JP7156466B2 - Ceramic scintillator for photon-counting radiation detector and method for manufacturing fluorescent material for photon-counting radiation detector - Google Patents

Ceramic scintillator for photon-counting radiation detector and method for manufacturing fluorescent material for photon-counting radiation detector Download PDF

Info

Publication number
JP7156466B2
JP7156466B2 JP2021124868A JP2021124868A JP7156466B2 JP 7156466 B2 JP7156466 B2 JP 7156466B2 JP 2021124868 A JP2021124868 A JP 2021124868A JP 2021124868 A JP2021124868 A JP 2021124868A JP 7156466 B2 JP7156466 B2 JP 7156466B2
Authority
JP
Japan
Prior art keywords
radiation detector
photon
fluorescent material
ceramic
counting radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021124868A
Other languages
Japanese (ja)
Other versions
JP2021175809A (en
Inventor
慎祐 寺澤
謙弥 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2021175809A publication Critical patent/JP2021175809A/en
Priority to JP2022074246A priority Critical patent/JP7302706B2/en
Application granted granted Critical
Publication of JP7156466B2 publication Critical patent/JP7156466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本開示は、イットリウムおよびアルミニウムを含む組成を有するペロブスカイト型セラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法に関する。 The present disclosure relates to perovskite-type ceramic fluorescent materials having compositions comprising yttrium and aluminum, ceramic scintillators and radiation detectors, and methods of making ceramic fluorescent materials.

放射線画像システムは、被写体にα線、β線、γ線、X線等の放射線を照射し、被写体を透過した放射線を画像化する。放射線画像システムは断層撮影などの医療分野、非破壊検査などの工業分野、手荷物検査などのセキュリティ分野、高エネルギー物理学などの学術分野等の多様な応用分野で利用されている。 A radiation imaging system irradiates an object with radiation such as α-rays, β-rays, γ-rays, and X-rays, and forms an image of the radiation transmitted through the object. Radiation imaging systems are used in a variety of application fields, such as medical fields such as tomography, industrial fields such as non-destructive inspection, security fields such as baggage inspection, and academic fields such as high energy physics.

現在、主として商業的に利用されている放射線画像システムは、放射線の強度を電気信号に変換する放射線検出器を用いる。放射線検出器は、放射線の強度を光に変換する為のシンチレータと、光を電気信号に変換する為のCCD等の光検出器とを含む。 Radiographic imaging systems, currently in primary commercial use, employ radiation detectors that convert the intensity of radiation into electrical signals. The radiation detector includes a scintillator for converting radiation intensity into light and a photodetector such as a CCD for converting light into an electrical signal.

種々の分野において、より高精細、かつ、より低放射線量で画像を取得できる放射線画像システムが求められている。このような放射線画像システムとして、例えば特許文献1に開示されているように、光子の数を計測することができるフォトンカウンターを用いて、放射線を検出するフォトンカウンティング型の放射線検出器が検討されている。 2. Description of the Related Art In various fields, there is a demand for radiographic imaging systems that can acquire images with higher definition and with a lower radiation dose. As such a radiographic imaging system, for example, as disclosed in Patent Document 1, a photon-counting radiation detector that detects radiation using a photon counter capable of counting the number of photons has been studied. there is

特開2012-34901号公報Japanese Unexamined Patent Application Publication No. 2012-34901

特許文献1に開示されたX線CT装置は、放射線検出器としてCdTeシンチレータを用いる。CdTeシンチレータは比較的高価であり、毒性を有する。また、大型のCdTe単結晶を得ることが容易ではないため、放射線の検出面を大きくすることが難しい。 The X-ray CT apparatus disclosed in Patent Document 1 uses a CdTe scintillator as a radiation detector. CdTe scintillators are relatively expensive and toxic. In addition, since it is not easy to obtain a large CdTe single crystal, it is difficult to increase the radiation detection surface.

本開示は、この様な課題に鑑み、フォトンカウンティング型の放射線検出器に使用可能なセラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法を提供する。 In view of such problems, the present disclosure provides a ceramic fluorescent material that can be used for a photon-counting radiation detector, a ceramic scintillator and a radiation detector, and a method for manufacturing the ceramic fluorescent material.

本開示のセラミック蛍光材料は、Ce(Y1-yLu1-xAlOで表される組成を有する主成分を含み、前記x、yが0.001≦x<1、0≦y≦1を満足する。 The ceramic fluorescent material of the present disclosure includes a main component having a composition represented by Ce x (Y 1-y Lu y ) 1-x AlO 3 , wherein x and y are 0.001≦x<1, 0≦ It satisfies y≦1.

前記主成分はペロブスカイト構造を有し、Ceを発光元素とする蛍光体であり、前記セラミック蛍光材料は、Ce、Y、LuおよびAlの合計量に対して、Ceを0.05原子%以上50原子%未満、Yを0原子%以上49.95原子%以下、Luを0原子%以上49.5原子%以下、かつ、Ce、YおよびLuの合計を50原子%、およびAlを50原子%の割合で含んでいてもよい。 The main component has a perovskite structure and is a phosphor containing Ce as a light-emitting element. Less than atomic %, 0 atomic % or more and 49.95 atomic % or less of Y, 0 atomic % or more and 49.5 atomic % or less of Lu, and the total of Ce, Y and Lu is 50 atomic %, and Al is 50 atomic % may be included in the proportion of

前記セラミック蛍光材料は、95質量%以上の割合で、前記主成分を含んでいてもよい。 The ceramic fluorescent material may contain the main component at a rate of 95% by mass or more.

前記xは、0.006≦x<1を満足していてもよい。 The x may satisfy 0.006≦x<1.

前記xは、0.01≦x≦0.1を満足していてもよい。 The x may satisfy 0.01≦x≦0.1.

前記yは、0<y<0.5を満足していてもよい。 The y may satisfy 0<y<0.5.

前記yは、0.0003≦y≦0.01を満足していてもよい。 The y may satisfy 0.0003≦y≦0.01.

前記yは、0.4≦y≦0.6を満足していてもよい。 The y may satisfy 0.4≦y≦0.6.

前記セラミック蛍光材料は、異相としてCeO相を含み、前記セラミック蛍光材料の断面のBSE像における前記CeO相の面積の割合は、0.5%以下であってもよい。 The ceramic fluorescent material may include a CeO 2 phase as a heterophase, and an area ratio of the CeO 2 phase in a BSE image of a cross section of the ceramic fluorescent material may be 0.5% or less.

本開示のセラミックシンチレータは、上記いずれかに記載のセラミック蛍光材料を含み、相対密度が99%以上である。 A ceramic scintillator of the present disclosure includes any of the ceramic fluorescent materials described above and has a relative density of 99% or more.

本開示の放射線検知器は、上記セラミックシンチレータと、光を電気信号、電流値または電圧値のいずれかに変換する光電変換素子とを備える。 A radiation detector of the present disclosure includes the ceramic scintillator and a photoelectric conversion element that converts light into an electrical signal, current value, or voltage value.

本開示のセラミック蛍光材料の製造方法は、焼成後の組成が、Ce(Y1-yLu1-xAlO(0.001≦x<1、0≦y≦1)となるように、Ceと、Alと、Yと、Luとをそれぞれ含む素原料を用意する工程と、前記素原料を混合及び粉砕し、原料粉末を得る工程と、前記原料粉末を成形し、成形体を得る工程と、前記成形体を還元雰囲気中、1600℃~1800℃の温度で焼結させる工程とを包含する。 The method for producing the ceramic fluorescent material of the present disclosure is such that the composition after firing is Ce x (Y 1-y Lu y ) 1-x AlO 3 (0.001≦x<1, 0≦y≦1). a step of preparing raw materials containing Ce, Al, Y, and Lu respectively; a step of mixing and pulverizing the raw materials to obtain a raw material powder; molding the raw material powder to form a compact; and sintering the compact at a temperature of 1600° C. to 1800° C. in a reducing atmosphere.

本開示によれば、蛍光の減衰時定数が小さく、フォトンカウンティング型の放射線検出器に使用可能なセラミック蛍光材料、及びセラミック蛍光材料の製造方法が得られる。また、このような特性を備えたセラミック蛍光材料を含み、大面積化が可能なセラミックシンチレータおよび放射線検出器が得られる。 According to the present disclosure, a ceramic fluorescent material that has a small fluorescence decay time constant and that can be used in a photon-counting radiation detector, and a method for manufacturing the ceramic fluorescent material are provided. Also, a ceramic scintillator and a radiation detector containing a ceramic fluorescent material having such characteristics and capable of being made large can be obtained.

Ce1-yAlOで示される組成のセラミック蛍光材料の減衰時定数τ を求めた実験例であって、Ce量xと蛍光の減衰時定数τとの関係を示す図である。FIG. 2 is an experimental example for determining the decay time constant τ of a ceramic fluorescent material having a composition represented by Ce x Y 1-y AlO 3 , showing the relationship between the amount of Ce x and the decay time constant τ of fluorescence. Ce0.03(Y1-yLu)0.97AlOで示される組成のセラミック蛍光材料の減衰時定数τを求めた実験例であって、Lu量yと蛍光の減衰時定数τとの関係を示す図である。Fig. 1 shows an experimental example of determining the decay time constant τ of a ceramic fluorescent material having a composition represented by Ce0.03 (Y1 - yLuy) 0.97AlO3 , showing the relationship between the Lu amount y and the decay time constant τ of fluorescence. It is a diagram. (a)および(b)は、実験例のセラミック蛍光材料の粉末X線回折スペクトルを示す図である。(a) and (b) are diagrams showing powder X-ray diffraction spectra of ceramic fluorescent materials of experimental examples. (a)、(b)および(c)は、酸素雰囲気下で焼成したセラミック蛍光材料、大気雰囲気下で焼成したセラミック材料および実験例のセラミック蛍光材料のBSE像である。(a), (b) and (c) are BSE images of a ceramic fluorescent material fired in an oxygen atmosphere, a ceramic material fired in an air atmosphere, and a ceramic fluorescent material of an experimental example. (a)、(b)および(c)は、図4(a)、(b)および(c)と同じ領域についてCeの元素マッピングを行った図である。(a), (b) and (c) are diagrams obtained by performing elemental mapping of Ce on the same regions as in FIGS. 4 (a), (b) and (c). (a)、(b)および(c)は、図5(a)、(b)および(c)に示すBSE像を画像処理した図である。(a), (b) and (c) are diagrams obtained by image processing the BSE images shown in FIGS. 5 (a), (b) and (c).

本願発明者は、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料、セラミックシンチレータに必要な物性を検討し、その物性を実現し得る蛍光材料の組成を詳細に検討した。 The inventors of the present application have studied the physical properties required for fluorescent materials and ceramic scintillators that can be used in photon counting radiation detectors, and have studied in detail the compositions of fluorescent materials that can achieve these physical properties.

従来の強度積分型の放射線検出器は、マイクロ秒からミリ秒オーダーの所定の時間間隔(この時間間隔を1フレームとよぶ)で放射線を対象物に照射し、対象物を透過した放射線が入射することによってシンチレータが発する蛍光を光検出器で検出し、電気信号に変換する。放射線は、上述の所定の時間間隔よりも短い期間、対象物に照射される。 A conventional intensity-integrating radiation detector irradiates an object with radiation at predetermined time intervals on the order of microseconds to milliseconds (this time interval is called one frame), and the radiation that has passed through the object is incident. Fluorescence emitted from the scintillator is detected by a photodetector and converted into an electrical signal. Radiation is applied to the object for a period shorter than the predetermined time interval described above.

シンチレータの蛍光材料は、放射線の照射時に強い蛍光を発するが、放射線照射が停止した後、すぐに蛍光はゼロとはならず、弱い蛍光が持続する。これを残光と呼ぶ。残光は例えば、放射線照射中の発光強度Iと、放射線照射停止から一定時間経過後の発光強度Iとを用い、I/I(ppm)で定義される。一定時間とは、光検出器からの信号処理速度や、被対象物の被爆なども考慮してミリ秒(ms)のオーダーが選ばれる。 The fluorescent material of the scintillator emits strong fluorescence when irradiated with radiation, but the fluorescence does not become zero immediately after the radiation irradiation is stopped, and the weak fluorescence continues. This is called afterglow. The afterglow is defined by I r /I 0 (ppm) using, for example, the emission intensity I 0 during irradiation and the emission intensity I r after a certain period of time has passed since the irradiation was stopped. The constant time is selected on the order of milliseconds (ms) in consideration of the signal processing speed from the photodetector, exposure of the object to radiation, and the like.

放射線画像システムは、ノイズ等による影響を低減するため、各フレームにおいて、放射線の照射時に放射線検知器から得られた電気信号から、放射線の照射停止時に放射線検知器から得られた電気信号を差し引いた信号を、検出した放射線の強度として処理する。このため、残光が大きいと、相対的に検出した放射線強度が小さくなる。このことから、従来の強度積分型の放射線検出器では、蛍光材料の残光は小さいことが好ましい。 In order to reduce the effects of noise, etc., the radiographic imaging system subtracts the electrical signal obtained from the radiation detector when the radiation is stopped from the electrical signal obtained from the radiation detector when the radiation is irradiated in each frame. The signal is processed as the intensity of the detected radiation. Therefore, when the afterglow is large, the detected radiation intensity becomes relatively small. For this reason, it is preferable that the afterglow of the fluorescent material is small in the conventional intensity-integrating radiation detector.

これに対し、フォトンカウンティング型の放射線検出器は、蛍光材料の極めて短時間の発光によるフォトンの数を計測することが可能な光電子増倍管、マルチピクセルフォトンカウンター(シリコンフォトマルチプライヤー)などを備え、フォトンの数をパルス信号として読み出す。フォトンカウンティング型の放射線検出器では、発光強度に一定の閾値を設けて読み出しを行うため、蛍光材料の発光強度は上述した従来の強度積分型の放射線検出器に求められる蛍光材料ほど大きくなくてよい。また、残光が生じていても、残光の強度が上述した閾値以下であれば、残光が検出されることはないため、残光の有無は発光の検出に大きな影響を与えない。 Photon-counting radiation detectors, on the other hand, are equipped with photomultiplier tubes, multi-pixel photon counters (silicon photomultipliers), etc. that can measure the number of photons emitted by fluorescent materials in an extremely short period of time. , the number of photons is read out as a pulse signal. In a photon-counting radiation detector, since reading is performed by setting a certain threshold for the emission intensity, the emission intensity of the fluorescent material need not be as high as that required for the conventional intensity-integrating radiation detector described above. . Even if afterglow occurs, if the intensity of the afterglow is equal to or less than the above-described threshold value, the afterglow is not detected. Therefore, the presence or absence of afterglow does not significantly affect the detection of light emission.

一方、フォトンカウンティング型の放射線検出器を備えた放射線画像システムでは、発光の数が放射線の強度に比例するため、蛍光の減衰時間が長いと、発光が重複し、正確な発光の数が検出できない。このため、フォトンカウンティング型の放射線検出器に用いられるシンチレータおよび蛍光材料は、非常に短い時間で蛍光が減衰すること、具体的には、ナノ秒前後のオーダーの時間で発光強度が1/e程度まで減衰する特性が求められる。このように、フォトンカウンティング型の放射線検出器に好適に用いられる蛍光材料には、従来の放射線検出器用の蛍光材料とは全く異なる特性が求められる。 On the other hand, in radiographic imaging systems equipped with photon-counting radiation detectors, since the number of emitted light is proportional to the intensity of the radiation, if the fluorescence decay time is long, the emitted light will overlap and the correct number of emitted light cannot be detected. . For this reason, scintillators and fluorescent materials used in photon-counting radiation detectors require that the fluorescence decays in a very short time. A characteristic that attenuates up to As described above, a fluorescent material suitable for use in a photon-counting radiation detector is required to have completely different properties from fluorescent materials for conventional radiation detectors.

蛍光材料における蛍光の減衰時間は、主として発光元素に依存する。本願発明者は、蛍光の減衰時間が短い発光元素としてCeに注目し、Ceを発光元素として含有可能な蛍光材料を検討した。その結果、YAlO、すなわち、イットリウムアルミニウムペロブスカイト(以下、YAPと略す場合がある)を母材とし、Ceを高い濃度で含有させることによって、蛍光の減衰時間が短い蛍光材料を実現し得ることが分かった。 The decay time of fluorescence in fluorescent materials mainly depends on the light-emitting element. The inventor of the present application paid attention to Ce as a light-emitting element having a short decay time of fluorescence, and studied a fluorescent material capable of containing Ce as a light-emitting element. As a result, by using YAlO 3 , that is, yttrium aluminum perovskite (hereinafter sometimes abbreviated as YAP) as a base material and containing Ce at a high concentration, it is possible to realize a fluorescent material with a short fluorescence decay time. Do you get it.

YAPは陽電子放射断層撮影(以下、PETと略す場合がある)用シンチレータとして知られている。しかし、PETでは、γ線を十分に減衰できることが重要である。このため、重い元素を用い、密度の高い単結晶のYAPが用いられる。本願発明者の詳細な検討によれば、単結晶に添加し得るCeの量は少なく、Ceの添加量を多くすると、Ceが遊離してしまい、単結晶を得ることが困難になる。このような知見に基づき、発明者は、新規なセラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法を想到した。以下、本開示のセラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法を詳細に説明する。 YAP is known as a scintillator for positron emission tomography (hereinafter sometimes abbreviated as PET). However, in PET, it is important to be able to sufficiently attenuate γ-rays. For this reason, a single-crystal YAP containing a heavy element and having a high density is used. According to detailed studies by the inventors of the present application, the amount of Ce that can be added to a single crystal is small, and if the amount of Ce added is increased, Ce is liberated, making it difficult to obtain a single crystal. Based on such findings, the inventor has conceived of a novel ceramic fluorescent material, a ceramic scintillator and radiation detector, and a method for producing the ceramic fluorescent material. The ceramic fluorescent material, the ceramic scintillator and radiation detector, and the method of manufacturing the ceramic fluorescent material of the present disclosure are described in detail below.

(蛍光材料の組成および物性)
本開示のセラミック蛍光材料は、一般式(以下、一般式(1)と呼ぶ):Ce(Y1-yLu1-xAlOで表される組成を有する主成分を含む。xおよびyは、それぞれ、以下の範囲を満たしている。
0.001≦x<1
0≦y≦1
(Composition and physical properties of fluorescent material)
The ceramic fluorescent material of the present disclosure includes a main component having a composition represented by the general formula (hereinafter referred to as general formula (1)): Ce x (Y 1-y Lu y ) 1-x AlO 3 . x and y respectively satisfy the following ranges.
0.001≤x<1
0≤y≤1

つまり主成分は、Ce、Y、LuおよびAlの合計量に対して、Ceを0.05原子%以上50原子%未満、Yを0原子%以上49.95原子%以下、Luを0原子%以上49.5原子%以下、かつ、Ce、YおよびLuの合計を50原子%、およびAlを50原子%の割合で含んでいる。 That is, the main components are 0.05 atomic % or more and less than 50 atomic % of Ce, 0 atomic % or more and 49.95 atomic % or less of Y, and 0 atomic % of Lu with respect to the total amount of Ce, Y, Lu and Al. It contains at least 49.5 atomic % or less, and the total of Ce, Y and Lu is 50 atomic %, and Al is 50 atomic %.

上記一般式(1)において、Ceは発光イオンとして機能する。本開示のセラミック蛍光材料の特徴の1つは、上記一般式(1)で表される組成の材料を単結晶ではなく、多結晶体であるセラミックとしてシンチレータに用いる点にある。多結晶体であることにより、単結晶である場合に比べてより多くのCeをYAPに固溶させることができる。後述するようにCe濃度が高いほうが、蛍光の減衰時間が短くなる。本開示において、セラミック蛍光材料の蛍光の減衰時間は、蛍光の減衰時定数τで評価する。減衰時定数τは、励起光であるX線の照射停止時刻をゼロとして、X線照射停止後の蛍光の発光強度がX線照射中の蛍光の発光強度に対する強度比で1/e(=0.3679)になる時刻で定義される。より具体的には、例えば、パルスX線管を用い、30kVの管電圧でX線を発生させ、蛍光材料にX線を照射した場合において、X線の照射停止後、発光強度が1/eに減衰するまでの時間を減衰時定数τと定義する。減衰時定数の単位は時間であるため、残光のように強度比(ppm)ではなく、ナノ秒(ns)などとなる。 In the above general formula (1), Ce functions as a light-emitting ion. One of the features of the ceramic fluorescent material of the present disclosure is that the material having the composition represented by the above general formula (1) is used for the scintillator as a polycrystalline ceramic instead of a single crystal. By being polycrystalline, more Ce can be dissolved in YAP than in the case of single crystal. As will be described later, the higher the Ce concentration, the shorter the fluorescence decay time. In the present disclosure, the fluorescence decay time of the ceramic fluorescent material is evaluated by the fluorescence decay time constant τ. The decay time constant τ is 1/e (=0 .3679). More specifically, for example, when a pulse X-ray tube is used to generate X-rays at a tube voltage of 30 kV and the fluorescent material is irradiated with X-rays, the emission intensity is 1/e is defined as the decay time constant τ. Since the unit of the attenuation time constant is time, it is nanoseconds (ns) instead of the intensity ratio (ppm) as in afterglow.

一般に蛍光材料における残光は蛍光材料の欠陥の多さに関係している。これに対し、減衰時定数τは、発光元素のエネルギー源による励起によって生じる電子の遷移に関係しており、X線、紫外線、ガンマ線等のエネルギー源の種類によっても、減衰時定数τは異なり得る。 Afterglow in fluorescent materials is generally related to the number of defects in the fluorescent material. On the other hand, the decay time constant τ is related to the transition of electrons caused by the excitation of the light-emitting element by the energy source, and the decay time constant τ may differ depending on the type of energy source such as X-rays, ultraviolet rays, and gamma rays. .

一般式(1)におけるCe量を示すxは、0.001≦x<1を満たしている。xが0.001以上であることにより、減衰時定数τを35ns程度以下にすることができる。この減衰時定数τは、単結晶のYAPでは、Ceを添加しても達成することが困難な値である。Ce量が増えるにしたがって、減衰時定数τも短くなる。xは0.006以上であれば、減衰の時定数τは約20ns以下になるため、好ましい。また、xが0.01以上であれば、減衰の時定数τは約15ns以下になるため、さらに好ましい。 x indicating the amount of Ce in the general formula (1) satisfies 0.001≦x<1. When x is 0.001 or more, the attenuation time constant τ can be made about 35 ns or less. This decay time constant τ is a value that is difficult to achieve in single crystal YAP even if Ce is added. As the amount of Ce increases, the decay time constant τ also shortens. When x is 0.006 or more, the decay time constant τ is about 20 ns or less, which is preferable. Further, if x is 0.01 or more, the attenuation time constant τ is about 15 ns or less, which is more preferable.

減衰の時定数τを短くするという観点では、Ceの量の上限に制限はなく、xは1未満であればよい。しかし、Ce量が多くなると均一なセラミック体であるセラミック蛍光材料を得ることが難しくなる。このため、製造のしやすさという観点では、xは、0.1以下であることが好ましい。 From the viewpoint of shortening the decay time constant τ, there is no upper limit to the amount of Ce, and x may be less than 1. However, when the amount of Ce increases, it becomes difficult to obtain a ceramic fluorescent material that is a uniform ceramic body. Therefore, x is preferably 0.1 or less from the viewpoint of ease of manufacture.

Lu量を示すyは、発光量に関連しており、0≦y≦1を満たしている。発光量を多くするためには、yは0.4≦y≦0.6を満たしていることが好ましい。ただし、フォトンカウンティング型の放射線検出器では、光子を高感度で検出することができるため、発光強度が高くなくてもフォトンカウンティング型の放射線検出器を実現できる場合がある。この場合、他の観点、例えば、製造のしやすさ、有効原子番号等の観点からLuの量を決定することができる。LuはYに比べて融点が高いため、Lu量が増えるほどYAPセラミックスの融点も上昇し、緻密なセラミックスを得ることは困難になる。光の透過する透明セラミックスを得るという観点から、Lu量は少ない方が好ましい。例えば、yは0<y<0.5であることが好ましい。 y, which indicates the amount of Lu, is related to the amount of light emission and satisfies 0≦y≦1. In order to increase the light emission amount, y preferably satisfies 0.4≦y≦0.6. However, since the photon-counting radiation detector can detect photons with high sensitivity, the photon-counting radiation detector may be realized even if the emission intensity is not high. In this case, the amount of Lu can be determined from other viewpoints, such as ease of manufacture and effective atomic number. Since Lu has a higher melting point than Y, the melting point of YAP ceramics increases as the amount of Lu increases, making it difficult to obtain dense ceramics. From the viewpoint of obtaining a transparent ceramic that transmits light, the smaller the amount of Lu, the better. For example, y preferably satisfies 0<y<0.5.

本開示のセラミック蛍光材料の密度は、以下に説明する相対密度の評価において99%以上であることが好ましい。相対密度の計算方法は以下の通りである。まず、一般式(1)において、x=0、y=0の場合(組成式:YAlO)の格子定数をICDD(International Centre for Diffraction Data)のデータより引用し、それを基準に体積を算出する。次に相対密度を算出しようとする試料の組成式から質量として式量を算出する。そして、体積と式量とから求めた密度を理論密度とする。次に、蛍光材料の実測密度を測定し、前記理論密度で割って相対密度を算出する。相対密度が小さい場合、光が透過しなくなるため、相対密度は99%以上が好ましい。 The density of the ceramic fluorescent material of the present disclosure is preferably 99% or higher in the relative density evaluation described below. The calculation method of relative density is as follows. First, in the general formula (1), when x = 0 and y = 0 (composition formula: YAlO 3 ), the lattice constant is quoted from ICDD (International Center for Diffraction Data) data, and the volume is calculated based on it. do. Next, the formula weight is calculated as the mass from the composition formula of the sample whose relative density is to be calculated. Then, the density obtained from the volume and the formula weight is defined as the theoretical density. Next, the measured density of the fluorescent material is measured and divided by the theoretical density to calculate the relative density. If the relative density is low, light will not be transmitted, so the relative density is preferably 99% or more.

本開示のセラミック蛍光材料は上述した主成分を95質量%以上の割合で含んでいることが好ましい。セラミック蛍光材料は、主成分以外に未反応の原料、副生成物、不可避的不純物等を0.5質量%未満の割合で含んでいてもよい。例えば、セラミック蛍光材料は、原料である酸化セリウム(CeO)を異相として含んでいてもよい。セラミック蛍光材料が、酸化セリウムを異相として含む場合、主成分、つまり主相に固溶したCeと、異相に存在するCeとを、元素分析等で区別することは困難な場合ある。この場合、セラミック蛍光材料の断面を観察することによって、異相の割合を評価し得る。本開示のセラミック蛍光材料の断面のBSE像におけるCeO相の面積の割合は、0.5%以下であることが好ましい。ここで、断面の観察は、1000倍から5000倍の倍率で行う。 The ceramic fluorescent material of the present disclosure preferably contains 95% by mass or more of the main component described above. The ceramic fluorescent material may contain unreacted raw materials, by-products, unavoidable impurities, etc. in a proportion of less than 0.5% by mass, in addition to the main component. For example, the ceramic fluorescent material may contain the raw material cerium oxide (CeO 2 ) as a heterophase. When the ceramic fluorescent material contains cerium oxide as a heterophase, it may be difficult to distinguish between the main component, that is, Ce dissolved in the main phase and Ce present in the heterophase by elemental analysis or the like. In this case, by observing a cross-section of the ceramic fluorescent material, the proportion of hetero-phases can be assessed. The area ratio of the CeO 2 phase in the cross-sectional BSE image of the ceramic fluorescent material of the present disclosure is preferably 0.5% or less. Here, observation of the cross section is performed at a magnification of 1000 times to 5000 times.

(蛍光材料の製造方法)
本開示による蛍光材料の製造方法の一例を説明する。まず、焼成後に一般式(1)で表される比率で、Ce、Al、YおよびLuを含む素原料を用意する。つまり、製造工程中、例えば素原料の粉砕工程において、メディア等からAlが混入する場合には、その混入量分だけ、一般式(1)で表される比率からAlを差し引いた量の素原料を用意する。具体的には、Ce、Al、YおよびLuの、酸化物、又は炭酸塩等の素原料を用意し、混入するAlを考慮した上で、一般式(1)で示す組成比となるように素原料を秤量する。次に、秤量した素原料に必要に応じて溶媒を加え、ボールミル等で混合及び粉砕する。混合物を乾燥させることによって原料粉末を得る。原料粉末を適当な篩で造粒し、プレス成形することによって成形体を得る。その後、成形体を還元雰囲気中、1600℃~1800℃の温度で、0.5~12時間保持することによって成形体を焼結させる。れにより、多結晶のセラミック蛍光材料が得られる。還元雰囲気とは、例えば、水素が添加された窒素ガス等をいう。
(Manufacturing method of fluorescent material)
An example of a method for manufacturing a fluorescent material according to the present disclosure will be described. First, raw materials containing Ce, Al, Y and Lu are prepared after sintering in a ratio represented by the general formula (1). That is, in the manufacturing process, for example, in the pulverization process of raw materials, if Al 2 O 3 is mixed from media or the like, the amount of Al is subtracted from the ratio represented by general formula (1) by the amount of the mixture. Prepare raw materials for Specifically, raw materials such as oxides or carbonates of Ce , Al, Y, and Lu are prepared, and the composition ratio represented by the general formula (1) and Weigh the raw materials so that Next, if necessary, a solvent is added to the weighed raw material, and the mixture is mixed and pulverized by a ball mill or the like. A raw material powder is obtained by drying the mixture. A compact is obtained by granulating raw material powder with a suitable sieve and press-molding. After that, the compact is sintered by holding it in a reducing atmosphere at a temperature of 1600° C. to 1800° C. for 0.5 to 12 hours. Thereby, a polycrystalline ceramic fluorescent material is obtained. The reducing atmosphere means, for example, nitrogen gas to which hydrogen is added.

一般式(1)で示す組成のセラミック蛍光材料中、Ceは3価で存在すると考えられるが、Ceを含む素原料として、一般的に入手が容易であるのは、CeOであり、素原料中Ceは4価の状態で存在する。このため、YAPにCeを導入するために、Ceを還元する必要があり、還元雰囲気中で素原料を焼結させることが好ましい。これにより、高い濃度でCeをYAPに導入することが可能となる。 In the ceramic fluorescent material having the composition represented by the general formula ( 1 ), Ce is considered to exist in a trivalent form, but the raw material containing Ce that is generally readily available is CeO2. Medium Ce exists in the tetravalent state. Therefore, in order to introduce Ce into YAP, it is necessary to reduce Ce, and it is preferable to sinter the raw material in a reducing atmosphere. This makes it possible to introduce Ce into YAP at a high concentration.

上記製造方法の他、本開示のセラミック蛍光材料は、無機塩法などによって製造することも可能である。 In addition to the manufacturing method described above, the ceramic fluorescent material of the present disclosure can also be manufactured by an inorganic salt method or the like.

本開示のセラミック蛍光材料は、一般的なセラミックと同様の工程によって作製することが可能であるため、低コストで生産性に優れた蛍光材料であり、かつ、大面積のセラミックシンチレータを比較的容易に作製することが可能である。そのため、本開示のセラミックシンチレータを用いることにより、単結晶シンチレータと異なり、大量の蛍光材料を配列したり、大面積のセラミックシンチレータを加工することで、放射線の検出面が大きな放射線検出器を容易に得ることができる。 Since the ceramic fluorescent material of the present disclosure can be produced by a process similar to that of general ceramics, it is a fluorescent material with excellent productivity at low cost, and it is relatively easy to manufacture a large-area ceramic scintillator. It is possible to fabricate Therefore, by using the ceramic scintillator of the present disclosure, unlike a single crystal scintillator, by arranging a large amount of fluorescent material or processing a large-area ceramic scintillator, a radiation detector with a large radiation detection surface can be easily manufactured. Obtainable.

(蛍光材料を用いた実施形態)
[セラミックシンチレータ]
得られた多結晶のセラミック蛍光材料を、例えば、内周スライサーで適当な厚さの板として切断し、酸素雰囲気中、例えば1250℃~1350℃の温度で、0.5~12時間保持することによって熱処理を施す。その後、表面に光学研磨を施すことによって、セラミックシンチレータが得られる。焼結によって得られた蛍光材料が所望の形状を有している場合には、上述した熱処理および光学研磨を施すことによって、セラミックシンチレータを得ることが可能である。
(Embodiment using fluorescent material)
[Ceramic scintillator]
The resulting polycrystalline ceramic fluorescent material is cut into plates of appropriate thickness by, for example, an inner circumference slicer, and held in an oxygen atmosphere at a temperature of, for example, 1250° C. to 1350° C. for 0.5 to 12 hours. heat treatment by A ceramic scintillator is then obtained by subjecting the surface to optical polishing. When the fluorescent material obtained by sintering has a desired shape, it is possible to obtain a ceramic scintillator by applying the heat treatment and optical polishing described above.

[放射線検出器]
本開示のセラミックシンチレータと、高感度に光を計測可能な光電子増倍管や、マルチピクセルフォトンカウンター(シリコンフォトマルチプライヤー)などの光検出器とを組み合わせることによって、放射線検出器を構成することができる。例えば、放射線検出器は、受光面を備える光電子増倍管、マルチピクセルフォトンカウンター等の光検出器と、前記光検出器の受光面に配置されたセラミックシンチレータとを備える。セラミックシンチレータには、上述した本開示のセラミックシンチレータを用いることができる。光検出器は、好ましくは光に対して高感度であり、極めて短時間の発光を計測可能である。さらに好ましくは530nm程度以上600nm程度以下の波長範囲において、検出感度を有する。上述したように、本発明のシンチレータを構成している蛍光材料における蛍光の減衰時定数は小さい。このため、高時間分解能な光検出器と組み合わせて、放射線を検出することが可能であり、フォトンの数が計測可能な光電子増倍管、マルチピクセルフォトンカウンター等と好適に組わせることが可能である。
[Radiation detector]
A radiation detector can be configured by combining the ceramic scintillator of the present disclosure with a photomultiplier tube capable of measuring light with high sensitivity or a photodetector such as a multi-pixel photon counter (silicon photomultiplier). can. For example, the radiation detector includes a photomultiplier tube, a multi-pixel photon counter, or other photodetector having a light-receiving surface, and a ceramic scintillator disposed on the light-receiving surface of the photodetector. The ceramic scintillator of the present disclosure described above can be used as the ceramic scintillator. The photodetector is preferably sensitive to light and capable of measuring very short light emissions. More preferably, it has detection sensitivity in the wavelength range of about 530 nm or more and about 600 nm or less. As described above, the decay time constant of fluorescence in the fluorescent material constituting the scintillator of the present invention is small. For this reason, it is possible to detect radiation in combination with a photodetector with high time resolution, and it can be suitably combined with a photomultiplier tube capable of measuring the number of photons, a multi-pixel photon counter, etc. is.

(実施例)
[実験例1]
種々の組成の蛍光材料を作製し、特性を調べた結果を説明する。
(Example)
[Experimental example 1]
Fluorescent materials with various compositions were prepared and the results of examining their characteristics will be described.

素原料として、Y(純度5N)、CeO(純度4N)、Al(純度5N)を用意し、総重量が200gとなるよう、下記表1の試料1から試料6に示す割合(元素比)で素原料を秤量した。ただし、粉砕工程においてメディアとして用いるアルミナのボールからAlが混入して、それが一般式(1)のセラミック蛍光材料を得るための原料Alに加わる。このため、一般式(1)において、CeとYとの合計とAlとの割合が1:1ではなく、1:0.98になるように、素原料を秤量した。 Y 2 O 3 (purity 5N), CeO 2 (purity 4N), and Al 2 O 3 (purity 5N) were prepared as raw materials, and samples 1 to 6 in Table 1 below were prepared so that the total weight was 200 g. Raw materials were weighed at the indicated ratios (element ratios). However, Al 2 O 3 is mixed from alumina balls used as media in the pulverization process, and is added to the raw material Al 2 O 3 for obtaining the ceramic fluorescent material of general formula (1). Therefore, in general formula (1), raw materials were weighed so that the ratio of the sum of Ce and Y to Al was 1:0.98 instead of 1:1.

Figure 0007156466000001
Figure 0007156466000001

1Lの容量のポリプロピレン製ポットに、秤量済みの各試料の素原料と、1250gの直径5mmのAlボールと、200mLのエタノールをそれぞれ投入し、ポットを分速100回転で40時間回転させ、原料を混合・粉砕した。原料をアルミナ製の容器に回収し、ホットプレートによって、容器ごと120℃で加熱して、エタノールを蒸発させ、原料を乾燥させた。その後、原料をアルミナ乳鉢で解砕し、目開き500μmの篩に通した。 Into a polypropylene pot with a capacity of 1 L, the weighed raw material of each sample, 1250 g of Al 2 O 3 balls with a diameter of 5 mm, and 200 mL of ethanol were put, and the pot was rotated at 100 rpm for 40 hours. , the raw materials were mixed and pulverized. The raw material was collected in an alumina container, and heated together with the container at 120° C. by a hot plate to evaporate the ethanol and dry the raw material. After that, the raw material was pulverized with an alumina mortar and passed through a sieve with an opening of 500 μm.

原料を成型金型に入れ、一軸加圧成型機を用いて金型に30MPaの圧力を印加して、粉末の成型体を得た。この成型体をビニル袋に真空封止したのち、冷間等方加圧装置を用いて294MPaの圧力を印加して、さらに押し固めた。 The raw material was placed in a mold, and a pressure of 30 MPa was applied to the mold using a uniaxial pressure molding machine to obtain a powder compact. After vacuum-sealing this molded body in a vinyl bag, a pressure of 294 MPa was applied using a cold isostatic pressing device to further press and harden.

成型体を、2%の水素を含む窒素雰囲気下にて1700℃で6時間熱処理し(焼成し)、試料1~試料6のセラミック蛍光材料を得た。 The molded body was heat-treated (fired) at 1700° C. for 6 hours in a nitrogen atmosphere containing 2% hydrogen to obtain ceramic fluorescent materials of Samples 1 to 6.

[実験例2]
素原料として、Lu(純度5N)、Y(純度5N)、CeO(純度4N)、Al(純度5N)を用意し、表2の組成で秤量し、実験例1と同様に試料7~試料11のセラミック蛍光材料を得た。
[Experimental example 2]
As raw materials, Lu 2 O 3 (purity 5N), Y 2 O 3 (purity 5N), CeO 2 (purity 4N), and Al 2 O 3 (purity 5N) were prepared, weighed according to the composition shown in Table 2, and tested. Ceramic fluorescent materials of Samples 7 to 11 were obtained in the same manner as in Example 1.

Figure 0007156466000002
Figure 0007156466000002

[特性の測定]
作製した試料1~11の蛍光の減衰時定数τを求めた。パルスX線管を用い、30kVの管電圧でX線を発生させ、試料1~11にX線を照射し、X線の照射停止後、発光強度が1/eに減衰するまでの時間を減衰時定数τとして求めた。蛍光の測定には、浜松ホトニクス製蛍光寿命測定器のQuantaurus-τ(Quantaurus-Tau)を用いた。試料1~6のCeの組成xと減衰時定数τとの関係を図1に示す。また、試料7~11のLuの組成yと減衰時定数τとの関係を図2に示す。
[Measurement of properties]
The fluorescence decay time constant τ of the prepared samples 1 to 11 was determined. Using a pulse X-ray tube, generate X-rays at a tube voltage of 30 kV, irradiate samples 1 to 11 with X-rays, and attenuate the time until the emission intensity decays to 1/e after stopping the X-ray irradiation. It was obtained as the time constant τ. Quantaurus-τ (Quantaurus-Tau), a fluorescence lifetime measuring device manufactured by Hamamatsu Photonics, was used for fluorescence measurement. FIG. 1 shows the relationship between the Ce composition x of Samples 1 to 6 and the decay time constant τ. FIG. 2 shows the relationship between the Lu composition y and the decay time constant τ of samples 7-11.

試料3の粉末X線回折スペクトルを測定した。結果を図3(a)および(b)に示す。比較のため、焼成時の雰囲気が、大気又は酸素雰囲気であることを除いて実験例1の試料3と同じ条件で作成した試料の粉末X線回折スペクトルを合わせて示す。 A powder X-ray diffraction spectrum of Sample 3 was measured. The results are shown in FIGS. 3(a) and (b). For comparison, the powder X-ray diffraction spectrum of a sample prepared under the same conditions as Sample 3 of Experimental Example 1 except that the atmosphere during firing was air or oxygen atmosphere is also shown.

酸素雰囲気で焼成した試料、大気雰囲気で焼成した試料および試料3について、組織のSEM(Scanning Electron Microscope)観察をJEOL製のJSM-7001Fを用いて行った。5000倍で観察したBSE(Backscattered electron)像を図4(a)~(c)に示す。図5(a)~(c)は、図4と同じ領域において、EDX法(Energy Dispersive X-ray Spectroscopy)によってCe元素を分析したCe元素マッピングの結果を示す。また、図6(a)~(c)は、図5(a)~(c)に二値化処理を行い、黒色で示したCeO相の領域を示す。断面におけるCeO相の領域割合を表3に示す。 SEM (Scanning Electron Microscope) observation of the structure of the sample fired in the oxygen atmosphere, the sample fired in the air atmosphere, and the sample 3 was performed using JSM-7001F manufactured by JEOL. BSE (backscattered electron) images observed at a magnification of 5000 are shown in FIGS. 4(a) to 4(c). FIGS. 5A to 5C show results of Ce elemental mapping obtained by analyzing the Ce element by EDX (Energy Dispersive X-ray Spectroscopy) in the same region as in FIG. In addition, FIGS. 6(a) to 6(c) show regions of the CeO 2 phase indicated in black by performing binarization processing on FIGS. 5(a) to 5(c). Table 3 shows the area ratio of the CeO 2 phase in the cross section.

Figure 0007156466000003
Figure 0007156466000003

[考察]
図1に示すように、一般式(1)で示されるセラミック蛍光材料において、Ceの添加量が増えるに従い、減衰時定数τは短くなることが分かる。図1において、単結晶のCeープYAPの減衰時定数τを測定し、合わせて示した。Ceの量xが、0.001以上であれば、減衰時定数τを35ns程度以下にすることができることが分かった。また、Ceの量xが、0.006以上であれば、減衰時定数τは約20ns以下になり、xが0.01以上であれば、減衰時定数τは約15ns以下になることが分かった。
[Discussion]
As shown in FIG. 1, in the ceramic fluorescent material represented by the general formula (1), as the amount of Ce added increases, the decay time constant τ becomes shorter. In FIG. 1, the decay time constant τ of single crystal Ce-PYAP was measured and shown together. It was found that when the amount x of Ce is 0.001 or more, the attenuation time constant τ can be made about 35 ns or less. It is also found that when the amount x of Ce is 0.006 or more, the decay time constant τ is about 20 ns or less, and when x is 0.01 or more, the decay time constant τ is about 15 ns or less. rice field.

図2に示すように、一般式(1)で示されるセラミック蛍光材料において、Luの量yが増えるに従い、減衰時定数τはわずかに短くなる傾向にあるが、Luの量によって減衰時定数τは大きくは変化しないことが分かる。これは、上述したように、減衰時定数τは、Ceが添加される母材にはあまり影響されず、主として発光元素に依存することを示していると考えられる。 As shown in FIG. 2, in the ceramic fluorescent material represented by the general formula (1), as the amount y of Lu increases, the attenuation time constant τ tends to become slightly shorter. is found not to change significantly. This is considered to indicate that, as described above, the decay time constant τ is largely dependent on the light-emitting element without being significantly affected by the base material to which Ce is added.

したがって、例えば、減衰時定数τをあまり変化させずに、Luの量を異ならせて、セラミック蛍光材料の有効原子番号を調節することができる。 Thus, for example, different amounts of Lu can be used to tune the effective atomic number of a ceramic fluorescent material without significantly changing the decay time constant τ.

図3(a)は、作製した試料3の粉末X線回折スペクトルを示し、(b)はその一部を拡大して示している。34.5°付近にCe0.030.97AlOに由来する大きなピークがみられる(ペロブスカイト構造を同定)。図3(a)および(b)に示すように、酸素雰囲気下又は大気雰囲気下で作成した試料には、28.2℃付近にCeOに由来するピークがみられるのに対し、還元雰囲気で作製した試料3には、このピークは見られない。これらの結果から、本開示のセラミック蛍光材料を作製する際には、還元雰囲気で焼結を行うことが重要であること、還元雰囲気で焼結を行うことによって、高い濃度でCeをYAPに固溶させることができることが分かる。 FIG. 3(a) shows the powder X-ray diffraction spectrum of Sample 3 produced, and FIG. 3(b) shows an enlarged part of it. A large peak derived from Ce 0.03 Y 0.97 AlO 3 is observed near 34.5° (perovskite structure is identified). As shown in Figs. 3(a) and 3(b), the samples prepared in the oxygen atmosphere or in the air atmosphere show a peak derived from CeO2 near 28.2 ° C , whereas in the reducing atmosphere This peak is not seen in the prepared sample 3. From these results, it is important to perform sintering in a reducing atmosphere when producing the ceramic fluorescent material of the present disclosure. I know it can be dissolved.

図4(a)~(c)において、白色で示される領域は、一般式(1)で示される組成の相の粒界に析出したCeO相と考えられる。この図に示すように、焼成時の雰囲気に酸素が含まれるほど、CeOが主相に固溶せず、大きな異相として存在していることが分かる。これに対し、還元性雰囲気で焼成した実施例の試料3では、CeO相は小さい。なお、図4(a)~(c)において、主相およびCeO相以外に、ガーネット相(主相より濃い領域)および気孔(黒)等が、示されていると考えられる。 In FIGS. 4(a) to 4(c), the regions shown in white are considered to be the CeO 2 phase precipitated at the grain boundary of the phase having the composition represented by the general formula (1). As shown in this figure, the more oxygen is contained in the atmosphere during firing, the more CeO 2 does not form a solid solution in the main phase and exists as a large heterogeneous phase. On the other hand, the CeO 2 phase is small in sample 3 of the example fired in a reducing atmosphere. 4(a) to 4(c), in addition to the main phase and the CeO 2 phase, the garnet phase (area darker than the main phase) and pores (black) are considered to be shown.

表3に示すように、作成した試料3の観察した断面におけるCeO相の面積は、0.01%であり、主相に固溶しなかったCeOはごくわずかである。これに対し、酸素雰囲気で焼成した試料では、CeOの還元が十分には進まなかったため、主相に固溶しにくく、CeOとして残っていると考えられる。本開示のセラミック蛍光材料によれば、断面のBSE像におけるCeO相の領域の割合は、約0.5%以下である。 As shown in Table 3, the area of the CeO 2 phase in the observed cross section of the prepared sample 3 is 0.01%, and the amount of CeO 2 not solid-dissolved in the main phase is very small. On the other hand, in the sample fired in an oxygen atmosphere, the reduction of CeO 2 did not proceed sufficiently, so it is difficult to form a solid solution in the main phase and remains as CeO 2 . According to the ceramic phosphor materials of the present disclosure, the proportion of CeO 2 phase regions in cross-sectional BSE images is about 0.5% or less.

以上の結果から、本開示のセラミック蛍光材料によれば、一般式(1)の組成を有することにより、減衰時定数τが小さく、フォトンカウンティング型の放射線検出器に使用可能な蛍光材料を得ることが確認できた。 From the above results, according to the ceramic fluorescent material of the present disclosure, by having the composition of the general formula (1), the decay time constant τ is small, and a fluorescent material that can be used for a photon counting type radiation detector can be obtained. was confirmed.

本開示のセラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法は、種々の用途の蛍光材料、シンチレータおよび放射線検出器に好適に用いられ、例えば、放射線画像システム用のフォトンカウンティング型の放射線検出器に好適に用いられる。


INDUSTRIAL APPLICABILITY The ceramic fluorescent material, the ceramic scintillator and the radiation detector, and the method for manufacturing the ceramic fluorescent material of the present disclosure are suitably used for fluorescent materials, scintillators and radiation detectors for various applications, such as photon counting for radiographic imaging systems. type radiation detector.


Claims (10)

Ce(Y1-yLu1-xAlOで表される組成を有する主成分を含み、前記x、yが
0.001≦x<1
0≦y≦1
を満足する蛍光材料を含む、フォトンカウンティング型放射線検出器用のセラミックシンチレータ
Ce x (Y 1-y Lu y ) 1-x AlO 3 containing a main component having a composition represented by x and y where 0.001≦x<1
0≤y≤1
A ceramic scintillator for a photon-counting radiation detector containing a fluorescent material satisfying
前記主成分はペロブスカイト構造を有し、Ceを発光元素とする蛍光体であり、
前記フォトンカウンティング型放射線検出器用のセラミックシンチレータは、Ce、Y、LuおよびAlの合計量に対して、
Ceを0.05原子%以上50原子%未満、
Yを0原子%以上49.95原子%以下、
Luを0原子%以上49.5原子%以下、
かつ、
Ce、YおよびLuの合計を50原子%、および
Alを50原子%、の割合で含む、請求項1に記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The main component is a phosphor having a perovskite structure and having Ce as a light emitting element,
The ceramic scintillator for the photon counting radiation detector has, with respect to the total amount of Ce, Y, Lu and Al,
0.05 atomic % or more and less than 50 atomic % of Ce,
0 atomic % or more and 49.95 atomic % or less of Y,
0 atomic % or more and 49.5 atomic % or less of Lu,
And,
2. The ceramic scintillator for a photon-counting radiation detector according to claim 1, containing 50 atomic % of Ce, Y and Lu in total and 50 atomic % of Al.
前記フォトンカウンティング型放射線検出器用のセラミックシンチレータは、95質量%以上の割合で、前記主成分を含む、請求項1に記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ2. The ceramic scintillator for photon counting radiation detector according to claim 1, wherein said ceramic scintillator for photon counting radiation detector contains said main component at a rate of 95% by mass or more. 前記xは、
0.006≦x<1
を満足する請求項1から3のいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The x is
0.006≦x<1
A ceramic scintillator for a photon counting radiation detector according to any one of claims 1 to 3, satisfying:
前記xは、
0.01≦x≦0.1
を満足する請求項1から3のいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The x is
0.01≤x≤0.1
A ceramic scintillator for a photon counting radiation detector according to any one of claims 1 to 3, satisfying:
前記yは、
0<y<0.5
を満足する請求項1から5のいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The y is
0<y<0.5
A ceramic scintillator for a photon counting radiation detector according to any one of claims 1 to 5, satisfying:
前記yは、
0.0003≦y≦0.01
を満足する請求項1から5のいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The y is
0.0003≤y≤0.01
A ceramic scintillator for a photon counting radiation detector according to any one of claims 1 to 5, satisfying:
前記yは、
0.4≦y≦0.6
を満足する請求項1から5のいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータ
The y is
0.4≤y≤0.6
A ceramic scintillator for a photon counting radiation detector according to any one of claims 1 to 5, satisfying:
請求項1からのいずれかに記載のフォトンカウンティング型放射線検出器用のセラミックシンチレータであって、相対密度が99%以上であるフォトンカウンティング型放射線検出器用のセラミックシンチレータ。 9. The ceramic scintillator for photon counting radiation detectors according to claim 1 , wherein the ceramic scintillator for photon counting radiation detectors has a relative density of 99% or more. 焼成後の組成が、Ce(Y1-yLu1-xAlO(0.001≦x<1、0≦y≦1)となるように、Ceと、Alと、Yと、Luとをそれぞれ含む素原料を用意する工程と、
前記素原料を混合及び粉砕し、原料粉末を得る工程と、
前記原料粉末を成形し、成形体を得る工程と、
前記成形体を還元雰囲気中、1600℃~1800℃の温度で焼結させる工程と、
を包含するフォトンカウンティング型放射線検出器用の蛍光材料の製造方法。
Ce , Al , Y , and A step of preparing raw materials each containing Lu;
a step of mixing and pulverizing the raw materials to obtain a raw material powder;
a step of molding the raw material powder to obtain a molded body;
sintering the compact at a temperature of 1600° C. to 1800° C. in a reducing atmosphere;
A method for producing a fluorescent material for a photon-counting radiation detector, comprising:
JP2021124868A 2017-08-30 2021-07-30 Ceramic scintillator for photon-counting radiation detector and method for manufacturing fluorescent material for photon-counting radiation detector Active JP7156466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022074246A JP7302706B2 (en) 2017-08-30 2022-04-28 Ceramic scintillators and radiation detectors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017165851 2017-08-30
JP2017165851 2017-08-30
JP2018159991A JP2019044177A (en) 2017-08-30 2018-08-29 Ceramic fluorescent material, ceramic scintillator and radiation detector, and method for producing ceramic fluorescent material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018159991A Division JP2019044177A (en) 2017-08-30 2018-08-29 Ceramic fluorescent material, ceramic scintillator and radiation detector, and method for producing ceramic fluorescent material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022074246A Division JP7302706B2 (en) 2017-08-30 2022-04-28 Ceramic scintillators and radiation detectors

Publications (2)

Publication Number Publication Date
JP2021175809A JP2021175809A (en) 2021-11-04
JP7156466B2 true JP7156466B2 (en) 2022-10-19

Family

ID=65816289

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018159991A Pending JP2019044177A (en) 2017-08-30 2018-08-29 Ceramic fluorescent material, ceramic scintillator and radiation detector, and method for producing ceramic fluorescent material
JP2021124868A Active JP7156466B2 (en) 2017-08-30 2021-07-30 Ceramic scintillator for photon-counting radiation detector and method for manufacturing fluorescent material for photon-counting radiation detector
JP2022074246A Active JP7302706B2 (en) 2017-08-30 2022-04-28 Ceramic scintillators and radiation detectors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018159991A Pending JP2019044177A (en) 2017-08-30 2018-08-29 Ceramic fluorescent material, ceramic scintillator and radiation detector, and method for producing ceramic fluorescent material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022074246A Active JP7302706B2 (en) 2017-08-30 2022-04-28 Ceramic scintillators and radiation detectors

Country Status (1)

Country Link
JP (3) JP2019044177A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563514A (en) 2004-03-16 2005-01-12 中国科学院上海光学精密机械研究所 Preparation method of trivalent cerium ion doped rare earth aluminate crystal
JP2015152356A (en) 2014-02-12 2015-08-24 学校法人 岩手医科大学 Dark countless radiation detection energy discrimination imaging system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045676B2 (en) * 1979-04-02 1985-10-11 大日本塗料株式会社 Method for manufacturing phosphor
GB8431838D0 (en) * 1984-12-17 1985-01-30 Secr Defence Luminescent ceramic plates
JPH0674418B2 (en) * 1986-02-13 1994-09-21 化成オプトニクス株式会社 Rare earth aluminate phosphor
GB2400372B (en) * 2003-04-09 2005-03-23 Photonic Materials Ltd Single crystal scintillators
KR20130055360A (en) * 2011-11-18 2013-05-28 주식회사 엘스톤 A lutetium-aluminium perovskite phosphor materials and their applications for white-light-emitting device
JP2014172940A (en) * 2013-03-06 2014-09-22 Nemoto Lumi-Materials Co Ltd Fluophor dispersion ceramic plate
WO2015053033A1 (en) * 2013-10-08 2015-04-16 日立金属株式会社 Ceramic scintillator and method for producing same, scintillator array, and radiation detector
JP2017015627A (en) * 2015-07-03 2017-01-19 株式会社東芝 Scintillator array and method for manufacturing the same, and radiation detector and radiation inspection device using the same
CN106319635A (en) * 2016-09-30 2017-01-11 中国电子科技集团公司第二十六研究所 Method for enhancing light output of cerium-doped lutetium yttrium aluminate (LuYAP) scintillation crystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563514A (en) 2004-03-16 2005-01-12 中国科学院上海光学精密机械研究所 Preparation method of trivalent cerium ion doped rare earth aluminate crystal
JP2015152356A (en) 2014-02-12 2015-08-24 学校法人 岩手医科大学 Dark countless radiation detection energy discrimination imaging system

Also Published As

Publication number Publication date
JP2022103225A (en) 2022-07-07
JP2019044177A (en) 2019-03-22
JP2021175809A (en) 2021-11-04
JP7302706B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
JP5212115B2 (en) Fluorescent material, scintillator and radiation detector using the same
US9193903B2 (en) Solid scintillator, radiation detector, and radiation examination device
KR102330805B1 (en) Transparent Ceramic Garnet Scintillator Detector for Positron Emission Tomography
US10684377B2 (en) Scintillator, scintillator array, radiation detector, and radiation inspection device
JP2010261005A (en) Fluorescent material and scintillator and radiation detector using the same
Luo et al. Microstructure and optical characteristics of Ce: Gd3 (Ga, Al) 5O12 ceramic for scintillator application
US9315726B2 (en) Mixed oxide materials
TW201521685A (en) Scintillator material, radiation detector, and radiographic examination device
JP6776671B2 (en) Fluorescent materials, ceramic scintillators and radiation detectors, and methods for manufacturing fluorescent materials
JP5241979B2 (en) Ceramic scintillator material and manufacturing method thereof, and radiation detector and radiation inspection apparatus using the same
JP7156466B2 (en) Ceramic scintillator for photon-counting radiation detector and method for manufacturing fluorescent material for photon-counting radiation detector
CN106715646B (en) Fluorescent material, scintillator array, and radiation detector
JP5572049B2 (en) Solid scintillator material, solid scintillator, radiation detector and radiation inspection apparatus using the same
US20210139773A1 (en) Large area scintillator panels with doping
WO2021132494A1 (en) Scintillator and radiation detector
JP7459593B2 (en) Ceramic fluorescent material, scintillator array, radiation detector and radiation computed tomography apparatus
JP7150693B2 (en) Radiation detection material and radiation detection device
Qu et al. A novel YAG: Ce/CsI: Tl phoswich detector consisting of transparent ceramic scintillator for α–γ discrimination
WO2021149670A1 (en) Scintillator and radiation detector
JP2021143288A (en) Scintillator, radiation detector, and radiation imaging system
JP2021102716A (en) Scintillator and radiation detector
JP2021098820A (en) Ceramic composition for scintillator, scintillator, and radiation detector
JP2021102715A (en) Scintillator and radiation detector
JP2021147277A (en) Ceramic composition for scintillators, and scintillator and radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350