JP7146755B2 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
JP7146755B2
JP7146755B2 JP2019527753A JP2019527753A JP7146755B2 JP 7146755 B2 JP7146755 B2 JP 7146755B2 JP 2019527753 A JP2019527753 A JP 2019527753A JP 2019527753 A JP2019527753 A JP 2019527753A JP 7146755 B2 JP7146755 B2 JP 7146755B2
Authority
JP
Japan
Prior art keywords
bucket
ground
excavated
hardness
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019527753A
Other languages
English (en)
Other versions
JPWO2019009341A1 (ja
Inventor
春男 呉
裕介 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2019009341A1 publication Critical patent/JPWO2019009341A1/ja
Application granted granted Critical
Publication of JP7146755B2 publication Critical patent/JP7146755B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

本発明は、掘削アタッチメントを備えたショベルに関する。
ブーム、アーム、及び、バケットで構成される掘削アタッチメントを備えたショベルが知られている(特許文献1参照。)。このショベルは、掘削アタッチメントの姿勢からバケットの先端に作用する掘削反力を算出する。そして、その掘削反力が所定値を上回る場合に自動的にブームを上昇させる。掘削深さを浅くすることによって、バケットが動かなくなるような無駄な掘削動作が行われないようにするためである。
特開2011-252338号公報
しかしながら、上述のショベルは、掘削対象地面の硬さを考慮せずに掘削反力を算出している。そのため、掘削対象地面が硬いと、掘削反力を実際よりも小さく算出してしまい適切なタイミングでブームを上昇させることができない。その結果、バケットが動かなくなるような無駄な掘削動作を引き起こさせてしまう。一方、掘削対象地面が軟らかいと、掘削反力を実際よりも大きく算出してしまいブームを早期に上昇させてしまう。その結果、1回の掘削動作でバケット内に入る土砂の量を低減させてしまい、作業効率を低下させてしまう。
上述に鑑み、より効率的な掘削を可能にするショベルを提供することが望まれる。
本発明の実施例に係るショベルは、下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記上部旋回体に搭載され且つ前記アタッチメントを駆動させる制御装置と、を有し、前記制御装置は、掘削対象地面の硬さに関する情報に応じ、前記掘削対象地面が硬いときのバケット角度が、前記掘削対象地面が軟らかいときの前記バケット角度よりも大きくなるように、バケットの爪先の前記掘削対象地面に対する角度を制御し、前記バケット角度は、前記バケットを閉じるほど小さくなる
上述の手段により、より効率的な掘削を可能にするショベルが提供される。
本発明の実施例に係るショベルの側面図である。 図1のショベルに搭載される姿勢検出装置の構成例を示すショベルの側面図である。 図1のショベルに搭載される基本システムの構成例を示す図である。 図1のショベルに搭載される駆動システムの構成例を示す図である。 外部演算装置の構成例を示す図である。 掘削初期段階におけるバケットと掘削対象地面との関係を示す図である。 硬さテーブルに記憶された対応関係を表すグラフである。 掘削支援処理の一例を示すフローチャートである。 図8の処理によってバケット爪先角度が調整される様子を示す図である。 掘削対象が硬いときに実行される掘削支援処理の別の一例を示す図である。 掘削対象が硬いときに実行される掘削支援処理の更に別の一例を示す図である。 掘削対象が硬いときに実行される掘削支援処理の更に別の一例を示す図である。 掘削支援処理の更に別の一例を示すフローチャートである。 図11の処理によってバケット爪先角度が調整される様子を示す図である。 アタッチメント長TRとバケット角度θ3及びバケット爪先角度αのそれぞれとの関係を示すグラフである。
最初に、図1を参照し、本発明の実施例に係る建設機械としてのショベル(掘削機)について説明する。なお、図1は、本発明の実施例に係るショベルの側面図である。図1に示すショベルの下部走行体1には旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられている。作業要素としてのブーム4、アーム5及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成する。ブーム4は、ブームシリンダ7により駆動される。アーム5は、アームシリンダ8により駆動される。バケット6は、バケットシリンダ9により駆動される。上部旋回体3にはキャビン10が設けられ、エンジン11等の動力源が搭載されている。また、上部旋回体3には通信装置M1、測位装置M2、姿勢検出装置M3、撮像装置M4及びシリンダ圧検出装置M5が取り付けられている。
通信装置M1は、ショベルと外部との間の通信を制御するように構成されている。本実施例では、通信装置M1は、GNSS(Global Navigation Satellite System)測量システムとショベルとの間の無線通信を制御する。具体的には、通信装置M1は、例えば1日1回の頻度で、ショベルの作業を開始する際に作業現場の地形情報を取得する。GNSS測量システムは、例えばネットワーク型RTK-GNSS測位方式を採用する。
測位装置M2は、ショベルの位置を測定するように構成されている。本実施例では、測位装置M2は、電子コンパスを組み込んだGNSS受信機であり、ショベルの存在位置の緯度、経度、高度を測定し、且つ、ショベルの向きを測定する。
姿勢検出装置M3は、アタッチメントの姿勢を検出するように構成されている。本実施例では、姿勢検出装置M3は、掘削アタッチメントの姿勢を検出する。
撮像装置M4は、ショベルの周辺の画像を取得するように構成されている。本実施例では、撮像装置M4は上部旋回体3に取り付けられる前方カメラを含む。前方カメラは、ショベルの前方を撮像するステレオカメラであり、キャビン10の屋根、すなわちキャビン10の外部に取り付けられている。キャビン10の天井、すなわちキャビン10の内部に取り付けられていてもよい。前方カメラは、掘削アタッチメントを撮像可能である。前方カメラは、単眼カメラであってもよい。
シリンダ圧検出装置M5は、油圧シリンダにおける作動油の圧力を検出するように構成されている。本実施例では、シリンダ圧検出装置M5は、ブームシリンダ7、アームシリンダ8及びバケットシリンダ9のそれぞれにおける作動油の圧力を検出する。
図2は、図1のショベルに搭載される姿勢検出装置M3及びシリンダ圧検出装置M5のそれぞれを構成する各種センサの出力内容の一例を示すショベルの側面図である。具体的には、姿勢検出装置M3は、ブーム角度センサM3a、アーム角度センサM3b、バケット角度センサM3c及び車体傾斜センサM3dを含む。シリンダ圧検出装置M5は、ブームロッド圧センサM5a、ブームボトム圧センサM5b、アームロッド圧センサM5c、アームボトム圧センサM5d、バケットロッド圧センサM5e及びバケットボトム圧センサM5fを含む。図2において、X軸は水平面に含まれ、Z軸は旋回軸に相当する。
ブーム角度センサM3aは、ブーム角度を取得するように構成されている。ブーム角度センサM3aは、例えば、ブームフートピンの回転角度を検出する回転角度センサ、ブームシリンダ7のストローク量を検出するストロークセンサ、及び、ブーム4の傾斜角度を検出する傾斜(加速度)センサ等の少なくとも1つを含む。ブーム角度センサM3aは、例えば、ブーム角度θ1を取得する。ブーム角度θ1は、例えば、XZ平面においてブームフートピン位置P1とアーム連結ピン位置P2とを結ぶ線分P1-P2の水平線に対する角度である。
アーム角度センサM3bは、アーム角度を取得するように構成されている。アーム角度センサM3bは、例えば、アーム連結ピンの回転角度を検出する回転角度センサ、アームシリンダ8のストローク量を検出するストロークセンサ、及び、アーム5の傾斜角度を検出する傾斜(加速度)センサ等の少なくとも1つを含む。アーム角度センサM3bは、例えば、アーム角度θ2を取得する。アーム角度θ2は、例えば、XZ平面においてアーム連結ピン位置P2とバケット連結ピン位置P3とを結ぶ線分P2-P3の水平線に対する角度である。本実施例では、バケット連結ピン位置P3とZ軸(旋回軸)との間の距離は、アタッチメント長TRを表す。
バケット角度センサM3cは、バケット角度を取得するように構成されている。バケット角度センサM3cは、例えば、バケット連結ピンの回転角度を検出する回転角度センサ、バケットシリンダ9のストローク量を検出するストロークセンサ、及び、バケット6の傾斜角度を検出する傾斜(加速度)センサ等の少なくとも1つを含む。バケット角度センサM3cは、例えば、バケット角度θ3を取得する。バケット角度θ3は、例えば、XZ平面においてバケット連結ピン位置P3とバケット爪先位置P4とを結ぶ線分P3-P4の水平線に対する角度である。
ブーム角度センサM3a、アーム角度センサM3b、及び、バケット角度センサM3cは、加速度センサとジャイロセンサの組み合わせで構成されていてもよい。
車体傾斜センサM3dは、ショベルのY軸回りの傾斜角θ4、及び、ショベルのX軸回りの傾斜角θ5(図示せず。)を取得するように構成されている。車体傾斜センサM3dは、例えば2軸傾斜(加速度)センサ及び3軸傾斜(加速度)センサ等の少なくとも1つを含む。なお、図2のXY平面は水平面である。
ブームロッド圧センサM5aはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサM5bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサM5cはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサM5dはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。バケットロッド圧センサM5eはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサM5fはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
次に、図3を参照してショベルの基本システムについて説明する。ショベルの基本システムは、主に、エンジン11、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、コントローラ30及びエンジン制御装置(ECU)74等を含む。
エンジン11はショベルの駆動源であり、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸はメインポンプ14及びパイロットポンプ15のそれぞれの入力軸に接続される。
メインポンプ14は、作動油ライン16を介して作動油をコントロールバルブ17に供給するように構成されている。メインポンプ14は、例えば、斜板式可変容量型油圧ポンプである。メインポンプ14は、斜板の角度(傾転角)の変化に応じてピストンのストローク長を調整し、吐出量、すなわち、ポンプ出力を変化させることができる。メインポンプ14の斜板は、レギュレータ14aにより制御される。レギュレータ14aは、コントローラ30が出力する制御電流の変化に応じて斜板の傾転角を変化させる。レギュレータ14aは、例えば、制御電流の増加に応じ、斜板の傾転角を大きくして、メインポンプ14の吐出量を多くする。また、レギュレータ14aは、制御電流の減少に応じ、斜板の傾転角を小さくして、メインポンプ14の吐出量を少なくする。
パイロットポンプ15は、パイロットライン25を介して各種油圧制御機器に作動油を供給するように構成されている。パイロットポンプ15は、例えば、固定容量型油圧ポンプである。
コントロールバルブ17は、油圧システムを制御する油圧制御バルブである。コントロールバルブ17は、例えば、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ1A、右走行用油圧モータ1B及び旋回用油圧モータ2Aのうちの一又は複数のものに対し、メインポンプ14から作動油ライン16を通じて供給された作動油を選択的に供給する。以下の説明では、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ1A、右走行用油圧モータ1B及び旋回用油圧モータ2Aを集合的に「油圧アクチュエータ」と称する。
操作装置26は、操作者が油圧アクチュエータの操作のために用いる装置である。操作装置26は、レバー及びペダルを含む。操作装置26は、パイロットライン25を介してパイロットポンプ15から作動油の供給を受ける。そして、パイロットライン25a、25bを通じて、油圧アクチュエータのそれぞれに対応する流量制御弁のパイロットポートにその作動油を供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に対応する。
コントローラ30は、ショベルを制御するための制御装置であり、例えば、CPU、RAM及びROM等を備えたコンピュータで構成される。コントローラ30のCPUは、ショベルにおける各機能に対応するプログラムをROMから読み出してRAMにロードし且つ実行することで、それらプログラムのそれぞれに対応する機能を実現させる。
具体的には、コントローラ30は、例えば、メインポンプ14の吐出量の制御を行う。コントローラ30は、例えば、ネガティブコントロール弁(不図示)のネガティブコントロール圧に応じて上記制御電流を変化させ、レギュレータ14aを介してメインポンプ14の吐出量を制御する。
エンジン制御装置(ECU)74は、エンジン11を制御するように構成されている。エンジン制御装置(ECU)74は、例えば、コントローラ30からの指令に基づき、エンジン回転数調整ダイヤル75を用いて操作者が設定したエンジン回転数(モード)を実現するための燃料噴射量等をエンジン11に出力する。
エンジン回転数調整ダイヤル75は、キャビン10内に設けられる、エンジン回転数を調整するためのダイヤルであり、本実施例では、Rmax、R4、R3、R2及びR1の5段階でエンジン回転数を切り換えることができるように構成されている。なお、図4は、エンジン回転数調整ダイヤル75でR4が選択された状態を示す。
Rmaxは、エンジン11の最高回転数であり、作業量を優先したい場合に選択される。R4は、二番目に高いエンジン回転数であり、作業量と燃費を両立させたい場合に選択される。R3は、三番目に高いエンジン回転数であり、燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される。R2は、四番目に高いエンジン回転数であり、燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される。R1は、最も低いエンジン回転数(アイドリング回転数)であり、エンジン11をアイドリング状態にしたい場合に選択される。本実施例では、Rmax、R4、R3、R2、R1は、それぞれ、2000rpm、1750rpm、1500rpm、1250rpm、1000rpmである。そして、エンジン11の回転数は、エンジン回転数調整ダイヤル75で設定されたエンジン回転数で一定となるように制御される。エンジン回転数調整ダイヤル75で選択可能なエンジン回転数の数は、5つ以外であってもよい。
キャビン10内の運転席の近傍には、操作者によるショベルの操作を補助するために、画像表示装置40が設置されている。本実施例では、画像表示装置40は、キャビン10内のコンソールに固定されている。画像表示装置40は、画像表示部41及び入力部42を含む。画像表示部41は、ショベルの運転状況又はショベルの制御に関する情報を表示し、それらの情報を操作者に伝えることができる。また、操作者は、入力部42を利用して様々な情報をコントローラ30に入力できる。一般的に、運転席に着座した操作者からみて右側にブーム4が配置されており、操作者はブーム4の先端に取り付けられたアーム5及びバケット6を視認しながらショベルを操作することが多い。キャビン10の右側前方のフレームは操作者の視界の妨げとなる部分であるが、本実施例では、この部分を利用して画像表示装置40が設けられている。これにより、もともと視界の妨げとなっていた部分に画像表示装置40が配置されるので、画像表示装置40自体が操作者の視界を大きく妨げることは無い。フレームの幅にもよるが、画像表示装置40全体がフレームの幅内に収まるように、画像表示装置40は、画像表示部41が縦長となるように構成されてもよい。
本実施例では、画像表示装置40は、CAN又はLIN等の通信ネットワークを介してコントローラ30に接続される。なお、画像表示装置40は、専用線を介してコントローラ30に接続されてもよい。
画像表示装置40は、画像表示部41上に表示する画像を生成する変換処理部40aを含む。本実施例では、変換処理部40aは、ショベルに取り付けられた撮像装置M4の出力に基づいて画像表示部41上に表示するカメラ画像を生成する。そのため、撮像装置M4は、例えば専用線を介して画像表示装置40に接続される。また、変換処理部40aは、コントローラ30の出力に基づいて画像表示部41上に表示する画像を生成する。
変換処理部40aは、画像表示装置40が有する機能としてではなく、コントローラ30が有する機能として実現されてもよい。この場合、撮像装置M4は、画像表示装置40ではなく、コントローラ30に接続される。
画像表示装置40は、入力部42としてのスイッチパネルを含んでいてもよい。スイッチパネルは、各種ハードウェアスイッチを含むパネルである。本実施例では、スイッチパネルは、ハードウェアボタンとしてのライトスイッチ42a、ワイパースイッチ42b及びウインドウォッシャスイッチ42cを含む。ライトスイッチ42aは、キャビン10の外部に取り付けられるライトの点灯・消灯を切り換えるためのスイッチである。ワイパースイッチ42bは、ワイパーの作動・停止を切り換えるためのスイッチである。ウインドウォッシャスイッチ42cは、ウインドウォッシャ液を噴射するためのスイッチである。
画像表示装置40は、蓄電池70から電力の供給を受けて動作する。蓄電池70はオルタネータ11a(発電機)で発電した電力で充電される。蓄電池70の電力は、コントローラ30及び画像表示装置40以外のショベルの電装品72等にも供給される。エンジン11のスタータ11bは、蓄電池70からの電力で駆動され、エンジン11を始動する。
エンジン11は、上述のとおり、エンジン制御装置(ECU)74により制御される。ECU74からは、エンジン11の状態を示す各種データ(例えば、水温センサ11cで検出される冷却水温(物理量)を示すデータ)がコントローラ30に送信される。したがって、コントローラ30は一時記憶部(メモリ)30aにこのデータを蓄積しておき、必要なときに画像表示装置40に送信できる。
また、コントローラ30には以下のように各種のデータが供給される。それらデータは、コントローラ30の一時記憶部30aに格納される。
レギュレータ14aからは、斜板の傾転角を示すデータがコントローラ30に供給される。また、メインポンプ14の吐出圧力を示すデータが、吐出圧力センサ14bからコントローラ30に送られる。これらのデータ(物理量を表すデータ)は一時記憶部30aに格納される。メインポンプ14が吸入する作動油が貯蔵されたタンクとメインポンプ14との間の管路には、油温センサ14cが設けられており、その管路を流れる作動油の温度を表すデータが、油温センサ14cからコントローラ30に供給される。
また、操作装置26を操作した際に、パイロットライン25a、25bを通じてコントロールバルブ17に送られるパイロット圧が、油圧センサ15a、15bで検出され、検出したパイロット圧を示すデータがコントローラ30に供給される。
エンジン回転数調整ダイヤル75からは、エンジン回転数の設定状態を示すデータがコントローラ30に送信される。
外部演算装置30Eは、通信装置M1、測位装置M2、姿勢検出装置M3、撮像装置M4及びシリンダ圧検出装置M5等の出力に基づいて各種演算を行い、演算結果をコントローラ30に対して出力する制御装置である。本実施例では、外部演算装置30Eは蓄電池70から電力の供給を受けて動作する。
図4は、図1のショベルに搭載される駆動システムの構成例を示す図であり、機械的動力伝達ライン、作動油ライン、パイロットライン、及び電気制御ラインをそれぞれ二重線、実線、破線、及び点線で示す。
ショベルの駆動システムは、主に、エンジン11、メインポンプ14L、14R、吐出量調整装置14aL、14aR、パイロットポンプ15、コントロールバルブ17、操作装置26、操作内容検出装置29、コントローラ30、外部演算装置30E及びパイロット圧調整装置50を含む。メインポンプ14L、14Rは、図3のメインポンプ14に対応する。吐出量調整装置14aL、14aRは、図3のレギュレータ14aに対応する。
コントロールバルブ17は、メインポンプ14L、14Rが吐出する作動油の流れを制御する流量制御弁171~176を含む。そして、コントロールバルブ17は、流量制御弁171~176を通じ、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ1A、右走行用油圧モータ1B及び旋回用油圧モータ2Aのうちの1又は複数のものに対しメインポンプ14L、14Rが吐出する作動油を選択的に供給する。
本実施例では、操作装置26は、パイロットライン25を通じ、パイロットポンプ15が吐出する作動油を油圧アクチュエータのそれぞれに対応する流量制御弁のパイロットポートに供給する。
操作内容検出装置29は、操作装置26を用いた操作者の操作内容を検出するように構成されている。本実施例では、操作内容検出装置29は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作内容は、ポテンショメータ等、圧力センサ以外の他のセンサの出力を用いて導き出されてもよい。
エンジン11によって駆動されるメインポンプ14L、14Rは、センターバイパス管路40L、40Rのそれぞれを経て作動油タンクまで作動油を循環させる。
センターバイパス管路40Lは、コントロールバルブ17内に配置された流量制御弁171、173、及び175を通る作動油ラインであり、センターバイパス管路40Rは、コントロールバルブ17内に配置された流量制御弁172、174、及び176を通る作動油ラインである。
流量制御弁171、172、173は、左走行用油圧モータ1A、右走行用油圧モータ1B、旋回用油圧モータ2Aに流出入する作動油の流量及び流れ方向を制御するスプール弁である。
流量制御弁174、175、176は、バケットシリンダ9、アームシリンダ8、ブームシリンダ7に流出入する作動油の流量及び流れ方向を制御するスプール弁である。
吐出量調整装置14aL、14aRは、メインポンプ14L、14Rの吐出量を調整するように構成されている。本実施例では、吐出量調整装置14aLはレギュレータであり、コントローラ30からの制御指令に応じてメインポンプ14Lの斜板傾転角を増減させてメインポンプ14Lの押し退け容積を増減させることでメインポンプ14Lの吐出量を調整する。具体的には、吐出量調整装置14aLは、コントローラ30が出力する制御電流が大きくなるにつれて斜板傾転角を増大させて押し退け容積を増大させることでメインポンプ14Lの吐出量を増大させる。吐出量調整装置14aRによるメインポンプ14Rの吐出量の調整についても同様である。
パイロット圧調整装置50は、流量制御弁のパイロットポートに供給されるパイロット圧を調整するように構成されている。本実施例では、パイロット圧調整装置50は、コントローラ30が出力する制御電流に応じ、パイロットポンプ15が吐出する作動油を用いてパイロット圧を増減させる減圧弁である。この構成により、パイロット圧調整装置50は、例えば、操作者によるバケット操作レバーの操作とは無関係に、コントローラ30からの制御電流に応じてバケット6を開閉させることができる。また、操作者によるブーム操作レバーの操作とは無関係に、コントローラ30からの制御電流に応じてブーム4を上下させることができる。下部走行体1の前進、後進、上部旋回体3の左旋回、右旋回、アーム5の開閉等についても同様である。
次に、図5を参照して外部演算装置30Eの機能について説明する。図5は、外部演算装置30Eの構成例を示す機能ブロック図である。本実施例では、外部演算装置30Eは、通信装置M1、測位装置M2、姿勢検出装置M3、撮像装置M4及びシリンダ圧検出装置M5の少なくとも1つの出力を受けて各種演算を実行し、その演算結果をコントローラ30に対して出力する。コントローラ30は、例えば、その演算結果に応じた制御指令を動作制御部E1に対して出力する。
動作制御部E1はアタッチメントの動きを制御するための機能要素であり、例えば、パイロット圧調整装置50及び流量制御弁171~176等を含む。流量制御弁171~176が電気信号に応じて動作する構成である場合、コントローラ30は、流量制御弁171~176に電気信号を直接的に送信する。
動作制御部E1は、アタッチメントの動きを自動調整した旨をショベルの操作者に知らせる情報通知装置を含んでいてもよい。情報通知装置は、例えば、音声出力装置、LEDランプ等を含む。
具体的には、外部演算装置30Eは、主に、地形データベース更新部31、位置座標更新部32、地面形状情報取得部33及び掘削反力導出部34を含む。
地形データベース更新部31は、作業現場の地形情報を参照可能に体系的に記憶する地形データベースを更新する機能要素である。本実施例では、地形データベース更新部31は、例えばショベルの起動時に通信装置M1を通じて作業現場の地形情報を取得して地形データベースを更新する。地形データベースは、例えば、不揮発性メモリ等に記憶されている。作業現場の地形情報は、例えば世界測位系に基づく3次元地形モデルで記述される。
位置座標更新部32は、ショベルの現在位置を表す座標を更新する機能要素である。本実施例では、位置座標更新部32は、測位装置M2の出力に基づいて世界測位系におけるショベルの位置座標及び向きを取得し、不揮発性メモリ等に記憶されるショベルの現在位置を表す座標及び向きに関するデータを更新する。
地面形状情報取得部33は、作業対象の地面の現在の形状に関する情報を取得する機能要素である。本実施例では、地面形状情報取得部33は、地形データベース更新部31が更新した地形情報と、位置座標更新部32が更新したショベルの現在位置を表す座標及び向きと、姿勢検出装置M3が検出した掘削アタッチメントの姿勢の過去の推移とに基づいて掘削対象地面の現在の形状に関する情報を取得する。
地面形状情報取得部33は、撮像装置M4が撮像したショベル周辺の画像に基づいて掘削対象地面の現在の形状に関する情報を取得してもよい。地面形状情報取得部33は、レーザレンジファインダ、レーザスキャナ、距離画像センサ又はライダ等の距離測定装置の出力に基づいて掘削対象地面の現在の形状に関する情報を取得してもよい。
掘削反力導出部34は掘削反力を導き出す機能要素である。掘削反力導出部34は、例えば、掘削アタッチメントの姿勢と掘削対象地面の現在の形状に関する情報とに基づいて掘削反力を導き出す。掘削アタッチメントの姿勢は姿勢検出装置M3によって検出され、掘削対象地面の現在の形状に関する情報は地面形状情報取得部33によって取得される。掘削反力導出部34は、掘削アタッチメントの姿勢と、シリンダ圧検出装置M5が出力する情報とに基づいて掘削反力を導き出してもよい。また、掘削反力導出部34は、掘削アタッチメントの姿勢と、掘削対象地面の現在の形状に関する情報と、シリンダ圧検出装置M5が出力する情報とに基づいて掘削反力を導き出してもよい。
本実施例では、掘削反力導出部34は、所定の計算式を用いて所定の演算周期で掘削反力を導き出す。例えば、掘削深さが深いほど、すなわち、ショベルの接地面とバケット爪先位置P4(図2参照。)との間の鉛直距離が大きいほど掘削反力が大きくなるように掘削反力を導き出す。また、掘削反力導出部34は、例えば、バケット6の爪先の掘削対象地面に対する地面挿入深さが大きいほど掘削反力が大きくなるように掘削反力を導き出す。また、掘削反力導出部34は、土砂密度等の土砂特性を考慮して掘削反力を導き出してもよい。土砂特性は、車載入力装置(図示せず。)を通じて操作者が入力する値であってもよく、シリンダ圧センサ等の各種センサの出力に基づいて自動的に算出される値であってもよい。
掘削反力導出部34は、掘削アタッチメントの姿勢と掘削対象地面の現在の形状に関する情報とに基づいて掘削中であるか否かを判定し、その判定結果をコントローラ30に対して出力してもよい。掘削反力導出部34は、例えば、バケット爪先位置P4(図2参照。)と掘削対象地面との間の鉛直距離が所定値以下となった場合に掘削中であると判定する。掘削反力導出部34は、バケット6の爪先と掘削対象地面とが接触する前に掘削中であると判定してもよい。
ここで、図6を参照し、掘削初期段階について説明する。図6は掘削初期段階におけるバケット6と掘削対象地面との関係を示す。
掘削初期段階は、図6の矢印で示すようにバケット6を鉛直下方に移動させる段階を意味する。そのため、掘削初期段階における掘削反力Fzは、主にバケット6の爪先を掘削対象地面に挿入する際の挿入抵抗で構成され、主に鉛直上方を向く。挿入抵抗はバケット6の爪先の地面挿入深さ(以下、「挿入深さh」とする。)が大きいほど大きくなる。地面挿入深さは、爪先食い込み深さ又は貫入深さとも称される。挿入抵抗は、バケット6の爪先の挿入深さhが同じであれば、バケット爪先角度αが略90度のときに最小となる。バケット爪先角度αは、バケット6の爪先の掘削対象地面に対する角度であり、貫入角度とも称される。典型的には、バケット6の底面(背面)6Sを含む平面と掘削対象地面との間に形成される角度である。外部演算装置30Eは、姿勢検出装置M3の出力と掘削対象地面の現在の形状に関する情報とに基づいてバケット爪先角度αを算出する。なお、外部演算装置30Eは、例えば、掘削中にブーム下げ操作が行われていると判定した場合、現在の掘削段階が掘削初期段階であると判定する。
外部演算装置30Eは、所定のバケット爪先角度αと所定の力でバケット6を地面へ押し付けた際の、掘削初期段階におけるバケット6の爪先の挿入深さhと挿入抵抗(掘削反力Fz)に基づいて掘削対象の硬さKを導き出す。本実施例では、外部演算装置30Eは、挿入深さhと掘削反力Fzと硬さKとの対応関係を記憶する硬さテーブルを参照して掘削対象の硬さKを導き出す。所定の計算式を用いて硬さKを導き出してもよい。そして、外部演算装置30Eは、導き出した硬さKを不揮発性メモリ等に記憶する。1つの掘削対象地面に関して複数の硬さKを導出した場合、それらの平均値を硬さKとしてもよく、直近の値を硬さKとしてもよい。最大値、最小値、中間値等の他の統計値を硬さKとしてもよい。また、操作者は、掘削対象である作業領域の地面の硬さの測定値を事前に取得している場合には、車載入力装置等を通じ、その測定値を硬さKとして入力してもよい。
外部演算装置30Eは、硬さKを導き出すときのバケット6の爪先の挿入深さhを制御してもよい。具体的には、外部演算装置30Eは、硬さKを導き出すときのバケット6の爪先の挿入深さhが所定の挿入深さとなるように、アタッチメントを駆動させてもよい。
外部演算装置30Eは、掘削対象地面の硬さKに関する情報を画像表示装置40で表示させてもよい。また、外部演算装置30Eは、掘削対象地面の硬さKに関する情報を地形データベースに記憶してもよい。また、外部演算装置30Eは、掘削対象地面の硬さKに関する情報を外部機器に向けて送信してもよい。外部機器は、例えば、管理センタに設置された管理装置、及び、ショベルの操作者若しくはショベルの周囲で作業する作業者等の関係者が携帯するスマートフォン等の支援装置の少なくとも1つを含む。
挿入深さhは、例えば、掘削反力導出部34により、バケット爪先位置と掘削対象地面の現在の形状に関する情報とに基づいて導き出される。掘削反力Fzは、例えば、掘削反力導出部34により、掘削アタッチメントの姿勢と、シリンダ圧検出装置M5が出力する情報とに基づいて導き出される。
図7は、硬さテーブルに記憶された対応関係を表すグラフであり、縦軸に挿入抵抗(掘削反力Fz)を配置し、横軸に挿入深さhを配置している。図7に示すように、挿入抵抗(掘削反力Fz)は、例えば、挿入深さhの二乗に比例する関数として表される。係数K、K、Kは、硬さKの例であり、値が大きいほど硬いことを表す。例えば、硬さKがK以上の場合(例えばKの場合)に硬いと判定され、硬さKがK未満の場合(例えばKの場合)に硬くない(軟らかい)と判定される。硬いか軟らかいかの2段階でなく3段階以上で判定されてもよい。
外部演算装置30Eは、例えば、掘削反力導出部34が導き出した挿入深さh及び挿入抵抗(掘削反力Fz)と、図7に示すような対応関係とに基づいて硬さKを導き出す。
外部演算装置30Eは、所定の掘削アタッチメントの姿勢若しくは所定のバケット爪先角度で且つ所定のブームロッド圧でブーム4を下げてバケット6の爪先を掘削対象地面に突き刺したときのショベルのY軸回りの傾斜角θ4(浮き上がり角)から硬さKを導き出してもよい。この場合、傾斜角θ4(図2参照。)が大きいほど大きい硬さKを導き出す。
外部演算装置30Eは、土砂密度から硬さKを導き出してもよい。例えば、ブームボトム圧等から算出されるバケット6内に取り込まれた掘削対象の単位体積重量(土砂密度)から硬さKを導き出してもよい。この場合、土砂密度と硬さKとの対応関係は、例えば、不揮発性メモリに予め記憶されていてもよい。
外部演算装置30Eは、上述の方法による導出結果の2つ以上を組み合わせて硬さKを導き出してもよい。また、外部演算装置30Eは、掘削対象の硬さKを数値として導き出す代わりに、掘削対象の硬さKを複数の硬さ段階から選択してもよい。
このように、外部演算装置30Eは、例えば試し掘削を行うことで、掘削対象の硬さKを導き出す。そして、掘削対象の硬さKに基づいて掘削アタッチメントによる掘削動作を支援する。
硬さKは、タッチパネル等の車載入力装置(図示せず。)を通じて操作者が入力する値であってもよい。操作者が入力する値は、例えば、砂、岩、土等の掘削対象の種類、土質に関する値等であってもよく、硬度計等の計測器を用いて計測された硬度等の値であってもよい。
次に、図8を参照し、外部演算装置30Eが掘削アタッチメントによる掘削動作を支援する処理(以下、「掘削支援処理」とする。)の一例について説明する。図8は、掘削支援処理の一例を示すフローチャートである。外部演算装置30Eは、ショベルの稼働中に所定の制御周期で繰り返しこの掘削支援処理を実行する。
最初に、外部演算装置30Eは、掘削アタッチメントの姿勢に基づいてバケット6の爪先と掘削対象地面との間の距離が閾値TH1以下であるか否かを判定する(ステップST1)。
距離が閾値TH1より大きいと判定した場合(ステップST1のNO)、外部演算装置30Eは、掘削動作を支援することなく、今回の掘削支援処理を終了させる。現時点では、バケット6の爪先と掘削対象地面は接触しないと判断できるためである。
一方で、距離が閾値TH1以下であると判定した場合(ステップST1のYES)、外部演算装置30Eは、掘削対象の硬さKが所定の硬さTH2より大きいか否かを判定する(ステップST2)。本実施例では、外部演算装置30Eは、試し掘削の際に不揮発性メモリに記憶された硬さKを読み出して所定の硬さTH2と比較する。所定の硬さTH2は、例えば、図7の係数Kに対応する。
掘削対象の硬さKが所定の硬さTH2より大きいと判定した場合(ステップST2のYES)、外部演算装置30Eは、バケット爪先角度αを所定角度(例えば90度)に調整する(ステップST3)。本実施例では、外部演算装置30Eは、バケット爪先角度αが所定角度になるように、アタッチメントを駆動させる。具体的には、外部演算装置30Eは、ブーム4、アーム5及びバケット6の少なくとも1つを自動的に或いは半自動的に動作させる。「自動的に動作させる」は、操作装置26の操作量とは無関係に動作させることを意味する。「半自動的に動作させる」は、操作装置26の操作量を補う形で動作させることを意味する。
掘削対象の硬さKが所定の硬さTH2以下であると判定した場合(ステップST2のNO)、外部演算装置30Eは、掘削動作を支援することなく、今回の掘削支援処理を終了させる。掘削対象地面が十分に軟らかく、掘削動作を支援する必要はない、すなわち、バケット爪先角度αを所定の角度に限定する必要はないと判断できるためである。
図9は、外部演算装置30Eがバケット爪先角度αを所定角度αに調整する様子を示す。図9のバケット6は、現時点におけるバケット6の位置を示す。バケット6t1~6t3は、バケット爪先角度αの調整が行われる場合の、時刻t1~t3のそれぞれにおけるバケット6の位置を示す。バケット6't1~6't3は、バケット爪先角度αの調整が行われない場合の、時刻t1~t3のそれぞれにおけるバケット6の位置を示す。この例では、操作者は、アーム閉じ操作のみでバケット6の爪先を地面に接触させようとしている。
外部演算装置30Eは、バケット爪先角度αの調整を行わない場合、バケット6の爪先が時刻t3において接触点CPで地面と接触し、且つ、そのときのバケット爪先角度αがαになると予測する。
その上で、外部演算装置30Eは、バケット爪先角度αの調整を行う場合、バケット6の爪先が接触点CPで地面と接触し、且つ、そのときのバケット爪先角度αが所定角度αとなるように掘削アタッチメントを動作させる。この例では、外部演算装置30Eは、アーム閉じ操作が行われているときに、ブーム4を自動的に上昇させ、且つ、バケット6を自動的に開くことで、バケット6の爪先を接触点CPで地面に接触させる。
外部演算装置30Eは、バケット6を自動的に開くのみで、バケット6の爪先と地面が接触したときのバケット爪先角度αが所定角度αとなるようにしてもよい。この場合、接触点CPとは異なる点でバケット6の爪先を地面に接触させてもよい。
この構成により、外部演算装置30Eは、掘削対象(地面)が硬い場合、所定角度αでバケット6の爪先を地面に接触させることができる。そのため、硬い地面を効率的に破壊できる。
なお、外部演算装置30Eは、掘削対象の硬さKが所定の硬さTH3(≦TH2)より小さい場合、すなわち、掘削対象が軟らかい場合に、バケット爪先角度αを所定角度α(例えば所定角度αより大きい鈍角)に調整してもよい。1回の掘削動作でバケット内に取り込まれる土砂の量を増大させるためである。この場合、外部演算装置30Eは、必要に応じ、バケット爪先角度αを所定角度αより小さい鋭角に調整してもよい。掘削対象が軟らかいため、バケット爪先角度αを90度以外に調整したとしても、掘削負荷が過度に大きくなることはないためである。
次に、図10A~図10Cを参照し、掘削対象の硬さKが所定の硬さより硬いと判定されたときに実行される掘削支援処理の別の例について説明する。
外部演算装置30Eは、図10Aに示すように、バケット6の爪先と地面とが接触したときに、バケット6の爪先を揺動中心としてバケット6を前後に揺動させてもよい。硬い地面を効率的に破壊できるようにするためである。例えば、外部演算装置30Eは、掘削初期段階において掘削対象の硬さKが所定の硬さより硬いと判定した場合に、ブーム4の微小な上下動、アーム5の微小な開閉、及び、バケット6の微小な開閉の少なくとも1つを繰り返すことでバケット6の爪先を揺動させてもよい。
また、外部演算装置30Eは、図10Bに示すように、バケット6の爪先と地面とが接触したときに、バケット6の爪先を上下に振動させてもよい。具体的には、ブームシリンダ7、アームシリンダ8及びバケットシリンダ9の少なくとも2つを同時に伸縮させてバケット6を上下に振動させてもよい。
また、外部演算装置30Eは、図10Cに示すように、バケット6の爪先と地面とを接触させる際に、掘削力が掘削対象地面に垂直に作用するように掘削アタッチメントの姿勢を調整してもよい。例えば、調整前のアタッチメント長TRよりも短いアタッチメント長TRをもたらす掘削アタッチメントの姿勢を用いることによって、掘削力ができるだけ掘削対象地面に垂直に作用するようにしてもよい。掘削アタッチメントによる掘削力に、ショベルの自重による掘削力を加えることができるようにするためである。
上述の方法のうちの少なくとも1つの方法により、外部演算装置30Eは、硬い地面を効率的に破壊できる。外部演算装置30Eは、掘削対象の硬さKに応じて上述の何れの方法を採用するかを決定してもよい。例えば、硬さKが所定の硬さTH4より大きい場合に図10Aの方法を採用し、所定の硬さTH5(>TH4)より大きい場合に図10Bの方法を採用し、所定の硬さTH6(>TH5)より大きい場合に図10Cの方法を採用してもよい。
次に、図11を参照し、掘削支援処理の更に別の一例について説明する。図11は、掘削支援処理の更に別の一例を示すフローチャートである。外部演算装置30Eは、ショベルの稼働中に所定の制御周期で繰り返しこの掘削支援処理を実行する。
最初に、外部演算装置30Eは、掘削中期段階であるか否かを判定する(ステップST11)。掘削中期段階は、バケット6をショベルの機体側に引き寄せる段階を意味する。本実施例では、外部演算装置30Eの掘削反力導出部34は、例えば、掘削中にアーム閉じ操作が行われていると判定した場合、現在の掘削段階が掘削中期段階であると判定する。或いは、外部演算装置30Eは、掘削中にブーム下げ操作が行われておらず且つアーム閉じ操作が行われていると判定した場合に現在の掘削段階が掘削中期段階であると判定してもよい。
掘削中期段階であると判定した場合(ステップST11のYES)、外部演算装置30Eは、掘削対象の硬さKが所定の硬さTH2より大きいか否かを判定する(ステップST12)。本実施例では、外部演算装置30Eは、試し掘削の際に不揮発性メモリに記憶された硬さKを読み出して所定の硬さTH2と比較する。但し、硬さKは、各掘削動作の掘削初期段階で算出されてもよい。
掘削対象の硬さKが所定の硬さTH2より大きいと判定した場合(ステップST12のYES)、外部演算装置30Eは、掘削支援機能を開始する(ステップST13)。
掘削中期段階でないと判定した場合(ステップST11のNO)、或いは、掘削対象の硬さKが所定の硬さTH2以下であると判定した場合(ステップST12のNO)、外部演算装置30Eは、掘削支援機能を開始することなく、今回の掘削支援処理を終了させる。
掘削支援機能は、例えば、掘削アタッチメントを全自動又は半自動で動作させて掘削動作を支援する機能である。この場合、外部演算装置30Eは、例えば、掘削中期段階においてアーム閉じ操作が行われている際に、掘削深さが目標掘削深さDとなるようにバケット6を自動的に開閉させる。ブーム4を自動的に上下動させてもよい。具体的には、外部演算装置30Eは、掘削深さが目標掘削深さDを超えそうなときには、目標掘削深さDを超えないよう、バケット6を自動的に閉じてもよい。或いは、掘削深さが目標掘削深さDに達しそうにないときには、目標掘削深さDに達するよう、バケット6を自動的に開いてもよい。ブーム4の上下動についても同様である。また、アーム5の閉じ速度を調整してもよい。
目標掘削深さDは、例えば、掘削対象の硬さKに応じて決定される。典型的には、掘削対象が硬いほど目標掘削深さDが浅くなるように決定される。掘削対象が硬いにもかかわらず深い掘削が行われて掘削反力が過度に大きくなってしまうのを防止するためである。
図11の例では、外部演算装置30Eは、掘削対象の硬さKが所定の硬さTH2より大きいと判定した場合に限り、掘削支援機能を開始するが、掘削対象の硬さKとは無関係に、掘削支援機能を開始してもよい。この場合、外部演算装置30Eは、例えば、掘削対象の硬さKが所定の硬さTH2より大きいと判定した場合の目標掘削深さが、掘削対象の硬さKが所定の硬さTH2以下であると判定した場合の目標掘削深さより小さくなるようにする。
このように、外部演算装置30Eは、掘削対象の硬さKを導き出し、その硬さKに基づいて掘削動作を支援するか否かを決定する。或いは、その硬さKに応じて掘削動作の支援の内容を決定する。そのため、硬い掘削対象地面をより効率的に掘削できる。
次に、図12A及び図12Bを参照し、図11の掘削支援処理によってバケット爪先角度αが調整される様子について説明する。図12Aは、外部演算装置30Eが掘削深さを目標掘削深さD又は目標掘削深さDに調整する様子を示す。目標掘削深さDは、掘削対象の硬さKが所定の硬さTH2より大きいと判定された場合(硬い地面の場合)の目標値であり、目標掘削深さDは、掘削対象の硬さKが所定の硬さTH2以下であると判定された場合(軟らかい地面の場合)の目標値である。
図12Aは、バケット6と掘削対象地面の関係を示す図であり、一点鎖線は硬い地面を掘削するバケット6の爪先の軌跡を表し、二点鎖線は軟らかい地面を掘削するバケット6の爪先の軌跡を表す。図12Bは、アタッチメント長TRとバケット角度θ3及びバケット爪先角度αのそれぞれとの関係を示すグラフであり、一点鎖線は硬い地面を掘削するときの推移を示し、二点鎖線は軟らかい地面を掘削するときの推移を示す。
この例では、硬い地面及び軟らかい地面の何れを掘削する場合であっても、アタッチメント長TRが値TRのとき、バケット6は、爪先を接触点CPで地面に接触させている。このとき、バケット角度θ3は値θ3であり、バケット爪先角度αは値αである。
外部演算装置30Eは、アーム閉じ操作が行われていると判定した場合、現在の掘削段階が掘削中期段階であると判定する。そして、掘削対象の硬さKが所定の硬さTH2より大きいと判定すると、掘削深さが目標掘削深さDとなるようにバケット6を自動的に閉じる。具体的には、図12Aに示すように、バケット6の爪先が一点鎖線で表された軌跡に沿って移動するように、アーム5の閉じ具合に合わせてバケット6を閉じる。その結果、アタッチメント長TRが値TRのとき、バケット角度θ3は値θ3となり、バケット爪先角度αは値αとなる。
一方、掘削対象の硬さKが所定の硬さTH2以下であると判定すると、外部演算装置30Eは、掘削深さが目標掘削深さDとなるようにバケット6を自動的に閉じる。具体的には、図12Aに示すように、バケット6の爪先が二点鎖線で表された軌跡に沿って移動するように、アーム5の閉じ具合に合わせてバケット6を閉じる。その結果、アタッチメント長TRが値TRのとき、バケット角度θ3は値θ3(>θ3)となり、バケット爪先角度αは値α(>α)となる。
この例では、掘削中期段階の完了時にアタッチメント長TRが値TRになると、バケット6は、硬い地面及び軟らかい地面の何れを掘削した場合であっても同じ位置で同じ姿勢になっている。
このように、外部演算装置30Eは、アーム閉じ操作が行われているときにバケット6を自動的に閉じることで、掘削深さが、掘削対象の硬さKに応じた目標掘削深さとなるようにする。但し、外部演算装置30Eは、目標掘削深さが実現されるようにブーム4を自動的に上昇させてもよい。
この構成により、外部演算装置30Eは、掘削対象が硬い場合の掘削深さを、掘削対象が軟らかい場合の掘削深さより浅くすることができる。そのため、掘削対象が硬い場合には、例えば地面を剥がすような掘削動作が行われ、硬い地面を掘削する際に掘削反力が過度に増大してバケットが動かなくなってしまうような無駄な掘削動作が行われてしまうのを防止できる。その結果、硬い地面を効率的に掘削できる。また、掘削対象が軟らかい場合の掘削深さを、掘削対象が硬い場合の掘削深さより深くすることができる。そのため、1回の掘削動作による掘削量を大きくすることができる。その結果、軟らかい地面を効率的に掘削できる。
上述の通り、外部演算装置30Eは、アタッチメントを駆動させることで、掘削対象地面の硬さKに応じ、バケット6の爪先の掘削対象地面に対する角度を制御する。具体的には、外部演算装置30Eは、掘削対象地面の硬さKに応じ、バケット6の爪先と掘削対象地面とが接触するときのバケット6の爪先の掘削対象地面に対する角度(バケット爪先角度α)を自動的に調整する。そのため、外部演算装置30Eを搭載するショベルは、硬い地面を効率的に破壊でき且つ効率的に掘削できる。また、軟らかい地面に対しては1回の掘削動作による掘削量をできるだけ大きくすることで、軟らかい地面を効率的に掘削できる。
外部演算装置30Eは、掘削中期段階において、掘削対象地面の硬さKに応じてバケット角度θ3を制御してもよい。具体的には、外部演算装置30Eは、掘削中期段階において、掘削対象地面の硬さKに応じてバケット角度θ3を自動的に調整してもよい。この構成により、外部演算装置30Eを搭載するショベルは、掘削対象地面の硬さKに適した掘削深さを実現できる。
外部演算装置30Eは、バケット6の爪先と掘削対象地面とが接触する位置(接触点CP)を決定してもよい。具体的には、バケット6の爪先と掘削対象地面とを接触させる前にバケット爪先角度αを調整する際に、その調整が行われなかったときの接触点CPの位置を予測し、その接触点CPを目標接触点とする。そして、バケット爪先角度αの調整が行われたときにその接触点CPでバケット6の爪先と掘削対象地面とが接触するようにブーム4、アーム5及びバケット6の少なくとも1つを自動的に或いは半自動的に動かすようにする。この構成により、外部演算装置30Eは、バケット爪先角度αの調整を行う場合であっても、操作者がバケット6の爪先を接触させようとした位置にバケット6の爪先を接触させることができる。
外部演算装置30Eは、必要に応じ、掘削対象地面の硬さKが所定の硬さ以上であるときのアタッチメント長を、掘削対象地面の硬さKが所定の硬さ未満であるときのアタッチメント長より小さくしてもよい。具体的には、外部演算装置30Eは、例えば図10Cに示すように、バケット6の爪先と掘削対象地面とが接触する際に、アタッチメント長TRを調整してもよい。例えば、掘削対象地面の硬さKが所定の硬さTH2以上であるときのアタッチメント長TRを、掘削対象地面の硬さKが所定の硬さTH2未満であるときのアタッチメント長TRより小さくしてもよい。掘削アタッチメントによる掘削力に、ショベルの自重による掘削力を加えることができるようにするためである。この構成により、外部演算装置30Eを搭載するショベルは、硬い地面をより効率的に破壊できる。
外部演算装置30Eは、例えば図10Aに示すように、掘削対象地面の硬さKが所定の硬さTH2以上である場合、バケット6の爪先と掘削対象地面とが接触しているときに、バケット6を前後に揺動させてもよい。或いは、外部演算装置30Eは、例えば図10Bに示すように、掘削対象地面の硬さKが所定の硬さTH2以上である場合、バケット6の爪先と掘削対象地面とが接触しているときに、バケット6を上下に振動させてもよい。硬い地面をより効率的に破壊するためである。
外部演算装置30Eは、掘削中期段階において、掘削対象地面の硬さKが所定の硬さTH2以上であるときのバケット角度θ3を、掘削対象地面の硬さKが所定の硬さTH2未満であるときのバケット角度θ3より小さくしてもよい。或いは、外部演算装置30Eは、掘削中期段階において、掘削対象地面の硬さKが所定の硬さTH2未満であるときのバケット角度θ3を、掘削対象地面の硬さKが所定の硬さTH2以上であるときのバケット角度θ3より大きくしてもよい。バケット爪先角度αについても同様である。掘削対象地面の硬さKに適した掘削深さで掘削できるようにするためである。この構成により、外部演算装置30Eを搭載するショベルは、硬い地面をより効率的に掘削できる。
以上、本発明の好ましい実施例が説明された。しかしながら、本発明は、上述した実施例に限定されることはない。上述した実施例は、本発明の範囲を逸脱することなしに、種々の変形、置換等が適用され得る。また、上述の実施例を参照して説明された特徴のそれぞれは、技術的に矛盾しない限り、適宜に組み合わされてもよい。
例えば、上述の実施例では、外部演算装置30Eはコントローラ30の外部にある別の制御装置として説明されたが、コントローラ30に一体的に統合されていてもよい。また、コントローラ30の代わりに外部演算装置30Eが動作制御部E1を直接的に制御してもよい。
本願は、2017年7月5日に出願した日本国特許出願2017-132030号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
1・・・下部走行体 1A・・・左走行用油圧モータ 1B・・・右走行用油圧モータ 2・・・旋回機構 2A・・・旋回用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 11a・・・オルタネータ 11b・・・スタータ 11c・・・水温センサ 14、14L、14R・・・メインポンプ 14a・・・レギュレータ 14aL、14aR・・・吐出量調整装置 14b・・・吐出圧力センサ 14c・・・油温センサ 15・・・パイロットポンプ 15a、15b・・・油圧センサ 16・・・作動油ライン 17・・・コントロールバルブ 25、25a、25b・・・パイロットライン 26・・・操作装置 29・・・操作内容検出装置 30・・・コントローラ 30a・・・一時記憶部 30E・・・外部演算装置 31・・・地形データベース更新部 32・・・位置座標更新部 33・・・地面形状情報取得部 34・・・掘削反力導出部 40・・・画像表示装置 40a・・・変換処理部 40L、40R・・・センターバイパス管路 41・・・画像表示部 42・・・入力部 42a・・・ライトスイッチ 42b・・・ワイパースイッチ 42c・・・ウインドウォッシャスイッチ 50・・・パイロット圧調整装置 70・・・蓄電池 72・・・電装品 74・・・エンジン制御装置(ECU) 75・・・エンジン回転数調整ダイヤル 171~176・・・流量制御弁 E1・・・動作制御部 M1・・・通信装置 M2・・・測位装置 M3・・・姿勢検出装置 M3a・・・ブーム角度センサ M3b・・・アーム角度センサ M3c・・・バケット角度センサ M3d・・・車体傾斜センサ M4・・・撮像装置 M5・・・シリンダ圧検出装置 M5a・・・ブームロッド圧センサ M5b・・・ブームボトム圧センサ M5c・・・アームロッド圧センサ M5d・・・アームボトム圧センサ M5e・・・バケットロッド圧センサ M5f・・・バケットボトム圧センサ

Claims (11)

  1. 下部走行体と、
    前記下部走行体に搭載される上部旋回体と、
    前記上部旋回体に取り付けられるアタッチメントと、
    前記上部旋回体に搭載され且つ前記アタッチメントを駆動させる制御装置と、を有し、
    前記制御装置は、掘削対象地面の硬さに関する情報に応じ、前記掘削対象地面が硬いときのバケット角度が、前記掘削対象地面が軟らかいときの前記バケット角度よりも大きくなるように、バケットの爪先の前記掘削対象地面に対する角度を制御し、
    前記バケット角度は、前記バケットを閉じるほど小さくなる
    ショベル。
  2. 前記制御装置は、前記バケットの爪先と前記掘削対象地面とが接触する位置を決定する、
    請求項1に記載のショベル。
  3. 前記制御装置は、前記掘削対象地面の硬さが所定の硬さ以上であるときのアタッチメント長を、前記掘削対象地面の硬さが所定の硬さ未満であるときのアタッチメント長より小さくする、
    請求項1に記載のショベル。
  4. 前記制御装置は、前記掘削対象地面の硬さが所定の硬さ以上である場合、前記バケットの爪先と前記掘削対象地面とが接触するときに、前記バケットを上下に振動させ或いは前後に揺動させる、
    請求項1に記載のショベル。
  5. 前記制御装置は、前記掘削対象地面の硬さに応じ、前記バケットの爪先と前記掘削対象地面とが接触するときの前記バケットの爪先の前記掘削対象地面に対する角度を調整する、
    請求項1に記載のショベル。
  6. 前記制御装置は、前記掘削対象地面の硬さに応じて前記バケットの挿入深さを制御する、
    請求項1に記載のショベル。
  7. 前記制御装置は、前記掘削対象地面の硬さに関する情報を画像表示装置で表示させる、
    請求項1に記載のショベル。
  8. 前記制御装置は、前記掘削対象地面の硬さに関する情報を地形データベースに記憶する、
    請求項1に記載のショベル。
  9. 前記制御装置は、前記掘削対象地面の硬さに関する情報を外部機器に向けて送信する、
    請求項1に記載のショベル。
  10. 下部走行体と、
    前記下部走行体に搭載される上部旋回体と、
    前記上部旋回体に取り付けられる、バケットを含むアタッチメントと、
    前記上部旋回体に搭載され且つ前記アタッチメントを駆動させる制御装置と、を有し、
    前記制御装置は、掘削対象地面の硬さに関する情報に応じ、前記掘削対象地面が硬いときのバケット角度が、前記掘削対象地面が軟らかいときの前記バケット角度よりも大きくなるように、前記バケットの爪先と前記掘削対象地面とが接触するときの前記バケットの爪先の前記掘削対象地面に対する角度を調整
    前記バケット角度は、前記バケットを閉じるほど小さくなる、
    ショベル。
  11. 下部走行体と、
    前記下部走行体に搭載される上部旋回体と、
    前記上部旋回体に取り付けられる、アーム及びバケットを含むアタッチメントと、
    前記上部旋回体に搭載され且つ前記アタッチメントを駆動させる制御装置と、を有し、
    前記制御装置は、掘削対象地面の硬さに関する情報に応じ、前記掘削対象地面が硬いときのバケット角度が、前記掘削対象地面が軟らかいときの前記バケット角度よりも大きくなるように、前記アームの閉じ具合に合わせて前記バケット角度を調整
    前記バケット角度は、前記バケットを閉じるほど小さくなる、
    ショベル。
JP2019527753A 2017-07-05 2018-07-04 ショベル Active JP7146755B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017132030 2017-07-05
JP2017132030 2017-07-05
PCT/JP2018/025409 WO2019009341A1 (ja) 2017-07-05 2018-07-04 ショベル

Publications (2)

Publication Number Publication Date
JPWO2019009341A1 JPWO2019009341A1 (ja) 2020-06-18
JP7146755B2 true JP7146755B2 (ja) 2022-10-04

Family

ID=64950126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527753A Active JP7146755B2 (ja) 2017-07-05 2018-07-04 ショベル

Country Status (6)

Country Link
US (1) US11421396B2 (ja)
EP (1) EP3650604B1 (ja)
JP (1) JP7146755B2 (ja)
KR (1) KR102602382B1 (ja)
CN (1) CN110832146B (ja)
WO (1) WO2019009341A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131980A1 (ja) 2017-12-27 2019-07-04 住友建機株式会社 ショベル
JP7522552B2 (ja) * 2017-12-27 2024-07-25 住友建機株式会社 ショベル
EP3922776A4 (en) 2019-02-04 2022-03-30 Sumitomo Heavy Industries, Ltd. EXCAVATOR
CN113454292A (zh) * 2019-02-15 2021-09-28 住友重机械工业株式会社 挖土机
JP7412918B2 (ja) * 2019-08-01 2024-01-15 住友重機械工業株式会社 ショベル
JP2021152290A (ja) * 2020-03-24 2021-09-30 住友重機械工業株式会社 ショベル及びショベルの制御方法
US20220333338A1 (en) * 2020-03-24 2022-10-20 Hitachi Construction Machinery Co., Ltd. Work machine
DE102020212122A1 (de) 2020-09-25 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer mobilen Arbeitsmaschine und mobile Arbeitsmaschine
JP7450526B2 (ja) 2020-12-17 2024-03-15 日立建機株式会社 作業車両
DE102021106745A1 (de) * 2021-03-19 2022-09-22 Liebherr-Werk Nenzing Gmbh Hebezeug mit einer Vorrichtung zum Unterstützen oder vollautomatischen Durchführen eines Aufricht- und/oder Ablegevorgangs eines Auslegersystems sowie entsprechendes Verfahren
DE112022001842T5 (de) 2021-03-30 2024-05-29 Sumitomo Heavy Industries, Ltd. Bagger und baggersteuervorrichtung
JP2022185846A (ja) * 2021-06-03 2022-12-15 コベルコ建機株式会社 土質情報取得システムおよびこれを備える作業機械
US12006655B2 (en) * 2021-08-02 2024-06-11 Deere & Company Ground engaging tool contact detection system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105795A (ja) 2001-09-28 2003-04-09 Hitachi Constr Mach Co Ltd 油圧ショベルの掘削制御装置
JP2012249615A (ja) 2011-06-06 2012-12-20 Yanmar Co Ltd 田植機
WO2015194601A1 (ja) 2014-06-20 2015-12-23 住友重機械工業株式会社 ショベル及びその制御方法
WO2017047695A1 (ja) 2015-09-16 2017-03-23 住友重機械工業株式会社 ショベル

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1237878A (en) * 1916-02-25 1917-08-21 Keystone Driller Co Excavator bucket or scoop.
US4271614A (en) * 1979-10-22 1981-06-09 J. I. Case Company Floating soil fracture tool
US4888890A (en) * 1988-11-14 1989-12-26 Spectra-Physics, Inc. Laser control of excavating machine digging depth
JP3178556B2 (ja) * 1992-07-10 2001-06-18 コベルコ建機株式会社 建設機械の自動掘削制御装置
JPH0663247A (ja) 1992-08-20 1994-03-08 Yoshiro Nakamatsu 遊戯装置
JPH0716772Y2 (ja) * 1993-01-29 1995-04-19 正気 藤森 立坑掘削機械用刃物の取付構造
US5854988A (en) * 1996-06-05 1998-12-29 Topcon Laser Systems, Inc. Method for controlling an excavator
US6052926A (en) * 1998-09-28 2000-04-25 Stephens; E. Rodney Bucket for a material handling apparatus
US7191553B2 (en) * 2004-01-30 2007-03-20 0728862 B.C. Ltd. Ditch digging bucket
JP4972377B2 (ja) * 2006-10-23 2012-07-11 日立オートモティブシステムズ株式会社 電動ブレーキ制御装置、及び電動ブレーキ装置
US7949449B2 (en) * 2007-12-19 2011-05-24 Caterpillar Inc. Constant work tool angle control
US8983738B2 (en) * 2010-02-23 2015-03-17 Israel Aerospace Industries Ltd. System and method of autonomous operation of multi-tasking earth moving machinery
JP5519414B2 (ja) 2010-06-03 2014-06-11 住友重機械工業株式会社 建設機械
JP5181110B1 (ja) * 2011-08-17 2013-04-10 独立行政法人農業・食品産業技術総合研究機構 汚染土壌表層の除去工法
US8914199B2 (en) * 2012-10-05 2014-12-16 Komatsu Ltd. Excavating machine display system and excavating machine
KR101572759B1 (ko) * 2014-04-23 2015-11-30 울산대학교 산학협력단 자율 최적화 굴삭기 시스템 및 그것을 이용한 제어 방법
US9487929B2 (en) * 2015-03-05 2016-11-08 Caterpillar Inc. Systems and methods for adjusting pass depth in view of excess materials
JP5873607B1 (ja) * 2015-03-27 2016-03-01 株式会社小松製作所 作業機械の較正装置、及び作業機械の作業機パラメータの較正方法
JP2017132030A (ja) 2016-01-30 2017-08-03 株式会社コマツレンタル宮崎 自由角度鋼板削孔方法及び装置
US10125475B2 (en) * 2017-02-09 2018-11-13 Deere & Company Method of testing cycle time of an implement on a work machine and system thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105795A (ja) 2001-09-28 2003-04-09 Hitachi Constr Mach Co Ltd 油圧ショベルの掘削制御装置
JP2012249615A (ja) 2011-06-06 2012-12-20 Yanmar Co Ltd 田植機
WO2015194601A1 (ja) 2014-06-20 2015-12-23 住友重機械工業株式会社 ショベル及びその制御方法
WO2017047695A1 (ja) 2015-09-16 2017-03-23 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
EP3650604B1 (en) 2021-10-27
US20200131731A1 (en) 2020-04-30
JPWO2019009341A1 (ja) 2020-06-18
EP3650604A4 (en) 2020-07-29
WO2019009341A1 (ja) 2019-01-10
KR20200026244A (ko) 2020-03-10
KR102602382B1 (ko) 2023-11-14
EP3650604A1 (en) 2020-05-13
CN110832146B (zh) 2022-08-16
CN110832146A (zh) 2020-02-21
US11421396B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP7146755B2 (ja) ショベル
JP7247306B2 (ja) 管理装置及び支援装置
JP7053720B2 (ja) ショベル及びショベル用のシステム
JP7178885B2 (ja) ショベル及びその制御方法
JP6401087B2 (ja) ショベル及びその制御方法
JP6462435B2 (ja) ショベル
JP7354312B2 (ja) ショベル及びショベルの情報更新方法
JP6781749B2 (ja) ショベル及びショベル用のシステム
JP6542550B2 (ja) ショベル
JP6710442B2 (ja) ショベル
JP2023041850A (ja) ショベル及びショベル用のシステム
JP6874058B2 (ja) ショベル及びショベル用のシステム

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20191226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7146755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150