JP2020008041A - Hydrogen charging method and hydrogen charging completion timing determination device - Google Patents

Hydrogen charging method and hydrogen charging completion timing determination device Download PDF

Info

Publication number
JP2020008041A
JP2020008041A JP2018127588A JP2018127588A JP2020008041A JP 2020008041 A JP2020008041 A JP 2020008041A JP 2018127588 A JP2018127588 A JP 2018127588A JP 2018127588 A JP2018127588 A JP 2018127588A JP 2020008041 A JP2020008041 A JP 2020008041A
Authority
JP
Japan
Prior art keywords
hydrogen
filling
flow rate
storage alloy
hydrogen filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018127588A
Other languages
Japanese (ja)
Other versions
JP7145662B2 (en
Inventor
知正 小田
Tomomasa Oda
知正 小田
僚太 佐藤
Ryota Sato
僚太 佐藤
芳徳 河原崎
Yoshinori Kawarasaki
芳徳 河原崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2018127588A priority Critical patent/JP7145662B2/en
Publication of JP2020008041A publication Critical patent/JP2020008041A/en
Application granted granted Critical
Publication of JP7145662B2 publication Critical patent/JP7145662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

To precisely complete charging of hydrogen.SOLUTION: When carrying out hydrogen charging from a hydrogen supply source to one or more hydrogen storage alloy containers, a timing of completing the hydrogen charging in the hydrogen storage alloy container in question is determined on the basis of variation of a predetermined physical quantity according to the hydrogen charging, as for the timing of completion, the completion timing or remaining time to the completion is determined.SELECTED DRAWING: Figure 1

Description

この発明は、水素吸蔵合金容器に対し水素充填を行う際の水素充填方法および水素充填完了時期判断装置に関するものである。   The present invention relates to a hydrogen filling method and a hydrogen filling completion timing judging device when filling a hydrogen storage alloy container with hydrogen.

水素吸蔵合金を収容したキャニスタやタンクなどの水素貯蔵容器では、水素を充填して繰り返し使用がなされている。この水素貯蔵容器に対する水素充填では、水素の充填完了時期を適切に判断したいという要請がある。
例えば、特許文献1では、水素吸蔵合金容器の温度を一定に保つように水素流量を調整し、水素吸蔵合金のPCT特性に基づいた満充填圧力に達すると水素充填を完了する装置が提案されている。
また、特許文献2では、水素の充填進行に従って変化をする水素貯蔵容器温度、冷却媒体温度、水素貯蔵容器表面歪みのいずれかを所定の物理量として所定時間毎に測定し、前記物理量の時間変化を近似式にフィッティングして、前記水素の充填完了の予測時間を算出する水素充填方法が提案されている。
A hydrogen storage container such as a canister or a tank containing a hydrogen storage alloy is filled with hydrogen and used repeatedly. In the hydrogen filling of the hydrogen storage container, there is a demand to appropriately judge the completion time of the hydrogen filling.
For example, Patent Literature 1 proposes a device that adjusts a hydrogen flow rate so as to keep the temperature of a hydrogen storage alloy container constant, and completes hydrogen charging when a full storage pressure based on the PCT characteristics of the hydrogen storage alloy is reached. I have.
Further, in Patent Document 2, any one of a hydrogen storage container temperature, a cooling medium temperature, and a hydrogen storage container surface distortion, which change with the progress of filling of hydrogen, is measured as a predetermined physical quantity at predetermined time intervals, and a time change of the physical quantity is measured. There has been proposed a hydrogen filling method in which the estimated filling time of the hydrogen is calculated by fitting to an approximate expression.

特開平8−128597号公報JP-A-8-128597 特許第4753244号公報Japanese Patent No. 4753244

しかし、特許文献1で提案されている水素充填手法では、水素残量が毎回異なる水素貯蔵容器へ水素を充填する場合、充填装置に接続された貯蔵容器の圧力、温度あるいは水素流量を定期的にチェックして充填が完了しているか否かを判断する必要があり、複数の容器を連続して水素充填する際、効率的な充填作業が難しい。また、水素充填がいつ完了するか分からず、充填の間、ユーザを拘束するという問題点がある。さらに、充填完了をある程度正確に知ることができるが、水素貯蔵容器の温度が一定となるように水素流量を随時調整しているため、水素流量を調整しない場合に比べて充填時間が長くなり、装置コストも高くなるという問題点もある。   However, in the hydrogen filling method proposed in Patent Document 1, when hydrogen is charged into a hydrogen storage container having a different remaining amount of hydrogen each time, the pressure, temperature, or hydrogen flow rate of the storage container connected to the filling device is periodically changed. It is necessary to check to determine whether or not the filling is completed, and it is difficult to perform an efficient filling operation when filling a plurality of containers continuously with hydrogen. Further, there is a problem in that it is not known when the hydrogen filling is completed, and the user is restrained during the filling. Furthermore, although the completion of the filling can be known to a certain degree of accuracy, since the hydrogen flow rate is adjusted as needed so that the temperature of the hydrogen storage container becomes constant, the filling time becomes longer than when the hydrogen flow rate is not adjusted, There is also a problem that the equipment cost is increased.

特許文献2で提案されている水素充填手法では、所定時間毎に測定し、物理量の時間変化を近似式にフィッティングするという方法は、処理装置の計算負荷が大きく、PLCのような一般的なデータ記録・処理装置では、実施できないという問題点がある。   In the hydrogen filling method proposed in Patent Literature 2, a method of measuring at predetermined time intervals and fitting a temporal change of a physical quantity to an approximate expression requires a large computational load on a processing device and general data such as PLC. The recording / processing device has a problem that it cannot be implemented.

本発明は、上記課題を解決するために、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を的確に判断することができる水素充填方法および水素充填完了時期判断装置を提供することを目的としている。   In order to solve the above-described problems, the present invention provides a hydrogen storage device that can accurately determine when hydrogen filling is completed in a target hydrogen storage alloy container based on a change in a predetermined physical quantity according to hydrogen filling. It is an object of the present invention to provide a filling method and a hydrogen filling completion timing determination device.

すなわち、本発明の水素充填方法のうち、第1の形態は、水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する。   That is, in the hydrogen filling method of the present invention, the first embodiment is characterized in that when hydrogen is charged from a hydrogen supply source to one or a plurality of hydrogen storage alloy containers, a change in a predetermined physical quantity according to the hydrogen charging is performed. Based on this, it is determined when hydrogen filling is completed in the hydrogen storage alloy container of interest.

他の形態の水素充填方法の発明は、前記形態の発明において、水素充填が完了する前記時期は、水素充填が完了する時点を示している。   According to another aspect of the invention of the hydrogen filling method, in the above aspect of the invention, the time when the hydrogen filling is completed indicates a time point when the hydrogen filling is completed.

他の形態の水素充填方法の発明は、前記形態の発明において、予め所定の前記物理量から充填完了となる完了規定水素流量を定めておき、現在の水素流量が前記完了規定水素流量以下になると、水素充填が完了したと判断する。   Another aspect of the invention of the hydrogen filling method is that, in the invention of the above aspect, a completion regulation hydrogen flow rate at which filling is completed from the predetermined physical quantity is determined in advance, and when a current hydrogen flow rate is equal to or less than the completion regulation hydrogen flow rate, It is determined that hydrogen filling has been completed.

他の形態の水素充填方法の発明は、前記形態の発明において、水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示している。   According to another aspect of the invention of the hydrogen filling method, in the above aspect of the invention, the timing at which the hydrogen filling is completed indicates a remaining time until the hydrogen filling is completed.

他の形態の水素充填方法の発明は、前記形態の発明において、前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間を算出する算出手順を有する。   Another aspect of the invention of the hydrogen filling method is the invention of the above aspect, wherein a difference between the hydrogen filling amount at the time of completion of filling in the hydrogen storage alloy container and a current hydrogen filling amount is obtained, and this difference is calculated by a current hydrogen flow rate. And calculating a remaining time until hydrogen filling is completed.

他の形態の水素充填方法の発明は、前記形態の発明において、前記算出手順は、現在の水素流量が制御水素流量以上である場合に、前記算出手順を行う。   In another aspect of the invention of a hydrogen filling method according to the aspect of the invention, in the calculation procedure, the calculation procedure is performed when a current hydrogen flow rate is equal to or higher than a control hydrogen flow rate.

他の形態の水素充填方法の発明は、前記形態の発明において、現在の水素流量が制御水素水素流量以上である場合に、水素流量を制御水量に制御して前記水素吸蔵合金に供給する。   According to another aspect of the invention, there is provided a hydrogen filling method in which, when the current hydrogen flow rate is equal to or higher than a control hydrogen hydrogen flow rate, the hydrogen flow rate is controlled to a control water amount and supplied to the hydrogen storage alloy.

他の形態の水素充填方法の発明は、前記形態の発明において、前記所定の物理量によって、水素充填完了時点を決定し、水素充填完了時点と水素流量のデータを取得するデータ収集間隔との差分によって水素充填が完了するまでの残り時間を算出する。   Another aspect of the invention of the hydrogen filling method is the invention of the above aspect, wherein the hydrogen filling completion time is determined by the predetermined physical quantity, and a difference between the hydrogen filling completion time and a data collection interval for acquiring hydrogen flow rate data is obtained. The remaining time until hydrogen filling is completed is calculated.

他の形態の水素充填方法の発明は、前記形態の発明において、現在の水素流量が制御水素流量未満である場合に、前記残り時間を算出する。   In another aspect of the invention, there is provided a hydrogen filling method according to the above aspect, wherein the remaining time is calculated when the current hydrogen flow rate is less than the control hydrogen flow rate.

他の形態の水素充填方法の発明は、前記形態の発明において、所定の前記物理量が、水素吸蔵合金容器の充填圧力、水素吸蔵合金容器に供給する冷却媒体の温度および水素吸蔵合金容器の個数の一つ以上である。   According to another aspect of the invention, there is provided a hydrogen filling method according to the above aspect, wherein the predetermined physical quantity includes a filling pressure of a hydrogen storage alloy container, a temperature of a cooling medium supplied to the hydrogen storage alloy container, and a number of hydrogen storage alloy containers. One or more.

本発明の水素充填完了時期判断装置のうち、第1の形態は、水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備える。
Among the hydrogen filling completion timing determination devices of the present invention, a first mode is a flow rate measuring device that measures the flow rate of hydrogen supplied from a hydrogen supply source to one or more hydrogen storage alloy containers,
A temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy,
A pressure gauge for measuring hydrogen filling pressure in the hydrogen storage alloy,
The flow rate measuring device, the temperature measuring device, and a control unit that receives a measurement result of the pressure gauge and determines a time at which hydrogen filling of the target hydrogen storage alloy container is completed with hydrogen.

他の形態の水素充填完了時期判断装置の発明は、前記形態の発明において、前記水素流量を所定の制御水素流量に設定する流量制御弁を有する。   Another aspect of the invention of a hydrogen filling completion timing determining apparatus according to the invention of the above aspect further includes a flow control valve for setting the hydrogen flow rate to a predetermined control hydrogen flow rate.

他の形態の水素充填完了時期判断装置の発明は、前記形態の発明において、前記制御部は、水素充填完了時点または水素充填完了残り時間を算出する。   According to another aspect of the invention of the hydrogen filling completion timing determining apparatus, in the invention of the above aspect, the control unit calculates a hydrogen filling completion time or a hydrogen filling completion remaining time.

本発明の水素貯蔵容器への水素充填方法によれば、水素の充填に際し変化する物理量として、水素流量、水素吸蔵合金容器の充填時の圧力、水素吸蔵合金容器に対する冷却媒体の温度、水素吸蔵合金容器の個数などの一つ以上の物理量を求めることができる。
上記物理量は、予め求めておく他、水素の充填時に測定するものであってもよい。
According to the method for filling hydrogen into a hydrogen storage container of the present invention, the physical quantities that change upon filling with hydrogen include a hydrogen flow rate, a pressure at the time of filling the hydrogen storage alloy container, a temperature of a cooling medium for the hydrogen storage alloy container, and a hydrogen storage alloy. One or more physical quantities, such as the number of containers, can be determined.
The physical quantity may be determined beforehand or measured at the time of filling with hydrogen.

予め求めておく場合、上記物理量の測定によって、水素充填が完了すると考えられる時点での水素流量を規定水素流量に定めておき、水素の充填時に水素充填を完了すると判断するタイミングを知ることができる。なお、規定水素流量を定める際に、水素充填が完了していると判断する基準としては、水素吸蔵合金のPCT線図から求められる水素移動量と合金充填量の積から算出する方法などが考えられる。但し、本発明としては、この基準に限定されるものではなく、適宜の基準において規定水素流量を設定することができる。   In the case where the hydrogen filling is previously determined, the hydrogen flow at the time when the hydrogen filling is considered to be completed can be set to the specified hydrogen flow by measuring the physical quantity, and the timing for determining that the hydrogen filling is completed at the time of filling with hydrogen can be known. . When determining the prescribed hydrogen flow rate, as a criterion for determining that hydrogen filling is completed, a method of calculating from the product of the hydrogen transfer amount and the alloy filling amount obtained from the PCT diagram of the hydrogen storage alloy is considered. Can be However, the present invention is not limited to this standard, and the specified hydrogen flow rate can be set based on an appropriate standard.

また、水素充填の際に物理量を測定するものとすることができる。この際には、冷却媒体の温度や、水素吸蔵合金容器の圧力、水素吸蔵合金容器の個数などによって、水素充填完了時間を予測することができる。この完了時間を用いて、水素充填完了となるまでの残り時間を知ることができる。   Further, a physical quantity can be measured at the time of filling with hydrogen. At this time, the hydrogen filling completion time can be predicted based on the temperature of the cooling medium, the pressure of the hydrogen storage alloy container, the number of hydrogen storage alloy containers, and the like. Using this completion time, the remaining time until hydrogen filling is completed can be known.

(水素流量)
充填初期は充填圧力に比べて容器内部圧力が低いため、差圧により大量の水素が流れ、その後、差圧が小さくなるにつれて水素流量が小さくなり、水素充填完了となる。
水素流量は、流量計などにより測定することができる。
(Hydrogen flow rate)
Since the internal pressure of the container is lower than the filling pressure in the initial stage of filling, a large amount of hydrogen flows due to the differential pressure. Thereafter, as the differential pressure decreases, the hydrogen flow rate decreases, and the hydrogen filling is completed.
The hydrogen flow rate can be measured by a flow meter or the like.

(水素圧力)
水素貯蔵容器内圧力の充填に伴う経時変化を同じく図2に示す。充填開始直後から、容器内圧力は充填圧力とほぼ同じ値になるまで急激に上昇する。これは、水素貯蔵材料の水素吸収速度が低く、水素供給過剰となるので、充填圧力と容器内圧力との間に圧力差がほとんど発生しないためである。なお、水素圧力は、例えば圧力計などにより測定することができる。
(Hydrogen pressure)
FIG. 2 also shows a temporal change with the filling of the pressure in the hydrogen storage container. Immediately after the start of filling, the pressure in the container rises rapidly until it becomes almost the same value as the filling pressure. This is because the hydrogen storage material has a low hydrogen absorption rate and an excessive supply of hydrogen, so that there is almost no pressure difference between the filling pressure and the pressure in the container. The hydrogen pressure can be measured by, for example, a pressure gauge.

(冷媒温度)
水素の充填時に、水素吸蔵合金容器内の水素吸蔵合金を冷却して水素充填を促進するために、冷媒が用いられる。水素吸蔵合金の水素吸収平衡圧力は温度とともに上昇するので、平衡圧力が充填水素圧力とバランスする温度となったら水素吸収が停止し、温度もそれ以上上昇しなくなる。一方、容器表面などから冷媒によって水素吸蔵合金の熱が奪われると、水素吸収平衡圧力の上昇は抑えられて、水素の充填が行われる。充填が完了すると、容器温度は冷却媒体温度で一定となる。冷媒の温度は、温度計などにより測定することができる。
(Refrigerant temperature)
When filling with hydrogen, a refrigerant is used to cool the hydrogen storage alloy in the hydrogen storage alloy container to promote hydrogen filling. Since the hydrogen absorption equilibrium pressure of the hydrogen storage alloy increases with temperature, when the equilibrium pressure reaches a temperature that balances with the charged hydrogen pressure, hydrogen absorption stops, and the temperature does not further rise. On the other hand, when the heat of the hydrogen storage alloy is deprived by the refrigerant from the surface of the container or the like, the increase in the hydrogen absorption equilibrium pressure is suppressed, and hydrogen is filled. When the filling is completed, the container temperature becomes constant at the cooling medium temperature. The temperature of the refrigerant can be measured by a thermometer or the like.

上記物理量の他に、水素の充填進行に従って変化をする物理量であれば、上記以外でも測定の対象とすることができる。上記物理量は、既知の測定装置などの測定手段を用いて測定できるものであればよく、本発明としては、特に測定手段の構成が限定されるものではない。   In addition to the above physical quantities, any physical quantity that changes with the progress of hydrogen filling can be used as a measurement target in addition to the above. The physical quantity may be anything that can be measured using a known measuring device such as a measuring device, and the present invention is not particularly limited in the configuration of the measuring device.

物理量データは、予め測定する場合や、実際に水素充填作業を行う際に、経過時間データとともにプログラマブルコンピュータなどに記録することができる。該記憶は、RAMやフラッシュメモリ、HDDなどの随時書込み読出しが可能な記憶手段に対し行うことができ、水素充填完了時期を判断することができる。すなわち、水素充填完了時点を判断したり、水素充填完了に至るまでの残り時間の判断を行ったりすることができる。
水素充填完了時点を把握することにより、水素充填を終了することができ、終了においては、手動での停止や制御部により自動停止などを行うことができる。的確な時期での水素充填終了により水素充填作業を安全に行うことができる。
The physical quantity data can be recorded in a programmable computer or the like together with the elapsed time data when measuring in advance or when actually performing a hydrogen filling operation. The storage can be performed in a storage device such as a RAM, a flash memory, and an HDD that can be written and read at any time, and it is possible to determine when hydrogen filling is completed. That is, it is possible to determine the point of time when the hydrogen filling is completed or to determine the remaining time until the hydrogen filling is completed.
By knowing the completion point of hydrogen filling, hydrogen filling can be terminated, and at the end, manual stop or automatic stop by the control unit can be performed. The hydrogen filling operation can be safely performed by completing the hydrogen filling at an appropriate time.

また、水素充填完了までの残り時間が判明すると、水素充填完了に備えることができ、的確な時期に充填終了処理を行うことができる。残り時間は、表示部に表示したり、ネットワークを介して端末などの報知したりすることで、充填完了に備えることができる。   Further, when the remaining time until the completion of the hydrogen filling is known, preparation for the completion of the hydrogen filling can be made, and the filling completion processing can be performed at an appropriate time. The remaining time can be displayed on the display unit or notified by a terminal or the like via a network to prepare for the completion of filling.

本発明によれば、水素充填の完了時期を正確に把握することができ、所望により水素充填を自動で行ったり、充填の残り時間を把握したりすることができ、充填の間、ユーザを拘束することもなく、時間を有効に使うことができる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the completion time of hydrogen filling can be accurately grasped, hydrogen filling can be performed automatically if desired, and the remaining time of filling can be grasped. There is an effect that time can be used effectively without doing.

本発明の一実施形態の水素充填方法を実施し、同じく一実施形態の水素充填完了時期判断装置を備える水素充填装置の概略を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which performs the hydrogen filling method of one Embodiment of this invention, and shows the outline of the hydrogen filling apparatus provided with the hydrogen filling completion time determination apparatus of one Embodiment similarly. 水素充填に際し、充填の経過とともに変化する水素充填量、水素流量、水素充填圧力、冷媒温度を表したグラフである。FIG. 4 is a graph showing a hydrogen filling amount, a hydrogen flow rate, a hydrogen filling pressure, and a refrigerant temperature that change with the progress of hydrogen filling. 冷媒温度に基づく、規定水素流量と水素充填圧力の関係を示すグラフである。4 is a graph showing a relationship between a specified hydrogen flow rate and a hydrogen charging pressure based on a refrigerant temperature. 冷媒温度に基づく、水素充填完了時間と水素充填圧力の関係を示すグラフである。4 is a graph showing a relationship between a hydrogen filling completion time and a hydrogen filling pressure based on a refrigerant temperature. 水素充填完了の残り時間を求める手順の例を示すフローチャートである。5 is a flowchart illustrating an example of a procedure for obtaining a remaining time of hydrogen filling completion. 実施例における充填の経過とともに変化する水素充填量、水素流量、水素充填圧力を表したグラフである。5 is a graph showing a hydrogen filling amount, a hydrogen flow rate, and a hydrogen filling pressure that change with the progress of filling in an example. 実施例における、冷媒温度に基づく、規定水素流量と水素充填圧力の関係を示すグラフである。5 is a graph showing a relationship between a specified hydrogen flow rate and a hydrogen charging pressure based on a refrigerant temperature in the example. 実施例における、規定水素流量と燃料ケースの台数との関係を示すグラフである。5 is a graph showing a relationship between a specified hydrogen flow rate and the number of fuel cases in the example. 実施例における、充填残り時間と水素充填圧力との関係を示すグラフである。4 is a graph illustrating a relationship between a remaining time of filling and a hydrogen filling pressure in the example. 実施例における、水素充填量と水素流量の経時変化を示すグラフと、予測時の充填残り時間と実測での充填残り時間を比較した結果を示すグラフである。5 is a graph showing a change over time in the hydrogen filling amount and the hydrogen flow rate in the example, and a graph showing a result of comparison between the remaining time at the time of prediction and the remaining time of the actual measurement.

以下に、本発明の一実施形態を添付図面に基づいて説明する。
図1に示される水素充填装置100は、水素供給源である水素ボンベ1と水素供給路1Aと複数個の水素吸蔵合金容器12を有する複数の燃料ケース11とを備えており、水素ボンベ1に一端を接続した水素供給路1Aの他端に複数個の水素吸蔵合金容器12が並列に接続されている。水素吸蔵合金容器12は、それぞれキャニスタまたはタンクにより構成されている。水素吸蔵合金容器12の内部には、図示しない水素吸蔵合金が収容されている。
An embodiment of the present invention will be described below with reference to the accompanying drawings.
The hydrogen filling apparatus 100 shown in FIG. 1 includes a hydrogen cylinder 1 as a hydrogen supply source, a hydrogen supply path 1A, and a plurality of fuel cases 11 having a plurality of hydrogen storage alloy containers 12. A plurality of hydrogen storage alloy containers 12 are connected in parallel to the other end of the hydrogen supply path 1A to which one end is connected. The hydrogen storage alloy container 12 is constituted by a canister or a tank, respectively. A hydrogen storage alloy (not shown) is accommodated inside the hydrogen storage alloy container 12.

燃料ケース11では、冷媒流路13が接続されており、冷媒流路13は、水素吸蔵合金容器12側に導入された冷媒が水素吸蔵合金容器12内の水素吸蔵合金を冷却し、その後排出された後、再度水素吸蔵合金容器12側に導入されるように循環配置されている。
冷媒流路排出側では、冷媒流路13内の冷媒の温度を測定する温度計8が設けられ、さらに、冷媒を冷却する冷却器9、冷媒流量計10が介設されている。
なお、水素吸蔵合金容器12を冷却する方法では、容器の外部から冷却する外部冷却式でも、内部冷却式のいずれであってもよく、本発明としては水素吸蔵合金容器の構造が特に限定されるものではない。
In the fuel case 11, a refrigerant flow path 13 is connected. In the refrigerant flow path 13, the refrigerant introduced into the hydrogen storage alloy container 12 cools the hydrogen storage alloy in the hydrogen storage alloy container 12 and is then discharged. After that, it is circulated so as to be introduced again into the hydrogen storage alloy container 12 side.
On the refrigerant flow passage discharge side, a thermometer 8 for measuring the temperature of the refrigerant in the refrigerant flow passage 13 is provided, and further, a cooler 9 for cooling the refrigerant and a refrigerant flow meter 10 are interposed.
The method of cooling the hydrogen storage alloy container 12 may be either an external cooling type in which the container is cooled from the outside or an internal cooling type, and the structure of the hydrogen storage alloy container is particularly limited as the present invention. Not something.

水素供給路1Aでは、水素ボンベ1と、水素吸蔵合金容器12との間で、水素ボンベ1側から水素吸蔵合金容器12に向けて、手動弁2、圧力調整弁3、電磁開閉弁4、水素流量計5、電磁開閉弁6、圧力トランスミッタ7が、この順で介設されている。
電磁開閉弁4および電磁開閉弁6は、制御部110に制御可能に接続されており、開閉動作が制御される。さらに水素流量計5および圧力トランスミッタ7の測定値は制御部110に送信可能とされている。
また、前記温度計8の測定値は、前記制御部110に送信可能とされている。
In the hydrogen supply path 1A, between the hydrogen cylinder 1 and the hydrogen storage alloy container 12, the manual valve 2, the pressure regulating valve 3, the electromagnetic on-off valve 4, the hydrogen The flow meter 5, the solenoid on-off valve 6, and the pressure transmitter 7 are interposed in this order.
The electromagnetic on-off valve 4 and the electromagnetic on-off valve 6 are controllably connected to the control unit 110 and open / close operation is controlled. Further, the measured values of the hydrogen flow meter 5 and the pressure transmitter 7 can be transmitted to the control unit 110.
Further, the measurement value of the thermometer 8 can be transmitted to the control unit 110.

制御部110は、PLC(Programmable logic controller)などにより構成されている。また、制御部110では、さらに、経過時間を測定するタイマや、データの記憶、読出しを行う、フラッシュメモリ、HDDなどの記憶部(いずれも図示していない)を有している。   The control unit 110 is configured by a PLC (Programmable logic controller) or the like. The control unit 110 further includes a timer for measuring the elapsed time, and a storage unit (not shown) such as a flash memory or an HDD for storing and reading data.

制御部110は、上記した水素流量計5や圧力トランスミッタ7、温度計8で得られた物理量の測定結果を受けることができる。
これらの物理量は、実際の水素充填の前に取得して水素充填完了時期を判断するための設定値などを作成することができる。
The control unit 110 can receive the measurement results of the physical quantities obtained by the hydrogen flow meter 5, the pressure transmitter 7, and the thermometer 8 described above.
These physical quantities can be acquired before the actual hydrogen filling, and set values and the like for determining the hydrogen filling completion timing can be created.

水素の充填を行う際には、手動弁2を開き、圧力調整弁3によって、所定の圧力を設定して、電磁開閉弁4、6を開いて水素供給路1Aを通じて水素を移送する。この際の流量は水素流量計で測定されて測定結果が制御部110に送信される。また、水素吸蔵合金容器12近くの水素供給路における圧力は圧力トランスミッタ7で測定されて制御部110に送信される。水素は、水素供給路1Aから、各水素吸蔵合金容器に充填され、水素吸蔵合金に吸蔵される。この際に、冷媒流路13を通じて水素吸蔵合金容器12に冷媒が送られ、水素の吸蔵によって昇温する水素吸蔵合金を冷却して水素吸蔵を促進する。冷媒は、水素吸蔵合金容器12を冷却した後、冷媒流路13の復路において、温度計8で温度が測定されて冷却器9に送られる、温度計8の測定結果は、制御部110に送られる。
冷却器9では、冷媒を所定温度に冷却し、冷媒流路13の往路において冷媒流量計10で流量が測定されて水素吸蔵合金容器12に再度送られて水素吸蔵合金を冷却する。上記動作を繰り返して水素を充填中に水素吸蔵合金を所定温度に冷却する。
When filling with hydrogen, the manual valve 2 is opened, a predetermined pressure is set by the pressure adjusting valve 3, the electromagnetic on / off valves 4, 6 are opened, and hydrogen is transferred through the hydrogen supply path 1A. The flow rate at this time is measured by the hydrogen flow meter, and the measurement result is transmitted to the control unit 110. The pressure in the hydrogen supply passage near the hydrogen storage alloy container 12 is measured by the pressure transmitter 7 and transmitted to the control unit 110. Hydrogen is filled into each hydrogen storage alloy container from the hydrogen supply path 1A and stored in the hydrogen storage alloy. At this time, the refrigerant is sent to the hydrogen storage alloy container 12 through the refrigerant flow path 13 and cools the hydrogen storage alloy, which is heated by the storage of hydrogen, to promote hydrogen storage. After cooling the hydrogen storage alloy container 12, the temperature of the refrigerant is measured by the thermometer 8 on the return path of the refrigerant channel 13 and is sent to the cooler 9. The measurement result of the thermometer 8 is sent to the control unit 110. Can be
In the cooler 9, the refrigerant is cooled to a predetermined temperature, the flow rate is measured by the refrigerant flow meter 10 on the outward path of the refrigerant flow path 13, and sent to the hydrogen storage alloy container 12 again to cool the hydrogen storage alloy. The above operation is repeated to cool the hydrogen storage alloy to a predetermined temperature while filling with hydrogen.

水素の充填に伴う水素充填量の経時変化を図2に示す。
先に説明したように、充填初期は充填圧力に比べて容器内部圧力が低いため、差圧により大量の水素(Fpv)が流れ、流量制御をした場合においては、制御水素流量(Fsp)でt1の時間水素が充填される。その後、図2の2段目、3段目に示すように、差圧が小さくなるにつれて水素流量が小さくなり、水素流量が制御水素流量より小さくなると徐々に水素流量が減少していく。ここで、流量制御ができなくなった時点をA、充填が完了の時点をBとすると、t1がA、t2がB−Aで表される。
この際に、図2の3段目に示すように、充填初期には充填圧力が急激に上昇した後、圧力上昇は緩慢になり、充填完了時には一定になる。また、図2の4段目に示すように、冷媒温度は一定の範囲内に収まっている。
FIG. 2 shows the change over time in the amount of charged hydrogen with the filling of hydrogen.
As described above, since the pressure inside the container is lower than the filling pressure in the initial stage of filling, a large amount of hydrogen (Fpv) flows due to the differential pressure, and when the flow rate is controlled, the control hydrogen flow rate (Fsp) becomes t1. For a period of time. Thereafter, as shown in the second and third stages of FIG. 2, the hydrogen flow rate decreases as the differential pressure decreases, and the hydrogen flow rate gradually decreases when the hydrogen flow rate becomes smaller than the control hydrogen flow rate. Here, assuming that the time point at which the flow control becomes impossible is A and the time point at which the filling is completed is B, t1 is represented by A and t2 is represented by BA.
At this time, as shown in the third stage of FIG. 2, the filling pressure rapidly increases in the initial stage of the filling, then the pressure rise becomes slow, and becomes constant when the filling is completed. Further, as shown in the fourth stage of FIG. 2, the refrigerant temperature is within a certain range.

なお、図中のQは、水素充填量、Qpvは、現在の水素充填量、Qpreは、定格水素充填量を示しており、
Fは、水素流量、Fpvは現在の水素流量、Fpreは規定水素流量、Fspは制御水素流量、
Pは、水素充填圧力、Tは、冷媒入口温度を示している。
In addition, Q in the figure indicates the hydrogen filling amount, Qpv indicates the current hydrogen filling amount, and Qpre indicates the rated hydrogen filling amount.
F is the hydrogen flow rate, Fpv is the current hydrogen flow rate, Fpre is the specified hydrogen flow rate, Fsp is the control hydrogen flow rate,
P indicates the hydrogen filling pressure, and T indicates the refrigerant inlet temperature.

本実施形態の実施に際しては、予め所定の容器において、水素充填に関わるパラメータである冷媒入口温度(T)、水素充填圧力(P)、水素流量(F)、水素充填量(Q、水素流量の積算値)の経時変化を計測し、水素充填量が定格水素充填量(Qpre)に到達した時の各パラメータの値を算出する。次に、図3のように冷媒温度ごとに水素充填圧力と規定水素流量(Fpre)の関係をまとめる。試験の結果、両者の関係は一次関数で近似できることを確認している。この一次式を実際の水素充填装置の制御部にインプットさせ、自動で水素充填を行い、水素流量(F)が規定水素流量を下回ったら、水素充填を完了とする仕組みとすることができる。   In carrying out the present embodiment, in a predetermined container, parameters related to hydrogen filling, a refrigerant inlet temperature (T), a hydrogen filling pressure (P), a hydrogen flow rate (F), a hydrogen filling quantity (Q, a hydrogen flow rate The change with time of the integrated value is measured, and the value of each parameter when the hydrogen filling amount reaches the rated hydrogen filling amount (Qpre) is calculated. Next, as shown in FIG. 3, the relationship between the hydrogen filling pressure and the specified hydrogen flow rate (Fpre) is summarized for each refrigerant temperature. As a result of the test, it has been confirmed that the relationship between the two can be approximated by a linear function. The primary equation is input to the control unit of the actual hydrogen filling apparatus, and the hydrogen filling is automatically performed. When the hydrogen flow rate (F) falls below the specified hydrogen flow rate, the hydrogen filling is completed.

次に水素充填の完了時間の予測方法について説明する。
図2の結果から、図3、4に示すように、予め冷媒温度ごとに水素充填圧力Pとt2の関係をプロットする。試験の結果、両者の関係は一次関数で近似できることを確認している。これらを基に、充填残り時間(trem)は、図5のように算出することができる。
すなわち、Fpv≧Fspのとき、tremはQpreから水素充填量の現在値(Qpv)を引いたものを水素流量の現在値(Fpv)で除すことにより充填残り時間(trem)を暫定的に算出することができる。
一方、Fpv<Fspのときは、tremはt2から、A時点からのデータ収集間隔の積算値(tint)を減じることで求めることができる。t2は、予め、算出や経験により得ておく。
図中のtremは、充填残り時間、tintは、データ収集間隔を示す。
Next, a method of estimating the completion time of hydrogen filling will be described.
From the results of FIG. 2, the relationship between the hydrogen filling pressure P and t2 is plotted in advance for each refrigerant temperature, as shown in FIGS. As a result of the test, it has been confirmed that the relationship between the two can be approximated by a linear function. Based on these, the remaining filling time (trem) can be calculated as shown in FIG.
That is, when Fpv ≧ Fsp, trem is provisionally calculated by subtracting the current value (Qpv) of the hydrogen filling amount from Qpre and dividing by the current value (Fpv) of the hydrogen flow rate. can do.
On the other hand, when Fpv <Fsp, trem can be obtained by subtracting the integrated value (tint) of the data collection interval from the time point A from t2. t2 is obtained in advance by calculation or experience.
In the figure, trem indicates the remaining time of filling, and tint indicates the data collection interval.

なお、上記実施形態では、複数個の水素吸蔵合金容器を備えるものについて適用した形態を説明したが、本発明としては、一つの水素吸蔵合金容器を備えるものに対し、適用することも可能である。なお、特許文献2では、充填完了までの推定時間を逐次算出しており、例えば容器表面温度を計測する場合などは、容器1本ごとに温度センサを取り付ける必要があり、複数個の水素吸蔵合金容器を備えるものにおいては効率的な充填作業が難しいという問題がある。しかし、本実施形態では、複数個の水素吸蔵合金容器を備えるものについても効率的な充填作業を行うことを可能にしている。   Note that, in the above-described embodiment, an embodiment in which a plurality of hydrogen storage alloy containers are provided has been described. However, the present invention can be applied to a case in which one hydrogen storage alloy container is provided. . In Patent Document 2, the estimated time until the filling is completed is sequentially calculated. For example, when measuring the surface temperature of a container, it is necessary to attach a temperature sensor to each container, and a plurality of hydrogen storage alloys are required. There is a problem that it is difficult to perform an efficient filling operation in a container provided with a container. However, in the present embodiment, it is possible to perform an efficient filling operation even for a device including a plurality of hydrogen storage alloy containers.

以下、本発明の実施例を記載する。
水素吸蔵合金容器として、定格水素量450Lの水素貯蔵合金(MH)を充填したMHキャニスタ3本に冷却路を内蔵したMH燃料ケース8台を用いて水素充填試験を実施した。水素充填装置の概略構成は、図1の装置と同様とした。
Hereinafter, examples of the present invention will be described.
A hydrogen filling test was carried out using eight MH fuel cases each containing three MH canisters filled with a hydrogen storage alloy (MH) having a rated hydrogen amount of 450 L and a cooling path as hydrogen storage alloy containers. The schematic configuration of the hydrogen filling device was the same as the device in FIG.

充填水素圧力を0.6MPaG、冷媒入口温度を5℃、冷媒流量を12L/minに設定し、充填における水素流量を80L/minに制御した。
図6に水素充填圧力、水素流量、水素充填量の経時変化をまとめた。充填開始後約40分は流量が制御できているが、容器内圧が上がるにつれて、水素流量が徐々に低下し始めている。
The charged hydrogen pressure was set to 0.6 MPaG, the refrigerant inlet temperature was set to 5 ° C., the refrigerant flow rate was set to 12 L / min, and the hydrogen flow rate during charging was controlled to 80 L / min.
FIG. 6 summarizes the changes over time in hydrogen filling pressure, hydrogen flow rate, and hydrogen filling amount. The flow rate can be controlled for about 40 minutes after the start of filling, but as the internal pressure of the container increases, the hydrogen flow rate gradually starts to decrease.

図7に冷媒温度、充填圧力をパラメータとして、各種条件での定格水素充填量の時の水素充填圧力と規定水素流量の関係をまとめた。充填圧力と規定水素流量は概ね一次式の関係で示される。また、充填圧力と冷媒温度を一定にして、燃料ケース台数(N)と規定水素流量の関係を求めると、図8のようになり、燃料ケース台数と規定水素流量も概ね一次式の関係で示される。
以上の結果より、規定水素流量と充填圧力と冷媒温度およびケース台数の関係は以下で示される。
FIG. 7 summarizes the relationship between the hydrogen charging pressure and the specified hydrogen flow rate at the rated hydrogen charging amount under various conditions using the refrigerant temperature and the charging pressure as parameters. The charging pressure and the specified hydrogen flow rate are generally represented by a linear equation. FIG. 8 shows the relationship between the number of fuel cases (N) and the specified hydrogen flow rate while keeping the filling pressure and the refrigerant temperature constant. The relationship between the number of fuel cases and the specified hydrogen flow rate is also substantially expressed by a linear equation. It is.
From the above results, the relationships among the specified hydrogen flow rate, the charging pressure, the refrigerant temperature, and the number of cases are shown below.

Fpre={(K1+K2×T)+(K3+K4×T)×P}×(K5×N+K6) ……(式1)
ここでK1〜K6は定数である。
FpvがFpre以下であると、水素を供給している電磁開閉弁を閉じることで水素充填を完了とする。
Fpre = {(K1 + K2 × T) + (K3 + K4 × T) × P} × (K5 × N + K6) (Equation 1)
Here, K1 to K6 are constants.
If Fpv is equal to or less than Fpre, the hydrogen filling is completed by closing the electromagnetic on-off valve supplying hydrogen.

次に水素充填時間の残り時間の予測方法について記載する。
水素充填後、一定期間経過後、水素流量の現在値(Fpv)と制御水素流量(Fsp)を比較する。FpvがFspより大きい期間では、充填残り時間(trem)は、定格水素充填量(Qpre)から水素充填量の現在値(Qpv)を引いたものを水素流量の現在値(Fpv)で除すことにより暫定的に求められる。これにより充填完了に備えることができる。なお、水素流量(Fpv)が制御水素流量(Fsp)を下回るようになると、上記前提と異なる状態になるため修正が必要である。
すなわち、FpvがFspより小さい期間では、t2を後述の式2で算出し、t2からデータ収集間隔(tint)を減じることによりtremを、より正確に求めることができる。
t2に関して、冷媒温度、充填圧力とt2の関係は図9のようになり、充填圧力とt2は概ね一次式の関係で示される。
Next, a method of estimating the remaining time of the hydrogen filling time will be described.
After a certain period of time after filling with hydrogen, the current value of the hydrogen flow rate (Fpv) is compared with the control hydrogen flow rate (Fsp). In the period in which Fpv is greater than Fsp, the remaining charge time (trem) is obtained by subtracting the current value of the hydrogen charge (Qpv) from the rated hydrogen charge (Qpre) by the current value of the hydrogen flow rate (Fpv). Required provisionally. Thereby, it is possible to prepare for the completion of filling. Note that if the hydrogen flow rate (Fpv) falls below the control hydrogen flow rate (Fsp), the state will be different from the above premise, and correction is required.
That is, during a period in which Fpv is smaller than Fsp, t2 can be calculated more accurately by subtracting the data collection interval (tint) from t2 by calculating t2 using Expression 2 described later.
Regarding t2, the relationship between the refrigerant temperature, the charging pressure and t2 is as shown in FIG. 9, and the charging pressure and t2 are generally expressed by a linear relationship.

t2={(L1+L2×T)+(L3+L4×T)×P}×(L5×N+L6) ……(式2)
ここでL1 〜 L6は定数である。
充填完了までの残り時間tremはt2からtintを減じることで求められる。
t2 = {(L1 + L2 × T) + (L3 + L4 × T) × P} × (L5 × N + L6) (Equation 2)
Here, L1 to L6 are constants.
The remaining time trem until the filling is completed can be obtained by subtracting tint from t2.

図10に水素充填圧力:0.8MPaG、冷媒温度:5℃、冷媒流量:12L/minで水素充填を実施した時の結果を示す。水素充填は、概ね定格水素充填量で完了し、また充填残り時間についても実測と良く一致することを確認した。   FIG. 10 shows the results of hydrogen filling at a hydrogen filling pressure of 0.8 MPaG, a refrigerant temperature of 5 ° C., and a refrigerant flow rate of 12 L / min. It was confirmed that hydrogen filling was almost completed at the rated hydrogen filling amount, and that the remaining time of the filling was in good agreement with the actual measurement.

1 容器
1 水素ボンベ
1A 水素供給路
2 手動弁
3 圧力調整弁
4 電磁開閉弁
5 水素流量計
6 電磁開閉弁
7 圧力トランスミッタ
8 温度計
9 冷却器
10 冷媒流量計
11 燃料ケース
12 水素吸蔵合金容器
13 冷媒流路
100 水素充填装置
110 制御部
DESCRIPTION OF SYMBOLS 1 Container 1 Hydrogen cylinder 1A Hydrogen supply path 2 Manual valve 3 Pressure regulating valve 4 Solenoid on-off valve 5 Hydrogen flow meter 6 Solenoid on-off valve 7 Pressure transmitter 8 Thermometer 9 Cooler 10 Refrigerant flow meter 11 Fuel case 12 Hydrogen storage alloy container 13 Refrigerant flow path 100 Hydrogen filling device 110 Control unit

Claims (13)

水素供給源から1または複数個の水素吸蔵合金容器に対し水素充填を行う際に、水素充填に応じた所定の物理量の変化に基づいて、対象となる前記水素吸蔵合金容器において水素充填が完了する時期を判断する水素充填方法。   When filling one or more hydrogen storage alloy containers with hydrogen from a hydrogen supply source, hydrogen filling is completed in the target hydrogen storage alloy container based on a change in a predetermined physical quantity according to the hydrogen filling. Hydrogen filling method to judge when. 水素充填が完了する前記時期は、水素充填が完了する時点を示している請求項1記載の水素充填方法。   2. The hydrogen filling method according to claim 1, wherein the time when the hydrogen filling is completed indicates a time when the hydrogen filling is completed. 予め所定の前記物理量から充填完了となる規定水素流量を定めておき、現在の水素流量が前記規定水素流量以下になると、水素充填が完了したと判断する請求項2記載の水素充填方法。   3. The hydrogen filling method according to claim 2, wherein a prescribed hydrogen flow rate at which filling is completed based on the predetermined physical quantity is determined in advance, and when the current hydrogen flow rate becomes equal to or less than the prescribed hydrogen flow rate, it is determined that hydrogen filling is completed. 水素充填が完了する前記時期は、水素充填が完了するまでの残り時間を示している請求項1〜3のいずれか1項に記載の水素充填方法。   The hydrogen filling method according to any one of claims 1 to 3, wherein the timing at which the hydrogen filling is completed indicates a remaining time until the hydrogen filling is completed. 前記水素吸蔵合金容器における充填完了時の水素充填量と、現在の水素充填量の差分をとり、この差分を現在の水素流量で除して、水素充填が完了するまでの残り時間を算出する算出手順を有する請求項4記載の水素充填方法。   Calculation of calculating the difference between the hydrogen filling amount at the time of filling completion in the hydrogen storage alloy container and the current hydrogen filling amount, dividing the difference by the current hydrogen flow rate, and calculating the remaining time until the hydrogen filling is completed. 5. The hydrogen filling method according to claim 4, comprising a procedure. 前記算出手順は、現在の水素流量が制御水素流量以上である場合に、前記算出手順を行う請求項5記載の水素充填方法。   The hydrogen filling method according to claim 5, wherein the calculating step is performed when a current hydrogen flow rate is equal to or higher than a control hydrogen flow rate. 現在の水素流量が制御水素流量以上である場合に、水素流量を制御水素流量に制御して前記水素吸蔵合金に供給する請求項6記載の水素充填方法。   7. The hydrogen filling method according to claim 6, wherein when the current hydrogen flow rate is equal to or higher than the control hydrogen flow rate, the hydrogen flow rate is controlled to the control hydrogen flow rate and supplied to the hydrogen storage alloy. 前記所定の物理量によって、水素充填完了時点を決定し、水素充填完了時点と水素流量のデータを取得するデータ収集間隔との差分によって水素充填が完了するまでの残り時間を算出する請求項4記載の水素充填方法。   The hydrogen filling completion time is determined by the predetermined physical quantity, and a remaining time until the hydrogen filling is completed is calculated based on a difference between the hydrogen filling completion time and a data collection interval for acquiring hydrogen flow rate data. Hydrogen filling method. 現在の水素流量が制御水素流量未満である場合に、前記残り時間を算出する請求項8記載の水素充填方法。   9. The hydrogen filling method according to claim 8, wherein the remaining time is calculated when a current hydrogen flow rate is less than a control hydrogen flow rate. 所定の前記物理量が、水素吸蔵合金容器の充填圧力、水素吸蔵合金容器に供給する冷却媒体の温度および水素吸蔵合金容器の個数の一つ以上である請求項1〜9のいずれ1項に記載の水素充填方法。   The said physical quantity is one or more of the filling pressure of a hydrogen storage alloy container, the temperature of the cooling medium supplied to a hydrogen storage alloy container, and the number of hydrogen storage alloy containers. Hydrogen filling method. 水素供給源から1または複数個の水素吸蔵合金容器に供給される水素流量を測定する流量測定器と、
前記水素吸蔵合金に送られる冷媒温度を測定する温度測定器と、
前記水素吸蔵合金内の水素充填圧力を測定する圧力計と、を備え、
前記流量測定器と、前記温度測定器と、前記圧力計の測定結果を受けて、対象となる前記水素吸蔵合金容器に対し水素充填が完了する時期を判断する制御部と、を備える水素充填完了時期判断装置。
A flow rate measuring device for measuring a flow rate of hydrogen supplied from the hydrogen supply source to one or more hydrogen storage alloy containers,
A temperature measuring device for measuring the temperature of the refrigerant sent to the hydrogen storage alloy,
A pressure gauge for measuring hydrogen filling pressure in the hydrogen storage alloy,
Hydrogen filling completion comprising: the flow rate measuring device, the temperature measuring device, and a control unit that receives a measurement result of the pressure gauge, and determines a timing at which hydrogen filling is completed for the target hydrogen storage alloy container. Timing device.
前記水素流量を所定の制御水素流量に設定する流量制御弁を有する請求項11記載の水素充填完了時期判断装置。   The hydrogen filling completion timing judging device according to claim 11, further comprising a flow control valve for setting the hydrogen flow to a predetermined control hydrogen flow. 前記制御部は、水素充填完了時点または水素充填完了残り時間を算出する請求項12記載の水素充填完了時期判断装置。


13. The hydrogen filling completion timing determining device according to claim 12, wherein the control unit calculates the hydrogen filling completion time or the hydrogen filling completion remaining time.


JP2018127588A 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device Active JP7145662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127588A JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127588A JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Publications (2)

Publication Number Publication Date
JP2020008041A true JP2020008041A (en) 2020-01-16
JP7145662B2 JP7145662B2 (en) 2022-10-03

Family

ID=69151192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127588A Active JP7145662B2 (en) 2018-07-04 2018-07-04 Hydrogen filling method and hydrogen filling completion time determination device

Country Status (1)

Country Link
JP (1) JP7145662B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103987A (en) * 1992-08-10 1994-04-15 Sanyo Electric Co Ltd Hydrogen filling method and hydrogen filling device
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device
JP2007138973A (en) * 2005-11-15 2007-06-07 Japan Steel Works Ltd:The Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103987A (en) * 1992-08-10 1994-04-15 Sanyo Electric Co Ltd Hydrogen filling method and hydrogen filling device
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device
JP2007138973A (en) * 2005-11-15 2007-06-07 Japan Steel Works Ltd:The Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel

Also Published As

Publication number Publication date
JP7145662B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US10443784B2 (en) System for controlling gas supply unit
US20160054741A1 (en) Device and method for controlling opening of a valve in an hvac system
CN104656021B (en) The predictor method and device of a kind of remaining battery capacity
US10573941B2 (en) Battery temperature management device
CA3037161C (en) Flow-based energy management
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
JP6179273B2 (en) Fuel gas filling device
US7711538B2 (en) Method and apparatus for soft-sensor characterization of batteries
CN113638043B (en) Purging and cooling system, method and device for epitaxial furnace, electronic equipment and storage medium
CN115992932A (en) Control method of hydrogen filling device and hydrogen filling device
JP2020008041A (en) Hydrogen charging method and hydrogen charging completion timing determination device
JP4354881B2 (en) Refrigerant filling device
JP2015169262A (en) Fuel gas charging system, control device, fuel gas charging method, control method and computer program
US10571076B2 (en) Method for refueling of gas into a pressurized gas tank
EP3015803A1 (en) A method for estimating thermal capacity of foodstuff
RU2629645C1 (en) Temperature control method in heating chamber
KR20150137878A (en) Refrigerant charging kit, air conditioner, and controlling method for charging of refrigerant
JP5768160B1 (en) Secondary battery capacity evaluation method and evaluation apparatus
CN105674640B (en) The flux matched regulating device of air-conditioning system refrigerant charging and method
US11644224B2 (en) Portable automatic refrigerant charging device and method
JP2001125650A (en) Tank temperature control method and device
CN116860032A (en) Control method and device for temperature calibration device and computer readable storage medium
CN112781430A (en) Method for controlling heat exchanger, storage medium and electronic device
CN116256573A (en) Determining a state of charge of a phase change material based thermal energy storage device
KR101401619B1 (en) Method for displaying room-temparature of refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150