JP7162574B2 - 制御装置および周波数特性の同定方法 - Google Patents

制御装置および周波数特性の同定方法 Download PDF

Info

Publication number
JP7162574B2
JP7162574B2 JP2019128472A JP2019128472A JP7162574B2 JP 7162574 B2 JP7162574 B2 JP 7162574B2 JP 2019128472 A JP2019128472 A JP 2019128472A JP 2019128472 A JP2019128472 A JP 2019128472A JP 7162574 B2 JP7162574 B2 JP 7162574B2
Authority
JP
Japan
Prior art keywords
moving image
mechanical system
frequency
camera
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019128472A
Other languages
English (en)
Other versions
JP2021015355A (ja
Inventor
暁生 斎藤
裕幸 関口
武之 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019128472A priority Critical patent/JP7162574B2/ja
Publication of JP2021015355A publication Critical patent/JP2021015355A/ja
Application granted granted Critical
Publication of JP7162574B2 publication Critical patent/JP7162574B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position Or Direction (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Description

本発明は、可動部の制御を行う制御装置および周波数特性の同定方法に関する。
電子部品実装機、半導体製造装置などの産業機械では、サーボモータ、リニアモータなどのアクチュエータの駆動により、実装ヘッドなどの可動部を目標位置に移動させる位置決め制御が行われている。また、産業機械には、ワークの形状のばらつき、ワークの変形、装置自体の熱膨張などによって発生する位置決め制御の位置誤差を抑制するために、可動部にカメラが取り付けられる場合がある。産業機械は、カメラが撮影した撮影画像を画像処理することによって得られた、可動部の位置と目標位置との相対位置に基づいて、位置誤差を補正することができる。
また、産業機械の位置決め制御のさらなる高速化および高精度化を実現するために、カメラの撮影画像に基づいて制御対象の機械系の周波数特性を同定する方法が知られている。カメラ撮影の露光時間および画像データの転送時間などの制約により、カメラ撮影の撮影周期は、アクチュエータの制御周期と比較して大きくせざるを得ない。このため、カメラの撮影画像に基づいて制御対象の機械系の周波数特性を同定する方法を用いて位置決め制御を行う場合、カメラ撮影の撮影周期のサンプリング周波数に基づいて算出されるナイキスト周波数以上の周波数帯域の周波数特性を得ることが困難となり、制御に必要な周波数特性を得ることができない場合がある。特許文献1では、制御対象の機械系を2慣性系に近似し、アクチュエータからのフィードバック値を用いて、ナイキスト周波数以上の周波数帯域を含む周波数帯域における機械系の周波数特性を同定する方法が開示されている。
特開2017-004033号公報
しかしながら、制御対象の低剛性部位の質量が小さい場合など、制御対象の振動特性がアクチュエータのフィードバック値に反映されにくい制御対象である場合、特許文献1に記載される方法の適用が困難である場合があるという問題があった。
本発明は、上記に鑑みてなされたものであって、アクチュエータのフィードバック値を用いることなくナイキスト周波数よりも高い周波数の周波数特性を同定することができる制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる制御装置は、可動部と、可動部の移動に伴って目標物との相対位置が変化し、目標物の静止画像および目標物の動画像を取得するカメラと、を有する機械系を制御する制御装置であって、カメラの撮影周期に基づくナイキスト周波数よりも高い周波数帯域を含む加振周波数を算出して出力する加振周波数算出部と、加振周波数に基づき加振指令を生成して出力する加振指令生成部と、加振指令に基づき可動部の駆動制御を行う駆動部と、機械系の時間応答および周波数特性の特徴を表す機械系応答特徴量の探索値と加振指令と静止画像とに基づき、カメラの露光時間中の相対位置の変化とカメラのセンサ特性とをシミュレーションすることで模擬動画像を生成する模擬動画像生成部と、動画像と模擬動画像とを比較することで、動画像と模擬動画像との誤差である動画像誤差を算出する動画像比較部と、探索値を変更し、変更された探索値のそれぞれに対応する動画像誤差を取得し、複数の動画像誤差を用いて動画像誤差を最小化する機械系応答特徴量の最適値を探索する探索部と、加振周波数と最適値とに基づき、機械系の周波数特性を算出する周波数特性算出部と、を備えることを特徴とする。
本発明によれば、アクチュエータのフィードバック値を用いることなくナイキスト周波数よりも高い周波数の周波数特性を同定することができる制御装置を得ることができるという効果を奏する。
実施の形態にかかる制御装置の構成を示す模式図 実施の形態にかかる制御装置の第1の状態を示す図 実施の形態にかかる制御装置の第2の状態を示す図 実施の形態にかかる制御装置の第3の状態を示す図 実施の形態にかかる制御装置の機能ブロックを示す図 実施の形態にかかる制御回路の構成例を示す図 実施の形態にかかる模擬動画像生成部の内部構成の一例を示すブロック図 実施の形態にかかる校正マークの静止画像の一例を示す図 実施の形態にかかる模擬動画像の第1の時刻のときの第1の画像を示す図 実施の形態にかかる模擬動画像の第2の時刻のときの第2の画像を示す図 実施の形態にかかる模擬動画像の第3の時刻のときの第3の画像を示す図 実施の形態にかかるフィルタの各ピクセル座標のフィルタ係数を図示した一例を示す図 実施の形態にかかる制御装置が位置決め制御をするときのデータの流れを示す図 実施の形態にかかる制御装置のX軸の周波数特性の同定の手順を示すフローチャート 実施の形態にかかる動画像誤差を最小化する機械系応答特徴量を算出する詳細な動作の一例を示すフローチャート 実施の形態にかかる複数の加振データから算出した機械系の周波数特性の一例を示す第1の図 実施の形態にかかる複数の加振データから算出した機械系の周波数特性の一例を示す第2の図
以下に、本発明の実施の形態にかかる制御装置および周波数特性の同定方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
図1は、実施の形態にかかる制御装置10の構成を示す模式図である。制御装置10は、制御部1と制御部1の制御対象である機械系2とで構成される。本実施の形態では、機械系2は、電子部品を基板上に実装する電子部品実装機である。機械系2は、X軸モータ200と、Y軸モータ201と、可動部となるヘッド部203と、カメラ202と、吸着ノズル204と、プリント基板搬送機構205と、を有する。X軸およびY軸は、水平方向に広がる平面内で互いに直交する軸であり、Z軸は、鉛直方向の軸である。
X軸モータ200およびY軸モータ201は、ヘッド部203の位置を変化させるアクチュエータである。なお、図1ではX軸モータ200とY軸モータ201はリニアモータを想定しているが、回転型のサーボモータとボールねじとを組み合わせるなど、他の直動機構を用いてもよい。
カメラ202は、ヘッド部203に固定されており、ヘッド部203の移動に伴って移動する。また、カメラ202は、視野内の静止画像および動画像である撮影画像を取得する。
ヘッド部203は、電子部品を実装する実装ヘッドであり、X軸モータ200およびY軸モータ201によって、プリント基板206の表面と平行に移動させられる。ヘッド部203は、吸着ノズル204を用いて、電子部品を保持したり、電子部品をプリント基板206上に載置したりする。
プリント基板搬送機構205は、プリント基板206を搬送する。プリント基板搬送機構205の表面には、あらかじめ定められた形状の校正マーク209が形成されている。校正マーク209は目標物である。カメラ202は、ヘッド部203の移動に伴って校正マーク209との相対位置が変化し、カメラ202の視野内の校正マーク209の静止画像および校正マーク209の動画像を取得する。
図2は、実施の形態にかかる制御装置10の第1の状態を示す図である。図3は、実施の形態にかかる制御装置10の第2の状態を示す図である。図4は、実施の形態にかかる制御装置10の第3の状態を示す図である。図2~4では、ヘッド部203の吸着ノズル204が電子部品208を吸着してから、目標実装位置207に電子部品208を配置するまでの動作を説明する。図2~4では、カメラ202の視野領域をVとして示す。また、図2~4では吸着ノズル204の中心軸をCとして示す。目標実装位置207は、例えば、はんだ付け用の銅箔つまり、ランドの位置であり、図2~4において斜線で示される。図2~4では、制御装置10は、ランドの位置を画像処理によって計測し、後述するデフォルト目標位置P0がランドの位置と一致するようにデフォルト目標位置P0の位置を修正する。
図2は、ヘッド部203の位置決め制御中において、目標実装位置207がカメラ202の視野領域V内に含まれていない状態を示している。この場合、制御部1は、プリント基板206の設計データに基づいてあらかじめ設定された電子部品208の位置であるデフォルト目標位置P0を用いてヘッド部203の位置決め制御を行う。しかし、プリント基板206の歪み、機械系2の熱膨張などにより誤差が生じ、本来、電子部品208を配置すべき位置である目標実装位置207がデフォルト目標位置P0と一致しない場合がある。このような場合、ヘッド部203をデフォルト目標位置P0に位置決めした状態で電子部品208をプリント基板206に配置すると、目標実装位置207とずれた位置に電子部品208を配置してしまうこととなる。
ここで、本実施の形態では、制御装置10は、目標実装位置207とデフォルト目標位置P0との誤差を補正しながら位置決め制御を行う。図3に示すように、ヘッド部203の位置決め制御を続けていくと、目標実装位置207がカメラ202の視野領域Vに入ってくる。カメラ202が目標実装位置207を視野領域V内に捉えると、制御部1は、画像処理により算出した吸着ノズル204と目標実装位置207との間の相対位置に基づき、目標実装位置207とデフォルト目標位置P0との誤差を補正しながら位置決め制御を行う。このような制御を行うことにより最終的に、図4に示すように吸着ノズル204の中心軸Cと目標実装位置207の中心位置とを一致させることができ、位置決め制御が完了する。
ここで、機械系2のヘッド部203、吸着ノズル204などの各機械要素は有限の剛性を有している、つまり低剛性部位である。このため、ヘッド部203を高加速度で駆動すると、ヘッド部203、吸着ノズル204などに振動が発生し、これらが制御装置10の位置決めの高速化を阻害する要因となる場合がある。画像処理によって算出した吸着ノズル204と目標実装位置207との間の相対位置を用いたフィードバック制御によって振動を抑制できればよいが、カメラ202の撮影の露光時間、カメラ202の画像データの転送時間などの制約により画像フィードバックの制御周期を高速化することは困難である。このため、画像フィードバックで振動を抑制することができる振動周波数は、画像フィードバックの制御周期から定まるナイキスト周波数よりも低い周波数に限られる。
ここで、本実施の形態では、制御装置10は、あらかじめ撮影した校正マーク209の静止画像と動画像とに基づき、機械系2の周波数特性を同定する。周波数特性を同定するときに用いる動画像は、機械系2をX軸モータ200またはY軸モータ201で加振しながら一定周期で校正マーク209を連続撮影することで得た動画像である。制御装置10は、この同定結果に基づいたフィードフォワード制御により機械系2の振動を抑制した位置決め制御を行う。
図5は、実施の形態にかかる制御装置10の機能ブロックを示す図である。制御部1は、加振周波数算出部101と、加振指令生成部102と、X軸駆動部103と、Y軸駆動部104と、探索部105と、模擬動画像生成部106と、動画像比較部107と、周波数特性算出部108と、振動パラメータ算出部109と、位置決め指令生成部110と、を備える。X軸駆動部103およびY軸駆動部104は駆動部である。
加振周波数算出部101は、あらかじめ設定された加振周波数の上下限値と、後述する周波数特性の同定の手順に基づき、ヘッド部203を駆動させる加振周波数を算出し、加振周波数を加振指令生成部102に出力する。ヘッド部203を駆動させる加振周波数は、カメラ202の撮影周期に基づくナイキスト周波数よりも高い周波数帯域を含む。加振指令生成部102は、加振周波数算出部101が出力した加振周波数の正弦波に基づく加振指令を生成し、X軸駆動部103およびY軸駆動部104に出力する。X軸駆動部103およびY軸駆動部104は、加振指令にX軸モータ200およびY軸モータ201が追従するように、X軸モータ200およびY軸モータ201のフィードフォワード制御およびフィードバック制御を実行することでヘッド部203の駆動制御を行う。
探索部105は、機械系2の時間応答および機械系2の周波数特性の特徴を表す量である機械系応答特徴量を後述する方法を用いて探索することにより機械系応答特徴量の最適値を算出する。また、探索部105は、模擬動画像生成部106に機械系応答特徴量の探索値を、周波数特性算出部108に機械系応答特徴量の最適値をそれぞれ出力する。機械系応答特徴量の探索値は、探索部105によって変更される。本実施の形態では、機械系応答特徴量として、加振周波数における機械系2の周波数特性のゲインと位相との組を用いる。本実施の形態では、機械系2を正弦波で加振しているため、制御対象の特性をゲインと位相だけでパラメトライズすることができる。また、探索部105は、カメラ202が撮影した動画像を取得する。機械系応答特徴量の探索値および機械系応答特徴量の最適値の算出方法の詳細については後述する。
模擬動画像生成部106は、機械系応答特徴量の探索値と、加振指令と、校正マーク209の静止画像とを用いて、露光時間中のカメラ202と校正マーク209との相対位置の変化、およびカメラ202のセンサ特性を後述の方法でシミュレーションする。このようにすることで、模擬動画像生成部106は、機械系2を加振しながらカメラ202で校正マーク209を連続撮影した結果を模擬した模擬動画像を生成する。模擬動画像生成部106の詳細な動作については後述する。
動画像比較部107は、機械系2を加振しながら校正マーク209を一定周期で連続撮影することで得た実際の動画像と、模擬動画像生成部106が出力した模擬動画像とを比較する。また、動画像比較部107は、実際の動画像と模擬動画像との誤差を表す量である動画像誤差、および動画像誤差の機械系応答特徴量に関する勾配を、探索部105に出力する。動画像誤差の算出方法は、例えば、同一時刻の画像同士の画素ごとに輝度値の差分を算出し、これらを2乗した量の全時刻および全ピクセルの合計値を動画像誤差とすることが挙げられる。または、輝度値の差分の2乗和の代わりに、輝度値の絶対値の和を使用することも可能である。
周波数特性算出部108は、加振周波数算出部101が出力した加振周波数と、探索部105が出力した機械系応答特徴量の最適値を用いて、加振周波数と加振周波数に対応した機械系応答特徴量の組を加振データとしてメモリに保存する。加振データを保存するメモリは、周波数特性算出部108に設けられていてもよいし、周波数特性算出部108の外部に設けられていてもよい。また、周波数特性算出部108は、後述する同定手順の最後のステップにおいて、複数の加振データを用いて機械系2の周波数特性を算出する。
振動パラメータ算出部109は、周波数特性算出部108が算出した機械系2の周波数特性に基づき、機械系2の振動パラメータを算出する。位置決め指令生成部110は、振動パラメータ算出部109が算出した振動パラメータに基づき、機械系2の振動を抑制した、ヘッド部203を目標実装位置207に移動させるために用いる指令である位置決め指令を生成する。また、位置決め指令生成部110は、生成した位置決め指令をX軸駆動部103およびY軸駆動部104に出力する。
本実施の形態にかかる制御部1のハードウェア構成について説明する。加振周波数算出部101、加振指令生成部102、X軸駆動部103、Y軸駆動部104、探索部105、模擬動画像生成部106、動画像比較部107、周波数特性算出部108、振動パラメータ算出部109、および位置決め指令生成部110は、各処理を行う電子回路である処理回路により実現される。
本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリなどが該当する。図6は、実施の形態にかかる制御回路400の構成例を示す図である。処理回路が、専用のハードウェアである場合、処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。
図6に示すように、制御回路400は、CPUであるプロセッサ400aと、メモリ400bとを備える。図6に示す制御回路400により実現される場合、プロセッサ400aがメモリ400bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ400bは、プロセッサ400aが実施する各処理における一時メモリとしても使用される。
図7は、実施の形態にかかる模擬動画像生成部106の内部構成の一例を示すブロック図である。模擬動画像生成部106は、予測値算出部301と、フィルタ算出部302と、移動画像生成部303と、を備える。
予測値算出部301は、加振指令と機械系応答特徴量とに基づき各時刻のカメラ202と校正マーク209との相対位置の予測値を算出する。相対位置の予測値は、カメラ202の各撮影周期におけるカメラ202の露光時間ごとに算出される。ここで、機械系2のX軸方向の周波数特性を取得するための加振方向をX軸方向とし、X軸モータ200を振幅A、加振周波数ωである加振指令u(t)で駆動させる場合、加振指令u(t)の時間関数は、式(1)で表すことができる。
Figure 0007162574000001
また、機械系応答特徴量のゲインをG、位相をφとすると、カメラ202と校正マーク209との相対位置x(t)の予測値hat(x(t))は、式(2)で表すことができる。なお、本明細書の文中において、ハット付の関数をhat(関数)と表す。
Figure 0007162574000002
フィルタ算出部302は、予測値算出部301が出力した相対位置の予測値hat(x(t))に基づき、カメラ202の各撮影周期における校正マーク209の平行移動と被写体ぶれを表すフィルタを算出する。ここで、k番目の撮影周期の露光開始時刻をT 、露光終了時刻をT 、露光時間をT、X軸の画像1ピクセルあたりの長さをΔXとする。このとき、k番目の撮影における校正マーク209の平行移動と被写体ぶれを表すフィルタFのピクセル座標Xにおけるフィルタ係数の算出式の一例は、式(3)のようになる。
Figure 0007162574000003
式(3)は、相対位置の予測値hat(x(t))をピクセル単位に変換した量でオフセットさせたデルタ関数を時刻[T ,T ]で積分したのち、周囲の±1/2ピクセルの範囲で平均をとったものである。なお、加振方向がY軸方向である場合は、式(1)~(3)のX軸に関する定数および変数を、Y軸に関する定数および変数に置き換えればよい。
移動画像生成部303は、静止画像にフィルタFを作用させることでカメラ202の各撮影周期における校正マーク209の平行移動と被写体ぶれを伴った画像を生成する。具体的には、移動画像生成部303は、フィルタ算出部302が出力した各撮影周期のフィルタFと校正マーク209の静止画像との畳み込み和を算出することでカメラ202の各撮影周期における校正マーク209の平行移動と被写体ぶれを伴った画像を生成し、生成した各撮影周期の画像をまとめることで模擬動画像を生成し、生成した模擬動画像を動画像比較部107に出力する。
図8は、実施の形態にかかる校正マーク209の静止画像の一例を示す図である。図8では、校正マーク209は、十字の形をしているが十字の形に限定されない。図9は、実施の形態にかかる模擬動画像の第1の時刻のときの第1の画像を示す図である。図10は、実施の形態にかかる模擬動画像の第2の時刻のときの第2の画像を示す図である。図11は、実施の形態にかかる模擬動画像の第3の時刻のときの第3の画像を示す図である。第1の画像、第2の画像、および第3の画像は、それぞれ移動画像生成部303が校正マーク209とフィルタFとを用いて生成した模擬動画像の、ある時刻における画像の一例である。例えば、第1の画像は模擬動画像の時刻[T ,T ]における画像である。
図12は、実施の形態にかかるフィルタFの各ピクセル座標のフィルタ係数を図示した一例を示す図である。図12において、フィルタ係数がゼロのピクセルは黒く描画されている。また、図12において、フィルタ係数がゼロでないピクセルは、フィルタ係数の大きさに応じて明るく、つまり白く描画されている。第1の画像、第2の画像、および第3の画像は、それぞれ校正マーク209と、図12に示すフィルタFとの畳み込み和を算出することで得ることができる。これらの動作を行うことで、模擬動画像生成部106は、機械系応答特徴量が与えられたときのカメラ202と校正マーク209との相対位置の時間応答を算出し、この時間応答に基づいて校正マーク209の平行移動と、被写体ぶれと、を考慮した模擬動画像を生成することができる。
図13は、実施の形態にかかる制御装置10が位置決め制御をするときのデータの流れを示す図である。図5では、加振指令生成部102が出力した加振指令が、X軸駆動部103およびY軸駆動部104に入力されていた。図13では、位置決め指令生成部110が出力した位置決め指令が、X軸駆動部103およびY軸駆動部104に入力されている。つまり、X軸駆動部103およびY軸駆動部104に入力されるデータは、機械系2を加振するときと位置決め制御をするときで異なる。
位置決め指令生成部110が位置決め指令を算出する方法について説明する。位置決め指令生成部110は、振動パラメータとして例えば、機械系2の機械特性を2慣性系で表した場合のX軸の反共振周波数ωと、機械系2の機械特性を2慣性系で表した場合のY軸の反共振周波数ωと、X軸の減衰係数ζと、Y軸の減衰係数ζと、を用いる。これらの計4つのパラメータを振動パラメータに選んだ場合、機械系2の振動を抑制した位置決め指令は、式(4)に基づいて算出することができる。
Figure 0007162574000004
ここで、r(t)およびr(t)は振動抑制前の位置決め指令を、u(t)およびu(t)は振動抑制後の位置決め指令をそれぞれ表している。また、L[・]はラプラス変換を表す。sはラプラス演算子を表す。M(s)およびM(s)は、あらかじめ設定されたX軸およびY軸の指令フィルタの伝達関数をそれぞれ表す。
制御装置10が機械系2の周波数特性を同定する手順について説明する。図14は、実施の形態にかかる制御装置10のX軸の周波数特性の同定の手順を示すフローチャートである。なお、Y軸の周波数特性の同定の手順は、図14においてX軸がY軸に書き換えられたフローチャートと同じ手順である。
位置決め指令生成部110は、X軸駆動部103およびY軸駆動部104を介してX軸モータ200およびY軸モータ201の位置決め制御を行うことで、カメラ202を校正マーク209の上方まで移動させる(ステップS1)。カメラ202は、模擬動画像生成部106に入力させるための、校正マーク209の静止画像を撮影する(ステップS2)。このとき、カメラ202は、1回撮影した静止画像を模擬動画像生成部106に出力してもよいし、静止画像を複数回撮影し、これらを平均化した画像を模擬動画像生成部106に出力してもよい。平均化した画像を用いることで、模擬動画像生成部106は、撮影画像に含まれるノイズの影響を低減して模擬動画像を生成することができる。
加振周波数算出部101は、あらかじめ設定された加振周波数の下限値を現在値にすることで初期化を行う(ステップS3)。なお、加振周波数算出部101は、加振周波数の下限値ではなく、あらかじめ設定された加振周波数の上限値を現在値にすることで初期化を行ってもよい。加振指令生成部102は、加振周波数算出部101によって設定された加振周波数の現在値と、あらかじめ設定された指令振幅とに基づき加振指令を生成し、X軸駆動部103を介してX軸モータ200を駆動することで、ヘッド部203のX軸方向の加振動作を開始する(ステップS4)。
カメラ202は、あらかじめ定められた撮影周期、露光時間、および撮影回数に基づき校正マーク209の動画像を撮影する(ステップS5)。このとき、ステップS4による加振動作が開始してから十分に時間が経過した後に撮影を開始することが望ましい。ステップS4の動作から十分に時間が経過した後に撮影を開始することで、加振動作開始時のヘッド部203の過渡的な応答の影響を排除することができる。あらかじめ定められた撮影回数の撮影が完了した後、加振指令生成部102は加振指令の生成を停止することで、ヘッド部203のX軸方向の加振動作を終了する(ステップS6)。
制御部1は、探索部105と、模擬動画像生成部106と、動画像比較部107と、を連携させることで、動画像誤差を最小化する機械系応答特徴量の最適値を算出する(ステップS7)。動画像誤差を最小化する機械系応答特徴量の最適値を算出する詳細な方法については後述する。ステップS7によって動画像誤差を最小化する機械系応答特徴量の最適値を算出した後、周波数特性算出部108は、加振周波数算出部101が出力した加振周波数と、探索部105が出力した機械系応答特徴量の最適値と、の組を加振データとしてメモリに保存する(ステップS8)。
加振周波数算出部101は、加振周波数の現在値が上限値に達しているか確認する(ステップS9)。加振周波数の現在値が上限値に達していない場合(ステップS9,No)、あらかじめ設定された加振周波数のステップ幅に基づいて加振周波数の現在値を更新し(ステップS10)、ステップS4に戻る。なお、ステップS3で、あらかじめ設定された加振周波数の上限値を現在値にすることで初期化を行っていた場合、加振周波数算出部101は、加振周波数の現在値が下限値に達しているか確認する。加振周波数の現在値が上限値に達している場合(ステップS9,Yes)、ステップS11に進み、周波数特性算出部108は、これまでにメモリに保存した複数の加振データに基づき、機械系2の周波数特性を算出する(ステップS11)。振動パラメータ算出部109は、周波数特性算出部108がステップS11で算出した機械系2の周波数特性に基づき、機械系2の振動を抑制する位置決め制御のための振動パラメータを算出し(ステップS12)、一連の同定手順を終了する。振動パラメータの算出方法は、例えば、ステップS11で算出した機械系2の周波数特性のゲインがピーク値をとる周波数に基づいて算出してもよいし、フィッティングによって求めた周波数特性の伝達関数のパラメータに基づいて算出してもよい。
図15は、実施の形態にかかる動画像誤差を最小化する機械系応答特徴量を算出する詳細な動作の一例を示すフローチャートである。図14のステップS7の詳細な動作について説明する。探索部105は、機械系応答特徴量の探索値の初期値を設定する(ステップS71)。探索値の初期値の設定方法としては、直前の加振周波数における機械系応答特徴量の最適値を使用する、あらかじめ設定された固定値を使用する、乱数を使って初期値を算出するなどの方法を用いることができる。
模擬動画像生成部106は、探索部105が設定した機械系応答特徴量の探索値に基づき、校正マーク209の平行移動と被写体ぶれと、を模擬した模擬動画像を生成する(ステップS72)。動画像比較部107は、ステップS72で生成した模擬動画像と、ステップS5で撮影した実際の動画像とを比較することで、動画像誤差の機械系応答特徴量に関する勾配を算出する(ステップS73)。探索部105は、ステップS73で算出した動画像誤差の勾配のノルムがあらかじめ設定された規定値よりも小さいか確認する(ステップS74)。勾配のノルムが規定値以上である場合(ステップS74,No)、探索部105は、勾配に基づき、動画像誤差が小さくなるよう機械系応答特徴量の探索値を変更し(ステップS75)、ステップS72に戻る。動画像誤差の勾配のノルムがあらかじめ設定された規定値よりも小さい場合(ステップS74,Yes)、探索部105は、機械系応答特徴量の最適化算出を終了し、機械系応答特徴量の探索値を機械系応答特徴量の最適値として出力する(ステップS76)。つまり、ステップS72からS75では、探索部105は、探索値を変更し、変更された探索値のそれぞれに対応する動画像誤差を取得し、複数の動画像誤差を用いて動画像誤差を最小化する機械系応答特徴量の最適値を探索している。
なお、図15では、動画像誤差の勾配に基づいて動画像誤差を最小化する機械系応答特徴量を算出する方法のフローチャートを示しているが、動画像誤差を最小化する方法は、図15に示される方法に限らず、粒子群最適化(PSO:Particle Swarm Optimization)、またはベイズ最適化等の評価関数の勾配を使用しない最適化アルゴリズムを用いることも可能である。これらのアルゴリズムを採用した場合、動画像比較部107は、動画像誤差の勾配ではなく動画像誤差を出力するように構成される。また、探索部105は、動画像誤差を用いて機械系応答特徴量の最適値を算出する。
図16は、実施の形態にかかる複数の加振データから算出した機械系2の周波数特性の一例を示す第1の図である。図16では、縦軸をゲイン[dB]、横軸を周波数[Hz]で示す。図16では、実線を周波数特性、丸を加振データで示す。図17は、実施の形態にかかる複数の加振データから算出した機械系2の周波数特性の一例を示す第2の図である。図17では、縦軸を位相[deg]、横軸を周波数[Hz]で示す。図17では、周波数特性を実線で、加振データを丸で示す。このように、機械系2の周波数特性の求め方は、図16および図17のように加振データを関数近似して求めてもよいし、周波数特性の伝達関数をあらかじめ仮定し伝達関数のパラメータをフィッティングにより求めてもよい。
以上説明したように、本実施の形態では、制御装置10は、カメラ202の露光時間中にヘッド部203が動くことによって生じる撮影画像の被写体ぶれを考慮しながら加振動作中の撮影画像をシミュレーションする。また、制御装置10は、アクチュエータのフィードバック値を用いずシミュレーション結果と実際の撮影画像との比較に基づいて機械系2の周波数特性を同定することができる。このため、制御装置10は、撮影周期から定まるナイキスト周波数、または有限の露光時間によって生じる被写体ぶれによる画像処理の誤差の制限を受けずに、機械系2の周波数特性の同定を行うことができる。つまり、制御装置10は、高い周波数帯域の周波数特性を、画像処理を用いて同定し、機械系2の振動を抑制する位置決め制御系を構成することにより、位置決め制御を高速および高精度化することができる。また、制御装置10は、カメラ撮影の撮影周期から定まるナイキスト周波数よりも高い周波数帯域を含む周波数特性を同定することができるため、ナイキスト周波数よりも高い周波数の振動を抑制することができる。
本実施の形態では、制御装置10がヘッド部203を正弦波で加振するため、機械系2の応答波形も正弦波となる。したがって、機械系2の機械系応答特徴量としてゲインと位相という2つの情報が同定できればよく、この2つの情報を同定できれば、ナイキスト周波数以下のサンプリングからナイキスト周波数以上の周波数特性を同定できる。また、制御装置10は、探索部105と動画像比較部107とを備え、動画像誤差が最小となるような機械系応答特徴量を探索することで、制御対象の機械系応答特徴量を同定することができる。また、模擬動画像生成部106を備えることにより、カメラ202の露光中の被写体の動きによる撮影画像のぶれを考慮することができる。このため、制御装置10は、被写体ぶれが無視できないような高い周波数帯域の同定を精度よく行うことができる。
また、制御装置10が、振動パラメータ算出部109と、位置決め指令生成部110とを備えることで、動画像のフレームレートから定まるナイキスト周波数よりも高い周波数の機械振動を抑制するようなサーボ制御をフィードフォワード制御により実現することができる。また、制御装置10は、予測値算出部301と、フィルタ算出部302と、移動画像生成部303とを備える。このため、制御装置10は、機械系応答特徴量の探索値と加振指令とから、カメラ202と校正マーク209との相対位置の時間応答を予測し、この時間応答から校正マーク209の平行移動と被写体ぶれと、を伴った画像を計算することで、動画撮影のシミュレーションを行うことができる。
なお、本実施の形態では、位置決め制御を行う制御装置10を用いて周波数特性の同定方法について説明したが、本発明の周波数特性の同定方法は、軌跡制御装置、ロール・ツー・ロール方式の機械系など、位置決め制御以外のモーション制御装置の同定にも適用可能である。また、本実施の形態では、カメラ202がヘッド部203に設置されている制御装置10について説明したが、本発明は、カメラ202ではなく校正マーク209がヘッド部203に設置されており、校正マーク209の移動に伴ってカメラ202と校正マーク209との相対位置が変化するように構成されている制御装置に適用することも可能である。
また、本実施の形態では、機械系応答特徴量として、加振周波数における機械系2の周波数特性のゲインと位相との組を用いていたが、これ以外にも、例えば、ゲインと位相とを表す複素数値を用いることも可能である。この場合、式(2)において、ゲインGを複素数値の絶対値とし、位相φを複素数値の偏角として、相対位置の予測値の時間関数を算出すればよい。この機械系応答特徴量を用いることにより、位相の±2πnの周期性によって機械系応答特徴量の最適値が一意に定まらない問題を回避することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 制御部、2 機械系、10 制御装置、101 加振周波数算出部、102 加振指令生成部、103 X軸駆動部、104 Y軸駆動部、105 探索部、106 模擬動画像生成部、107 動画像比較部、108 周波数特性算出部、109 振動パラメータ算出部、110 位置決め指令生成部、200 X軸モータ、201 Y軸モータ、202 カメラ、203 ヘッド部、204 吸着ノズル、205 プリント基板搬送機構、206 プリント基板、207 目標実装位置、208 電子部品、209 校正マーク、301 予測値算出部、302 フィルタ算出部、303 移動画像生成部、400 制御回路、400a プロセッサ、400b メモリ。

Claims (8)

  1. 可動部と、前記可動部の移動に伴って目標物との相対位置が変化し、前記目標物の静止画像および前記目標物の動画像を取得するカメラと、を有する機械系を制御する制御装置であって、
    前記カメラの撮影周期に基づくナイキスト周波数よりも高い周波数帯域を含む加振周波数を算出して出力する加振周波数算出部と、
    前記加振周波数に基づき加振指令を生成して出力する加振指令生成部と、
    前記加振指令に基づき前記可動部の駆動制御を行う駆動部と、
    前記機械系の時間応答および周波数特性の特徴を表す機械系応答特徴量の探索値と前記加振指令と前記静止画像とに基づき、前記カメラの露光時間中の前記相対位置の変化と前記カメラのセンサ特性とをシミュレーションすることで模擬動画像を生成する模擬動画像生成部と、
    前記動画像と前記模擬動画像とを比較することで、前記動画像と前記模擬動画像との誤差である動画像誤差を算出する動画像比較部と、
    前記探索値を変更し、変更された前記探索値のそれぞれに対応する前記動画像誤差を取得し、複数の前記動画像誤差を用いて前記動画像誤差を最小化する機械系応答特徴量の最適値を探索する探索部と、
    前記加振周波数と前記最適値とに基づき、前記機械系の周波数特性を算出する周波数特性算出部と、
    を備えることを特徴とする制御装置。
  2. 前記動画像比較部は、
    前記動画像誤差の勾配を算出し、
    前記探索部は、
    前記勾配を用いて前記最適値を探索することを特徴とする請求項1に記載の制御装置。
  3. 前記探索部は、
    勾配法、ベイズ最適化または粒子群最適化を用いて前記最適値を探索することを特徴とする請求項1に記載の制御装置。
  4. 前記周波数特性に基づき前記機械系の振動パラメータを算出する振動パラメータ算出部と、
    前記振動パラメータに基づき前記機械系の振動を抑制した位置決め指令を生成して前記駆動部に出力する位置決め指令生成部と、
    を備えることを特徴とする請求項1から3のいずれか1つに記載の制御装置。
  5. 前記模擬動画像生成部は、
    前記加振指令と前記機械系応答特徴量に基づき前記カメラの各撮影周期における前記カメラの露光時間中の各時刻の前記相対位置の予測値を算出する予測値算出部と、
    前記相対位置の予測値に基づき前記カメラの各撮影周期における前記目標物の平行移動と被写体ぶれを表すフィルタを算出するフィルタ算出部と、
    前記静止画像に前記フィルタを作用させることで前記カメラの各撮影周期における前記目標物の平行移動と被写体ぶれを伴った画像を生成する移動画像生成部と、
    を備えることを特徴とする請求項1から4のいずれか1つに記載の制御装置。
  6. 前記機械系応答特徴量は、
    前記加振周波数における前記機械系の周波数特性のゲインと位相との組であることを特徴とする請求項1から5のいずれか1つに記載の制御装置。
  7. 前記機械系応答特徴量は、
    複素数値であり、
    前記複素数値の絶対値は、
    前記加振周波数における前記機械系の周波数特性のゲインに相当し、
    前記複素数値の偏角は、
    前記加振周波数における前記機械系の周波数特性の位相に相当することを特徴とする請求項1から6のいずれか1つに記載の制御装置。
  8. 可動部と、前記可動部の移動に伴って目標物との相対位置が変化し、前記目標物の静止画像および前記目標物の動画像を取得するカメラと、を有する機械系を制御する制御装置において、
    前記カメラが前記目標物の静止画像を取得する第1のステップと、
    前記カメラが前記目標物の動画像を取得する第2のステップと、
    前記カメラの撮影周期に基づくナイキスト周波数よりも高い周波数帯域を含む加振周波数を算出して出力する第3のステップと、
    前記加振周波数に基づき加振指令を生成して出力する第4のステップと、
    前記加振指令に基づき前記可動部の駆動制御を行う第5のステップと、
    前記機械系の時間応答および周波数特性の特徴を表す機械系応答特徴量の探索値と前記加振指令と前記静止画像とに基づき、前記カメラの露光時間中の前記相対位置の変化と前記カメラのセンサ特性とをシミュレーションすることで模擬動画像を生成する第6のステップと、
    前記動画像と前記模擬動画像とを比較することで、前記動画像と前記模擬動画像との誤差である動画像誤差の勾配を算出する第7のステップと、
    前記探索値を変更し、変更された前記探索値のそれぞれに対応する前記動画像誤差を取得し、複数の前記動画像誤差を用いて前記動画像誤差を最小化する機械系応答特徴量の最適値を探索する第8のステップと、
    前記加振周波数と前記最適値とに基づき、前記機械系の周波数特性を算出する第9のステップと、
    を含むことを特徴とする周波数特性の同定方法。
JP2019128472A 2019-07-10 2019-07-10 制御装置および周波数特性の同定方法 Active JP7162574B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019128472A JP7162574B2 (ja) 2019-07-10 2019-07-10 制御装置および周波数特性の同定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128472A JP7162574B2 (ja) 2019-07-10 2019-07-10 制御装置および周波数特性の同定方法

Publications (2)

Publication Number Publication Date
JP2021015355A JP2021015355A (ja) 2021-02-12
JP7162574B2 true JP7162574B2 (ja) 2022-10-28

Family

ID=74531482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128472A Active JP7162574B2 (ja) 2019-07-10 2019-07-10 制御装置および周波数特性の同定方法

Country Status (1)

Country Link
JP (1) JP7162574B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133718A (ja) 2008-12-02 2010-06-17 Seiko Epson Corp 作業対象物の位置検出方法および位置検出装置
JP2015158734A (ja) 2014-02-21 2015-09-03 ファナック株式会社 制御ループの周波数特性を算出する機能を有する数値制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004033A (ja) * 2015-06-04 2017-01-05 国立大学法人 東京大学 位置決め制御システムおよび周波数特性同定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133718A (ja) 2008-12-02 2010-06-17 Seiko Epson Corp 作業対象物の位置検出方法および位置検出装置
JP2015158734A (ja) 2014-02-21 2015-09-03 ファナック株式会社 制御ループの周波数特性を算出する機能を有する数値制御装置

Also Published As

Publication number Publication date
JP2021015355A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP2015213139A (ja) 位置決め装置
KR102537029B1 (ko) 제어 장치 및 제어 방법
JP7185860B2 (ja) 多軸可動視覚システムのキャリブレーション方法
JP2018051670A (ja) ロボット、ロボットの制御装置、及び、ロボットの位置教示方法
JP7073828B2 (ja) 外観検査システム、設定装置および検査方法
JP6605611B2 (ja) ロボットシステム
JP5774230B2 (ja) 形状補正およびワーピングによる運動分析
JP7162574B2 (ja) 制御装置および周波数特性の同定方法
CN110581945B (zh) 控制系统、控制装置、图像处理装置以及存储介质
JP6668321B2 (ja) 誤差補償装置および方法
WO2019208074A1 (ja) 制御システム、制御方法およびプログラム
JPWO2017138113A1 (ja) 表面実装機、認識誤差補正方法
JP7059968B2 (ja) 制御装置および位置合わせ装置
JP2017004033A (ja) 位置決め制御システムおよび周波数特性同定方法
JPH06160022A (ja) 画像位置補正装置
JP4689457B2 (ja) 部品搭載装置
JP7172151B2 (ja) 制御システム、制御装置およびプログラム
WO2022244212A1 (ja) 視覚センサにて撮像された画像に基づいて3次元の位置を算出する撮像装置
JP7040567B2 (ja) 制御装置、制御装置の制御方法、情報処理プログラム、および記録媒体
JPH05241660A (ja) 電子部品装着機の熱変形の補正方法
KR102448583B1 (ko) 멀티 이미지 센서를 이용한 파노라마 영상 카메라의 각도 조절 장치
KR0135466B1 (ko) 전자부품 실장기의 부품 인식방법
JP6907526B2 (ja) ロボットおよび撮像方法
JP2022178404A (ja) 制御システム、制御方法及びプログラム
TW202247640A (zh) 根據由視覺感測器所拍攝之圖像來算出三維之位置的攝像裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150