JP7151758B2 - COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES - Google Patents

COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES Download PDF

Info

Publication number
JP7151758B2
JP7151758B2 JP2020214849A JP2020214849A JP7151758B2 JP 7151758 B2 JP7151758 B2 JP 7151758B2 JP 2020214849 A JP2020214849 A JP 2020214849A JP 2020214849 A JP2020214849 A JP 2020214849A JP 7151758 B2 JP7151758 B2 JP 7151758B2
Authority
JP
Japan
Prior art keywords
copper
film
plating
clad laminate
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020214849A
Other languages
Japanese (ja)
Other versions
JP2022100710A (en
Inventor
匠 下地
芳英 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=82271208&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7151758(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020214849A priority Critical patent/JP7151758B2/en
Priority to KR1020210115685A priority patent/KR102614463B1/en
Priority to CN202111181106.2A priority patent/CN114745849A/en
Priority to TW110146010A priority patent/TWI818380B/en
Publication of JP2022100710A publication Critical patent/JP2022100710A/en
Application granted granted Critical
Publication of JP7151758B2 publication Critical patent/JP7151758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、銅張積層板および銅張積層板の製造方法に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板、チップオンフィルムなどの製造に用いられる銅張積層板、およびその銅張積層板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a copper-clad laminate and a method for producing the copper-clad laminate. More particularly, the present invention relates to a copper-clad laminate used for producing flexible printed wiring boards, chip-on-films, etc., and a method for producing the copper-clad laminate.

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などの電子機器には、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板(FPC)や、フレキシブルプリント配線板に半導体チップを実装したチップオンフィルム(COF)が用いられる。 Electronic devices such as liquid crystal panels, notebook computers, digital cameras, and mobile phones use flexible printed wiring boards (FPC), in which wiring patterns are formed on the surface of a resin film, and chip-on boards, in which semiconductor chips are mounted on flexible printed wiring boards. A film (COF) is used.

フレキシブルプリント配線板は、セミアディティブ法、サブトラクティブ法などにより、銅張積層板に配線パターンを形成することで得られる。特に、微細配線の形成や、高精度の配線寸法が要求される場合には、セミアディティブ法が用いられる(例えば、特許文献1)。 A flexible printed wiring board is obtained by forming a wiring pattern on a copper-clad laminate by a semi-additive method, a subtractive method, or the like. In particular, the semi-additive method is used when forming fine wiring or when highly accurate wiring dimensions are required (for example, Patent Document 1).

セミアディティブ法では、銅張積層板の導体層のうち不要部分はエッチングにより除去される。導体層が厚すぎるとエッチング時間が長くなり、配線部のエッチングも進行することから、配線の断面形状を矩形にすることが困難になる。そのため、セミアディティブ法により加工される銅張積層板の導体層は薄い方が好ましい。そこで、セミアディティブ法により加工される銅張積層板として、厚さ0.2~3.0μmの導体層を有するものがよく用いられる。 In the semi-additive method, unnecessary portions of the conductor layer of the copper-clad laminate are removed by etching. If the conductor layer is too thick, the etching time will be long, and the etching of the wiring portion will progress, making it difficult to make the cross-sectional shape of the wiring rectangular. Therefore, the conductor layer of the copper-clad laminate processed by the semi-additive method is preferably thin. Therefore, as a copper-clad laminate processed by the semi-additive method, one having a conductor layer with a thickness of 0.2 to 3.0 μm is often used.

チップオンフィルムは配線パターンメーカとアセンブリメーカが銅張積層板を順に加工することで製造される。配線パターンメーカは、長尺帯状の銅張積層板に後に複数の個片となる複数の配線パターンを配列した状態で形成し、長尺帯状のままのフレキシブルプリント配線板をアセンブリメーカに出荷する。ここで、複数の配線パターンのうち配線の断線、欠けなどの欠陥が生じたものには不良を示すマーキングが付される。アセンブリメーカは、個々の配線パターンに半導体チップを実装する。この際、フレキシブルプリント配線板の不良率(フレキシブルプリント配線板に形成された複数の配線パターンのうち不良配線パターンの割合)が高いと実装の生産性が低下する。そこで、アセンブリメーカに納入されるフレキシブルプリント配線板には配線パターンの許容不良率が定められることが多い。アセンブリメーカにより仕様は異なるが、許容不良率は30%と定められることが多い。 A chip-on-film is manufactured by sequentially processing a copper clad laminate by a wiring pattern maker and an assembly maker. A wiring pattern maker forms a plurality of wiring patterns, which will later become a plurality of individual pieces, on a long belt-like copper-clad laminate, and ships the long belt-like flexible printed wiring board to an assembly maker. Here, among the plurality of wiring patterns, those having defects such as disconnection or lack of wiring are marked as defective. Assembly manufacturers mount semiconductor chips on individual wiring patterns. At this time, if the defect rate of the flexible printed wiring board (the ratio of defective wiring patterns among the plurality of wiring patterns formed on the flexible printed wiring board) is high, the productivity of mounting decreases. Therefore, flexible printed wiring boards delivered to assembly makers are often provided with a permissible defective rate of wiring patterns. Although the specifications differ depending on the assembly manufacturer, the permissible defect rate is often set at 30%.

特開2010-108964号公報JP 2010-108964 A

本発明は上記事情に鑑み、セミアディティブ法により形成された配線パターンの不良率を低減できる銅張積層板および銅張積層板の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a copper-clad laminate and a method for manufacturing a copper-clad laminate that can reduce the defect rate of wiring patterns formed by a semi-additive method.

本発明の銅張積層板は、ベースフィルムの表面に形成された、銅めっき被膜を含む導体層を有し、前記導体層は、厚さが0.4~3.0μmであり、直径5μm以上のピンホールが0.01個/cm以下であることを特徴とする。
本発明の銅張積層板の製造方法は、めっき装置を用いて、ロールツーロールにより基材を搬送しつつ、電解めっきにより該基材の表面の銅めっき被膜を成膜して、厚さ0.4~3.0μmの導体層を有する銅張積層板を得るにあたり、前記めっき装置は、前記基材のめっき面に接触する全てのローラの搬送面の表面粗さ(Rmax)が0.1μm以下であることを特徴とする。
The copper clad laminate of the present invention has a conductor layer containing a copper plating film formed on the surface of the base film, the conductor layer having a thickness of 0.4 to 3.0 μm and a diameter of 5 μm or more. The number of pinholes is 0.01 /cm 2 or less.
In the method for producing a copper-clad laminate of the present invention, a plating apparatus is used to transport a base material by roll-to-roll, and a copper-plated film is formed on the surface of the base material by electrolytic plating to form a thickness of 0. In order to obtain a copper-clad laminate having a conductor layer of 4 to 3.0 μm, the plating apparatus should have a surface roughness (Rmax) of 0.1 μm on the conveying surface of all rollers in contact with the plating surface of the base material. It is characterized by the following.

本発明の銅張積層板は、導体層に存在する直径5μm以上のピンホールが0.01個/cm以下であるので、セミアディティブ法により形成された配線パターンの不良率を18%以下に抑えることができる。
本発明の銅張積層板の製造方法によれば、直径5μm以上のピンホールが0.04個/cm以下の導体層を有する銅張積層板を製造できる。
In the copper clad laminate of the present invention, the number of pinholes having a diameter of 5 μm or more in the conductor layer is 0.01 /cm 2 or less, so that the defect rate of the wiring pattern formed by the semi-additive method is 18 % or less. can be suppressed.
According to the method for producing a copper-clad laminate of the present invention, a copper-clad laminate having a conductor layer with 0.04 or less pinholes/cm 2 having a diameter of 5 μm or more can be produced.

本発明の一実施形態に係る銅張積層板の断面図である。1 is a cross-sectional view of a copper-clad laminate according to one embodiment of the present invention; FIG.

つぎに、本発明の実施形態を図面に基づき説明する。
(銅張積層板)
図1に示すように、本発明の一実施形態に係る銅張積層板1は、ベースフィルム10と、ベースフィルム10の表面に形成された導体層20とからなる。図1に示すようにベースフィルム10の片面のみに導体層20が形成されてもよいし、ベースフィルム10の両面に導体層20が形成されてもよい。
Next, embodiments of the present invention will be described with reference to the drawings.
(copper-clad laminate)
As shown in FIG. 1, a copper-clad laminate 1 according to one embodiment of the present invention comprises a base film 10 and a conductor layer 20 formed on the surface of the base film 10 . The conductor layer 20 may be formed only on one side of the base film 10 as shown in FIG. 1, or the conductor layer 20 may be formed on both sides of the base film 10 .

ベースフィルム10としてポリイミドフィルム、液晶ポリマー(LCP)フィルムなどの樹脂フィルムを用いることができる。導体層20は、スパッタリングなどの乾式成膜法により成膜される金属層21と、電解めっきにより成膜される銅めっき被膜22とからなる。金属層21と銅めっき被膜22とはベースフィルム10の表面にこの順に積層されている。 A resin film such as a polyimide film or a liquid crystal polymer (LCP) film can be used as the base film 10 . The conductor layer 20 consists of a metal layer 21 formed by a dry film forming method such as sputtering, and a copper plating film 22 formed by electrolytic plating. The metal layer 21 and the copper plating film 22 are laminated in this order on the surface of the base film 10 .

金属層21は下地金属層21aと銅薄膜層21bとからなる。下地金属層21aと銅薄膜層21bとはベースフィルム10の表面にこの順に積層されている。一般に、下地金属層21aはニッケル、クロム、またはニッケルクロム合金からなる。下地金属層21aはなくてもよい。銅薄膜層21bはベースフィルム10の表面に下地金属層21aを介して成膜されてもよいし、下地金属層21aを介さずベースフィルム10の表面に直接成膜されてもよい。 The metal layer 21 consists of a base metal layer 21a and a copper thin film layer 21b. The base metal layer 21a and the copper thin film layer 21b are laminated on the surface of the base film 10 in this order. Typically, the underlying metal layer 21a is made of nickel, chromium, or a nickel-chromium alloy. The base metal layer 21a may be omitted. The copper thin film layer 21b may be formed on the surface of the base film 10 via the base metal layer 21a, or may be formed directly on the surface of the base film 10 without the base metal layer 21a.

特に限定されないが、ベースフィルム10の厚さは10~100μmが一般的である。下地金属層21aの厚さは5~50nmが一般的であり、銅薄膜層21bの厚さは50~400nmが一般的である。セミアディティブ法により加工される銅張積層板1の場合、導体層20の厚さは、0.4~3.0μmが一般的である。 Although not particularly limited, the thickness of the base film 10 is generally 10 to 100 μm. The thickness of the base metal layer 21a is generally 5 to 50 nm, and the thickness of the copper thin film layer 21b is generally 50 to 400 nm. In the case of the copper-clad laminate 1 processed by the semi-additive method, the thickness of the conductor layer 20 is generally 0.4-3.0 μm.

セミアディティブ法により銅張積層板1を加工すればフレキシブルプリント配線板を製造できる。セミアディティブ法によるフレキシブルプリント配線板の製造は、つぎの手順で行なわれる。まず、銅張積層板1の銅めっき被膜22の表面にレジスト層を形成する。つぎに、レジスト層のうち配線パターンを形成する部分に開口部を形成する。つぎに、レジスト層の開口部から露出した銅めっき被膜22を陰極として電解めっきを行ない、配線部を形成する。つぎに、レジスト層を除去し、フラッシュエッチングなどにより配線部以外の導体層20を除去する。これにより、フレキシブルプリント配線板が得られる。 A flexible printed wiring board can be manufactured by processing the copper-clad laminate 1 by a semi-additive method. The production of a flexible printed wiring board by the semi-additive method is carried out by the following procedure. First, a resist layer is formed on the surface of the copper plating film 22 of the copper-clad laminate 1 . Next, an opening is formed in a portion of the resist layer where the wiring pattern is to be formed. Next, electrolytic plating is performed using the copper plating film 22 exposed from the opening of the resist layer as a cathode to form a wiring portion. Next, the resist layer is removed, and the conductor layer 20 other than the wiring portion is removed by flash etching or the like. A flexible printed wiring board is thus obtained.

セミアディティブ法により加工される銅張積層板1は銅めっき被膜22が薄いため、電解めっきにより銅めっき被膜22を成膜する際にピンホールが発生しやすい。セミアディティブ法では電解めっきにより銅めっき被膜22上に配線パターンの銅めっきを積層する。この際、銅めっき被膜22にピンホールが存在すると、積層する銅めっきの成長が阻害され、配線の断線、欠けなどの欠陥が生じる。特に、チップオンフィルムを製造する場合、配線幅が15μm以下の微細配線の形成が必要であるため、ピンホールに起因する配線の欠陥が生じやすい。 Since the copper-clad laminate 1 processed by the semi-additive method has a thin copper-plated film 22, pinholes are likely to occur when the copper-plated film 22 is formed by electroplating. In the semi-additive method, the copper plating of the wiring pattern is laminated on the copper plating film 22 by electroplating. At this time, if a pinhole exists in the copper plating film 22, the growth of the laminated copper plating is inhibited, and defects such as disconnection and chipping of the wiring occur. In particular, when manufacturing a chip-on-film, it is necessary to form fine wiring with a wiring width of 15 μm or less, so wiring defects due to pinholes are likely to occur.

導体層20のピンホールの数が少ないほど、配線に欠陥が生じにくく、配線パターンの不良率を抑えることができる。本実施形態に係る銅張積層板1の導体層20は、直径5μm以上のピンホールが0.04個/cm以下である。このように、導体層20のピンホールが少ないので、セミアディティブ法により形成された配線パターンの不良率を30%以下に抑えることができる。 The smaller the number of pinholes in the conductor layer 20, the less likely the defects will occur in the wiring, and the less defective the wiring pattern will be. The conductor layer 20 of the copper-clad laminate 1 according to this embodiment has 0.04 or less pinholes/cm 2 with a diameter of 5 μm or more. As described above, since the number of pinholes in the conductor layer 20 is small, the defect rate of the wiring pattern formed by the semi-additive method can be suppressed to 30% or less.

(銅張積層板の製造方法)
つぎに、本発明の一実施形態に係る銅張積層板の製造方法を説明する。
ロールツーロール方式のスパッタリング装置を用いれば、長尺帯状のベースフィルム10の表面に金属層21を成膜できる。以下、ベースフィルム10の表面に金属層21を成膜したものを基材と称する。ロールツーロール方式のめっき装置を用いれば、長尺帯状の基材の表面に銅めっき被膜22を成膜できる。これにより、長尺帯状の銅張積層板1が得られる。
(Manufacturing method of copper-clad laminate)
Next, a method for manufacturing a copper-clad laminate according to one embodiment of the present invention will be described.
The metal layer 21 can be formed on the surface of the long belt-shaped base film 10 by using a roll-to-roll type sputtering apparatus. Hereinafter, the base film 10 having the metal layer 21 formed thereon is referred to as a substrate. If a roll-to-roll type plating apparatus is used, the copper plating film 22 can be formed on the surface of the long strip-shaped base material. Thus, a long belt-shaped copper-clad laminate 1 is obtained.

めっき装置は、ロールツーロールにより長尺帯状の基材を搬送しつつ、基材に対して電解めっきを行なう装置である。めっき装置はロール状に巻回された基材を繰り出す供給装置と、めっき後の基材(銅張積層板1)をロール状に巻き取る巻取装置とを有する。供給装置と巻取装置との間の搬送経路には、前処理槽、めっき槽、後処理槽が配置されている。めっき槽では電解めっきが行なわれる。基材はめっき槽内を搬送されつつ、電解めっきよりその表面に銅めっき被膜22が成膜される。 A plating apparatus is an apparatus that performs electrolytic plating on a base material while transporting the base material in the form of a long strip by roll-to-roll. The plating apparatus has a supply device for feeding out the base material wound into a roll, and a winding device for winding the base material (copper-clad laminate 1) after plating into a roll. A pre-treatment tank, a plating tank, and a post-treatment tank are arranged on the transport path between the supply device and the winding device. Electroplating is performed in the plating bath. While the base material is conveyed in the plating bath, a copper plating film 22 is formed on the surface thereof by electrolytic plating.

めっき槽には銅めっき液が貯留されている。銅めっき液は水溶性銅塩を含む。銅めっき液に一般的に用いられる水溶性銅塩であれば特に限定されず用いられる。銅めっき液は硫酸を含んでもよい。硫酸の添加量を調整することで、銅めっき液のpHおよび硫酸イオン濃度を調整できる。銅めっき液は一般的にめっき液に添加される添加剤を含んでもよい。添加剤として、ブライトナー成分、レベラー成分、ポリマー成分、塩素成分などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 A copper plating solution is stored in the plating tank. A copper plating solution contains a water-soluble copper salt. Any water-soluble copper salt commonly used in copper plating solutions can be used without particular limitation. The copper plating solution may contain sulfuric acid. By adjusting the amount of sulfuric acid added, the pH and sulfate ion concentration of the copper plating solution can be adjusted. The copper plating solution may contain additives that are commonly added to plating solutions. As additives, one selected from brightener components, leveler components, polymer components, chlorine components, etc. may be used alone, or two or more may be used in combination.

銅めっき液の各成分の含有量は任意に選択できる。ただし、銅めっき液は銅を15~70g/L、硫酸を20~250g/L含有することが好ましい。そうすれば、銅めっき被膜22を十分な速度で成膜できる。銅めっき液はブライトナー成分を1~50mg/L含有することが好ましい。そうすれば、析出結晶を微細化し銅めっき被膜22の表面を平滑にできる。銅めっき液はレベラー成分を1~300mg/L含有することが好ましい。そうすれば、突起を抑制し平坦な銅めっき被膜22を成膜できる。銅めっき液はポリマー成分を10~1,500mg/L含有することが好ましい。そうすれば、基材端部への電流集中を緩和し均一な銅めっき被膜22を成膜できる。銅めっき液は塩素成分を20~80mg/L含有することが好ましい。そうすれば、異常析出を抑制できる。 The content of each component of the copper plating solution can be selected arbitrarily. However, the copper plating solution preferably contains 15 to 70 g/L of copper and 20 to 250 g/L of sulfuric acid. Then, the copper plating film 22 can be formed at a sufficient speed. The copper plating solution preferably contains 1 to 50 mg/L of brightener component. By doing so, the precipitated crystals can be made finer and the surface of the copper plating film 22 can be smoothed. The copper plating solution preferably contains 1 to 300 mg/L of leveler component. Then, a flat copper plating film 22 can be formed while suppressing protrusions. The copper plating solution preferably contains 10 to 1,500 mg/L of polymer component. By doing so, it is possible to reduce current concentration at the edge of the substrate and form a uniform copper plating film 22 . The copper plating solution preferably contains 20 to 80 mg/L of chlorine component. Then, abnormal precipitation can be suppressed.

銅めっき液の温度は20~35℃が好ましい。また、めっき槽内の銅めっき液を撹拌することが好ましい。例えば、ノズルから噴出させた銅めっき液を基材に吹き付けることで、銅めっき液を撹拌できる。 The temperature of the copper plating solution is preferably 20-35°C. Moreover, it is preferable to stir the copper plating solution in the plating bath. For example, the copper plating solution can be agitated by spraying the base material with the copper plating solution ejected from a nozzle.

電解めっきにおける電流密度とめっき時間とにより銅めっき被膜22の厚さを調整できる。例えば、導体層20の厚さが0.4~3.0μmとなるように、銅めっき被膜22の厚さが調整される。 The thickness of the copper plating film 22 can be adjusted by the current density and plating time in electrolytic plating. For example, the thickness of the copper plating film 22 is adjusted so that the thickness of the conductor layer 20 is 0.4 to 3.0 μm.

めっき装置は基材を搬送するための各種のローラを有する。めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面(ローラ外周面のうち基材のめっき面に接触する領域)の表面粗さ(Rmax)が0.1μm以下のローラを用いる。そうすれば、電解めっきにより銅めっき被膜22を成膜する際にピンホールが発生しにくい。そのため、直径5μm以上のピンホールが0.04個/cm以下の導体層20を有する銅張積層板1を製造できる。 A plating apparatus has various rollers for conveying the base material. Among the rollers of the plating apparatus, all rollers in contact with the plated surface of the base material have a surface roughness (Rmax) of 0.1 μm on the conveying surface (the area of the outer peripheral surface of the roller that contacts the plated surface of the base material). The following rollers are used. By doing so, pinholes are less likely to occur when the copper plating film 22 is formed by electrolytic plating. Therefore, the copper-clad laminate 1 having the conductor layer 20 with 0.04 or less pinholes/cm 2 having a diameter of 5 μm or more can be manufactured.

(共通の条件)
ベースフィルムとして、幅570mm、厚さ34μmの長尺帯状のポリイミドフィルム(宇部興産社製 Upilex)を用意した。ベースフィルムをマグネトロンスパッタリング装置にセットした。マグネトロンスパッタリング装置内にはニッケルクロム合金ターゲットと銅ターゲットとが設置されている。ニッケルクロム合金ターゲットの組成はCrが20質量%、Niが80質量%である。真空雰囲気下で、ベースフィルムの片面に、厚さ25nmのニッケルクロム合金からなる下地金属層を形成し、その上に厚さ100nmの銅薄膜層を形成した。
(common conditions)
As a base film, a long belt-shaped polyimide film (Upilex manufactured by Ube Industries, Ltd.) having a width of 570 mm and a thickness of 34 μm was prepared. The base film was set in a magnetron sputtering device. A nickel-chromium alloy target and a copper target are installed in the magnetron sputtering apparatus. The composition of the nickel-chromium alloy target is 20% by mass of Cr and 80% by mass of Ni. In a vacuum atmosphere, a base metal layer made of a nickel-chromium alloy with a thickness of 25 nm was formed on one side of the base film, and a copper thin film layer with a thickness of 100 nm was formed thereon.

ロールツーロール方式のめっき装置を用いて基材の片面に銅めっき被膜を成膜して銅張積層板を得た。めっき槽に貯留される銅めっき液は硫酸銅を120g/L、硫酸を70g/L、ブライトナー成分を16mg/L、レベラー成分を20mg/L、ポリマー成分を1,100mg/L、塩素成分を50mg/L含有する。ブライトナー成分としてビス(3-スルホプロピル)ジスルフィド(RASCHIG GmbH社製の試薬)を用いた。レベラー成分としてジアリルジメチルアンモニウムクロライド-二酸化硫黄共重合体(ニットーボーメディカル株式会社製 PAS-A―5)を用いた。ポリマー成分としてポリエチレングリコール-ポリプロピレングリコール共重合体(日油株式会社製 ユニルーブ50MB-11)を用いた。塩素成分として塩酸(和光純薬工業株式会社製の35%塩酸)を用いた。 A copper-plated film was formed on one side of the substrate using a roll-to-roll plating apparatus to obtain a copper-clad laminate. The copper plating solution stored in the plating tank contains 120 g/L of copper sulfate, 70 g/L of sulfuric acid, 16 mg/L of brightener component, 20 mg/L of leveler component, 1,100 mg/L of polymer component, and 1,100 mg/L of chlorine component. Contains 50 mg/L. Bis(3-sulfopropyl)disulfide (reagent manufactured by RASCHIG GmbH) was used as a brightener component. A diallyldimethylammonium chloride-sulfur dioxide copolymer (PAS-A-5 manufactured by Nittobo Medical Co., Ltd.) was used as a leveler component. A polyethylene glycol-polypropylene glycol copolymer (Unilube 50MB-11 manufactured by NOF Corporation) was used as the polymer component. Hydrochloric acid (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.) was used as the chlorine component.

(実施例1)
めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面の表面粗さ(Rmax)が0.068~0.074μmのローラを用いた。導体層の厚さが0.4μmとなるように銅めっき被膜の厚さを調整した。
(Example 1)
Among the rollers of the plating apparatus, rollers having a conveying surface with a surface roughness (Rmax) of 0.068 to 0.074 μm were used as all the rollers in contact with the plated surface of the substrate. The thickness of the copper plating film was adjusted so that the thickness of the conductor layer was 0.4 μm.

(実施例2)
めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面の表面粗さ(Rmax)が0.068~0.074μmのローラを用いた。導体層厚さが2.0μmとなるように銅めっき被膜の厚さを調整した。
(Example 2)
Among the rollers of the plating apparatus, rollers having a conveying surface with a surface roughness (Rmax) of 0.068 to 0.074 μm were used as all the rollers in contact with the plated surface of the substrate. The thickness of the copper plating film was adjusted so that the thickness of the conductor layer was 2.0 μm.

(実施例3)
めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面の表面粗さ(Rmax)が0.068~0.074μmのローラを用いた。導体層の厚さが3.0μmとなるように銅めっき被膜の厚さを調整した。
(Example 3)
Among the rollers of the plating apparatus, rollers having a conveying surface with a surface roughness (Rmax) of 0.068 to 0.074 μm were used as all the rollers in contact with the plated surface of the substrate. The thickness of the copper plating film was adjusted so that the conductor layer had a thickness of 3.0 μm.

(比較例1)
めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面の表面粗さ(Rmax)が4.003~4.218μmのローラを用いた。導体層の厚さが3.0μmとなるように銅めっき被膜の厚さを調整した。
(Comparative example 1)
Among the rollers of the plating apparatus, rollers having a conveying surface with a surface roughness (Rmax) of 4.003 to 4.218 μm were used as all the rollers in contact with the plated surface of the substrate. The thickness of the copper plating film was adjusted so that the conductor layer had a thickness of 3.0 μm.

(比較例2)
めっき装置が有するローラのうち、基材のめっき面に接触する全てのローラとして、搬送面の表面粗さ(Rmax)が7.101~7.129μmのローラを用いた。導体層の厚さが0.5μmとなるように銅めっき被膜の厚さを調整した。
(Comparative example 2)
Among the rollers of the plating apparatus, rollers having a conveying surface with a surface roughness (Rmax) of 7.101 to 7.129 μm were used as all the rollers in contact with the plated surface of the substrate. The thickness of the copper plating film was adjusted so that the thickness of the conductor layer was 0.5 μm.

実施例1~3および比較例1、2で得られた各銅張積層板から250×160mmの試料を切り出した。各試料を、ハロゲンランプを光源としたバックライト照明で検査し、直径5μm以上のピンホール数を計数した。検査は目視で行ない、予め用意しておいた直径5μmのピンホールの見本と比較しながら行なった。その結果を表1に示す。 A sample of 250×160 mm was cut out from each of the copper-clad laminates obtained in Examples 1-3 and Comparative Examples 1 and 2. Each sample was inspected under backlight illumination using a halogen lamp as a light source, and the number of pinholes with a diameter of 5 μm or more was counted. The inspection was carried out visually and compared with a pre-prepared sample of pinholes having a diameter of 5 μm. Table 1 shows the results.

表面粗さ(Rmax)が0.068~0.074μmのローラを用いた実施例1~3は、いずれも、ピンホール数が0.04個/cm以下であった。これに対し、表面粗さ(Rmax)が4.003~4.218μmまたは7.101~7.129μmのローラを用いた比較例1、2は、いずれも、ピンホール数が0.04個/cmを超えていた。これより、表面粗さ(Rmax)が0.1μm以下のローラを用いれば、直径5μm以上のピンホールが0.04個/cm以下の導体層を有する銅張積層板を製造できることが確認された。 In Examples 1 to 3 using rollers with a surface roughness (Rmax) of 0.068 to 0.074 μm, the number of pinholes was 0.04/cm 2 or less. On the other hand, in Comparative Examples 1 and 2 using rollers with a surface roughness (Rmax) of 4.003 to 4.218 μm or 7.101 to 7.129 μm, the number of pinholes was 0.04/ cm2 was exceeded. From this, it was confirmed that a copper-clad laminate having a conductor layer with 0.04 or less pinholes/cm 2 or less with a diameter of 5 μm or more can be produced by using a roller with a surface roughness (Rmax) of 0.1 μm or less. rice field.

つぎに、実施例1~3および比較例1、2で得られた各銅張積層板を加工してフレキシブルプリント配線板を製造した。フレキシブルプリント配線板の製造はつぎの手順で行なった。銅張積層板の銅めっき被膜の表面にドライフィルムレジストをラミネートし、複数の配線パターンを配列したレジストマスクを形成した。各配線パターンの大きさはおよそ70×40mmであり、最小ピッチは20μm、配線幅は10μmである。つぎに、レジストマスクの開口部から露出した銅めっき被膜を陰極として電解めっきを行ない、銅張積層板の導体層と合わせた厚さが8μmとなるように、銅めっきを積層した。 Next, the copper clad laminates obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were processed to produce flexible printed wiring boards. A flexible printed wiring board was manufactured by the following procedure. A dry film resist was laminated on the surface of the copper plating film of the copper-clad laminate to form a resist mask in which a plurality of wiring patterns were arranged. Each wiring pattern has a size of approximately 70×40 mm, a minimum pitch of 20 μm, and a wiring width of 10 μm. Next, electrolytic plating was performed using the copper plating film exposed from the openings of the resist mask as a cathode, and the copper plating was laminated so that the total thickness of the conductor layer of the copper-clad laminate was 8 μm.

レジストマスクの開口部から露出する積層した銅めっき(配線パターン)を顕微鏡で観察した。配線幅の3分の1以上の大きさの欠けまたは断線が存在する配線パターンを不良と判断し、配線パターンの不良率を求めた。その結果を表1に示す。 The laminated copper plating (wiring pattern) exposed from the opening of the resist mask was observed with a microscope. Wiring patterns with chipping or disconnection of a size of 1/3 or more of the wiring width were judged to be defective, and the defect rate of the wiring pattern was obtained. Table 1 shows the results.

導体層のピンホール数が0.04個/cm以下の実施例1~3は、いずれも、不良率が30%以下であり、許容範囲であることが確認された。これに対し、導体層のピンホール数が0.07個/cm、0.10個/cmの比較例1、2は、いずれも、不良率が30%を超えていた。これより、導体層のピンホール数を0.04個/cm以下とすれば、セミアディティブ法により形成された配線パターンの不良率が30%以下となることが確認された。 In Examples 1 to 3, in which the number of pinholes in the conductor layer was 0.04/cm 2 or less, the defect rate was 30% or less, which was confirmed to be within the allowable range. On the other hand, in Comparative Examples 1 and 2 in which the number of pinholes in the conductor layer was 0.07/cm 2 and 0.10/cm 2 , the defect rate exceeded 30%. From this, it was confirmed that if the number of pinholes in the conductor layer is 0.04/cm 2 or less, the defect rate of the wiring pattern formed by the semi-additive method becomes 30% or less.

また、表1から、導体層のピンホール数が少ないほど、配線パターンの不良率が低くなることが分かる。ピンホール数を0.04個/cm以下とすれば、不良率を27%以下できる。ピンホール数を0.02個/cm以下とすれば、不良率を21%以下できる。ピンホール数を0.01個/cm以下とすれば、不良率を18%以下できる。 Also, from Table 1, it can be seen that the smaller the number of pinholes in the conductor layer, the lower the defect rate of the wiring pattern. If the number of pinholes is 0.04/cm 2 or less, the defect rate can be 27% or less. If the number of pinholes is 0.02/cm 2 or less, the defect rate can be 21% or less. If the number of pinholes is 0.01/cm 2 or less, the defect rate can be 18% or less.

Figure 0007151758000001
Figure 0007151758000001

1 銅張積層板
10 ベースフィルム
20 導体層
21 金属層
21a 下地金属層
21b 銅薄膜層
22 銅めっき被膜
REFERENCE SIGNS LIST 1 copper clad laminate 10 base film 20 conductor layer 21 metal layer 21a base metal layer 21b copper thin film layer 22 copper plating film

Claims (2)

ベースフィルムの表面に直接形成された導体層を有し、
前記導体層は、
乾式成膜法により前記ベースフィルム上に直接成膜された金属層と、
電解めっきにより前記金属層上に直接成膜された銅めっき被膜と、を有し、
前記導体層は、厚さが0.4~3.0μmであり、直径5μm以上のピンホールが0.01個/cm以下である
ことを特徴とする銅張積層板。
Having a conductor layer formed directly on the surface of the base film,
The conductor layer is
a metal layer formed directly on the base film by a dry film forming method;
a copper plating film formed directly on the metal layer by electrolytic plating;
A copper-clad laminate, wherein the conductor layer has a thickness of 0.4 to 3.0 μm and has 0.01 /cm 2 or less of pinholes with a diameter of 5 μm or more.
めっき装置を用いて、ロールツーロールにより基材を搬送しつつ、電解めっきにより該基材の表面の銅めっき被膜を成膜して、厚さが0.4~3.0μmであり、直径5μm以上のピンホールが0.04個/cm以下である導体層を有する銅張積層板を得るにあたり、
前記めっき装置は、前記基材のめっき面に接触する全てのローラの搬送面の表面粗さ(Rmax)が0.1μm以下である
ことを特徴とする銅張積層板の製造方法。
Using a plating apparatus, a copper plating film is formed on the surface of the base material by electrolytic plating while conveying the base material by roll-to-roll, and the thickness is 0.4 to 3.0 μm and the diameter is 5 μm. In obtaining the above copper-clad laminate having a conductor layer with pinholes of 0.04/cm 2 or less,
The method for producing a copper-clad laminate, wherein the plating apparatus has a surface roughness (Rmax) of 0.1 μm or less on the conveying surfaces of all the rollers in contact with the plating surface of the base material.
JP2020214849A 2020-12-24 2020-12-24 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES Active JP7151758B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020214849A JP7151758B2 (en) 2020-12-24 2020-12-24 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
KR1020210115685A KR102614463B1 (en) 2020-12-24 2021-08-31 Copper clad laminate and method for producing copper clad laminate
CN202111181106.2A CN114745849A (en) 2020-12-24 2021-10-11 Copper-clad laminate and method for producing copper-clad laminate
TW110146010A TWI818380B (en) 2020-12-24 2021-12-09 Copper-clad laminated boards and manufacturing methods of copper-clad laminated boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020214849A JP7151758B2 (en) 2020-12-24 2020-12-24 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES

Publications (2)

Publication Number Publication Date
JP2022100710A JP2022100710A (en) 2022-07-06
JP7151758B2 true JP7151758B2 (en) 2022-10-12

Family

ID=82271208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020214849A Active JP7151758B2 (en) 2020-12-24 2020-12-24 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES

Country Status (4)

Country Link
JP (1) JP7151758B2 (en)
KR (1) KR102614463B1 (en)
CN (1) CN114745849A (en)
TW (1) TWI818380B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018949A (en) 2002-06-17 2004-01-22 Toray Ind Inc Method for manufacturing cathode roll for plating and film with plating coat
JP2005264303A (en) 2004-03-22 2005-09-29 Nippon Zeon Co Ltd Method for manufacturing metal resin composite film, metal resin composite film and its use
JP2006307338A (en) 2005-03-30 2006-11-09 Toray Ind Inc Power feeding roller, and device and method for producing film with plating film
JP2008087254A (en) 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Flexible copper-clad laminate and flexible copper clad laminate with carrier
WO2008090654A1 (en) 2007-01-24 2008-07-31 Sumitomo Metal Mining Co., Ltd. Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate
JP2015104891A (en) 2013-12-02 2015-06-08 東レKpフィルム株式会社 Copper foil with release film
JP2020152955A (en) 2019-03-20 2020-09-24 住友金属鉱山株式会社 Copper-clad laminate and production method of copper-clad laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618526B2 (en) * 2002-06-17 2009-11-17 Toray Industries, Inc. Method for manufacturing plated film, cathode roll for plating, and method for manufacturing circuit board
JP2010108964A (en) 2008-10-28 2010-05-13 Toray Ind Inc Method for manufacturing circuit board
KR102504252B1 (en) * 2015-09-03 2023-02-24 에스케이넥실리스 주식회사 Flexible Copper Clad Laminate, Method for Manufacturing The Same, and Method for Manufacturing Flexible Printed Circuit Board
JP7305342B2 (en) * 2018-12-17 2023-07-10 日東電工株式会社 conductive film
JP7215211B2 (en) * 2019-02-21 2023-01-31 住友金属鉱山株式会社 Method for manufacturing copper-clad laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018949A (en) 2002-06-17 2004-01-22 Toray Ind Inc Method for manufacturing cathode roll for plating and film with plating coat
JP2005264303A (en) 2004-03-22 2005-09-29 Nippon Zeon Co Ltd Method for manufacturing metal resin composite film, metal resin composite film and its use
JP2006307338A (en) 2005-03-30 2006-11-09 Toray Ind Inc Power feeding roller, and device and method for producing film with plating film
JP2008087254A (en) 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Flexible copper-clad laminate and flexible copper clad laminate with carrier
WO2008090654A1 (en) 2007-01-24 2008-07-31 Sumitomo Metal Mining Co., Ltd. Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate
JP2015104891A (en) 2013-12-02 2015-06-08 東レKpフィルム株式会社 Copper foil with release film
JP2020152955A (en) 2019-03-20 2020-09-24 住友金属鉱山株式会社 Copper-clad laminate and production method of copper-clad laminate

Also Published As

Publication number Publication date
CN114745849A (en) 2022-07-12
KR20220092350A (en) 2022-07-01
JP2022100710A (en) 2022-07-06
TW202226909A (en) 2022-07-01
KR102614463B1 (en) 2023-12-14
TWI818380B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP7107190B2 (en) Method for manufacturing copper-clad laminate
JP2019167583A (en) Copper-clad laminated sheet, and method of producing copper-clad laminated sheet
CN110740568A (en) Copper-clad laminated board
JP7151758B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7415813B2 (en) Copper-clad laminate and method for manufacturing copper-clad laminate
JP7276025B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
TWI778281B (en) CCL
JP7215211B2 (en) Method for manufacturing copper-clad laminate
JP7409150B2 (en) Manufacturing method for copper clad laminates
JP7409151B2 (en) Manufacturing method for copper clad laminates
JP7322678B2 (en) Method for manufacturing copper-clad laminate
JP7497657B2 (en) Manufacturing method of copper clad laminate
JP7452325B2 (en) Manufacturing method for copper clad laminates
TWI785257B (en) copper clad laminate
JP7273366B2 (en) copper clad laminate
TWI778280B (en) CCL
JP2024000020A (en) Copper-clad laminate and flexible printed-wiring board
JP2024006537A (en) copper clad laminate
JP2022105808A (en) Copper clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157