JP2007138973A - Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel - Google Patents

Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel Download PDF

Info

Publication number
JP2007138973A
JP2007138973A JP2005329634A JP2005329634A JP2007138973A JP 2007138973 A JP2007138973 A JP 2007138973A JP 2005329634 A JP2005329634 A JP 2005329634A JP 2005329634 A JP2005329634 A JP 2005329634A JP 2007138973 A JP2007138973 A JP 2007138973A
Authority
JP
Japan
Prior art keywords
hydrogen
filling
time
storage container
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005329634A
Other languages
Japanese (ja)
Other versions
JP4753244B2 (en
Inventor
Yasuhiro Fujita
泰宏 藤田
Mitsuo Oda
三男 小田
Yoshinori Kawarasaki
芳徳 河原崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005329634A priority Critical patent/JP4753244B2/en
Publication of JP2007138973A publication Critical patent/JP2007138973A/en
Application granted granted Critical
Publication of JP4753244B2 publication Critical patent/JP4753244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively indicate residual time reaching completion of filling when filling hydrogen in a hydrogen storage alloy vessel. <P>SOLUTION: This device has measuring means 10 and 13 for measuring a physical quantity of changing in response to filling progress with every predetermined time when filling the hydrogen in a hydrogen storage vessel, an approximate expression calculating means 20 for fitting a time change in the physical quantity to an approximate expression and a residual time calculating means 20 for calculating the residual time up to completing the filling on the basis of the approximate expression. Predictive time of the filling completion of the hydrogen can be easily calculated. Filling work can be efficiently performed. When continuously filling the hydrogen in a plurality of hydrogen storage vessels, the filling work can be shortened by predicting filling completion time even if an initial hydrogen residual quantity is different with every vessel. A general user can effectively use the time by predication of hydrogen filling time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、水素吸蔵合金などの水素貯蔵材料を用いた水素貯蔵容器に水素を充填する際の水素充填方法および水素充填監視装置に関するものである。   The present invention relates to a hydrogen filling method and a hydrogen filling monitoring apparatus when filling a hydrogen storage container using a hydrogen storage material such as a hydrogen storage alloy with hydrogen.

水素吸蔵合金などの水素貯蔵材料を用いた水素貯蔵容器では、水素の放出がなされた後には、再度水素を充填して繰り返し使用がなされている。この水素貯蔵容器に対する従来の水素充填手法では、充填の短時間化技術や自動化技術などの創意工夫はなされてきたが、充填完了までの時間を定量的に予測する技術はこれまで検討されてこなかった。したがって、水素残量が毎回異なる水素貯蔵容器へ水素を充填する場合、充填装置に接続された貯蔵容器の圧力、温度あるいは水素流量を定期的にチェックして充填が完了しているか否かを判断する必要がある。このため、複数の貯蔵容器を連続して水素充填する際、効率的な充填作業が望むことが難しい。水素充填の完了を検出する装置としては、特許文献1で提案されているものがある。この装置では、水素吸蔵合金容器の温度を一定に保つように水素流量を調整し、合金のPCT特性に基づいた満充填圧力に達すると水素充填を完了するものと判定をする。
特開平8−128597号公報
In a hydrogen storage container using a hydrogen storage material such as a hydrogen storage alloy, after hydrogen is released, it is refilled with hydrogen and used repeatedly. In the conventional hydrogen filling method for this hydrogen storage container, ingenuity has been made, such as shortening the filling time technology and automation technology, but no technology for quantitatively predicting the time until the filling is completed has been studied. It was. Therefore, when filling hydrogen storage containers with different amounts of hydrogen each time, the pressure, temperature, or hydrogen flow rate of the storage container connected to the filling device is periodically checked to determine whether filling is complete. There is a need to. For this reason, it is difficult to desire an efficient filling operation when continuously filling a plurality of storage containers with hydrogen. As an apparatus for detecting completion of hydrogen filling, there is one proposed in Patent Document 1. In this apparatus, the hydrogen flow rate is adjusted so as to keep the temperature of the hydrogen storage alloy container constant, and it is determined that the hydrogen filling is completed when the full filling pressure based on the PCT characteristics of the alloy is reached.
JP-A-8-128597

しかしながら、特許文献1記載の技術では、充填の完了をある程度正確に知ることができるが、水素貯蔵容器の温度が一定となるように水素流量を随時調整しているため、水素流量を調整しない場合に比べて充填時間が長くなり、装置コストも高くなる。何より、充填完了までの予測時間の算出ができないため、効率的な水素充填は期待できない。
また、水素充填に必要な時間は1時間以上に及ぶこともあるが、充填完了までの時間を定量的に予測することができないと、一般利用者が水素充填設備において水素貯蔵容器に水素を充填する際、いつ頃終了するのか分からず、時間の有効利用ができないなどの問題がある。
However, in the technique described in Patent Document 1, the completion of filling can be known to some extent accurately, but the hydrogen flow rate is adjusted as needed so that the temperature of the hydrogen storage container is constant, and therefore the hydrogen flow rate is not adjusted. Compared with this, the filling time becomes longer and the apparatus cost becomes higher. Above all, since it is impossible to calculate the estimated time until filling, efficient hydrogen filling cannot be expected.
In addition, although the time required for hydrogen filling may be over one hour, if the time to completion of filling cannot be predicted quantitatively, a general user fills the hydrogen storage container with hydrogen in the hydrogen filling facility. When doing so, there is a problem that it is not possible to know when it will end and the time cannot be used effectively.

本発明は、上記事情を背景としてなされたものであり、水素充填完了までの予測時間を算出することができる水素充填方法および水素充填監視装置を提供することを目的としている。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide a hydrogen filling method and a hydrogen filling monitoring device capable of calculating an estimated time until completion of hydrogen filling.

すなわち、本発明の水素貯蔵容器への水素充填方法の発明のうち、請求項1記載の発明は、水素貯蔵容器への水素充填に際し、該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定し、前記物理量の時間変化を近似式にフィッティングして、前記水素の充填完了の予測時間を算出することを特徴とする。   That is, among the inventions of the hydrogen filling method of the hydrogen storage container according to the present invention, the invention according to claim 1 is configured such that when hydrogen is filled into the hydrogen storage container, a predetermined physical quantity that changes according to the progress of the hydrogen filling is determined for a predetermined time. The measurement is performed every time, and the time change of the physical quantity is fitted to an approximate expression to calculate the predicted time for completion of the hydrogen filling.

請求項2記載の水素貯蔵容器への水素充填方法の発明は、請求項1記載の発明において、前記充填完了の予測時間の算出は、充填完了時に示す前記物理量に基づいて前記近似式から求めることを特徴とする。   According to a second aspect of the invention of the method for filling hydrogen into the hydrogen storage container, in the first aspect of the invention, the calculation of the estimated time for completion of filling is obtained from the approximate expression based on the physical quantity indicated when filling is completed. It is characterized by.

請求項3記載の水素貯蔵容器への水素充填方法の発明は、請求項1または2に記載の発明において、前記測定中に、前記近似式を前記物理量の変化に基づいて適時修正をし、修正された近似式に基づいて再度、前記水素の充填完了までの予測時間を算出することを特徴とする。   The invention of the method for filling hydrogen into the hydrogen storage container according to claim 3 is the invention according to claim 1 or 2, wherein during the measurement, the approximate expression is corrected in a timely manner based on the change in the physical quantity, and the correction is made. The predicted time until the completion of the hydrogen filling is calculated again based on the approximate expression.

請求項4記載の水素貯蔵容器への水素充填方法の発明は、請求項1〜3のいずれかに記載の発明において、前記物理量が充填水素流量、水素圧力、水素貯蔵容器重量、水素貯蔵容器温度、冷却媒体温度、水素貯蔵容器表面歪み、供給側水素残量のいずれかであることを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for filling hydrogen into a hydrogen storage container according to any one of the first to third aspects, wherein the physical quantities include a flow rate of charged hydrogen, hydrogen pressure, hydrogen storage container weight, and hydrogen storage container temperature. , Cooling medium temperature, hydrogen storage container surface distortion, or supply-side hydrogen remaining amount.

請求項5記載の水素貯蔵容器への水素充填方法の発明は、請求項1〜4のいずれかに記載の発明において、算出された前記充填完了時間が異常であるか否かの判定を行うことを特徴とする。   The invention of the method for filling hydrogen into the hydrogen storage container according to claim 5 is the invention according to any one of claims 1 to 4, wherein it is determined whether or not the calculated filling completion time is abnormal. It is characterized by.

請求項6記載の水素貯蔵容器への水素充填方法の発明は、請求項5記載の発明において、算出された前記充填完了時間が異常であると判定される場合に、異常時制御を行うことを特徴とする。   The invention of a hydrogen filling method for a hydrogen storage container according to claim 6 is characterized in that, in the invention according to claim 5, when it is determined that the calculated filling completion time is abnormal, the abnormal time control is performed. Features.

請求項7記載の水素貯蔵容器への水素充填方法の発明は、請求項6記載の発明において、前記異常時制御が、異常を知らせる通知であることを特徴とする。   According to a seventh aspect of the present invention, there is provided the method for filling hydrogen into a hydrogen storage container according to the sixth aspect of the invention, wherein the abnormality control is a notification that informs the abnormality.

請求項8記載の水素貯蔵容器への水素充填方法の発明は、請求項6または7に記載の発明において、前記異常時制御が、水素の充填処理を自動的に停止するものであることを特徴とする。   An invention of a method for filling hydrogen into a hydrogen storage container according to claim 8 is the invention according to claim 6 or 7, wherein the abnormal control automatically stops the hydrogen filling process. And

請求項9記載の水素充填監視装置の発明は、水素貯蔵容器への水素充填に際し該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定する測定手段と、該測定手段により得られる前記物理量の時間変化を近似式にフィッティングさせる近似式算出手段と、前記近似式に基づいて充填完了までの残り時間を算出する残り時間算出手段とを備えることを特徴する。   The invention of the hydrogen filling monitoring device according to claim 9 is obtained by a measuring means for measuring a predetermined physical quantity that changes according to the progress of filling of hydrogen into the hydrogen storage container every predetermined time, and the measuring means. Approximate expression calculating means for fitting the time change of the physical quantity to an approximate expression, and remaining time calculating means for calculating the remaining time until completion of filling based on the approximate expression.

請求項10記載の水素充填監視装置の発明は、請求項9記載の発明において、前記残り時間算出手段で算出された残り時間を通知する通知手段を備えることを特徴とする。   According to a tenth aspect of the present invention, there is provided the hydrogen filling monitoring apparatus according to the ninth aspect, further comprising notifying means for notifying the remaining time calculated by the remaining time calculating means.

請求項11記載の水素充填監視装置の発明は、請求項9または10に記載の発明において、前記残り時間算出手段で算出された残り時間が異常であるか否かを判定する残り時間異常判定手段を備えることを特徴とする。   The hydrogen filling monitoring device according to claim 11 is the remaining time abnormality determining means for determining whether or not the remaining time calculated by the remaining time calculating means is abnormal in the invention according to claim 9 or 10. It is characterized by providing.

請求項12記載の水素充填監視装置の発明は、請求項9〜11のいずれかに記載の発明において、前記異常判定手段によって異常判定がなされたときに、異常時動作を行わせる異常時制御手段を備えることを特徴とする。   A hydrogen filling monitoring device according to a twelfth aspect of the invention according to any one of the ninth to eleventh aspects, wherein an abnormality control means for performing an abnormal operation when an abnormality determination is made by the abnormality determination means. It is characterized by providing.

請求項13記載の水素充填監視装置の発明は、請求項12記載の発明において、前記異常時動作が、異常であることを通知する動作であることを特徴とする。   According to a thirteenth aspect of the present invention, there is provided the hydrogen filling monitoring device according to the twelfth aspect, wherein the abnormal operation is an operation for notifying that the abnormality is abnormal.

請求項14記載の水素充填監視装置の発明は、請求項12または13記載の発明において、前記異常時動作が、水素充填処理を自動停止させる動作であることを特徴とする。   According to a fourteenth aspect of the present invention, there is provided the invention according to the twelfth or thirteenth aspect, wherein the abnormal operation is an operation for automatically stopping the hydrogen filling process.

すなわち、本発明の水素貯蔵容器への水素充填方法によれば、水素充填時に水素流量や温度などの物理量を定期的に計測し、その時間変化を適切な近似式にフィッティングすることで、充填完了までの推定時間を逐次算出することができる。
上記測定される物理量は充填初期から完了までを通じて測定可能な変化を伴うものが適切である。また、測定における時間間隔は、近似式の適切な算出ができることなどを考慮して適宜定めることができる。以下に適用可能な物理量とその特徴を列記する。
That is, according to the method for filling hydrogen into the hydrogen storage container of the present invention, filling is completed by periodically measuring physical quantities such as hydrogen flow rate and temperature at the time of filling with hydrogen, and fitting the change over time to an appropriate approximate expression. The estimated time until can be calculated sequentially.
It is appropriate that the physical quantity to be measured is accompanied by a change that can be measured from the beginning to the end of filling. In addition, the time interval in the measurement can be appropriately determined in consideration of the fact that the approximate expression can be appropriately calculated. The applicable physical quantities and their characteristics are listed below.

(充填水素流量)
水素流量の充填に伴う経時変化を図1に示す。充填開始直後は充填圧力に比べて容器内部圧力が低いため、充填水素流量は急激に増加してピークに達するが、速やかに圧力が均衡するので流量は落ちる。その後、水素流量は水素貯蔵材料の水素吸収速度に等しい値に落ち着き、充填完了まで徐々に降下していく。水素が満充填に至ると流量は0となる。なお、充填水素流量は、充填に用いる供給管などに例えば流量計などを配置することで測定することができる。
(Filling hydrogen flow rate)
FIG. 1 shows the change over time associated with the filling of the hydrogen flow rate. Immediately after the start of filling, the internal pressure of the container is lower than the filling pressure, so the filling hydrogen flow rate rapidly increases and reaches a peak, but the flow rate drops because the pressure quickly balances. Thereafter, the hydrogen flow rate settles to a value equal to the hydrogen absorption rate of the hydrogen storage material and gradually decreases until filling is completed. When hydrogen is fully filled, the flow rate becomes zero. The filling hydrogen flow rate can be measured by arranging, for example, a flow meter in a supply pipe used for filling.

(水素圧力)
水素貯蔵容器内圧力の充填に伴う経時変化を図2に示す。充填開始直後から、容器内圧力は充填圧力とほぼ同じ値になるまで急激に上昇する。これは、水素貯蔵材料の水素吸収速度が低く、水素供給過剰となるので、充填圧力と容器内圧力との間に圧力差がほとんど発生しないためである。しかしながら、充填完了まで若干の差圧が存在するので、これを利用して残り時間を計算することは不可能ではない。なお、水素圧力は、例えば圧力計などにより測定することができる。
(Hydrogen pressure)
FIG. 2 shows a change with time in filling the hydrogen storage container pressure. Immediately after the start of filling, the internal pressure of the container rapidly increases until reaching the same value as the filling pressure. This is because the hydrogen absorption rate of the hydrogen storage material is low and the hydrogen supply is excessive, so that there is almost no pressure difference between the filling pressure and the container internal pressure. However, since there is a slight differential pressure until the completion of filling, it is not impossible to calculate the remaining time using this pressure. The hydrogen pressure can be measured with a pressure gauge, for example.

(水素貯蔵容器重量)
容器重量の充填に伴う経時変化を図3に示す。一般的な貯蔵容器では、満充填時の水素の重量は容器全体の重量に比べて数%程度であり、十分重量計測で判別できる変化である。しかしながら、重量測定の際、水素貯蔵容器に水滴等の付着や部品等の脱落があると水素充填進行度の見積もりに誤差が生じることから、実際の適用には困難な点が多い。なお、容器重量は例えばロードセルなどにより測定することができる。
(Hydrogen storage container weight)
FIG. 3 shows the change with time of filling the container weight. In a general storage container, the weight of hydrogen when fully filled is about several percent compared to the weight of the entire container, which is a change that can be distinguished by sufficient weight measurement. However, when the weight is measured, if there are water droplets or the like attached to the hydrogen storage container or parts are dropped, an error occurs in the estimation of the hydrogen filling progress, which is difficult in actual application. The container weight can be measured by, for example, a load cell.

(水素貯蔵容器温度)
容器表面および内部温度の充填に伴う経時変化を図4に示す。水素貯蔵材料は一般に水素を吸収すると発熱する特性を持つため、充填開始直後の容器温度は急速に上昇する。しかしながら、水素貯蔵材料の水素吸収平衡圧力は温度とともに上昇するので、平衡圧力が充填水素圧力とバランスする温度となったら水素吸収が停止し、温度もそれ以上上昇しなくなる。一方、容器表面から外部冷却媒体によって熱を奪われていくため、一転して徐々に温度が降下していく。熱伝達しやすい容器表面ほど温度が早く降下し始め、容器中心部はそれに遅れて温度降下する。充填が完了すると、容器温度は冷却媒体温度で一定となる。容器温度は、例えば熱電対などを用いた温度計により測定することができる。
(Hydrogen storage container temperature)
FIG. 4 shows the change with time of filling of the container surface and the internal temperature. Since the hydrogen storage material generally generates heat when absorbing hydrogen, the container temperature immediately rises immediately after the start of filling. However, since the hydrogen absorption equilibrium pressure of the hydrogen storage material increases with temperature, when the equilibrium pressure reaches a temperature that balances with the filling hydrogen pressure, hydrogen absorption stops and the temperature does not increase any more. On the other hand, since the heat is taken away from the container surface by the external cooling medium, the temperature is gradually lowered and gradually falls. The temperature of the container surface that is more likely to transfer heat begins to drop faster, and the temperature at the center of the container falls later. When filling is completed, the container temperature becomes constant at the cooling medium temperature. The container temperature can be measured by a thermometer using, for example, a thermocouple.

(冷却媒体温度)
水素貯蔵容器の冷却媒体が流路に沿って流れている場合、その入口温度と出口温度の差を計測することでも充填進行を読み取ることが可能である。流量が同じであれば、充填が進むにしたがって温度差が小さくなり、充填が完了すると温度差が0となる。該冷却媒体温度も例えば熱電対などを用いた温度計により測定することができる。
(Cooling medium temperature)
When the cooling medium of the hydrogen storage container is flowing along the flow path, it is possible to read the progress of filling by measuring the difference between the inlet temperature and the outlet temperature. If the flow rate is the same, the temperature difference becomes smaller as the filling proceeds, and the temperature difference becomes 0 when the filling is completed. The cooling medium temperature can also be measured by a thermometer using, for example, a thermocouple.

(容器表面歪み)
容器表面歪みの充填に伴う経時変化を図5に示す。水素貯蔵材料は一般に水素を吸収するとその体積を増大させるため、水素貯蔵容器の表面歪みは水素充填に伴って増大する。充填が完了すると、所定の歪み量に達する。歪み量は、例えば歪み計などにより測定することができる。
(Container surface distortion)
FIG. 5 shows the change over time accompanying the filling of the container surface strain. Since the hydrogen storage material generally increases its volume when it absorbs hydrogen, the surface strain of the hydrogen storage container increases with hydrogen filling. When filling is complete, a predetermined amount of strain is reached. The amount of strain can be measured by, for example, a strain meter.

上記物理量の他に、今後開発が期待される水素残量計の出力も同様に充填完了予測時間の計算に用いることが可能であり、要は水素の充填進行に従って変化をする物理量であれば、上記以外でも測定の対象として残り時間の算出に利用することができる。
上記物理量は、既知の測定装置などの測定手段を用いて測定できるものであればよく、本発明としては、特に測定手段の構成が限定されるものではない。
In addition to the above physical quantities, the output of a hydrogen fuel gauge that is expected to be developed in the future can also be used for the calculation of the estimated filling completion time. In short, if the physical quantity changes as the hydrogen filling progresses, Other than the above, it can be used for calculation of the remaining time as a measurement target.
The physical quantity is not particularly limited as long as it can be measured using a measuring means such as a known measuring apparatus, and the configuration of the measuring means is not particularly limited as the present invention.

測定された物理量データはその時の経過時間データとともにプログラマブルコンピュータなどに記録することができる。該記憶は、RAMやフラッシュメモリ、HDDなどの随時書込み読出しが可能な記憶手段に対し行うことができる。
なお、充填初期は各物理量が安定しないため、充填開始後適当な時間待機してから計測を始めてもよい。近似式の次数に応じた必要データ数(n次式であれば必要データ数は最低n+1組)が集まったならば、近似式パラメータの計算を実施し、近似式へのフィッティングを行う。該計算は、CPUとこれを動作させるプログラムなどにより構成される近似式算出手段により行うことができる。近似式が導出されたならば、物理量の変数に充填完了の指標値を代入し、経過時間を演算することができる。このときの指標値としては、充填水素流量を用いる場合は0、容器表面温度ならば冷却媒体温度といったように理論的な到達値に設定するのも良いが、予備試験の結果から任意に設定するのが望ましい。指標値は、測定する物理量に合わせて定められる。計算で得られた完了に至る経過時間から現在までの経過時間を差し引くことで充填完了までの予測時間を算出することができる。これらのシーケンスは定期計測の度に実行され、充填完了予測時間を逐次更新していくのが望ましい。
The measured physical quantity data can be recorded in a programmable computer or the like together with the elapsed time data at that time. The storage can be performed on storage means such as RAM, flash memory, and HDD that can be written and read at any time.
In addition, since each physical quantity is not stable at the initial stage of filling, the measurement may be started after waiting for an appropriate time after the filling is started. When the necessary number of data corresponding to the order of the approximate expression (the number of required data is at least n + 1 sets in the case of the n-order expression) is collected, the approximate expression parameter is calculated and fitting to the approximate expression is performed. The calculation can be performed by an approximate expression calculation unit configured by a CPU and a program for operating the CPU. Once the approximate expression has been derived, the elapsed time can be calculated by substituting the filling completion index value into the physical quantity variable. The index value at this time may be set to a theoretically reached value such as 0 when the charged hydrogen flow rate is used, or the cooling medium temperature if the vessel surface temperature is used, but is arbitrarily set from the result of the preliminary test. Is desirable. The index value is determined according to the physical quantity to be measured. The estimated time until completion of filling can be calculated by subtracting the elapsed time until completion from the elapsed time until completion obtained by the calculation. It is desirable that these sequences are executed every regular measurement, and the filling completion prediction time is sequentially updated.

得られた充填完了予測時間は、デジタル表示で具体的な時間を表示したり、数段階のランプでおおよその時間を指示したりする方法で逐次ユーザーに通知することができ、また、適宜の通信手段(LAN、ネットワーク、電話回線など)を介して通知をすることも可能であり、通知方法は特に限定されない。測定物理量が充填完了の指標値に達した場合、ランプの点灯や音声などでユーザーに充填完了の旨を通知することも可能である。   The estimated filling completion time obtained can be notified to the user one after another by displaying a specific time on a digital display or indicating the approximate time with several stages of lamps. Notification can be made via means (LAN, network, telephone line, etc.), and the notification method is not particularly limited. When the measured physical quantity reaches the index value for completion of filling, it is also possible to notify the user of the completion of filling by lighting the lamp or by voice.

また、充填完了予測時間が極端に長く、水素リーク等のおそれがある場合などに備えて異常の判定を行うことができる。異常判定では、予め適正と考えられる充填間時間を設定しておき、この充填完了時間との対比によって異常か否かの判定を行うことができる。また、異常の程度を段階的に定めるようにしてもよい。異常であると判定される場合には、予め定めた異常時制御を行うことができる。例えば、操作者や保守者に異常の通知(警報など)を発したりすることができる。また、水素充填装置を制御して水素充填作業を停止させることも可能である。   Further, it is possible to determine abnormality in preparation for a case where the estimated completion time of filling is extremely long and there is a risk of hydrogen leak or the like. In the abnormality determination, an inter-filling time that is considered appropriate can be set in advance, and it can be determined whether or not there is an abnormality by comparison with the filling completion time. Further, the degree of abnormality may be determined in stages. When it is determined that there is an abnormality, it is possible to perform a predetermined abnormality control. For example, it is possible to send an abnormality notification (alarm or the like) to the operator or maintenance personnel. It is also possible to stop the hydrogen filling operation by controlling the hydrogen filling device.

以上説明したように、本発明の水素貯蔵容器への水素充填方法によれば、水素貯蔵容器への水素充填に際し、該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定し、前記物理量の時間変化を近似式にフィッティングして、前記水素の充填完了の予測時間を算出するので、水素充填までに要する時間を容易に予測することができ、充填作業を効率よく行うことができる。例えば、複数の水素貯蔵容器に水素を連続して充填する必要があり、しかも初期水素残量が容器ごとに異なっていて一律の充填時間では時間効率が悪い場合、本発明によって充填完了時間を予測することで充填作業を短縮化する効果が見込まれる。さらに、一般利用者にとっては、水素充填時間を予測することで、無用に充填完了を待ち続けることなく、時間を有効に使うことができる。
また、充填完了予測時間が極端に長い結果となった場合は、水素リークのおそれがある場合などに異常をユーザーに報知するなどの適切な対応することが可能になる。
As described above, according to the method for filling hydrogen into the hydrogen storage container of the present invention, when filling the hydrogen storage container with hydrogen, a predetermined physical quantity that changes according to the progress of filling of the hydrogen is measured every predetermined time, By fitting the time change of the physical quantity to an approximate expression to calculate the predicted time for completion of the hydrogen filling, it is possible to easily predict the time required for hydrogen filling and to perform the filling work efficiently. . For example, when it is necessary to continuously fill a plurality of hydrogen storage containers with hydrogen, and the initial hydrogen remaining amount is different for each container and the time efficiency is not uniform with a uniform filling time, the filling completion time is predicted by the present invention. This is expected to shorten the filling operation. Furthermore, for the general user, by predicting the hydrogen filling time, it is possible to effectively use the time without waiting for the completion of filling unnecessarily.
In addition, when the estimated completion time of filling is extremely long, it is possible to take appropriate measures such as notifying the user of an abnormality when there is a possibility of hydrogen leakage.

さらに、本発明の水素充填監視装置によれば、水素貯蔵容器への水素充填に際し該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定する測定手段と、該測定手段により得られる前記物理量の時間変化を近似式にフィッティングさせる近似式算出手段と、前記近似式に基づいて充填完了までの残り時間を算出する残り時間算出手段とを備えるので、充填予測時間を容易に算出することができ、上記効果が確実に得られる。   Furthermore, according to the hydrogen filling monitoring apparatus of the present invention, when the hydrogen is filled into the hydrogen storage container, a measuring unit that measures a predetermined physical quantity that changes according to the progress of filling of the hydrogen every predetermined time, and obtained by the measuring unit Since the approximate expression calculating means for fitting the time change of the physical quantity to an approximate expression and the remaining time calculating means for calculating the remaining time until the completion of filling based on the approximate expression are provided, the estimated filling time can be easily calculated. And the above effects can be obtained with certainty.

以下、本発明の一実施形態を図6〜8に基づいて説明する。
図6に示されるシステムは、水素充填装置を構成する水素ボンベ1と水素供給管2と水素貯蔵容器3とを備えており、水素ボンベ1に一端を接続した水素供給管2の他端に水素貯蔵容器3が接続されている。水素貯蔵容器3は、内部に図示しない水素吸蔵合金が収容されており、外部表面は、冷却水導入管4aと冷却水排出管4bとが接続された冷却水ジャケット4でカバーされている。なお、上記では水素貯蔵容器における冷却方法は、外部冷却式となっているが、内部冷却式のものであっても同様に適用可能であり、本発明としては水素貯蔵容器の構造が特に限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
The system shown in FIG. 6 includes a hydrogen cylinder 1, a hydrogen supply pipe 2, and a hydrogen storage container 3 that constitute a hydrogen filling apparatus, and a hydrogen supply pipe 2 connected at one end to the hydrogen cylinder 1. A storage container 3 is connected. The hydrogen storage container 3 contains a hydrogen storage alloy (not shown) inside, and the outer surface is covered with a cooling water jacket 4 to which a cooling water introduction pipe 4a and a cooling water discharge pipe 4b are connected. In the above, the cooling method in the hydrogen storage container is an external cooling type, but even an internal cooling type can be similarly applied, and the structure of the hydrogen storage container is particularly limited as the present invention. It is not something.

また、上記水素供給管2には、水素充填装置として開閉弁5とレギュレータ6とが介設されている。また、水素供給管2には、レギュレータ6の下流側に、測定手段である水素流量計10を挟んで電磁開閉弁11、12が介設されており、それぞれ制御部20に電気的に接続されている。該接続により、水素流量計10の測定結果は制御部20に出力可能となっており、また、電磁開閉弁11、12の開閉動作は制御部20により制御可能となっている。また、前記水素貯蔵容器3の外表面には、該水素貯蔵容器3の外表面温度を測定する、測定手段である温度計13が設置されており、該温度計13は、前記制御部20に電気的に接続されて、その測定結果が制御部20に出力可能とされている。
また、前記制御部20には、操作者が視認できるように水素充填残り時間を表示する、通知手段であるインジケータ14が接続され、さらに、操作者に音で通知を行うブザー14が接続されている。また、制御部20には、経過時間を測定するタイマ21とデータの記憶、読出しを行う、フラッシュメモリ、HDDなどの記憶部22が接続されている
The hydrogen supply pipe 2 is provided with an on-off valve 5 and a regulator 6 as a hydrogen filling device. The hydrogen supply pipe 2 is provided with electromagnetic on-off valves 11 and 12 on the downstream side of the regulator 6 with a hydrogen flow meter 10 as a measuring means interposed therebetween, and is electrically connected to the control unit 20. ing. With this connection, the measurement result of the hydrogen flow meter 10 can be output to the control unit 20, and the opening / closing operation of the electromagnetic on-off valves 11 and 12 can be controlled by the control unit 20. A thermometer 13 as a measuring means for measuring the outer surface temperature of the hydrogen storage container 3 is installed on the outer surface of the hydrogen storage container 3, and the thermometer 13 is connected to the control unit 20. It is electrically connected and the measurement result can be output to the control unit 20.
The control unit 20 is connected with an indicator 14 that is a notification means for displaying the remaining time of hydrogen filling so that the operator can visually recognize it. Further, a buzzer 14 that notifies the operator with sound is connected. Yes. Also connected to the control unit 20 is a timer 21 for measuring elapsed time and a storage unit 22 such as a flash memory or HDD for storing and reading data.

上記した制御部20は、例えばCPUとこれを動作させるプログラムとを主にして構成することができる。該制御部20は、上記した水素流量計10や温度計13で得られる物理量の測定結果を受けて、水素充填に伴う物理量の時間的変化をフィッティングさせる近似式の算出が可能になっており、本発明の近似式算出手段としての機能を有している。上記により得られる近似式からは、水素の充填完了時における物理量を予め把握しておくことで水素充填完了予測時間を算出することができる。したがって、制御部20は、残り時間算出手段としての機能を有している。   The above-described control unit 20 can be configured mainly with, for example, a CPU and a program for operating the CPU. The control unit 20 receives the measurement result of the physical quantity obtained by the hydrogen flow meter 10 and the thermometer 13 described above, and can calculate an approximate expression that fits the temporal change of the physical quantity accompanying hydrogen filling, It has a function as an approximate expression calculation means of the present invention. From the approximate expression obtained above, the hydrogen filling completion prediction time can be calculated by grasping in advance the physical quantity at the completion of hydrogen filling. Therefore, the control unit 20 has a function as remaining time calculation means.

また、制御部20では、予め正常と判定される充填完了時間データを記憶部22に記憶させておき、これを読み出して予測される充填完了時間と対比することで充填の異常判定を行うことができる。したがって制御部20は、本発明の残り時間異常判定手段としての機能を有している。さらに制御部20は、後述するように、異常判定に従って電磁開閉弁11、12やブザー15の動作を制御することができ、異常時制御手段としての機能も有している。   In addition, the control unit 20 can store filling completion time data determined to be normal in advance in the storage unit 22, read it, and compare it with the predicted filling completion time to determine filling abnormality. it can. Therefore, the control unit 20 has a function as the remaining time abnormality determination means of the present invention. Further, as will be described later, the control unit 20 can control the operations of the electromagnetic on-off valves 11 and 12 and the buzzer 15 in accordance with the abnormality determination, and also has a function as an abnormality control means.

上記した制御部20、流量計10、電磁制御弁11、12、温度計13、インジケータ14、ブザー15、タイマ21および記憶部22は、本発明の水素充填監視装置を構成している。該水素充填監視装置は、水素充填装置とは独立したものでもよく、または水素充填装置に包含されるものであってもよい。   The control unit 20, the flow meter 10, the electromagnetic control valves 11, 12, the thermometer 13, the indicator 14, the buzzer 15, the timer 21, and the storage unit 22 constitute the hydrogen filling monitoring device of the present invention. The hydrogen filling monitoring device may be independent from the hydrogen filling device, or may be included in the hydrogen filling device.

次に、上記水素充填装置および充填監視装置を用いた水素充填方法を図7のフローチャートを参照しつつ説明する。
水素の充填開始に際しては、開閉弁2、電磁弁11、12を開き、水素ボンベ1から水素供給管2を通して水素貯蔵容器3への水素の供給を開始する(ステップS1)。水素の供給に際してはレギュレータ6で流れ調整がなされて水素が水素貯蔵容器3に導入される。また、水素の供給に伴って冷却水ジャケット4に冷却水導入管4aと冷却水排出管4bを通して冷却水を通水し、水素貯蔵容器3の冷却を行う。水素貯蔵容器3では、水素吸蔵に伴う水素吸蔵合金の発熱が上記冷却水により冷却され、円滑に水素吸蔵が進行する。
Next, a hydrogen filling method using the hydrogen filling device and the filling monitoring device will be described with reference to the flowchart of FIG.
At the start of hydrogen filling, the on-off valve 2 and the electromagnetic valves 11 and 12 are opened, and supply of hydrogen from the hydrogen cylinder 1 to the hydrogen storage container 3 through the hydrogen supply pipe 2 is started (step S1). When supplying hydrogen, the flow is adjusted by the regulator 6 and hydrogen is introduced into the hydrogen storage container 3. Further, with the supply of hydrogen, cooling water is passed through the cooling water jacket 4 through the cooling water introduction pipe 4 a and the cooling water discharge pipe 4 b to cool the hydrogen storage container 3. In the hydrogen storage container 3, the heat generation of the hydrogen storage alloy accompanying the hydrogen storage is cooled by the cooling water, and the hydrogen storage proceeds smoothly.

上記した水素の充填を予め定めた安定待機時間まで続行し(ステップS2)、安定待機時間経過後前記した物理量の測定を開始する(ステップS3)。なお、経過時間は、前記したタイマ21のカウントにより行うことができ、測定開始時には、測定物理量に応じた充填完了指標値qf、近似式に必要な次数kを設定しておく。該充填完了指標値qfおよび必要次数kは、予め記憶部22に記憶させておき、これを読み出すことで設定を行うことができる。   The above hydrogen filling is continued until a predetermined stable standby time (step S2), and the measurement of the physical quantity is started after the stable standby time has elapsed (step S3). The elapsed time can be determined by counting by the timer 21 described above. At the start of measurement, the filling completion index value qf corresponding to the measured physical quantity and the order k required for the approximate expression are set. The filling completion index value qf and the required order k can be set by storing them in the storage unit 22 in advance and reading them out.

該物理量の測定においては、流量計10において水素供給管2を流れる水素の流量を予め定めた所定の時間毎に測定し、測定データを制御部20に送出する。また、同じく、該測定においては、温度計13によって水素貯蔵容器3の外表面温度を所定時間毎に測定し、測定データを制御部20に送出する。なお、測定データは、流量計10、温度計13のいずれかによって得られるものであればよく、両方をそれぞれ用いることも可能である。
測定データは、計測点数n、経過時間tn、計測物理量qnとして逐次得られ(ステップs4)、制御部20の制御によって記憶部22のデータテーブルに格納される(ステップs5)。次ステップs6では、計測物理量qnが、充填完了指標値qfを越えているか否かの判定がなされ、越えていると判定される場合には、充填完了とする(ステップs7)。ステップs7では、制御部20の制御によって充填完了をブザー15で報知することができ、また、電磁開閉弁11、12を閉とすることもできる。
In the measurement of the physical quantity, the flow rate of the hydrogen flowing through the hydrogen supply pipe 2 in the flow meter 10 is measured every predetermined time, and the measurement data is sent to the control unit 20. Similarly, in this measurement, the thermometer 13 measures the outer surface temperature of the hydrogen storage container 3 every predetermined time, and sends the measurement data to the control unit 20. In addition, the measurement data should just be obtained by either the flow meter 10 or the thermometer 13, and it is also possible to use both, respectively.
The measurement data is sequentially obtained as the number of measurement points n, the elapsed time tn, and the measurement physical quantity qn (step s4), and is stored in the data table of the storage unit 22 under the control of the control unit 20 (step s5). In the next step s6, it is determined whether or not the measured physical quantity qn exceeds the filling completion index value qf. If it is determined that the measured physical quantity qn has exceeded, filling is completed (step s7). In step s7, the completion of filling can be notified by the buzzer 15 under the control of the control unit 20, and the electromagnetic on-off valves 11 and 12 can be closed.

上記ステップs6で、計測物理量qnが、充填完了指標値qfを越えてない場合、次いで計測点数nが必要次数kに達したか否かの判定がなされる(ステップs8)。ここで計測点数nが必要次数kに達していない場合、ステップs4に戻り、さらに測定が継続され、測定データ数を積み増す。
一方、ステップs7で計測点数nが必要次数kに達していると判定される場合、制御部20においてデータテーブルに格納された前記データが読み出され、該データに基づいて近似式の算出が行われ、測定物理量の時間的変化のフィッティングがなされる(ステップs9)。該近似式によって、充填完了指標値qfを用いて充填完了となる完了予測経過時間tfを算出する。次いで、それまでに経過した時間を積算し、該完了予測経過時間tfから前記積算経過時間を差し引いて、充填完了に至る残り時間を算出する(ステップs10)。算出結果は、制御部20の動作によって前記したインジケータ14にデジタル表示される(ステップS11)。次いで、完了予測経過時間tfが予め設定した正常水素充填完了時間の範囲内あるか否かの判定を行い、範囲外にある場合には異常であるとの判定を行い、異常時制御処理を行う(ステップs13)。正常水素充填完了時間は例えば記憶部22に予め格納しておき、必要に応じて読み出すことができる。上記判定が正常である場合、計測物理量が充填完了指標値qfに達するまで上記処理(ステップs4〜s12)を繰り返し行う。
If the measured physical quantity qn does not exceed the filling completion index value qf in step s6, it is then determined whether or not the number of measurement points n has reached the required order k (step s8). Here, when the number of measurement points n has not reached the required order k, the process returns to step s4, and the measurement is further continued to increase the number of measurement data.
On the other hand, when it is determined in step s7 that the number of measurement points n has reached the required order k, the control unit 20 reads the data stored in the data table, and calculates an approximate expression based on the data. In step s9, the measurement physical quantity is changed over time. By using the approximate expression, the completion completion elapsed time tf at which filling is completed is calculated using the filling completion index value qf. Next, the elapsed time is integrated, and the accumulated elapsed time is subtracted from the estimated completion elapsed time tf to calculate the remaining time until filling is completed (step s10). The calculation result is digitally displayed on the indicator 14 by the operation of the control unit 20 (step S11). Next, it is determined whether or not the estimated completion elapsed time tf is within the range of the normal hydrogen filling completion time set in advance. If it is out of the range, it is determined that there is an abnormality, and the control processing at the time of abnormality is performed. (Step s13). The normal hydrogen filling completion time can be stored in advance in the storage unit 22, for example, and can be read out as necessary. When the determination is normal, the above processing (steps s4 to s12) is repeated until the measured physical quantity reaches the filling completion index value qf.

異常時制御処理では、図8に示すように、前記測定手段による測定を終了し(ステップs130)、ブザー15による異常報知により警報を発する(ステップs131)。該異常報知では、前記した充填完了時のブザー報知とは内容を異にすることで、区別が可能である。次いで、電磁開閉弁11、12を閉じて水素充填処理を中止する。これにより水素漏れなどによる不具合を早期に回避することが可能になる。なお、指標となる正常水素充填完了時間を段階的なものとして複数定めることで異常判定を段階的に行って、異常が小とされる場合に警報を発し、異常が大とされる場合に水素充填の完了を行うようにしてもよい。
以上、上記実施形態に基づいて本発明の内容を説明したが、本発明が上記説明内容に限定されるものではなく、本発明の範囲を逸脱しない範囲で適宜変更が可能である。
In the abnormality control process, as shown in FIG. 8, the measurement by the measuring means is terminated (step s130), and an alarm is issued by the abnormality notification by the buzzer 15 (step s131). The abnormality notification can be distinguished by making the content different from the above-described buzzer notification at the completion of filling. Next, the electromagnetic on-off valves 11 and 12 are closed to stop the hydrogen filling process. This makes it possible to avoid problems due to hydrogen leakage at an early stage. In addition, abnormal determination is performed in stages by setting multiple normal hydrogen filling completion times as indicators, and an alarm is issued when the abnormality is small, and hydrogen is detected when the abnormality is large. You may make it complete filling.
The contents of the present invention have been described above based on the above embodiment, but the present invention is not limited to the above described contents, and can be appropriately changed without departing from the scope of the present invention.

以下、本発明の実施例を説明する。
図6に示す装置構成において、水素貯蔵容器として、定格水素貯蔵量200NLの水素貯蔵合金内蔵キャニスターを用いた場合の水素充填試験を実施した。このときの充填水素圧力は1MPaGとし、貯蔵容器は5℃の冷水で冷却した。
Examples of the present invention will be described below.
In the apparatus configuration shown in FIG. 6, a hydrogen filling test was conducted when a hydrogen storage alloy built-in canister having a rated hydrogen storage amount of 200 NL was used as the hydrogen storage container. The filling hydrogen pressure at this time was 1 MPaG, and the storage container was cooled with cold water at 5 ° C.

上記水素充填試験において、充填試験での水素貯蔵量(充填水素流量の積算値)、充填水素流量、容器表面温度の3種類のパラメータの経時変化をまとめ、図9に示した。
充填開始直後は充填水素流量、容器表面温度ともに急上昇するが、30秒〜1分程度でピークを迎え、続いてなだらかに減少し始める。充填水素流量が計測限界以下となった時点を充填完了とすると、流量、容器表面温度ともに充填完了までほぼ直線的に減少しているのが読み取れる。そこで、前記実施形態で示した図7のシーケンスを利用して直線近似式を適用した場合の充填完了時間予測結果を以下に説明する。
In the hydrogen filling test, changes over time of three types of parameters of the hydrogen storage amount (integrated value of the filling hydrogen flow rate), the filling hydrogen flow rate, and the container surface temperature in the filling test are summarized and shown in FIG.
Immediately after the start of filling, both the filling hydrogen flow rate and the container surface temperature rise rapidly, but reach a peak in about 30 seconds to 1 minute, and then gradually decrease. If the filling is completed when the filling hydrogen flow rate is below the measurement limit, it can be read that both the flow rate and the container surface temperature decrease almost linearly until the filling is completed. Accordingly, the filling completion time prediction result when the linear approximation formula is applied using the sequence of FIG. 7 shown in the above embodiment will be described below.

充填水素流量、容器表面温度ともほぼ直線減少に安定する2分後から、1分間隔でそれぞれの物理量を計測する。そして3組の計測データが収集できた時点、すなわち4分後から2分ごとに最小二乗法による直線式を導出した。このとき、充填水素流量の充填完了指標値は1NL/min、容器表面温度の充填完了指標値は22℃とした。図10に充填水素流量、図11に容器表面温度の直線近似グラフ推移を示す。また、図12に実際の充填完了までの残り時間と、充填水素流量および容器表面温度それぞれから予測された残り時間との対比を示す。図に示すように、充填水素流量、容器表面温度とも充填が進むにつれて、実際の充填完了までの残り時間に一致する傾向を示した。特に、容器表面温度はほぼ直線的な時間変化をしているため、直線近似によって非常によい精度で残り時間が予測できた。   Each physical quantity is measured at an interval of 1 minute from 2 minutes after both the filling hydrogen flow rate and the container surface temperature are stabilized in a substantially linear decrease. Then, a linear equation by the least square method was derived at the time when three sets of measurement data could be collected, that is, every 2 minutes after 4 minutes. At this time, the filling completion index value of the filling hydrogen flow rate was 1 NL / min, and the filling completion index value of the container surface temperature was 22 ° C. FIG. 10 shows the flow rate of charged hydrogen, and FIG. FIG. 12 shows a comparison between the remaining time until the actual filling is completed and the remaining time predicted from the filling hydrogen flow rate and the container surface temperature. As shown in the figure, the filling hydrogen flow rate and the container surface temperature showed a tendency to coincide with the remaining time until the actual filling was completed as the filling progressed. In particular, since the container surface temperature changes almost linearly, the remaining time can be predicted with very good accuracy by linear approximation.

水素貯蔵容器への水素充填に伴う、水素流量の経時変化を示す模式図である。It is a schematic diagram which shows the time-dependent change of the hydrogen flow rate accompanying the hydrogen filling to a hydrogen storage container. 同じく、容器内水素圧力の経時変化を示す模式図である。Similarly, it is a schematic diagram showing a change with time of the hydrogen pressure in the container. 同じく、水素貯蔵容器重量の経時変化を示す模式図である。Similarly, it is a schematic diagram showing the change over time of the weight of the hydrogen storage container. 同じく、水素貯蔵容器温度の経時変化を示す模式図である。Similarly, it is a schematic diagram showing the change over time of the temperature of the hydrogen storage container. 同じく、水素貯蔵容器表面ひずみの経時変化を示す模式図である。Similarly, it is a schematic diagram showing the change over time of the hydrogen storage container surface strain. 本発明の一実施形態の水素充填監視装置を含むシステムの構成図である。It is a block diagram of the system containing the hydrogen filling monitoring apparatus of one Embodiment of this invention. 本発明の一実施形態の水素充填方法を示すフローチャートである。It is a flowchart which shows the hydrogen filling method of one Embodiment of this invention. 同じく、水素充填方法の一部工程を示すフローチャートである。Similarly, it is a flowchart which shows a part process of the hydrogen filling method. 本発明の実施例における測定物理量の経時変化を示す模式図である。It is a schematic diagram which shows the time-dependent change of the measured physical quantity in the Example of this invention. 同じく、充填水素流量に関し、最小二乗法による直線近似式を適用したグラフである。Similarly, it is the graph which applied the linear approximation formula by the least square method regarding the filling hydrogen flow rate. 同じく、容器表面温度に関し、最小二乗法による直線近似式を適用したグラフである。Similarly, it is the graph which applied the linear approximation formula by the least square method regarding the container surface temperature. 同じく、実際の充填完了までの残り時間と充填水素流量および容器表面温度それぞれから予測された残り時間との対比を示すグラフである。Similarly, it is a graph showing the comparison between the remaining time until the actual filling is completed and the remaining time predicted from the filling hydrogen flow rate and the container surface temperature.

符号の説明Explanation of symbols

1 水素ボンベ
2 水素供給管
3 水素貯蔵容器
4 冷却ジャケット
10 流量計
11 電磁開閉弁
12 電磁開閉弁
13 温度計
14 インジケータ
15 ブザー
20 制御部
21 タイマ
22 記憶部
DESCRIPTION OF SYMBOLS 1 Hydrogen cylinder 2 Hydrogen supply pipe 3 Hydrogen storage container 4 Cooling jacket 10 Flowmeter 11 Electromagnetic on-off valve 12 Electromagnetic on-off valve 13 Thermometer 14 Indicator 15 Buzzer 20 Control part 21 Timer 22 Storage part

Claims (14)

水素貯蔵容器への水素充填に際し、該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定し、前記物理量の時間変化を近似式にフィッティングして、前記水素の充填完了の予測時間を算出することを特徴とする水素貯蔵容器への水素充填方法。   When filling the hydrogen storage container with hydrogen, a predetermined physical quantity that changes according to the progress of filling of the hydrogen is measured every predetermined time, and the time change of the physical quantity is fitted to an approximate expression to predict the completion time of filling of the hydrogen A method for filling hydrogen into a hydrogen storage container, characterized in that 前記充填完了の予測時間の算出は、充填完了時に示す前記物理量に基づいて前記近似式から求めることを特徴とする請求項1記載の水素貯蔵容器への水素充填方法。   2. The method of filling hydrogen into a hydrogen storage container according to claim 1, wherein the calculation of the estimated time for filling completion is obtained from the approximate expression based on the physical quantity indicated when filling is completed. 前記測定中に、前記近似式を前記物理量の変化に基づいて適時修正をし、修正された近似式に基づいて再度、前記水素の充填完了までの予測時間を算出することを特徴とする請求項1または2に記載の水素貯蔵容器への水素充填方法。   During the measurement, the approximate expression is corrected in a timely manner based on the change in the physical quantity, and an estimated time until completion of the hydrogen filling is calculated again based on the corrected approximate expression. 3. A method for filling hydrogen into a hydrogen storage container according to 1 or 2. 前記物理量が充填水素流量、水素圧力、水素貯蔵容器重量、水素貯蔵容器温度、冷却媒体温度、水素貯蔵容器表面歪み、供給側水素残量のいずれかであることを特徴とする請求項1〜3のいずれかに記載の水素貯蔵容器への水素充填方法。   The physical quantity is any one of a filling hydrogen flow rate, a hydrogen pressure, a hydrogen storage container weight, a hydrogen storage container temperature, a cooling medium temperature, a hydrogen storage container surface distortion, and a supply-side hydrogen remaining amount. The method for filling hydrogen into the hydrogen storage container according to any one of the above. 算出された前記充填完了時間が異常であるか否かの判定を行うことを特徴とする請求項1〜4のいずれかに記載の水素貯蔵容器への水素充填方法。   The method for filling hydrogen into a hydrogen storage container according to any one of claims 1 to 4, wherein it is determined whether or not the calculated filling completion time is abnormal. 算出された前記充填完了時間が異常であると判定される場合に、異常時制御を行うことを特徴とする請求項5記載の水素貯蔵容器への水素充填方法。   6. The method of filling hydrogen into a hydrogen storage container according to claim 5, wherein when the calculated completion time of filling is determined to be abnormal, control at the time of abnormality is performed. 前記異常時制御が、異常を知らせる通知であることを特徴とする請求項6記載の水素貯蔵容器への水素充填方法。   The method for filling hydrogen into a hydrogen storage container according to claim 6, wherein the control at the time of abnormality is notification notifying abnormality. 前記異常時制御が、水素の充填処理を自動的に停止するものであることを特徴とする請求項6または7に記載の水素貯蔵容器への水素充填方法。   The method for filling hydrogen into a hydrogen storage container according to claim 6 or 7, wherein the abnormality control automatically stops the hydrogen filling process. 水素貯蔵容器への水素充填に際し該水素の充填進行に従って変化をする所定の物理量を所定時間毎に測定する測定手段と、該測定手段により得られる前記物理量の時間変化を近似式にフィッティングさせる近似式算出手段と、前記近似式に基づいて充填完了までの残り時間を算出する残り時間算出手段とを備えることを特徴する水素充填監視装置。   Measuring means for measuring a predetermined physical quantity that changes according to the progress of filling of hydrogen into the hydrogen storage container every predetermined time, and an approximate expression for fitting the time change of the physical quantity obtained by the measuring means to an approximate expression A hydrogen filling monitoring apparatus comprising: a calculating means; and a remaining time calculating means for calculating a remaining time until completion of filling based on the approximate expression. 前記残り時間算出手段で算出された残り時間を通知する通知手段を備えることを特徴とする請求項9記載の水素充填監視装置。   The hydrogen filling monitoring apparatus according to claim 9, further comprising a notification unit that notifies the remaining time calculated by the remaining time calculation unit. 前記残り時間算出手段で算出された残り時間が異常であるか否かを判定する残り時間異常判定手段を備えることを特徴とする請求項9または10に記載の水素充填監視装置。   11. The hydrogen filling monitoring apparatus according to claim 9, further comprising: a remaining time abnormality determining unit that determines whether or not the remaining time calculated by the remaining time calculating unit is abnormal. 前記異常判定手段によって異常判定がなされたときに、異常時動作を行わせる異常時制御手段を備えることを特徴とする請求項9〜11のいずれかに記載の水素充填監視装置。   The hydrogen filling monitoring device according to any one of claims 9 to 11, further comprising an abnormality control unit that performs an abnormality operation when an abnormality determination is made by the abnormality determination unit. 前記異常時動作が、異常であることを通知する動作であることを特徴とする請求項12記載の水素充填監視装置。   The hydrogen filling monitoring apparatus according to claim 12, wherein the operation at the time of abnormality is an operation of notifying that the operation is abnormal. 前記異常時動作が、水素充填処理を自動停止させる動作であることを特徴とする請求項12または13記載の水素充填監視装置。   The hydrogen filling monitoring device according to claim 12 or 13, wherein the abnormal operation is an operation of automatically stopping the hydrogen filling process.
JP2005329634A 2005-11-15 2005-11-15 Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container Active JP4753244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329634A JP4753244B2 (en) 2005-11-15 2005-11-15 Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329634A JP4753244B2 (en) 2005-11-15 2005-11-15 Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container

Publications (2)

Publication Number Publication Date
JP2007138973A true JP2007138973A (en) 2007-06-07
JP4753244B2 JP4753244B2 (en) 2011-08-24

Family

ID=38202112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329634A Active JP4753244B2 (en) 2005-11-15 2005-11-15 Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container

Country Status (1)

Country Link
JP (1) JP4753244B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286015A (en) * 2009-06-09 2010-12-24 Honda Motor Co Ltd Hydrogen filling apparatus and method for filling hydrogen
WO2011092560A1 (en) 2010-01-28 2011-08-04 Toyota Jidosha Kabushiki Kaisha Gas station, gas filling system and gas filling method
JP2014231890A (en) * 2013-05-30 2014-12-11 大陽日酸株式会社 Low temperature liquefied gas filling device
US20150184804A1 (en) * 2013-12-26 2015-07-02 Honda Motor Co., Ltd. Control method for fuel filling system
JP2016052972A (en) * 2014-09-04 2016-04-14 トナミ運輸株式会社 Hydrogen generation amount control system
JP2020008041A (en) * 2018-07-04 2020-01-16 株式会社日本製鋼所 Hydrogen charging method and hydrogen charging completion timing determination device
WO2023080689A1 (en) * 2021-11-03 2023-05-11 현대자동차주식회사 Hydrogen fueling system, method, and apparatus based on model prediction control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103987A (en) * 1992-08-10 1994-04-15 Sanyo Electric Co Ltd Hydrogen filling method and hydrogen filling device
JPH0785883A (en) * 1993-09-10 1995-03-31 Toyota Motor Corp Abnormality detecting device and control device for abnormal time
JP2002115796A (en) * 2000-10-05 2002-04-19 Nippon Sanso Corp Method of filling high pressure gas
JP2002220097A (en) * 2001-01-24 2002-08-06 Mitsubishi Electric Corp Guidance system and acceleration detection device for spacecraft
JP2003011799A (en) * 2001-06-28 2003-01-15 Tokico Ltd Compressed gas charging device and method
JP2003187837A (en) * 2001-10-02 2003-07-04 Sony Corp Joint for fuel fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103987A (en) * 1992-08-10 1994-04-15 Sanyo Electric Co Ltd Hydrogen filling method and hydrogen filling device
JPH0785883A (en) * 1993-09-10 1995-03-31 Toyota Motor Corp Abnormality detecting device and control device for abnormal time
JP2002115796A (en) * 2000-10-05 2002-04-19 Nippon Sanso Corp Method of filling high pressure gas
JP2002220097A (en) * 2001-01-24 2002-08-06 Mitsubishi Electric Corp Guidance system and acceleration detection device for spacecraft
JP2003011799A (en) * 2001-06-28 2003-01-15 Tokico Ltd Compressed gas charging device and method
JP2003187837A (en) * 2001-10-02 2003-07-04 Sony Corp Joint for fuel fluid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286015A (en) * 2009-06-09 2010-12-24 Honda Motor Co Ltd Hydrogen filling apparatus and method for filling hydrogen
US8757223B2 (en) 2009-06-09 2014-06-24 Honda Motor Co., Ltd. Hydrogen filling apparatus and hydrogen filling method
WO2011092560A1 (en) 2010-01-28 2011-08-04 Toyota Jidosha Kabushiki Kaisha Gas station, gas filling system and gas filling method
JP2014231890A (en) * 2013-05-30 2014-12-11 大陽日酸株式会社 Low temperature liquefied gas filling device
US20150184804A1 (en) * 2013-12-26 2015-07-02 Honda Motor Co., Ltd. Control method for fuel filling system
US10295121B2 (en) * 2013-12-26 2019-05-21 Honda Motor Co. Ltd. Control method for fuel filling system
JP2016052972A (en) * 2014-09-04 2016-04-14 トナミ運輸株式会社 Hydrogen generation amount control system
JP2020008041A (en) * 2018-07-04 2020-01-16 株式会社日本製鋼所 Hydrogen charging method and hydrogen charging completion timing determination device
JP7145662B2 (en) 2018-07-04 2022-10-03 日本製鋼所M&E株式会社 Hydrogen filling method and hydrogen filling completion time determination device
WO2023080689A1 (en) * 2021-11-03 2023-05-11 현대자동차주식회사 Hydrogen fueling system, method, and apparatus based on model prediction control

Also Published As

Publication number Publication date
JP4753244B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
RU2469278C2 (en) Method and device for monitoring level of liquid in reservoir
CN111006741B (en) Oil level abnormity detection method and system for oil-immersed transformer body
KR20120087129A (en) Method for the operation and control of gas filling
JP6882344B2 (en) Series cycle fuse
JP6529401B2 (en) Apparatus, method and program for detecting gas leakage of radioactive substance sealed container
JP2013108810A (en) Reactor water level measurement system
US20190277537A1 (en) Estimation of temperature states for an electric water heater from inferred resistance measurement
JP2006272291A (en) Temperature controller
CN102017030A (en) Method and device for determining the relative humidity of an insulating liquid filled electric apparatus
NO343813B1 (en) Device and method for monitoring of annulus volume in a pipe
JP2006308580A (en) Method for measuring remaining quantity of nitrogen in nitrogen container
CN114012067B (en) Remote temperature control method and system based on mold temperature controller
US10429828B2 (en) Plant simulation device and plant simulation method with first parameter adjustable at start and second parameter adjustable during operation of the plant
JP6005334B2 (en) Material gas control system
JP2023104991A (en) Cryogenic surgical systems
US20180328290A1 (en) Turbine analysis device, turbine analysis method, and program
CN216410454U (en) Gas production rate measuring device of reaction calorimeter
KR20120032890A (en) Method for predicting boil-off gas production
JP5615105B2 (en) Performance evaluation method for heat insulation container and refrigerant, performance evaluation apparatus using this performance evaluation method, program for performance evaluation apparatus, and recording medium recording the program
JP2006222417A (en) System and method for monitoring superconductive magnet device and mri device
JP6434889B2 (en) Method for detecting leakage of heat storage material in heat storage tank and heat storage tank
JP5815100B2 (en) Reactor water level measurement system
JP7145662B2 (en) Hydrogen filling method and hydrogen filling completion time determination device
JP2018179917A (en) Reactor container monitoring system, abnormality detection method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250