JP7145662B2 - Hydrogen filling method and hydrogen filling completion time determination device - Google Patents

Hydrogen filling method and hydrogen filling completion time determination device Download PDF

Info

Publication number
JP7145662B2
JP7145662B2 JP2018127588A JP2018127588A JP7145662B2 JP 7145662 B2 JP7145662 B2 JP 7145662B2 JP 2018127588 A JP2018127588 A JP 2018127588A JP 2018127588 A JP2018127588 A JP 2018127588A JP 7145662 B2 JP7145662 B2 JP 7145662B2
Authority
JP
Japan
Prior art keywords
hydrogen
filling
flow rate
hydrogen filling
completed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018127588A
Other languages
Japanese (ja)
Other versions
JP2020008041A (en
Inventor
知正 小田
僚太 佐藤
芳徳 河原崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works M&E Inc
Original Assignee
Japan Steel Works M&E Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works M&E Inc filed Critical Japan Steel Works M&E Inc
Priority to JP2018127588A priority Critical patent/JP7145662B2/en
Publication of JP2020008041A publication Critical patent/JP2020008041A/en
Application granted granted Critical
Publication of JP7145662B2 publication Critical patent/JP7145662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

この発明は、水素吸蔵合金容器に対し水素充填を行う際の水素充填方法および水素充填完了時期判断装置に関するものである。 TECHNICAL FIELD The present invention relates to a hydrogen filling method and a hydrogen filling completion time determination device for filling a hydrogen storage alloy container with hydrogen.

水素吸蔵合金を収容したキャニスタやタンクなどの水素貯蔵容器では、水素を充填して繰り返し使用がなされている。この水素貯蔵容器に対する水素充填では、水素の充填完了時期を適切に判断したいという要請がある。
例えば、特許文献1では、水素吸蔵合金容器の温度を一定に保つように水素流量を調整し、水素吸蔵合金のPCT特性に基づいた満充填圧力に達すると水素充填を完了する装置が提案されている。
また、特許文献2では、水素の充填進行に従って変化をする水素貯蔵容器温度、冷却媒体温度、水素貯蔵容器表面歪みのいずれかを所定の物理量として所定時間毎に測定し、前記物理量の時間変化を近似式にフィッティングして、前記水素の充填完了の予測時間を算出する水素充填方法が提案されている。
Hydrogen storage containers such as canisters and tanks containing hydrogen storage alloys are used repeatedly after being filled with hydrogen. When filling the hydrogen storage container with hydrogen, there is a demand to appropriately determine the completion time of hydrogen filling.
For example, Patent Document 1 proposes a device that adjusts the hydrogen flow rate so as to keep the temperature of the hydrogen storage alloy container constant, and completes hydrogen filling when the full filling pressure based on the PCT characteristics of the hydrogen storage alloy is reached. there is
Further, in Patent Document 2, any one of the temperature of the hydrogen storage container, the temperature of the cooling medium, and the surface strain of the hydrogen storage container, which change according to the progress of hydrogen filling, is measured as a predetermined physical quantity every predetermined time, and the time change of the physical quantity is measured. A hydrogen filling method has been proposed in which a predicted time for completion of hydrogen filling is calculated by fitting to an approximation formula.

特開平8-128597号公報JP-A-8-128597 特許第4753244号公報Japanese Patent No. 4753244

しかし、特許文献1で提案されている水素充填手法では、水素残量が毎回異なる水素貯蔵容器へ水素を充填する場合、充填装置に接続された貯蔵容器の圧力、温度あるいは水素流量を定期的にチェックして充填が完了しているか否かを判断する必要があり、複数の容器を連続して水素充填する際、効率的な充填作業が難しい。また、水素充填がいつ完了するか分からず、充填の間、ユーザを拘束するという問題点がある。さらに、充填完了をある程度正確に知ることができるが、水素貯蔵容器の温度が一定となるように水素流量を随時調整しているため、水素流量を調整しない場合に比べて充填時間が長くなり、装置コストも高くなるという問題点もある。 However, in the hydrogen filling method proposed in Patent Document 1, when hydrogen is filled into a hydrogen storage container with a different amount of remaining hydrogen each time, the pressure, temperature, or hydrogen flow rate of the storage container connected to the filling device is periodically adjusted. It is necessary to check whether the filling is completed or not, and when filling a plurality of containers with hydrogen in succession, efficient filling work is difficult. In addition, there is a problem that it is not known when the hydrogen filling will be completed, and the user is restrained during the filling. Furthermore, although the completion of filling can be known to some extent accurately, since the hydrogen flow rate is adjusted at any time so that the temperature of the hydrogen storage container remains constant, the filling time is longer than when the hydrogen flow rate is not adjusted. There is also a problem that the cost of the device increases.

特許文献2で提案されている水素充填手法では、所定時間毎に測定し、物理量の時間変化を近似式にフィッティングするという方法は、処理装置の計算負荷が大きく、PLCのような一般的なデータ記録・処理装置では、実施できないという問題点がある。 In the hydrogen filling method proposed in Patent Document 2, the method of measuring every predetermined time and fitting the time change of the physical quantity to an approximate expression has a large calculation load on the processing device, and general data such as PLC is used. There is a problem that it cannot be implemented in the recording/processing device.

本発明は、上記課題を解決するために、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を的確に判断することができる水素充填方法および水素充填完了時期判断装置を提供することを目的としている。 In order to solve the above-described problems, the present invention provides a hydrogen storage container capable of accurately determining when the hydrogen storage alloy container to be filled with hydrogen is completed, based on a change in a predetermined physical quantity according to the hydrogen filling. An object of the present invention is to provide a filling method and a hydrogen filling completion time determination device.

すなわち、本発明の水素充填方法のうち、第1の形態は、水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する水素充填方法であり、
水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示し、
前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間を算出する算出手順を有し、
前記算出手順は、現在の水素流量が制御水素流量以上である場合に、前記算出手順を行う
他の形態の水素充填方法の発明は、前記形態の本発明において、現在の水素流量が制御水素流量以上である場合に、水素流量を制御水素流量に制御して前記水素吸蔵合金に供給する。
他の形態の水素充填方法の発明は、水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する水素充填方法であり、
水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示し、
現在の水素流量が制御水素流量未満である場合に、前記所定の物理量によって、水素充填完了時点を決定し、水素充填完了時点と水素流量のデータを取得するデータ収集間隔の積算値の差分によって水素充填が完了するまでの残り時間を算出する。
That is, in the first aspect of the hydrogen filling method of the present invention, when one or more hydrogen storage alloy containers are filled with hydrogen from a hydrogen supply source, the change in a predetermined physical quantity according to the hydrogen filling is A hydrogen filling method for determining when hydrogen filling is completed in the target hydrogen-absorbing alloy container based on
The time when hydrogen filling is completed indicates the remaining time until hydrogen filling is completed,
Calculate the difference between the hydrogen filling amount at the completion of filling in the hydrogen storage alloy container and the current hydrogen filling amount, divide this difference by the current hydrogen flow rate, and calculate the remaining time until hydrogen filling is completed. have a procedure,
The calculation procedure is performed when the current hydrogen flow rate is greater than or equal to the control hydrogen flow rate .
According to another aspect of the present invention, there is provided a hydrogen filling method, in which, when the current flow rate of hydrogen is equal to or higher than the control hydrogen flow rate, the hydrogen flow rate is controlled to the control hydrogen flow rate and supplied to the hydrogen storage alloy.
The invention of another form of hydrogen filling method is targeted based on the change of a predetermined physical quantity according to hydrogen filling when hydrogen is filled from a hydrogen supply source into one or a plurality of hydrogen storage alloy containers. A hydrogen filling method for determining when hydrogen filling is completed in the hydrogen storage alloy container,
The time when hydrogen filling is completed indicates the remaining time until hydrogen filling is completed,
When the current hydrogen flow rate is less than the control hydrogen flow rate, the hydrogen filling completion time is determined by the predetermined physical quantity, and the difference between the hydrogen filling completion time and the integrated value of the data collection interval for acquiring the hydrogen flow rate data is used to determine the hydrogen flow rate. Calculate the remaining time until the filling is complete.

他の形態の水素充填方法の発明は、前記形態の発明において、水素充填が完了する前記時期は、水素充填が完了する時点を示している。 According to another aspect of the hydrogen filling method invention, in the above aspect of the invention, the timing at which the hydrogen filling is completed indicates the time at which the hydrogen filling is completed.

他の形態の水素充填方法の発明は、前記形態の発明において、予め所定の前記物理量から充填完了となる完了規定水素流量を定めておき、現在の水素流量が前記完了規定水素流量以下になると、水素充填が完了したと判断する。 In another aspect of the hydrogen filling method invention, in the above aspect of the invention, a prescribed hydrogen flow rate for completion of filling is determined in advance from the predetermined physical amount, and when the current hydrogen flow rate becomes equal to or less than the prescribed completion hydrogen flow rate, Determine that hydrogen filling is complete.

他の形態の水素充填方法の発明は、前記形態の発明において、所定の前記物理量が、水素吸蔵合金容器の充填圧力、水素吸蔵合金容器に供給する冷却媒体の温度および水素吸蔵合金容器の個数の一つ以上である。 The hydrogen filling method invention of another form is the invention of the above form, wherein the predetermined physical quantity is the filling pressure of the hydrogen-absorbing alloy container, the temperature of the cooling medium supplied to the hydrogen-absorbing alloy container, and the number of the hydrogen-absorbing alloy containers. One or more.

本発明の水素充填完了時期判断装置のうち、第1の形態は、水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備え、
前記制御部は、現在の水素流量が制御水素流量以上である場合に、前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間の算出を行う
他の形態の水素充填完了時期判断装置の発明は、水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備え、
前記制御部は、現在の水素流量が制御水素流量未満である場合に、水素充填完了時点と水素流量のデータを取得するデータ収集間隔の積算値の差分によって水素充填が完了するまでの残り時間を算出する。
Among the hydrogen filling completion time determination devices of the present invention, the first form comprises a flow rate measuring device for measuring the flow rate of hydrogen supplied from a hydrogen supply source to one or more hydrogen storage alloy containers;
a temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy;
a pressure gauge that measures the hydrogen filling pressure in the hydrogen storage alloy,
the flow rate measuring device, the temperature measuring device, and a control unit that receives the measurement result of the pressure gauge and determines when the target hydrogen-absorbing alloy container is filled with hydrogen ;
When the current hydrogen flow rate is equal to or higher than the control hydrogen flow rate, the control unit obtains the difference between the hydrogen filling amount at the completion of filling in the hydrogen storage alloy container and the current hydrogen filling amount, and calculates the difference as the current hydrogen filling amount. Divide by the flow rate to calculate the remaining time until hydrogen filling is completed .
Another aspect of the invention of a hydrogen filling completion timing determination device comprises a flow rate measuring device for measuring the flow rate of hydrogen supplied from a hydrogen supply source to one or more hydrogen storage alloy containers;
a temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy;
a pressure gauge that measures the hydrogen filling pressure in the hydrogen storage alloy,
the flow rate measuring device, the temperature measuring device, and a control unit that receives the measurement result of the pressure gauge and determines when the target hydrogen-absorbing alloy container is filled with hydrogen;
When the current hydrogen flow rate is less than the control hydrogen flow rate, the control unit determines the remaining time until hydrogen filling is completed by the difference between the time when hydrogen filling is completed and the integrated value of the data collection interval for acquiring hydrogen flow rate data. calculate.

他の形態の水素充填完了時期判断装置の発明は、前記形態の発明において、前記水素流量を所定の制御水素流量に設定する流量制御弁を有する。 According to another aspect of the present invention, there is provided a hydrogen filling completion timing determination apparatus according to the aspect of the invention, further comprising a flow rate control valve for setting the hydrogen flow rate to a predetermined controlled hydrogen flow rate.

他の形態の水素充填完了時期判断装置の発明は、前記形態の発明において、前記制御部は、水素充填完了時点または水素充填完了残り時間を算出する。 According to another aspect of the invention, there is provided a hydrogen filling completion timing determination device according to the above aspect of the invention, wherein the control unit calculates the hydrogen filling completion time point or the remaining time for hydrogen filling completion.

本発明の水素貯蔵容器への水素充填方法によれば、水素の充填に際し変化する物理量として、水素流量、水素吸蔵合金容器の充填時の圧力、水素吸蔵合金容器に対する冷却媒体の温度、水素吸蔵合金容器の個数などの一つ以上の物理量を求めることができる。
上記物理量は、予め求めておく他、水素の充填時に測定するものであってもよい。
According to the method for filling a hydrogen storage container with hydrogen according to the present invention, the physical quantities that change when hydrogen is filled include the hydrogen flow rate, the pressure when the hydrogen storage alloy container is filled, the temperature of the cooling medium for the hydrogen storage alloy container, and the hydrogen storage alloy. One or more physical quantities, such as the number of containers, can be determined.
The above physical quantity may be obtained in advance or may be measured at the time of hydrogen filling.

予め求めておく場合、上記物理量の測定によって、水素充填が完了すると考えられる時点での水素流量を規定水素流量に定めておき、水素の充填時に水素充填を完了すると判断するタイミングを知ることができる。なお、規定水素流量を定める際に、水素充填が完了していると判断する基準としては、水素吸蔵合金のPCT線図から求められる水素移動量と合金充填量の積から算出する方法などが考えられる。但し、本発明としては、この基準に限定されるものではなく、適宜の基準において規定水素流量を設定することができる。 If it is obtained in advance, the hydrogen flow rate at the time when hydrogen filling is considered to be completed is determined by measuring the physical quantity, and the timing for determining that hydrogen filling is completed can be known at the time of hydrogen filling. . When determining the specified hydrogen flow rate, as a criterion for determining that hydrogen filling is completed, a method of calculating from the product of the hydrogen transfer amount obtained from the PCT diagram of the hydrogen storage alloy and the alloy filling amount can be considered. be done. However, the present invention is not limited to this standard, and the specified hydrogen flow rate can be set according to an appropriate standard.

また、水素充填の際に物理量を測定するものとすることができる。この際には、冷却媒体の温度や、水素吸蔵合金容器の圧力、水素吸蔵合金容器の個数などによって、水素充填完了時間を予測することができる。この完了時間を用いて、水素充填完了となるまでの残り時間を知ることができる。 Also, a physical quantity may be measured at the time of hydrogen filling. In this case, the hydrogen filling completion time can be predicted from the temperature of the cooling medium, the pressure of the hydrogen absorbing alloy container, the number of hydrogen absorbing alloy containers, and the like. Using this completion time, it is possible to know the remaining time until the completion of hydrogen filling.

(水素流量)
充填初期は充填圧力に比べて容器内部圧力が低いため、差圧により大量の水素が流れ、その後、差圧が小さくなるにつれて水素流量が小さくなり、水素充填完了となる。
水素流量は、流量計などにより測定することができる。
(hydrogen flow rate)
Since the internal pressure of the container is lower than the filling pressure at the beginning of filling, a large amount of hydrogen flows due to the pressure difference.
The hydrogen flow rate can be measured with a flow meter or the like.

(水素圧力)
水素貯蔵容器内圧力の充填に伴う経時変化を同じく図2に示す。充填開始直後から、容器内圧力は充填圧力とほぼ同じ値になるまで急激に上昇する。これは、水素貯蔵材料の水素吸収速度が低く、水素供給過剰となるので、充填圧力と容器内圧力との間に圧力差がほとんど発生しないためである。なお、水素圧力は、例えば圧力計などにより測定することができる。
(hydrogen pressure)
FIG. 2 also shows the change over time of the internal pressure of the hydrogen storage container as the hydrogen storage container is filled. Immediately after the start of filling, the internal pressure of the container rises sharply until it reaches almost the same value as the filling pressure. This is because the hydrogen absorption rate of the hydrogen storage material is low and hydrogen is excessively supplied, so that almost no pressure difference occurs between the filling pressure and the pressure inside the container. The hydrogen pressure can be measured, for example, with a pressure gauge.

(冷媒温度)
水素の充填時に、水素吸蔵合金容器内の水素吸蔵合金を冷却して水素充填を促進するために、冷媒が用いられる。水素吸蔵合金の水素吸収平衡圧力は温度とともに上昇するので、平衡圧力が充填水素圧力とバランスする温度となったら水素吸収が停止し、温度もそれ以上上昇しなくなる。一方、容器表面などから冷媒によって水素吸蔵合金の熱が奪われると、水素吸収平衡圧力の上昇は抑えられて、水素の充填が行われる。充填が完了すると、容器温度は冷却媒体温度で一定となる。冷媒の温度は、温度計などにより測定することができる。
(refrigerant temperature)
A refrigerant is used to cool the hydrogen-absorbing alloy in the hydrogen-absorbing alloy container during hydrogen filling to facilitate hydrogen filling. Since the hydrogen absorption equilibrium pressure of the hydrogen storage alloy increases with temperature, hydrogen absorption stops when the equilibrium pressure reaches a temperature that balances with the filling hydrogen pressure, and the temperature does not rise any further. On the other hand, when the heat of the hydrogen absorbing alloy is taken away by the refrigerant from the surface of the container or the like, the increase in the hydrogen absorption equilibrium pressure is suppressed, and the filling of hydrogen is performed. When filling is completed, the container temperature becomes constant at the cooling medium temperature. The temperature of the coolant can be measured with a thermometer or the like.

上記物理量の他に、水素の充填進行に従って変化をする物理量であれば、上記以外でも測定の対象とすることができる。上記物理量は、既知の測定装置などの測定手段を用いて測定できるものであればよく、本発明としては、特に測定手段の構成が限定されるものではない。 In addition to the above physical quantities, physical quantities other than the above can be measured as long as they change according to the progress of hydrogen filling. The above-mentioned physical quantity may be measured using a measuring means such as a known measuring device, and the present invention is not particularly limited to the configuration of the measuring means.

物理量データは、予め測定する場合や、実際に水素充填作業を行う際に、経過時間データとともにプログラマブルコンピュータなどに記録することができる。該記憶は、RAMやフラッシュメモリ、HDDなどの随時書込み読出しが可能な記憶手段に対し行うことができ、水素充填完了時期を判断することができる。すなわち、水素充填完了時点を判断したり、水素充填完了に至るまでの残り時間の判断を行ったりすることができる。
水素充填完了時点を把握することにより、水素充填を終了することができ、終了においては、手動での停止や制御部により自動停止などを行うことができる。的確な時期での水素充填終了により水素充填作業を安全に行うことができる。
Physical quantity data can be recorded in a programmable computer or the like together with elapsed time data when measuring in advance or when actually performing a hydrogen filling operation. The data can be stored in memory means such as RAM, flash memory, HDD, etc., which can be written and read at any time, and the hydrogen filling completion time can be determined. That is, it is possible to determine when the hydrogen filling is completed, and to determine the remaining time until the hydrogen filling is completed.
By grasping the hydrogen filling completion point, the hydrogen filling can be terminated, and at the termination, manual stop or automatic stop by the control unit can be performed. Hydrogen filling work can be safely performed by completing hydrogen filling at an appropriate time.

また、水素充填完了までの残り時間が判明すると、水素充填完了に備えることができ、的確な時期に充填終了処理を行うことができる。残り時間は、表示部に表示したり、ネットワークを介して端末などの報知したりすることで、充填完了に備えることができる。 Further, when the remaining time until completion of hydrogen filling is known, it is possible to prepare for the completion of hydrogen filling and to perform filling end processing at an appropriate time. The remaining time can be displayed on the display unit or notified to the terminal or the like via the network so that the completion of filling can be prepared.

本発明によれば、水素充填の完了時期を正確に把握することができ、所望により水素充填を自動で行ったり、充填の残り時間を把握したりすることができ、充填の間、ユーザを拘束することもなく、時間を有効に使うことができる効果がある。 According to the present invention, it is possible to accurately grasp the completion time of hydrogen filling, to automatically perform hydrogen filling if desired, to grasp the remaining time of filling, and to constrain the user during filling. There is an effect that you can use your time effectively without doing anything.

本発明の一実施形態の水素充填方法を実施し、同じく一実施形態の水素充填完了時期判断装置を備える水素充填装置の概略を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a hydrogen filling apparatus that carries out a hydrogen filling method according to an embodiment of the present invention and also includes a hydrogen filling completion time determination device according to an embodiment; 水素充填に際し、充填の経過とともに変化する水素充填量、水素流量、水素充填圧力、冷媒温度を表したグラフである。5 is a graph showing the hydrogen charging amount, the hydrogen flow rate, the hydrogen charging pressure, and the refrigerant temperature, which change with the progress of the hydrogen charging. 冷媒温度に基づく、規定水素流量と水素充填圧力の関係を示すグラフである。4 is a graph showing the relationship between specified hydrogen flow rate and hydrogen filling pressure based on refrigerant temperature. 冷媒温度に基づく、水素充填完了時間と水素充填圧力の関係を示すグラフである。4 is a graph showing the relationship between hydrogen filling completion time and hydrogen filling pressure based on refrigerant temperature. 水素充填完了の残り時間を求める手順の例を示すフローチャートである。FIG. 10 is a flow chart showing an example of a procedure for determining the time remaining until completion of hydrogen filling; FIG. 実施例における充填の経過とともに変化する水素充填量、水素流量、水素充填圧力を表したグラフである。4 is a graph showing the hydrogen filling amount, hydrogen flow rate, and hydrogen filling pressure that change with the progress of filling in the example. 実施例における、冷媒温度に基づく、規定水素流量と水素充填圧力の関係を示すグラフである。4 is a graph showing the relationship between specified hydrogen flow rate and hydrogen filling pressure based on refrigerant temperature in the example. 実施例における、規定水素流量と燃料ケースの台数との関係を示すグラフである。4 is a graph showing the relationship between the prescribed hydrogen flow rate and the number of fuel cases in the example. 実施例における、充填残り時間と水素充填圧力との関係を示すグラフである。4 is a graph showing the relationship between the remaining filling time and the hydrogen filling pressure in Examples. 実施例における、水素充填量と水素流量の経時変化を示すグラフと、予測時の充填残り時間と実測での充填残り時間を比較した結果を示すグラフである。FIG. 10 is a graph showing changes over time in the hydrogen filling amount and the hydrogen flow rate, and a graph showing the result of comparison between the estimated remaining filling time and the measured remaining filling time in the example.

以下に、本発明の一実施形態を添付図面に基づいて説明する。
図1に示される水素充填装置100は、水素供給源である水素ボンベ1と水素供給路1Aと複数個の水素吸蔵合金容器12を有する複数の燃料ケース11とを備えており、水素ボンベ1に一端を接続した水素供給路1Aの他端に複数個の水素吸蔵合金容器12が並列に接続されている。水素吸蔵合金容器12は、それぞれキャニスタまたはタンクにより構成されている。水素吸蔵合金容器12の内部には、図示しない水素吸蔵合金が収容されている。
An embodiment of the present invention will be described below with reference to the accompanying drawings.
A hydrogen filling apparatus 100 shown in FIG. A plurality of hydrogen storage alloy containers 12 are connected in parallel to the other end of the hydrogen supply channel 1A to which one end is connected. The hydrogen-absorbing alloy container 12 is composed of a canister or a tank. A hydrogen storage alloy (not shown) is accommodated inside the hydrogen storage alloy container 12 .

燃料ケース11では、冷媒流路13が接続されており、冷媒流路13は、水素吸蔵合金容器12側に導入された冷媒が水素吸蔵合金容器12内の水素吸蔵合金を冷却し、その後排出された後、再度水素吸蔵合金容器12側に導入されるように循環配置されている。
冷媒流路排出側では、冷媒流路13内の冷媒の温度を測定する温度計8が設けられ、さらに、冷媒を冷却する冷却器9、冷媒流量計10が介設されている。
なお、水素吸蔵合金容器12を冷却する方法では、容器の外部から冷却する外部冷却式でも、内部冷却式のいずれであってもよく、本発明としては水素吸蔵合金容器の構造が特に限定されるものではない。
A coolant channel 13 is connected to the fuel case 11. In the coolant channel 13, the coolant introduced into the hydrogen-absorbing alloy container 12 cools the hydrogen-absorbing alloy in the hydrogen-absorbing alloy container 12 and is then discharged. After that, it is circulated so that it is again introduced into the hydrogen storage alloy container 12 side.
A thermometer 8 for measuring the temperature of the refrigerant in the refrigerant passage 13 is provided on the refrigerant passage discharge side, and a cooler 9 for cooling the refrigerant and a refrigerant flow meter 10 are interposed.
The method for cooling the hydrogen-absorbing alloy container 12 may be either an external cooling method in which the container is cooled from the outside or an internal cooling method, and the structure of the hydrogen-absorbing alloy container is particularly limited in the present invention. not a thing

水素供給路1Aでは、水素ボンベ1と、水素吸蔵合金容器12との間で、水素ボンベ1側から水素吸蔵合金容器12に向けて、手動弁2、圧力調整弁3、電磁開閉弁4、水素流量計5、電磁開閉弁6、圧力トランスミッタ7が、この順で介設されている。
電磁開閉弁4および電磁開閉弁6は、制御部110に制御可能に接続されており、開閉動作が制御される。さらに水素流量計5および圧力トランスミッタ7の測定値は制御部110に送信可能とされている。
また、前記温度計8の測定値は、前記制御部110に送信可能とされている。
In the hydrogen supply line 1A, between the hydrogen cylinder 1 and the hydrogen storage alloy container 12, from the hydrogen cylinder 1 side toward the hydrogen storage alloy container 12, the manual valve 2, the pressure control valve 3, the electromagnetic on-off valve 4, the hydrogen A flow meter 5, an electromagnetic on-off valve 6, and a pressure transmitter 7 are interposed in this order.
The electromagnetic on-off valve 4 and the electromagnetic on-off valve 6 are controllably connected to the controller 110, and their opening and closing operations are controlled. Furthermore, the measured values of the hydrogen flow meter 5 and the pressure transmitter 7 can be transmitted to the control section 110 .
Also, the measured value of the thermometer 8 can be transmitted to the control section 110 .

制御部110は、PLC(Programmable logic controller)などにより構成されている。また、制御部110では、さらに、経過時間を測定するタイマや、データの記憶、読出しを行う、フラッシュメモリ、HDDなどの記憶部(いずれも図示していない)を有している。 The control unit 110 is configured by a PLC (Programmable logic controller) or the like. The control unit 110 further includes a timer for measuring elapsed time, and a storage unit such as a flash memory and an HDD (none of which are shown) for storing and reading data.

制御部110は、上記した水素流量計5や圧力トランスミッタ7、温度計8で得られた物理量の測定結果を受けることができる。
これらの物理量は、実際の水素充填の前に取得して水素充填完了時期を判断するための設定値などを作成することができる。
The control unit 110 can receive measurement results of physical quantities obtained by the hydrogen flow meter 5, the pressure transmitter 7, and the thermometer 8 described above.
These physical quantities can be acquired prior to actual hydrogen filling to create set values for judging the completion time of hydrogen filling.

水素の充填を行う際には、手動弁2を開き、圧力調整弁3によって、所定の圧力を設定して、電磁開閉弁4、6を開いて水素供給路1Aを通じて水素を移送する。この際の流量は水素流量計で測定されて測定結果が制御部110に送信される。また、水素吸蔵合金容器12近くの水素供給路における圧力は圧力トランスミッタ7で測定されて制御部110に送信される。水素は、水素供給路1Aから、各水素吸蔵合金容器に充填され、水素吸蔵合金に吸蔵される。この際に、冷媒流路13を通じて水素吸蔵合金容器12に冷媒が送られ、水素の吸蔵によって昇温する水素吸蔵合金を冷却して水素吸蔵を促進する。冷媒は、水素吸蔵合金容器12を冷却した後、冷媒流路13の復路において、温度計8で温度が測定されて冷却器9に送られる、温度計8の測定結果は、制御部110に送られる。
冷却器9では、冷媒を所定温度に冷却し、冷媒流路13の往路において冷媒流量計10で流量が測定されて水素吸蔵合金容器12に再度送られて水素吸蔵合金を冷却する。上記動作を繰り返して水素を充填中に水素吸蔵合金を所定温度に冷却する。
When filling hydrogen, the manual valve 2 is opened, a predetermined pressure is set by the pressure regulating valve 3, and the electromagnetic on-off valves 4 and 6 are opened to transfer hydrogen through the hydrogen supply line 1A. The flow rate at this time is measured by a hydrogen flow meter and the measurement result is sent to the control unit 110 . Also, the pressure in the hydrogen supply path near the hydrogen storage alloy container 12 is measured by the pressure transmitter 7 and transmitted to the controller 110 . Hydrogen is filled into each hydrogen storage alloy container from the hydrogen supply channel 1A and is stored in the hydrogen storage alloy. At this time, the refrigerant is sent to the hydrogen-absorbing alloy container 12 through the refrigerant flow path 13 to cool the hydrogen-absorbing alloy heated by absorbing hydrogen, thereby promoting hydrogen absorption. After cooling the hydrogen-absorbing alloy container 12 , the coolant is sent to the cooler 9 after its temperature is measured by the thermometer 8 on the return path of the coolant flow path 13 . be done.
In the cooler 9, the refrigerant is cooled to a predetermined temperature, the flow rate is measured by the refrigerant flow meter 10 on the outward path of the refrigerant flow path 13, and the refrigerant is sent to the hydrogen absorbing alloy container 12 again to cool the hydrogen absorbing alloy. The above operation is repeated to cool the hydrogen storage alloy to a predetermined temperature while hydrogen is being filled.

水素の充填に伴う水素充填量の経時変化を図2に示す。
先に説明したように、充填初期は充填圧力に比べて容器内部圧力が低いため、差圧により大量の水素(Fpv)が流れ、流量制御をした場合においては、制御水素流量(Fsp)でt1の時間水素が充填される。その後、図2の2段目、3段目に示すように、差圧が小さくなるにつれて水素流量が小さくなり、水素流量が制御水素流量より小さくなると徐々に水素流量が減少していく。ここで、流量制御ができなくなった時点をA、充填が完了の時点をBとすると、t1がA、t2がB-Aで表される。
この際に、図2の3段目に示すように、充填初期には充填圧力が急激に上昇した後、圧力上昇は緩慢になり、充填完了時には一定になる。また、図2の4段目に示すように、冷媒温度は一定の範囲内に収まっている。
FIG. 2 shows the change over time in the amount of hydrogen filled with hydrogen.
As described above, at the beginning of filling, the internal pressure of the container is lower than the filling pressure, so a large amount of hydrogen (Fpv) flows due to the differential pressure, and when the flow rate is controlled, the controlled hydrogen flow rate (Fsp) is t1 is filled with hydrogen for . Thereafter, as shown in the second and third tiers of FIG. 2, the hydrogen flow rate decreases as the differential pressure decreases, and when the hydrogen flow rate becomes smaller than the control hydrogen flow rate, the hydrogen flow rate gradually decreases. Here, if A is the time when the flow rate control becomes impossible, and B is the time when the filling is completed, t1 is A and t2 is BA.
At this time, as shown in the third stage of FIG. 2, after the filling pressure rises sharply at the beginning of filling, the rise in pressure slows down and becomes constant at the completion of filling. Also, as shown in the fourth row of FIG. 2, the coolant temperature is within a certain range.

なお、図中のQは、水素充填量、Qpvは、現在の水素充填量、Qpreは、定格水素充填量を示しており、
Fは、水素流量、Fpvは現在の水素流量、Fpreは規定水素流量、Fspは制御水素流量、
Pは、水素充填圧力、Tは、冷媒入口温度を示している。
In the figure, Q is the hydrogen filling amount, Qpv is the current hydrogen filling amount, and Qpre is the rated hydrogen filling amount.
F is the hydrogen flow rate, Fpv is the current hydrogen flow rate, Fpre is the specified hydrogen flow rate, Fsp is the controlled hydrogen flow rate,
P indicates the hydrogen filling pressure, and T indicates the refrigerant inlet temperature.

本実施形態の実施に際しては、予め所定の容器において、水素充填に関わるパラメータである冷媒入口温度(T)、水素充填圧力(P)、水素流量(F)、水素充填量(Q、水素流量の積算値)の経時変化を計測し、水素充填量が定格水素充填量(Qpre)に到達した時の各パラメータの値を算出する。次に、図3のように冷媒温度ごとに水素充填圧力と規定水素流量(Fpre)の関係をまとめる。試験の結果、両者の関係は一次関数で近似できることを確認している。この一次式を実際の水素充填装置の制御部にインプットさせ、自動で水素充填を行い、水素流量(F)が規定水素流量を下回ったら、水素充填を完了とする仕組みとすることができる。 In carrying out the present embodiment, in a predetermined container in advance, the parameters related to hydrogen filling are refrigerant inlet temperature (T), hydrogen filling pressure (P), hydrogen flow rate (F), hydrogen filling amount (Q, hydrogen flow rate cumulative value) is measured, and the value of each parameter is calculated when the hydrogen charging amount reaches the rated hydrogen charging amount (Qpre). Next, as shown in FIG. 3, the relationship between the hydrogen charging pressure and the specified hydrogen flow rate (Fpre) is summarized for each refrigerant temperature. As a result of testing, it has been confirmed that the relationship between the two can be approximated by a linear function. This linear expression can be input to the control unit of the actual hydrogen filling device, hydrogen filling can be performed automatically, and hydrogen filling can be completed when the hydrogen flow rate (F) falls below the specified hydrogen flow rate.

次に水素充填の完了時間の予測方法について説明する。
図2の結果から、図3、4に示すように、予め冷媒温度ごとに水素充填圧力Pとt2の関係をプロットする。試験の結果、両者の関係は一次関数で近似できることを確認している。これらを基に、充填残り時間(trem)は、図5のように算出することができる。
すなわち、Fpv≧Fspのとき、tremはQpreから水素充填量の現在値(Qpv)を引いたものを水素流量の現在値(Fpv)で除すことにより充填残り時間(trem)を暫定的に算出することができる。
一方、Fpv<Fspのときは、tremはt2から、A時点からのデータ収集間隔の積算値(tint)を減じることで求めることができる。t2は、予め、算出や経験により得ておく。
図中のtremは、充填残り時間、tintは、データ収集間隔を示す。
Next, a method of predicting the hydrogen filling completion time will be described.
Based on the results of FIG. 2, the relationship between the hydrogen charging pressure P and t2 is plotted in advance for each refrigerant temperature, as shown in FIGS. As a result of testing, it has been confirmed that the relationship between the two can be approximated by a linear function. Based on these, the remaining filling time (trem) can be calculated as shown in FIG.
That is, when Fpv≧Fsp, trem temporarily calculates the remaining filling time (trem) by subtracting the current value of the hydrogen filling amount (Qpv) from Qpre and dividing it by the current value of the hydrogen flow rate (Fpv). can do.
On the other hand, when Fpv<Fsp, trem can be obtained by subtracting the integrated value (tint) of the data collection interval from time A from t2. t2 is obtained in advance by calculation or experience.
In the figure, trem indicates the remaining filling time, and tint indicates the data collection interval.

なお、上記実施形態では、複数個の水素吸蔵合金容器を備えるものについて適用した形態を説明したが、本発明としては、一つの水素吸蔵合金容器を備えるものに対し、適用することも可能である。なお、特許文献2では、充填完了までの推定時間を逐次算出しており、例えば容器表面温度を計測する場合などは、容器1本ごとに温度センサを取り付ける必要があり、複数個の水素吸蔵合金容器を備えるものにおいては効率的な充填作業が難しいという問題がある。しかし、本実施形態では、複数個の水素吸蔵合金容器を備えるものについても効率的な充填作業を行うことを可能にしている。 In addition, in the above-described embodiment, a mode in which a plurality of hydrogen storage alloy containers are provided has been described, but the present invention can also be applied to a device provided with one hydrogen storage alloy container. . In Patent Document 2, the estimated time until filling is completed is sequentially calculated. For example, when measuring the container surface temperature, it is necessary to attach a temperature sensor to each container, and multiple hydrogen storage alloys are required. There is a problem that an efficient filling operation is difficult in the thing provided with a container. However, in this embodiment, it is possible to efficiently perform the filling operation even for a container having a plurality of hydrogen-absorbing alloy containers.

以下、本発明の実施例を記載する。
水素吸蔵合金容器として、定格水素量450Lの水素貯蔵合金(MH)を充填したMHキャニスタ3本に冷却路を内蔵したMH燃料ケース8台を用いて水素充填試験を実施した。水素充填装置の概略構成は、図1の装置と同様とした。
Examples of the present invention are described below.
A hydrogen filling test was carried out using eight MH fuel cases each having a built-in cooling channel in three MH canisters filled with a hydrogen storage alloy (MH) having a rated hydrogen capacity of 450 L as hydrogen storage alloy containers. The schematic configuration of the hydrogen filling device was the same as that of the device shown in FIG.

充填水素圧力を0.6MPaG、冷媒入口温度を5℃、冷媒流量を12L/minに設定し、充填における水素流量を80L/minに制御した。
図6に水素充填圧力、水素流量、水素充填量の経時変化をまとめた。充填開始後約40分は流量が制御できているが、容器内圧が上がるにつれて、水素流量が徐々に低下し始めている。
The filling hydrogen pressure was set at 0.6 MPaG, the refrigerant inlet temperature was set at 5° C., and the refrigerant flow rate was set at 12 L/min, and the hydrogen flow rate during filling was controlled at 80 L/min.
Fig. 6 summarizes changes over time in hydrogen filling pressure, hydrogen flow rate, and hydrogen filling amount. The flow rate can be controlled for about 40 minutes after the start of filling, but as the internal pressure of the container rises, the hydrogen flow rate begins to decrease gradually.

図7に冷媒温度、充填圧力をパラメータとして、各種条件での定格水素充填量の時の水素充填圧力と規定水素流量の関係をまとめた。充填圧力と規定水素流量は概ね一次式の関係で示される。また、充填圧力と冷媒温度を一定にして、燃料ケース台数(N)と規定水素流量の関係を求めると、図8のようになり、燃料ケース台数と規定水素流量も概ね一次式の関係で示される。
以上の結果より、規定水素流量と充填圧力と冷媒温度およびケース台数の関係は以下で示される。
FIG. 7 summarizes the relationship between the hydrogen filling pressure and the specified hydrogen flow rate at the rated hydrogen filling amount under various conditions, using the refrigerant temperature and filling pressure as parameters. The filling pressure and the specified hydrogen flow rate are generally expressed by a linear relationship. Fig. 8 shows the relationship between the number of fuel cases (N) and the specified hydrogen flow rate with the filling pressure and coolant temperature constant. be
Based on the above results, the relationship between the specified hydrogen flow rate, filling pressure, refrigerant temperature, and number of cases is shown below.

Fpre={(K1+K2×T)+(K3+K4×T)×P}×(K5×N+K6) ……(式1)
ここでK1~K6は定数である。
FpvがFpre以下であると、水素を供給している電磁開閉弁を閉じることで水素充填を完了とする。
Fpre={(K1+K2×T)+(K3+K4×T)×P}×(K5×N+K6) (Formula 1)
Here, K1-K6 are constants.
When Fpv is equal to or less than Fpre, the hydrogen filling is completed by closing the electromagnetic on-off valve supplying hydrogen.

次に水素充填時間の残り時間の予測方法について記載する。
水素充填後、一定期間経過後、水素流量の現在値(Fpv)と制御水素流量(Fsp)を比較する。FpvがFspより大きい期間では、充填残り時間(trem)は、定格水素充填量(Qpre)から水素充填量の現在値(Qpv)を引いたものを水素流量の現在値(Fpv)で除すことにより暫定的に求められる。これにより充填完了に備えることができる。なお、水素流量(Fpv)が制御水素流量(Fsp)を下回るようになると、上記前提と異なる状態になるため修正が必要である。
すなわち、FpvがFspより小さい期間では、t2を後述の式2で算出し、t2からデータ収集間隔(tint)を減じることによりtremを、より正確に求めることができる。
t2に関して、冷媒温度、充填圧力とt2の関係は図9のようになり、充填圧力とt2は概ね一次式の関係で示される。
Next, a method for predicting the remaining hydrogen filling time will be described.
After a certain period of time has passed since hydrogen filling, the current hydrogen flow rate (Fpv) is compared with the controlled hydrogen flow rate (Fsp). In the period when Fpv is greater than Fsp, the remaining filling time (trem) is obtained by subtracting the current value of the hydrogen filling amount (Qpv) from the rated hydrogen filling amount (Qpre) and dividing it by the current value of the hydrogen flow rate (Fpv). provisionally required by This makes it possible to prepare for the completion of filling. Note that if the hydrogen flow rate (Fpv) falls below the controlled hydrogen flow rate (Fsp), the state will be different from the above premise, so correction is necessary.
That is, when Fpv is smaller than Fsp, trem can be obtained more accurately by calculating t2 using Equation 2 described later and subtracting the data collection interval (tint) from t2.
Regarding t2, the relationship between the refrigerant temperature, charging pressure, and t2 is as shown in FIG.

t2={(L1+L2×T)+(L3+L4×T)×P}×(L5×N+L6) ……(式2)
ここでL1 ~ L6は定数である。
充填完了までの残り時間tremはt2からtintを減じることで求められる。
t2={(L1+L2×T)+(L3+L4×T)×P}×(L5×N+L6) (Equation 2)
where L1 to L6 are constants.
The remaining time trem until filling is completed is obtained by subtracting tint from t2.

図10に水素充填圧力:0.8MPaG、冷媒温度:5℃、冷媒流量:12L/minで水素充填を実施した時の結果を示す。水素充填は、概ね定格水素充填量で完了し、また充填残り時間についても実測と良く一致することを確認した。 FIG. 10 shows the results when hydrogen filling was performed at a hydrogen filling pressure of 0.8 MPaG, a refrigerant temperature of 5° C., and a refrigerant flow rate of 12 L/min. It was confirmed that hydrogen filling was generally completed at the rated hydrogen filling amount, and that the remaining filling time also agreed well with actual measurements.

1 容器
1 水素ボンベ
1A 水素供給路
2 手動弁
3 圧力調整弁
4 電磁開閉弁
5 水素流量計
6 電磁開閉弁
7 圧力トランスミッタ
8 温度計
9 冷却器
10 冷媒流量計
11 燃料ケース
12 水素吸蔵合金容器
13 冷媒流路
100 水素充填装置
110 制御部
1 Container 1 Hydrogen Cylinder 1A Hydrogen Supply Line 2 Manual Valve 3 Pressure Regulating Valve 4 Electromagnetic Switching Valve 5 Hydrogen Flow Meter 6 Electromagnetic Switching Valve 7 Pressure Transmitter 8 Thermometer 9 Cooler 10 Refrigerant Flow Meter 11 Fuel Case 12 Hydrogen Storage Alloy Container 13 Refrigerant channel 100 Hydrogen filling device 110 Control unit

Claims (10)

水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する水素充填方法であり、
水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示し、
前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間を算出する算出手順を有し、
前記算出手順は、現在の水素流量が制御水素流量以上である場合に、前記算出手順を行う水素充填方法。
When one or more hydrogen storage alloy containers are filled with hydrogen from a hydrogen supply source, hydrogen filling is completed in the target hydrogen storage alloy container based on a change in a predetermined physical quantity according to hydrogen filling. It is a hydrogen filling method that determines the timing,
The time when hydrogen filling is completed indicates the remaining time until hydrogen filling is completed,
Calculate the difference between the hydrogen filling amount at the completion of filling in the hydrogen storage alloy container and the current hydrogen filling amount, divide this difference by the current hydrogen flow rate, and calculate the remaining time until hydrogen filling is completed. have a procedure,
The hydrogen filling method , wherein the calculation procedure is performed when the current hydrogen flow rate is equal to or higher than the control hydrogen flow rate .
現在の水素流量が制御水素流量以上である場合に、水素流量を制御水素流量に制御して前記水素吸蔵合金に供給する請求項記載の水素充填方法。 2. The hydrogen filling method according to claim 1 , wherein when the current hydrogen flow rate is equal to or higher than the control hydrogen flow rate, the hydrogen flow rate is controlled to the control hydrogen flow rate and supplied to the hydrogen storage alloy. 水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する水素充填方法であり、When one or more hydrogen storage alloy containers are filled with hydrogen from a hydrogen supply source, hydrogen filling is completed in the target hydrogen storage alloy container based on a change in a predetermined physical quantity according to hydrogen filling. It is a hydrogen filling method that determines the timing,
水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示し、 The time when hydrogen filling is completed indicates the remaining time until hydrogen filling is completed,
現在の水素流量が制御水素流量未満である場合に、前記所定の物理量によって、水素充填完了時点を決定し、水素充填完了時点と水素流量のデータを取得するデータ収集間隔の積算値の差分によって水素充填が完了するまでの残り時間を算出する水素充填方法。 When the current hydrogen flow rate is less than the control hydrogen flow rate, the hydrogen filling completion point is determined by the predetermined physical quantity, and the difference between the hydrogen filling completion point and the integrated value of the data collection interval for acquiring the hydrogen flow rate data is used to determine the hydrogen flow rate. A hydrogen filling method that calculates the remaining time until filling is completed.
水素充填が完了する前記時期は、水素充填が完了する時点を示している請求項1~3のいずれか1項に記載の水素充填方法。 4. The hydrogen filling method according to any one of claims 1 to 3 , wherein the timing at which hydrogen filling is completed indicates the time at which hydrogen filling is completed. 予め所定の前記物理量から充填完了となる規定水素流量を定めておき、現在の水素流量が前記規定水素流量以下になると、水素充填が完了したと判断する請求項記載の水素充填方法。 5. The hydrogen filling method according to claim 4 , wherein a specified hydrogen flow rate at which filling is completed is determined in advance from the predetermined physical quantity, and hydrogen filling is determined to be completed when the current hydrogen flow rate becomes equal to or less than the specified hydrogen flow rate. 所定の前記物理量が、水素吸蔵合金容器の充填圧力、水素吸蔵合金容器に供給する冷却媒体の温度および水素吸蔵合金容器の個数の一つ以上である請求項1~のいずれ1項に記載の水素充填方法。 The predetermined physical quantity is one or more of the filling pressure of the hydrogen - absorbing alloy container, the temperature of the cooling medium supplied to the hydrogen-absorbing alloy container, and the number of the hydrogen-absorbing alloy containers. Hydrogen filling method. 水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備え、
前記制御部は、現在の水素流量が制御水素流量以上である場合に、前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間の算出を行う水素充填完了時期判断装置。
a flow meter for measuring the flow rate of hydrogen supplied from a hydrogen supply source to one or more hydrogen storage alloy containers;
a temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy;
a pressure gauge that measures the hydrogen filling pressure in the hydrogen storage alloy,
the flow rate measuring device, the temperature measuring device, and a control unit that receives the measurement result of the pressure gauge and determines when the target hydrogen-absorbing alloy container is filled with hydrogen ;
When the current hydrogen flow rate is equal to or higher than the control hydrogen flow rate, the control unit obtains the difference between the hydrogen filling amount at the completion of filling in the hydrogen storage alloy container and the current hydrogen filling amount, and calculates the difference as the current hydrogen filling amount. A hydrogen filling completion timing determination device that calculates the remaining time until hydrogen filling is completed by dividing by the flow rate .
水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、a flow meter for measuring the flow rate of hydrogen supplied from a hydrogen supply source to one or more hydrogen storage alloy containers;
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、 a temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy;
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、 a pressure gauge that measures the hydrogen filling pressure in the hydrogen storage alloy,
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備え、 the flow rate measuring device, the temperature measuring device, and a control unit that receives the measurement result of the pressure gauge and determines when the target hydrogen-absorbing alloy container is filled with hydrogen;
前記制御部は、現在の水素流量が制御水素流量未満である場合に、水素充填完了時点と水素流量のデータを取得するデータ収集間隔の積算値の差分によって水素充填が完了するまでの残り時間を算出する水素充填完了時期判断装置。 When the current hydrogen flow rate is less than the control hydrogen flow rate, the control unit determines the remaining time until hydrogen filling is completed by the difference between the time when hydrogen filling is completed and the integrated value of the data collection interval for acquiring hydrogen flow rate data. Hydrogen filling completion timing determination device for calculation.
前記水素流量を所定の制御水素流量に設定する流量制御弁を有する請求項7または8に記載の水素充填完了時期判断装置。 9. The hydrogen filling completion timing determination device according to claim 7 , further comprising a flow control valve for setting the hydrogen flow rate to a predetermined controlled hydrogen flow rate. 前記制御部は、水素充填完了時点または水素充填完了残り時間を算出する請求項記載の水素充填完了時期判断装置。 10. The hydrogen filling completion timing determination device according to claim 9 , wherein the control unit calculates a hydrogen filling completion time or a hydrogen filling completion remaining time.
JP2018127588A 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device Active JP7145662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127588A JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127588A JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Publications (2)

Publication Number Publication Date
JP2020008041A JP2020008041A (en) 2020-01-16
JP7145662B2 true JP7145662B2 (en) 2022-10-03

Family

ID=69151192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127588A Active JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Country Status (1)

Country Link
JP (1) JP7145662B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258335A (en) 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device
JP2007138973A (en) 2005-11-15 2007-06-07 Japan Steel Works Ltd:The Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103987A (en) * 1992-08-10 1994-04-15 Sanyo Electric Co Ltd Hydrogen filling method and hydrogen filling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258335A (en) 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device
JP2007138973A (en) 2005-11-15 2007-06-07 Japan Steel Works Ltd:The Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel

Also Published As

Publication number Publication date
JP2020008041A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6768687B2 (en) How and equipment to fill the tank
US10443784B2 (en) System for controlling gas supply unit
JP5328617B2 (en) Gas filling system, gas filling method, vehicle
US8726535B2 (en) Method, apparatus and system for controlling heated air drying
US7392691B1 (en) Method and apparatus for detecting the level of a liquid
EP1818597A2 (en) Method for dispensing compressed gas
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
CN107959092A (en) Method for controlling battery cell temperature
JP2006349685A (en) Method and system for accelerated oxidation test of fuel or mineral oil products, and computer program for controlling this system and computer readable memory media
JP2018184958A5 (en)
JP7145662B2 (en) Hydrogen filling method and hydrogen filling completion time determination device
JP2004116619A (en) Fuel filling apparatus and method
JP6179273B2 (en) Fuel gas filling device
CN113137564A (en) Station and method for filling one or more tanks
CN115992932A (en) Control method of hydrogen filling device and hydrogen filling device
JP6179057B2 (en) Fuel gas filling system, fuel gas filling method, and computer program
JP4354881B2 (en) Refrigerant filling device
US10571076B2 (en) Method for refueling of gas into a pressurized gas tank
JP2007047000A (en) Method for weighing powdery and granular substance
JP2023104991A (en) Cryogenic surgical systems
KR20150137878A (en) Refrigerant charging kit, air conditioner, and controlling method for charging of refrigerant
EP4194791A1 (en) Determining a state-of-charge of a phase-change-material-based thermal energy storage device
US9745184B2 (en) Fluid dispensing apparatus with pre-heated valve
JP2018124161A (en) Leakage inspection device and leakage inspection method
JP6803813B2 (en) Hydrogen storage method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150