。図4を検査する臨床医は、例えば、胸膜界面の厚さ、及び/又は、ラングスライディングの発生といった、特定の肺特性を特定することができない場合がある。
[053] 図5は、本明細書において説明される実施形態による走査ラインパターンにおいて取得された肺超音波画像500を示す。図5は、胸膜ライン512及びAライン514を含む肺510を示す。図5は、選択された走査ラインパターンに沿って取得された物体の画像が表示されているときにスクリーンに表示されるインジケーター516の一例をさらに示す。図4と比べると、胸膜ライン512が気付くほどに、より明るく、より明確であり、及び別のやり方であれば、選択された走査ラインパターンにおいて、さらに視認可能となる。Aライン514は、胸膜ライン512の深さの約2倍に現れる。図5に表示されたインジケーター516は、画像500に示される肺及び/又は胸膜ライン512が選択された走査ラインパターンにより生成された画像を表すことをユーザーに示す。示される実施形態では、インジケーター516は緑色且つ三角形のグラフィックである。他の実施形態において、インジケーター516は、任意の他の形状、色、及び/又は寸法である。ユーザーインターフェースにおけるインジケーター516の位置は、さらに異なる。示されるように、インジケーター516は、左上の角に位置するが、他の例において、インジケーター516は、別の場所に位置する。いくつかの実施形態において、インジケーター516は、表示されたグラフィックをまったく含まず、代替的に、例えば、音声による手がかり、及び/又は、触覚刺激を含む。図5に示される画像500を使用することにより、臨床医は肺の様々な特性、及び、対象者の胸部領域における他の特徴を特定することが可能である。胸膜ライン及び/又は肺特徴検出に依存した自動特定工程は、また、画像500を使用して非常に簡単且つ正確に実施される。
[054] 本開示によるシステム及び方法は、様々な走査ラインパターンのうちの任意のものに沿って、超音波を送信すること、及び、超音波エコーを受信することを伴い、その2つの例が図6A及び図6Bに示される。図6Aにおける例において超音波プローブ600は、超音波信号を、例えば、走査ライン制御装置120(図示されていない)からの制御に応答して(センサーアレイを介して)送信するように、且つ、走査ラインパターン604をセット的に形成し、対象者内におけるボリュメトリック領域をイメージングするために使用され得る複数の走査ライン602に沿ってエコーを受信するように構成されている。図6Aに示される走査ラインパターン604は、超音波信号がセンサーアレイの視野内におけるすべての走査ラインに沿って送信されるので、「完全な調査パターン」と呼ばれる。走査ラインパターン604は、本明細書の本開示により、関心のある物体又はその特徴のためにボリュームを走査するために使用される。他の例において、本開示による走査ラインパターンが、すべてのラインに沿って送信及び/又は受信するものでない場合があるが、代替的に、関心領域を超音波により走査するようにアレイの1つ又は複数の選択開口(例えば、要素の部分セット)を活性化することが理解されよう。
[055] 図6Bは、本開示の原理に従って使用される別の例示的な走査ラインパターンの図である。図6Bにおいて、超音波プローブ606は、第2の走査ラインパターン610に従って複数の走査ライン608に沿って超音波エネルギーを(センサーアレイを介して、及び、制御装置に応答して)送信及び受信するように構成されている。示されるように、第2の走査ラインパターン610において超音波エネルギーは、図6Aに示される走査ラインパターン604において使用されるものと比較してみると、走査ラインの部分セットに沿ってのみ送信及び/又は受信される。第2の走査ラインパターン610は、2つの直交した走査面612及び614に対するイメージングデータを取得するために使用され得、各画像面は、それぞれの平面において複数の走査ラインに沿って受信された信号から再構成される。例えば、超音波エネルギーが概してアレイの中心内においてラインに沿って送信される、且つ外向きに放射するラジアル走査ラインパターン、又は、走査ラインが概して互いに平行である走査ラインパターンといった、他の走査ラインパターンが他の実施形態において使用される。
[056] 図6A及び図6Bに示される、且つ説明される3D走査ラインパターン604、610は、多くの可能な変形例のうちのいくつかの例を表すにすぎない。例えば、所与の走査ラインパターンは、平面612及び614などの1つ又は複数の別個の走査面を含む。走査面は、交差し、重なり、又は離れたまま留まり、例えば平行である。しかし、走査面は例示的な走査ラインパターンを構成するにすぎない。したがって、他の実施形態における走査ラインパターンは、走査面を含まないものであり、代替的に、異なる手法により配置された走査ラインのパターンを特徴とする。いくつかの実施形態において、走査ラインパターンは、弓形、点状であり、又は、様々な形状、例えば、錐台、スラブ、若しくはウェッジを含む。走査ラインパターンは、近づくが交差しない走査ラインを含む。本明細書において開示されるシステムは、要素遅延を調節することにより様々な走査ラインパターン間において交替し、結果として、関心のある物体の対象特性に対するボリューム全体を調査するように構成される。
[057] もちろん、本明細書において説明される例、実施形態、又は工程のうちの任意の1つが、1つ若しくは複数の他の例、実施形態、及び/又は工程と組み合わされること、或いは、本システム、デバイス、及び方法に従って別々のデバイス又はデバイスの部分の間で分離及び/又は実施されることが理解される。上述の説明は本システムの例示にすぎないことが意図されており、添付の特許請求の範囲を任意の特定の実施形態又は一群の実施形態に限定すると解釈されてはならない。したがって、本システムは例示的な実施形態を参照しながら特に詳細に説明されているが、後述の特許請求の範囲に記載された本システムのより広い及び意図される趣旨及び範囲から逸脱することなく、多くの変更例及び代替的な実施形態が当業者により考えられることも理解されなければならない。したがって、本明細書及び図面は例示的な手法で考慮されるのであり、添付の請求項の範囲を限定するようには意図されない。

Claims (20)

  1. 対象者のボリュームをイメージングするようにプローブを制御する制御装置であって、前記イメージングすることが、複数の走査ラインパターンに従って超音波信号を送信及び受信することを含む、制御装置と、
    前記プローブと通信する1つ又は複数のプロセッサと、
    を備え、
    前記1つ又は複数のプロセッサが、
    受信された前記超音波信号から複数の画像データセットを生成することであって、各前記画像データセットが、前記走査ラインパターンのうちの1つに対応する、生成することと、
    前記ボリューム内における物体に特有な対象特性を選択することと、
    前記ボリューム内における前記物体に特有な前記対象特性に関して前記画像データセットを評価することと、
    前記対象特性を含む画像データセットを特定することと、
    前記ボリュームの後続のイメージングのために、特定された前記画像データセットに対応する前記走査ラインパターンを選択することと、
    を行う、
    超音波イメージングシステム。
  2. 前記対象特性が、画像品質閾値を満たす前記物体の特性である、
    請求項1に記載の超音波イメージングシステム。
  3. 前記対象特性が、前記物体に特有な特徴の強度レベルである、
    請求項2に記載の超音波イメージングシステム。
  4. 前記物体が肺であり、前記特徴が胸膜ラインである、
    請求項3に記載の超音波イメージングシステム。
  5. 前記対象特性が、前記物体に特有な特徴の存在である、
    請求項1に記載の超音波イメージングシステム。
  6. 前記物体が肺であり、前記特徴が、胸膜ラインの深さの複数の距離における複数のAラインである、
    請求項5に記載の超音波イメージングシステム。
  7. 前記走査ラインパターンが、画像面に対応する、
    請求項1に記載の超音波イメージングシステム。
  8. 前記対象特性が、前記物体に特有な特徴の長さ又は面積を含む、
    請求項1に記載の超音波イメージングシステム。
  9. 前記制御装置が、さらに、前記プローブの動きの検出時に前記複数の走査ラインパターンに従って前記超音波信号を再送信及び受信することにより、前記対象者の前記ボリュームをイメージングするように前記プローブを制御する、
    請求項1に記載の超音波イメージングシステム。
  10. 前記プローブをさらに備え、前記プローブが、マトリックスプローブであり、前記送信することが、前記超音波信号を電子的に操縦することを含む、
    請求項1に記載の超音波イメージングシステム。
  11. 前記プローブをさらに備え、前記プローブが、1Dアレイプローブであり、前記送信することが、前記超音波信号を機械的に掃引することを含む、
    請求項1に記載の超音波イメージングシステム。
  12. 、特定された前記画像データセットに対応する、前記走査ラインパターンを介して取得された前記物体の画像を、前記複数の走査ラインパターンのうちの他の走査ラインパターンを介して取得された画像を表示せずに表示するディスプレイスクリーンをさらに備える、
    請求項1に記載の超音波イメージングシステム。
  13. 前記制御装置が、選択された前記走査ラインパターンに従ってリアルタイムで画像を取得するように前記プローブを自動的に制御し、前記超音波イメージングシステムが、リアルタイムの画像を表示するディスプレイスクリーンをさらに備える、
    請求項1に記載の超音波イメージングシステム。
  14. 前記物体が、腎臓、心臓、血管、又は内部空洞を含む、
    請求項1に記載の超音波イメージングシステム。
  15. 対象者のボリュームをイメージングするようにプローブを制御するステップであって、前記イメージングすることが、複数の走査ラインパターンに従って超音波信号を送信及び受信することを有する、制御するステップと、
    受信された前記超音波信号から複数の画像データセットを生成するステップであって、各前記画像データセットが、前記走査ラインパターンのうちの1つに対応する、生成するステップと、
    前記ボリューム内における物体に特有な対象特性を選択するステップと、
    前記ボリューム内における前記物体に特有な前記対象特性に関して前記画像データセットを評価するステップと、
    前記対象特性を含む画像データセットを特定するステップと、
    前記ボリュームの後続のイメージングのために、特定された前記画像データセットに対応する前記走査ラインパターンを選択するステップと、
    を有する方法。
  16. 前記対象特性が、画像品質閾値を満たす前記物体の特性である、
    請求項15に記載の方法。
  17. 前記対象特性が、前記物体に特有な特徴の強度レベルである、
    請求項16に記載の方法。
  18. 前記対象特性が、前記物体に特有な特徴の存在である、
    請求項15に記載の方法。
  19. 前記物体が肺であり、前記特徴が、胸膜ラインの深さの複数の距離における複数のAラインである、
    請求項18に記載の方法。
  20. 1つ又は複数のプロセッサにより実行されたとき、超音波イメージングシステムが請求項15から19のいずれか一項に記載の方法を実施させる命令を含む、非一時的なコンピュータ可読媒体。
JP2019550193A 2017-03-16 2018-02-27 臓器視認のための最適走査面選択 Active JP7167048B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762472031P 2017-03-16 2017-03-16
US62/472,031 2017-03-16
PCT/EP2018/054838 WO2018166789A1 (en) 2017-03-16 2018-02-27 Optimal scan plane selection for organ viewing

Publications (3)

Publication Number Publication Date
JP2020509862A JP2020509862A (ja) 2020-04-02
JP2020509862A5 JP2020509862A5 (ja) 2021-04-08
JP7167048B2 true JP7167048B2 (ja) 2022-11-08

Family

ID=61899152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550193A Active JP7167048B2 (ja) 2017-03-16 2018-02-27 臓器視認のための最適走査面選択

Country Status (5)

Country Link
US (2) US11696745B2 (ja)
EP (1) EP3595534B1 (ja)
JP (1) JP7167048B2 (ja)
CN (1) CN110636799B (ja)
WO (1) WO2018166789A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111466948B (zh) * 2019-01-23 2023-04-07 宏碁股份有限公司 超声波扫描方法与超声波扫描装置
CN114431892B (zh) * 2020-10-30 2024-04-16 通用电气精准医疗有限责任公司 一种超声成像系统及超声成像方法
US20230148995A1 (en) * 2021-11-12 2023-05-18 Bfly Operations, Inc. Method and system for adjusting scan pattern for ultrasound imaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245936A (ja) 2004-03-08 2005-09-15 Toshiba Corp 超音波診断装置
JP2010284218A (ja) 2009-06-09 2010-12-24 Toshiba Corp 超音波診断装置及び医用画像処理装置
JP2011143250A (ja) 2010-01-12 2011-07-28 Samsung Medison Co Ltd スキャン角度、スキャン深さおよびスキャン速度を設定する超音波システムおよび方法
US20150002538A1 (en) 2013-06-26 2015-01-01 Samsung Electronics Co., Ltd. Ultrasound image display method and apparatus
JP2015500083A (ja) 2011-12-12 2015-01-05 コーニンクレッカ フィリップス エヌ ヴェ 心エコー検査のための自動的な画像化平面選択

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943015B2 (ja) * 1990-12-27 1999-08-30 ジーイー横河メディカルシステム株式会社 診断部位判別装置およびスキャンパラメータ設定装置
US6013032A (en) 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
ITSV20000027A1 (it) * 2000-06-22 2001-12-22 Esaote Spa Metodo e macchina per l'acquisizione di immagini ecografiche in particolare di tipo tridimensionale nonche' sonda di acquisizione
US6443896B1 (en) 2000-08-17 2002-09-03 Koninklijke Philips Electronics N.V. Method for creating multiplanar ultrasonic images of a three dimensional object
JP2004201864A (ja) * 2002-12-25 2004-07-22 Fuji Photo Film Co Ltd 超音波撮像装置及び超音波撮像方法
JP2007512870A (ja) * 2003-11-20 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーム形成の自動調節を有する超音波診断の画像化
US20060058651A1 (en) * 2004-08-13 2006-03-16 Chiao Richard Y Method and apparatus for extending an ultrasound image field of view
WO2008073560A2 (en) * 2006-10-06 2008-06-19 Verathon Inc. Systems and methods for lung imaging, pneumothorax detection and endotracheal tube insertion
WO2009044316A1 (en) 2007-10-03 2009-04-09 Koninklijke Philips Electronics N.V. System and method for real-time multi-slice acquisition and display of medical ultrasound images
JP2011072586A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 超音波診断装置、及び超音波診断装置の制御方法
JP5965898B2 (ja) * 2010-05-26 2016-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 高ボリュームレート3次元超音波診断画像化
US9668716B2 (en) 2010-12-10 2017-06-06 General Electric Company Ultrasound imaging system and method for ultrasound imaging a three dimensional volume
CN103402453B (zh) * 2011-03-03 2016-11-16 皇家飞利浦有限公司 用于导航系统的自动初始化和配准的系统和方法
CN103946717B (zh) * 2011-11-10 2016-12-21 皇家飞利浦有限公司 稳定帧速率体积超声成像
US9579016B2 (en) * 2012-06-15 2017-02-28 Oregon Health & Science University Non-invasive 3D imaging and measuring of anterior chamber angle of the eye
BR112015011288B1 (pt) * 2012-11-20 2022-06-21 Koninklijke Philips N.V. Sistema de diagnóstico por ultrassom para imagear múltiplos planos de um coração fetal; método para imagear por ultrassom uma pluralidade de diferentes planos de imagens selecionados de uma anatomia alvo, em tempo real; e método para imagear por ultrassom uma pluralidade de diferentes planos de imagens selecionados de um coração fetal, em tempo real
WO2015092628A1 (en) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. Ultrasound imaging systems and methods for tracking locations of an invasive medical device
EP3099243B1 (en) * 2014-01-27 2018-04-25 Koninklijke Philips N.V. An ultrasound imaging system and an ultrasound imaging method
EP4011298A1 (en) * 2014-11-18 2022-06-15 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
KR102438750B1 (ko) 2015-03-31 2022-08-31 삼성전자주식회사 아티팩트 제거 방법 및 이를 위한 진단 장치
US20160310110A1 (en) * 2015-04-23 2016-10-27 Siemens Medical Solutions Usa, Inc. Acquisition control for mixed mode ultrasound imaging
US10540764B2 (en) * 2016-05-09 2020-01-21 Canon Medical Systems Corporation Medical image capturing apparatus and method
FR3059541B1 (fr) * 2016-12-07 2021-05-07 Bay Labs Inc Navigation guidee d'une sonde ultrason
EP3554380B1 (en) 2016-12-13 2022-11-02 Koninklijke Philips N.V. Target probe placement for lung ultrasound
US10588596B2 (en) * 2017-03-14 2020-03-17 Clarius Mobile Health Corp. Systems and methods for detecting and enhancing viewing of a needle during ultrasound imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245936A (ja) 2004-03-08 2005-09-15 Toshiba Corp 超音波診断装置
JP2010284218A (ja) 2009-06-09 2010-12-24 Toshiba Corp 超音波診断装置及び医用画像処理装置
JP2011143250A (ja) 2010-01-12 2011-07-28 Samsung Medison Co Ltd スキャン角度、スキャン深さおよびスキャン速度を設定する超音波システムおよび方法
JP2015500083A (ja) 2011-12-12 2015-01-05 コーニンクレッカ フィリップス エヌ ヴェ 心エコー検査のための自動的な画像化平面選択
US20150002538A1 (en) 2013-06-26 2015-01-01 Samsung Electronics Co., Ltd. Ultrasound image display method and apparatus

Also Published As

Publication number Publication date
CN110636799B (zh) 2024-07-05
EP3595534B1 (en) 2024-06-19
US11696745B2 (en) 2023-07-11
EP3595534A1 (en) 2020-01-22
CN110636799A (zh) 2019-12-31
US20230301631A1 (en) 2023-09-28
JP2020509862A (ja) 2020-04-02
WO2018166789A1 (en) 2018-09-20
US20210137498A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
US20230301631A1 (en) Optimal scan plane selection for organ viewing
US20120116218A1 (en) Method and system for displaying ultrasound data
US20060058651A1 (en) Method and apparatus for extending an ultrasound image field of view
CN109310399B (zh) 医学超声图像处理设备
JP2007513726A (ja) 浸透、解像度及びフレームレートの自動制御を有する超音波画像診断システム
JP2021510323A (ja) 超音波撮像システム、装置、方法及び記憶媒体
EP3863522B1 (en) Methods and systems for determining complementary ultrasound views
CN113164156B (zh) 用于引导式超声数据采集的系统和方法
CN112867444B (zh) 用于引导对超声图像的采集的系统和方法
CN112912010A (zh) 用于导出与来自血管的流量有关的参数的方法和系统
EP2614777B1 (en) Method and apparatus for providing multi spectral doppler images
JP2008073423A (ja) 超音波診断装置、診断パラメータ計測装置及び診断パラメータ計測方法
EP4076208B1 (en) Systems and methods for assessing a placenta
EP4179978A1 (en) 3d ultrasound imaging with fov adaptation
EP3861935B1 (en) Ultrasound imaging apparatus and control method thereof
KR20180096342A (ko) 초음파 영상장치 및 그 제어방법
CN115243621A (zh) 三维超声成像数据的背景多平面重建以及相关联的设备、系统和方法
CN112672696A (zh) 用于跟踪超声图像中的工具的系统和方法
JP7535189B2 (ja) 腹直筋の超音波画像データの分析
US20240000430A1 (en) Processing ultrasound scan data
US20230225711A1 (en) Systems and methods for automatically determining and displaying a vascular depth measurement on an ultrasound image displayed on a device
KR102704209B1 (ko) 초음파 영상장치 및 그 제어방법
JP7216738B2 (ja) 三次元超音波画像の提供
JP2008048951A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7167048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150